
THÈSE DE DOCTORAT DE 
L’UNIVERSITÉ PIERRE ET MARIE CURIE

Spécialité: Neuroscience

École doctorale Cerveau – Cognition – Comportement (ED3C)

présentée par

Quang-Cuong PHAM (Ph m Quang C ng)ạ ườ

pour obtenir le grade de

DOCTEUR de l’UNIVERSITÉ PIERRE ET MARIE CURIE

Étude de trajectoires locomotrices humaines
                                       

soutenue le 11 décembre 2009

devant le jury composé de

M. Alain BERTHOZ, directeur de thèse
M. Stefan GLASAUER, rapporteur
M. Yoshihiko NAKAMURA, rapporteur
M. Daniel BENNEQUIN, examinateur
M. Jean-Paul LAUMOND, examinateur
M. Didier ORSAL, examinateur
M. Jean-Jacques SLOTINE, examinateur

Université Pierre & Marie Curie - Paris 6 
Bureau d’accueil, inscription des doctorants et base 
de données
Esc G, 2ème étage
15 rue de l’école de médecine
75270-PARIS CEDEX 06

Tél. Secrétariat : 01 42 34 68 35
Fax : 01 42 34 68 40

Tél. pour les étudiants de A à EL : 01 42 34 69 54
Tél. pour les étudiants de EM à MON : 01 42 34 68 41

Tél. pour les étudiants de MOO à Z : 01 42 34 68 51
E-mail : scolarite.doctorat@upmc.fr





Remerciements

Je souhaite tout d’abord remercier Pr Alain Berthoz d’avoir encadré ma
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Résumé

La locomotion humaine est une activité motrice, sensorielle et cognitive
qui fait intervenir de multiples niveaux de contrôle, comme la production
de “patterns” rythmiques des membres inférieurs, l’ajustement postural du
haut du corps pour la stabilisation ou encore la formation de trajectoires du
corps entier dans l’espace. L’objectif principal de cette thèse est de fournir
certains éléments contribuant à la de compréhension du dernier aspect.

En analysant les résultats d’une série d’expériences, nous montrons que
les trajectoires locomotrices sont stéréotypées, c’est-à-dire qu’elles sont sem-
blables à travers différents essais d’un même sujet, à travers différents sujets,
mais aussi à travers différentes conditions sensorielles (marcher avec ou sans
vision) et motrices (marcher en avant ou en arrière, à vitesse normale ou ra-
pide). Ces observations suggèrent que les trajectoires locomotrices sont pla-
nifiées et contrôlées à un haut niveau cognitif et, dans une certaine mesure,
indépendamment de leur implémentation sensori-motrice. En analysant plus
en détail la variabilité de ces trajectories, nous soutenons qu’une combinaison
de processus en boucle ouverte et en boucle fermée préside à la formation de
trajectoires locomotrices et nous discutons de la nature précise du contrôle en
boucle fermée en question. Enfin, nous développons des modèles déterministes
et stochastiques qui permettent de confirmer les résultats expérimentaux, en
même temps qu’ils organisent ceux-ci dans le cadre théorique du contrôle
optimal.

Mots-clés locomotion humaine, trajectoires locomotrices, contrôle moteur,
contrôle optimal, modélisation, navigation
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Abstract

Locomotion in humans is a complex motor, sensory and cognitive activity
requiring multiple levels of control: from the production of repetitive stepping
patterns of the lower limbs, through the adjustments of upper-body segments
ensuring dynamic stability, to the formation of whole-body trajectories in
space. The main objective of this thesis is to provide some elements of
understanding of the latter aspect.

Through a series of experiments, we showed that locomotor trajectories
are stereotyped, that is, they are similar across repetitions of the same subject,
across subjects and also across different sensory (walking with or without
vision) and motor (walking forward or backward, at normal or fast speed)
conditions. These results suggest that locomotor trajectories are planned
and controlled at a high cognitive level and, to some extent, independently
of their sensorimotor implementations. Going further, through the analysis of
trajectory variability, we argued that a combination of open-loop and feedback
processes governs the formation of locomotor trajectories and discussed in
detail the nature of the feedback control. Finally, we designed deterministic
and stochastic models which helped confirming the experimental findings and
organized them within the theoretical framework of optimal control.

Keywords human locomotion, locomotor trajectories, motor control, op-
timal control, models, navigation
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Introduction

Locomotion in humans is a complex motor and cognitive activity requiring
multiple levels of control: from the production of repetitive stepping patterns
of the lower limbs, through the adjustments of upper-body segments ensur-
ing dynamic stability, to the formation of whole-body trajectories in space.
In addition, the multiple sensory signals (visual, vestibular, proprioceptive)
are continuously processed and integrated together, allowing the dynamic
interaction of the body with the environment.

The main objective of this thesis is to provide some elements of under-
standing of whole-body trajectories. To get a rough idea, consider the fol-
lowing everyday life situation: a person is standing at some position in a
room and has to walk towards and through a distant doorway to get out of
that room [Fig. 1(A)]. What trajectory in space does he choose to achieve
this objective? If he has to perform this task several times, will the resulting
trajectories be similar or not? Following what criteria does he select a par-
ticular trajectory among the infinitely many possible trajectories? And more
conceptually, what can we learn about the functioning of the Central Ner-
vous System (CNS) from the geometric, kinematic and statistical properties
of these trajectories?

To address these questions, we designed experimental protocols that adapt
the above task to a laboratory environment, and recorded the trajectories
produced by human subjects [see Fig. 1(B) for some representative trajecto-
ries]. We then studied in detail the properties of these trajectories to infer
the laws governing the formation of whole-body trajectories in humans.

Two considerations accompanied us throughout this study. First, we did
not examine whole-body trajectories by themselves, but in relation with other
levels of analysis, such as the stepping activity or the steering behavior of the
head and the trunk segments. Indeed, these multiple levels are distinguished
only from a formal viewpoint, for the sake of analysis. In reality, they are
tightly linked to each other and are jointly monitored by the CNS to elaborate
the appropriate motor commands. This interconnected nature of the multiple

9



1m

B

Figure 1: Formation of locomotor trajectories. (A) A person is standing
at some position in a room and has to walk towards and through a distant
doorway to get out of that room. (B) Three trajectories of a subject per-
forming this task in a laboratory environment. The thick black bars indicate
the panels that made up the doorway. We thank F. Maloumian for designing
the body figures used in the illustrations.

control levels thus calls for a dialectical, integrative view for the study of
locomotion (see Hicheur, 2006).

Second, a large number of our analyses were inspired from the computa-
tional motor control literature. Computational motor control borrows ideas
(such as optimization, feedback loops, internal models, etc.) from classi-
cal control theory (a branch of engineering and mathematics) in order to
investigate biological movements. This approach has proved successful in ex-
plaining many aspects of arm and eye movements. We believe that following
this approach can also be fruitful for studying locomotion. Indeed, one of
our main working hypotheses was that, as a part of the human repertoire, lo-
comotion should share some control principles with other types of movement
(see Berthoz, 2009, chapter 9). This idea may be illustrated by the classical
observation that one can write the letter “a” with the finger, the mouth, the
knee or even by running on a flat surface. Moreover, these movements of
very different biomechanical natures share common geometric and kinematic
properties (the “principle of motor equivalence”, see Bernstein, 1967).

Our work includes several novelties with respect to most previous works
on locomotion. First, through the experimental paradigm of “walking to-
wards and through a distant doorway”, we were able to study spontaneously
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generated trajectories. This contrasts with the usual protocols, where sub-
jects have to walk along predefined paths (straight segments, triangles, cir-
cles or more complicated figures such as cloverleaves, limacons, etc.). Since
the paths contain precious information about the subjects’ strategies, it is
crucial to use a protocol that do not constrain the paths while still imposes
relatively complex trajectories. We note here that this innovating “doorway”
paradigm was originally developped by Arechavaleta et al. (2006) to study
the nonholonomic coupling of velocity and orientation (see section 3.3).

Second, in resonance with the most recent developments in computational
motor control, we not only examined the average behavior, but also the vari-
ability around this average behavior. Indeed, only few (or none of) previous
works on locomotion considered in detail the variability of whole-body trajec-
tories. Here, the analysis of variability profiles (how the variability evolves
in time) was one of our main tools to investigate the laws governing the
formation of locomotor trajectories.

Third, our study combined experimental and modeling approaches. Mod-
els can indeed complement experiments by allowing testing positively for-
mulated hypotheses. From a conceptual viewpoint, theoretical models that
can reproduce experimental observations also strengthen our understanding
of human movements. Perhaps, a similar idea was expressed by the great
American physicist Richard Feynman when he said

“What I cannot create, I do not understand.”

Organization of the manuscript

The first part of the manuscript outlines the theoretical context of our study.
We first briefly present the recent developments in motor control that inspired
some of our analyses (chapter 1). We then review a number of findings in
locomotion concerning the stepping activity, the multisensory control of lo-
comotion and the steering behavior (chapter 2). Finally, we discuss previous
studies of locomotor trajectories by highlighting their contributions as well
as their shortcomings (chapter 3), which our work attempts to address.

In the second part, we present the experimental studies. Chapter 4 first
introduces the general methodology and notations. We also briefly discuss
in this chapter the main advantages and weaknesses associated with our
methodology.

Chapter 5 examines through two experiments how similar or different are
locomotor trajectories observed across repetitions, subjects and sensory and
motor conditions. In Experiment 1, which implements the “walking towards
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and through a distant doorway” paradigm, we show that locomotor trajecto-
ries are actually stereotyped, that is, they are highly similar across repetitions
of the same subject and also across subjects. This stereotypy contrasts with
a great variability of the feet placements, which suggests that locomotion is
planned and controlled at the level of whole-body trajectories. In Experi-
ment 2, we examine the influence of vision (walking with eyes open or closed)
and of gait direction (walking forward or backward) on the formation of tra-
jectories. The results obtained from this experiment allow further testing
the hypothesis that locomotor trajectories are planned and controlled at a
high cognitive level, and to some extent, independently of their sensorimotor
implementations.

Chapter 6 studies in more detail the control mechanisms involved in the
production of locomotor trajectories. For this, we designed three experiments
which test respectively the influence of vision (Experiment 3), of speed (Ex-
periment 4) and of the presence of via-points (Experiment 5) on the average
trajectories and on the variability profiles. Based on the experimental re-
sults, we formulate the hypothesis that a combination of open-loop and feed-
back processes governs the formation of locomotor trajectories and discuss
in detail the nature of the feedback control.

Chapter 7 reports some preliminary results. Following the aforementioned
integrative view, we first explore the relations between the formation of lo-
comotor trajectories and the steering behavior. More precisely, based on the
analysis of the head and trunk turning profiles recorded in Experiment 2, we
assess the inluence of vision and of gait direction on the turning behavior
of the head and the trunk. We then examine, through a new Experiment
6, the relations between formation of continuous locomotor trajectories and
navigation, which we define as a sequence of discrete choices (for instance, to
navitage from the Arc de Triomphe to the Eiffel tower, one has the choice of
going westward by Avenue Kléber or eastward by Avenue d’Iéna). Finally,
Experiment 7 explores a new general principle for the control of movements,
which postulates that movements should obey geometrical invariances, in
particular, the affine invariance.

In the third part of the manuscript, we present the modeling studies. Chap-
ter 8 examines some deterministic models of trajectory formation. Our basic
assumption is that locomotion is an optimized activity. Following the “prin-
ciple of motor equivalence” mentioned previously, we thus adapted to the
context of locomotion optimal control models that were initially proposed
for hand movements. We show in particular that minimum jerk models
accurately predict the average locomotor trajectories recorded in our exper-
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iments.
Since the models presented in chapter 8 are deterministic, they cannot

help understand the variability patterns highlighted in chapter 6. We thus
have to consider in chapter 9 optimal feedback control models and assess
whether these models can account for the average trajectories and the vari-
ability profiles experimentally observed.

We conclude with a general discussion of our experimental and modeling
findings. We evaluate the possible contributions of our work to the current
understanding of human locomotion and of motor control in general. We
also discuss some ongoing and future directions of research, which address
in particular the clinical and developmental aspects of the ideas defended in
this thesis. Finally, we speculate on the possible applications of our findings
to the design of humanoid robots.

13



Part I

Theoretical context
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This part introduces the concepts and results that form the theoretical
basis of the thesis. We review in chapter 1 some of the main results obtained
in the field of computational motor control. Then, in chapter 2, we discuss
some research issues in locomotion, which are important to be conversant
with if one is to provide an integrative understanding of locomotion. We
focus on the aspects that pertain most to our work: the stepping activity,
the multisensory control of locomotion and the steering behavior. Finally, in
chapter 3, we present previous studies of locomotor trajectories, highlighting
their contributions as well as their shortcomings.

We would like to stress that our goal in this part is not to provide a com-
prehensive review of all the aspects evoked above. Rather, we more modestly
aim at equipping the reader with the necessary knowledge to interpret the
experimental and modeling results presented later.

15



Chapter 1

Computational motor control

Consider the everyday life task of reaching out to press a button. Achieving
this apparently simple objective requires producing an arm movement to
bring the hand from its initial position towards another position in space,
that of the button. The production of such a movement is however associated
with several difficulties: to go from the initial position towards the desired
final position, the hand can take an infinite number of different paths ; given
a path, an infinite number of different trajectories 1 correspond to that path;
given a hand trajectory, an infinite number of different time-varying patterns
of the wrist, elbow and shoulder angles can achieve that hand trajectory, etc.
(see Fig. 1.1 for a schematic representation of the redundancy existing in
motor control, from the task level all the way up to the level of the neural
commands).

From the above perspective, the “redundancy problem” associated with
the production of even simple movements appears to be incredibly complex.
Yet, the Central Nervous System (CNS) effortlessly “solves” such problems
(and even harder ones, consider for instance the movements of professional
violonists or football players) several thousand times a day. Understanding
how the CNS achieves this has been the main focus of numerous studies over
the past decades. Within this rich literature, we would like to highlight three
main developments that form the conceptual basis for our study of locomotor
trajectories.

The first such development consisted of identifying invariants in the pro-
duction of arm movements (section 1.1). From the studies of these invariants,
it was suggested in particular that the CNS controlled the trajectories of the
hand in space, rather than e.g. the joint angles.

1Throughout this manuscript, a path designates a geometric object (devoid of any time
parameterization) while a trajectory designates a pair: path + a velocity profile along that
path.
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Task

Hand trajectory
(path + velocity profile)

Muscle activations

Joint kinematics

Hand path

Neural commands

Figure 1.1: Redundancy in the control of arm movements (adapted from
Jordan and Wolpert, 1999).

Second, following the “spatial control” view, it was proposed that the
hand trajectories in question are optimal according to some criteria. Opti-
mal control models were consequently developped in order to identify these
criteria (section 1.2).

Third, the focus was more recently put back on the analysis of trajec-
tory variability, which is thought to also reflect the control mechanisms at
work during the production of a movement. This led to the development
of stochastic models in order to provide a conceptual understanding of the
experimentally observed variability (section 1.3).

1.1 Invariants in hand movements

1.1.1 Reaching movements

Consider again a reaching task, which is now restricted to the horizontal
plane. Despite the infinite number of possible 2D trajectories (paths and
velocity profiles) joining two positions in the plane, it was experimentally
shown that humans consistently generate approximately straight hand paths
and bell-shaped (smooth, single-peaked) velocity profiles (Morasso, 1981,
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Fig. 1.2). This is not trivial since the joint angular profiles (in Morasso’s
experiment: flexion-extension of the elbow and shoulder) which yielded these
trajectories were rather complex and displayed no particular regularity (Fig. 1.3,
rows 1 and 2). The observation of straight hand paths and bell-shape ve-
locity profiles in 2D reaching was also reported in experiments on monkeys
(Georgopoulos et al., 1981, Fig. 1.4).

Figure 1.2: Approximately straight hand paths observed in a 2D reaching
task in six human subjects (adapted from Morasso, 1981).

There are however some limitations to these findings. For instance, large
horizontal arm movements (Uno et al., 1989, Fig. 1.5) and vertical arm move-
ments (Atkeson and Hollerbach, 1985) are slightly curved. The tangential
velocity profiles associated with these movements remain nevertheless bell-
shaped and symmetrical, irrespective of the load, direction of movements,
speed conditions (Atkeson and Hollerbach, 1985, Fig. 1.6).

Taken together, these observations suggested that arm movements are
planned and controlled based on the cartesian coordinates of the hand in
the extracorporal space, rather than on internal representations of e.g. joint
angles (Morasso, 1981; Flash and Hogan, 1985).

This view, termed “spatial control of arm movements”, is supported by
several conceptual considerations. For instance, “the potential of the ‘spa-
tial code’ [may] serve as a common language among the different sources of
information which subserve coordinated movements (e.g. exteroceptive and
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Figure 1.3: Joint angle profiles (row 1), joint angular velocity profiles (row 2)
and tangential hand velocity profiles (row 3) recorded in a 2D reaching task
in a human subject. Each column corresponds to a different pair of starting
position/target position. Note the stereotyped bell-shaped hand velocity
profiles across the columns, which contrasts with the variability of the joint
behaviors (adapted from Morasso, 1981).

Figure 1.4: Approximately straight hand paths and bell-shaped velocity pro-
files observed in a 2D reaching task in a rhesus monkey (adapted from Geor-
gopoulos et al., 1981).
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Figure 1.5: Slightly curved hand trajectories and symmetrical bell-shaped
velocity profiles observed in large horizontal arm movements (adapted from
Uno et al., 1989).

Figure 1.6: Symmetrical bell-shaped velocity profiles in vertical arm move-
ments in different conditions. (A) velocity profiles for different speed con-
ditions are superimposed. (B) different loads. (C) different targets. (D)
different subjects (adapted from Atkeson and Hollerbach, 1985).
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proprioceptive afferences, motor programs, etc.)” (Morasso, 1981).

1.1.2 Curves drawing

The drawing of curved shapes is characterized by another invariant: the
hand tends to go slower in the curved portions of the paths and faster in the
straight portions. This inverse relationship between velocity and curvature
was quantified by the “one-third power law” (Lacquaniti et al., 1983, Fig. 1.7
and 1.8 )

v(t) = γr(t)1/3 (1.1)

where v is the hand velocity, r the radius of curvature and γ a constant
scaling factor. Equivalently, since r = 1/κ where κ is the path curvature, the
“one-third power law” can also be formulated as

a(t) = γκ(t)2/3 (1.2)

where a is the angular velocity. Under this form, the law is thus also known
as the “two-thirds power law”.

Figure 1.7: The angular velocity as a function of the curvature to the power
two-thirds in an ellipses drawing task. Ellipses of different eccentricities (0.6
to 0.95) were considered. One can observe a linear relationship between the
two parameters (adapted from Lacquaniti et al., 1983).

This “law” was observed also in perception studies: for instance, a curved
movement whose velocity follows the “one-third power law” is perceived by
human subjects as having a constant velocity (Viviani and Stucchi, 1992).
Also, the “one-third power law” was found to develop during childhood (Vi-
viani and Schneider, 1991).
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Figure 1.8: A scribbling task. (A) geometric paths of the scriblings. (B)
Angular velocity as a function of the curvature to the power two-thirds.
One can observe a piece-wise linear relationship between the two parameters
(adapted from Lacquaniti et al., 1983).

1.1.3 Geometry considerations

Several ideas were proposed to explain the “one-third power law” mentioned
above (see a review in Schaal and Sternad, 2001). In particular, Pollick
and Sapiro (1997) remarked that moving along a curve with constant equi-
affine velocity actually yields the “one-third power law”. Indeed, the notion
of “velocity” we have been using so far is in fact associated with euclidian
geometry, which is one among several possible geometries the CNS might
use.

A geometry of a space E is associated with a particular group G of trans-
formations of E (see Bennequin et al., 2009, for more details and references).
For instance, in the plane, euclidian geometry corresponds to the group of
rigid displacements (translations and rotations). Equi-affine geometry corre-
sponds to the larger group of area-preserving transformations (translations,
rotations but also stretching and shearing) and full affine geometry corre-
sponds to an even larger group, which contains area-preserving transforma-
tions and dilatations.

One can then define a notion of length specific to each particular geometry
by demanding that this length be invariant under any transformation of the
corresponding group. For instance, any curve has the same euclidian length
as its image by any translation and rotation. However, a circle does not
have the same euclidian perimeter as the ellipse that is obtained from it by
stretching. By contrast, the equi-affine arc-length σ1 defined as

dσ1

ds
=

1

r1/3
, (1.3)
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where r is the instantaneous radius of curvature and s is the euclidian arc-
length, allows constructing by integration a notion of length that is invariant
by any equi-affine transformation.

Given the notion of invariant length, one can then define a notion of
velocity that is also invariant, by simply “dividing by dt”. From Eq. (1.3),
one can then see why moving along a curve with constant equi-affine velocity
yields the “one-third power law”.

More recently, Bennequin et al. (2009) generalized considerably Pollick
and Sapiro’s idea. According to these authors, a mixture of several geometries
(euclidian, equi-affine and affine) governs the production of many types of
human movements. More precisely, the euclidian velocity v along a curve
may be decomposed as

v = vβ0

0 vβ1

1 vβ2

2 (1.4)

where v0, v1 and v2 denote respectively the expected euclidian velocity un-
der constant affine, equi-affine and euclidian velocities [for instance, we have,
from Eq. (1.3), v1 ∝ v2/r

1/3], and β0, β1 and β2 are three weighting param-
eters.

This theory can thus provide a unifying framework to understand differ-
ent types of movements in terms of their dominant geometries. For instance,
observing that locomotor trajectories are associated with a large β2 and a
small β0, the authors hypothesized that euclidian geometry is dominant in
locomotion. By contrast, the drawing of curves with the hand is more dom-
inated by affine geometry. More conceptually, the authors suggest that the
CNS might use several levels of representation of space, each level being
organized according to a geometry (or equivalently to a group of transfor-
mations or symmetries). Then, “approaching the level of motor execution,
fewer and fewer possibilites are allowed, thus reducing the initial larger group
of symmetry of all possible movements into smaller groups”. According to
this view, the similarities and the differences between the different types of
movements (for instance, locomotion and hand movements) would be ex-
plained by the way the groups of symmetries are reduced at the different
levels of the hierarchy.

1.2 Deterministic optimal control models

Optimal control theory provides a pertinent framework to account for the
invariants identified in arm movements. Within this framework, the stereo-
typed hand trajectories may be explained by the hypothesis that the CNS
systematically selects the optimal trajectory among all possible trajectories.
Besides, optimal control is appealing from a conceptual viewpoint for “it
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is related to the possibility that the sensorimotor system is the product of
processes such as evolution, development, learning or adaptation that contin-
uously act to improve behavioral performance” (Todorov, 2004).

More precisely, optimal control models postulate that humans select the
movement that minimize a certain cost, such as efficiency, smoothness, accu-
racy, duration, etc. Classically, one distinguishes two categories of costs: (i)
kinematic costs, which contain only geometrical and time-based quantities
of the trajectory, such as position, velocity, acceleration, movement dura-
tion, etc. and (ii) kinetic costs, which contain also dynamic quantities such
as torques, forces, muscle commands, etc.

1.2.1 Kinematic models

Observing that hand trajectories are “smooth and graceful”, Hogan (1984)
proposed a minimum jerk model to account for qualitative and quantitative
features of single-joint forearm movements. This was motivated by the as-
sumption that minimizing the squared jerk (jerk is mathematically defined as
the third-order derivative of the position) may be equivalent to maximizing
smoothness. Flash and Hogan (1985) generalized this model to the case of
multijoint movements. They showed in particular that the 2D trajectories
(x(t), y(t)) that minimize the following squared jerk cost:∫ 1

0

((
d3x

dt3

)2

+

(
d3y

dt3

)2
)

dt (1.5)

displayed qualitative and quantitative similarities with experimentally recorded
hand trajectories.

More generally, a trajectory is smooth if there are no abrupt variations in
time. This implies that higher-order time derivatives of the position have low
absolute values. While Hogan (1984) and Flash and Hogan (1985) mostly
focused on the squared jerk cost, other costs such as the squared acceler-
ation or the squared snap (snap is the time derivative of jerk) can also be
considered. The general nth-order Maximum Square Derivative (MSD) cost
is given by: ∫ 1

0

((
dnx

dtn

)2

+

(
dny

dtn

)2
)

dt (1.6)

The case n = 1 corresponds to the minimum velocity cost, n = 2 to minimum
acceleration, n = 3 to minimum jerk and n = 4 to minimum snap, etc.

Richardson and Flash (2002) conducted a comparative study in which
they examined the capacity of MSD models of different orders to simu-
late hand trajectories. In particular, they found that 3rd- and 4th- order
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MSD models (minimum jerk and minimum snap) usually performed better
than those of other orders. In addition to quantitative fit, the trajectories
simulated by 3rd- and 4th-order MSD models displayed typical qualitative
characteristics of human hand trajectories: smoothness of the trajectory,
straight hand paths and bell-shaped velocity profiles in reaching tasks, in-
verse relationship between velocity and curvature in drawing tasks (see sec-
tion 1.1.2), etc.

1.2.2 Kinetic models

Because of their kinematic nature, the models presented above are indepen-
dent of the physical environment and of the mechanical system that generate
the movements. For instance, the minimum jerk model still predicts straight
hand paths even when external forces are applied to the hand. However, Uno
et al. (1989) reported that hand trajectories become curved in when exter-
nal spring-like forces were applied to the hand. They also reported curved
trajectories for large 2D movements.

These observations led these researchers to propose a minimum torque
change model. They modelled the arm system by a 2-joint manipulator and
looked for the movements that minimize the following cost∫ 1

0

2∑
i=1

(
dτi

dt

)2

dt (1.7)

where τi is the torque applied at joint i. Using this model, they could account
for the curvatures existing in perturbed and large arm movements.

However, the observations leading to the development of kinetic models
can be modulated. First, curved trajectories observed in presence of external
forces were found to become straighter with practice (Shadmehr and Mussa-
Ivaldi, 1994, Fig. 1.9).

It can also be argued that the curvature observed in large arm movements
result from some “border effects”: physical constraints may appear near the
physical limits of the system and perturb otherwise straight trajectories.

1.2.3 Minimum variance model

The kinematic and kinetic models presented above suffer from the conceptual
weakness that they rely on no “principled” explanation. Indeed, besides
aesthetic reasons, the advantage of smoothness of movement or low torque
change still remains unexplained. Furthermore, how the CNS could estimate
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Figure 1.9: Hand reaching trajectories performed in a nonlinear force field.
Average trajectories (and the variabilities) computed across the first (A),
second (B), third (C) and last (D) blocks of 250 trials. One can observe
that the trajectories become straighter with practice, implying that hand
trajectories are planned according to kinematic objectives (adapted from
Shadmehr and Mussa-Ivaldi, 1994).

complex quantities, such as jerk or torque change, and then integrate them
over the duration of a trajectory is still the subject of debates.

Harris and Wolpert (1998) proposed a model that relies on the assumption
that the motor system is corrupted by noise and that the selected movements
are those which minimize the variance of the effector’s final position. This
model is appealing since the variance expresses in fact the reaching errors
over multiple trials, and reducing errors is arguably an important goal pur-
sued by the CNS. Besides, reaching errors can also be easily estimated by the
CNS, for instance through visual feedbacks. This model could successfully
simulate both eye and arm movements. In the case of hand movements, this
model produced in particular smooth trajectories, suggesting that smooth-
ness may be a by-product of variance minimization.

However, Harris and Wolpert’s version of the minimum variance model
imposed a fixed movement duration. A more comprehensive model was de-
velopped by Tanaka et al. (2006) in which movement duration was included
in the cost. This model could then directly account for the speed-accuracy
trade-off (Fitts, 1954).
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1.3 Stochastic optimal feedback control

The interest sparked off by Harris and Wolpert’s study further demonstrated
the importance of detailed variability analysis. Indeed, while hand trajecto-
ries in reaching tasks are globally stereotyped, there still exists some variabil-
ity which contains precious information about how the CNS controls move-
ments.

1.3.1 Variability of the final position

The analysis of the hand’s final position in reaching tasks was first performed
to identify the reference frames in which subjects plan their movements. In an
experiment where subjects had to point to a remembered 3D target multiple
times, McIntyre et al. (1997) found that the variance ellipsoids consistently
pointed towards the subject’s eyes (see Fig. 1.10). Based on this observation,
the authors suggested that humans use a viewer-centered reference frame.

Figure 1.10: Variability patterns of the finger’s final position in a 3D reaching
experiment (adapted from McIntyre et al., 1997).

Going further, van Beers et al. (2004) distinguish three types of noise
that may contribute to movement variability: localization noise, planning
noise and execution noise. From this perspective, it can be argued that in
experiments such as those in McIntyre et al. (1997) the three types of noise
were muddled up by the experimental protocol. By designing a protocol
where the contribution of each type of noise could be precisely controlled,
van Beers et al. could demonstrate that execution noise (i.e. the noise that
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affects the motor system during movement execution) contributes “at least
for a large proportion” of the overall variability of the hand’s final position.

1.3.2 Trajectory variability and the “desired trajec-
tory” hypothesis

The examination of variability profiles, that is, how the variability evolves
in time, can provide further information. In particular, it allows evaluating
two competing hypotheses for the online control of movements (Todorov and
Jordan, 2002, see Fig. 1.11 for an illustration): (i) the “desired trajectory”
(DT) hypothesis, which assumes two separate stages in the production of a
movement: a planning stage when a desired optimal trajectory is computed
and an execution stage when this desired trajectory is implemented with
“trajectory tracking” mechanisms correcting any deviation away from the
desired trajectory; (ii) the optimal feedback control (OFC) hypothesis, which
states that “deviations from the average trajectory are corrected only when
they interfere with task performance” (goal-directed corrections, as opposed
to DT-directed corrections).

goal goal

perturbation
feedback correction

desired trajectory

"Desired trajectory" Optimal feedback control
hypothesishypothesis

Figure 1.11: The objective is to reach the “goal” line. In the “desired trajec-
tory” hypothesis, any deviation is corrected back to the desired trajectory,
while in the optimal feedback control hypothesis, only deviations that inter-
fere with goal achievement are corrected.

Usual optimal control models, including the minimum variance model
(Harris and Wolpert, 1998), implicitly assume the DT hypothesis since they
predict a single optimal trajectory. Yet tracking the DT is clearly sub-
optimal, even with respect to the initial criterion (for instance, a trajectory
that results from the tracking of a maximum smoothness trajectory may not
be smooth).
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Todorov and Jordan (2002) proposed several via-point tasks to experi-
mentally test the DT hypothesis. In one task, subjects were asked first to
make hand trajectories that must go through 5 given via-points. The experi-
menter computed the average trajectory across the recorded trajectories. He
then placed 20 via-points along this trajectory and asked the subjects to go
through these 20 via-points. By construction, the average trajectory of the
second task was practically the same as that of the first task. However, the
variability profiles were very different (see Fig. 1.12). These observations are
incompatible with the basic DT hypothesis, which would predict no differ-
ence between the statistics in the two conditions (indeed, the DT is equated
to the average trajectory, which is obtained by indeed “averaging out” the
trial-to-trial perturbations).

Figure 1.12: Variability profiles in via-points tasks. Dots mark passage
through the intermediate targets; the square in each inset marks the starting
position. (a) Left: 5 via-points (black targets shown in the inset). Right:
16 more targets (gray) were added. (b) In the “1 small” condition, the first
intermediate target was smaller; in the “2 small” condition, the second in-
termediate target was smaller (adapted from Todorov and Jordan, 2002).

We note nonetheless that these observations cannot rule out a varia-
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tion of the DT hypothesis which consists of (i) constructing several desired
sub-trajectories (4 sub-trajectories in the 5 via-point condition – the first
trajectory between the starting position and the second via-point, the sec-
ond trajectory between the second via-point and the third via-point, etc.
–, and 19 sub-trajectories in the 20 via-points conditions) and (ii) tracking
sequentially these sub-trajectories. While unlikely, this variation cannot be
theoretically ruled out based solely on the data provided by the experiment
(see Pham and Hicheur, 2009).

1.3.3 Optimal feedback control models

Instead of tracking a “desired trajectory”, it appears from Todorov and
Jordan’s experiments that humans likely use an Optimal Feedback Control
(OFC) strategy, correcting only the perturbations that interfere with the
task. For instance, in the 5 via-point task, variability was reduced over each
via-point while allowed to increase between two via-points.

While OFC schemes have been used in engineering for decades, Hoff and
Arbib (1993) implemented one of the first optimal online feedback models in
the field of motor control. They designed a feedback version of the minimum
jerk model that could deal with perturbations of the target’s position during
the movement: roughly, at each time instant t, if the target is perturbed,
a new minimum jerk trajectory is computed and executed, until the next
perturbation.

However, Hoff and Arbib’s model lack several features of a full OFC
model. First, since in their model only the target was perturbed, the system’s
state was supposed to be perfectly known to the controller. However, in
reality, the system’s state is also corrupted by noise, and thus can only be
known through estimation processes. Second, at each time instant t their
model calculates a feedback correction towards the perturbed position of the
target. However, this is may not always the optimal strategy: an optimal
strategy would take into account also the known statistics of the noise. For
instance, if we know that the noise more likely deviates the target towards
the left, then an optimal strategy will correct less the perturbations that
deviate the trajectory twoards the left of the target than those that deviate
towards the right.

Todorov and Jordan (2002) designed a full optimal feedback controller
that includes optimal estimation of the state and takes into account the noise
statistics. Using this model, the authors could account for the variability
profiles observed in the via-points tasks, but also for numerous other features,
including synergy, simplifying rules, discrete coordinations, etc.
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Chapter 2

Some research issues in
locomotion

As mentioned in the Introduction, to fully understand how whole-body tra-
jectories are planned and controlled requires taking into account other levels
of control of the locomotor activity. Here, we review some studies devoted
to the stepping activity (section 2.1), the multisensory control of locomo-
tion (section 2.2) and the steering behavior (section 2.3). These studies are
crucial for our subsequent investigations (see chapters 5, 7 and 6).

2.1 Stepping activity

2.1.1 Neural structures underlying the generation of
the stepping pattern

We have seen in chapter 1 that the planning and control of apparently simple
tasks is in fact extremely challenging from a computational viewpoint. The
generation of the stepping activity, which mobilizes practically all body mus-
cles, is thus even more complex. In addition, the bipedal nature of human
locomotion is associated with a very particular and highly elaborate neural
organization which, in large parts, still remains mysterious to neuroscientists.

In some lower vertebrates, such as the lamprey, the forward propulsion
of the body, the steering and the maintenance of equilibrium are realized
through alternating left-right contractions of the body segments. The con-
traction patterns are controlled by neural circuits, called Central Pattern
Generators (CPGs), which are located in the spinal cord. These CPGs are
able to generate a rythmic activity in isolation, that is, in absence of sensory
afferences or of supraspinal commands (Grillner, 2003, Fig. 2.1).
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Figure 2.1: Fictive locomotion in the lamprey. The isolated spinal coord can
generate a rythmic activity very similar to that observed in the intact animal
(adapted from Grillner, 2003).

In quadrupeds, such as the cat, CPGs have also been identified. The
existence of such CPGs is associated with the ability of these animals to
walk even after a section of the spinal cord: “Kittens with the spinal cord
sectioned several days after birth that are stimulated and trained in a special
way can walk on all four limbs. If the lumbosacral division of the spinal cord
is isolated in an 8 to 14 day-old kitten, the animal can, in some months, walk
on the hindlimbs on the moving treadmill band even when the forlimbs are
fixed. [...] Thus, the basic pattern of the stepping movement can be generated
by the spinal cord isolated from the brain.” (Shik and Orlovsky, 1976).

By contrast, it seems that no such localized CGP-like structures exist in
humans. In fact, there has been no evidence yet that it is possible to spon-
taneously generate any locomotor activity in patients with complete spinal
cord injury. The neural architecture of human locomotion thus seems to be
much more distributed and complex than that of other animals. One may
even talk of the “special nature of human walking and [of ] its neural control”
(see for instance Capaday, 2002; Hicheur, 2006).

2.1.2 Biomechanical description of the stepping pat-
tern

From a biomechanical viewpoint, the description of the stepping cycle in
terms of muscle activity and of joint angles patterns is more complete. The
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reader is referred to Hicheur (2006) for a clear and comprehensive review of
the body of knowledge concerning this aspect. Here, we concentrate on a
particular issue that pertains to our study: how the coordination of the legs’
segments is re-organized when humans walk backward.

As mentioned previously, the axial gait in the lamprey is essentially based
on the alternate contractions of antagonistic myotomes. The backward gait
is obtained simply by time-reversing the contraction patterns corresponding
to the forward gait (Grillner et al., 1995). In humans however, the simple
time-reversal of muscle activity patterns cannot produce backward walking
due to “the multijointed nature of the limbs and [to] the anatomic asymmetry
of the body in the anteroposterior direction” (Grasso et al., 1998b).

Despite these considerations, it appears that the production of backward
gait is still supported by the time-reversal of the limb trajectories (Fig. 2.2).
This simple transformation is however produced by radical and complex
changes in the patterns of muscle activity (Thorstensson, 1986). These results
are reminiscent of the “spatial control” hypothesis put forward by Morasso
(1981) in the context of hand movements (see section 1.1).

Figure 2.2: Movement trajectories of the left leg during forward and backward
walking on a treadmill. Above: superimposed records of the markers on the
hip, knee and ankle markers during five consecutive strides. Below: stick
figures showing the movements of the whole leg during one stride (adapted
from Thorstensson, 1986).
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Going deeper in the analysis, Grasso et al. (1998b) showed more precisely
that the patterns of elevation angles (the angles between the leg segments
with the vertical) was conserved after time-reversal. The joint angle patterns
(the angles between the leg segments) were also conserved, but to a lesser ex-
tent. In any case, in agreement with Thorstensson (1986), the authors found
that the muscle activity patterns were completely re-organized to preserve
this kinematic symmetry.

2.2 Multisensory control of locomotion

As mentioned in the Introduction, multiple sensory signals (visual, vestibular,
proprioceptive, cutaneous, etc.) are processed by the CNS during locomotion.
Efferent copies of the motor commands are also integrated with the sensory
signals, allowing the dynamic and predictive interaction of the body with
the environment. The relative contribution of each source of information
and the way these sources interact with each other are two important issues
in locomotion research.

When normal visual inputs are available, they are sufficient for accurate
locomotion and supersede the other sources of information. For instance,
Fitzpatrick et al. (1999) and Glasauer et al. (1994) showed that perturbed
or abnormal vestibular inputs have practically no effect on locomotion when
normal vision is present.

2.2.1 Accuracy of nonvisual locomotion

However, there are numerous situations where visual inputs are heavily de-
teriorated or even completely absent. In these situations, one must use the
remaining sources of information to accurately navigate, a method termed
path integration (Loomis et al., 1999).

Thomson (1983) undertook one of the first investigations of the ability of
humans to walk without vision towards a previously seen target. He reported
nearly zero systematic error for targets placed in front of the subjects, as
far as 21m away: that is, the average stopping positions almost coincided
with the target’s position. Similar results for shorter target distances were
reported in posterior studies (see Fig 2.3 for a summary). This accuracy on
average was taken as evidence of the veridicality of visual space perception
(Loomis et al., 1992).

On the other hand, the variable error, that is, the trial-to-trial variability
of the response, was found to increase with distance (see Loomis et al., 1992).
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Figure 2.3: Summary of the works investigating linear path integration
(adapted from Loomis et al., 1992).

Rieser et al. (1990) showed more precisely that the standard deviation of the
actually walked distances is a linear function of the target distance.

The above studies concerned the translatory component of locomotion.
It was also shown that humans are able to process continuous or discrete
changes in orientation (rotational component) during nonvisual locomotion.
For instance, Takei et al. (1996) showed that humans are able to reproduce
previously seen circles of radius ∼ 1m with reasonable accuracy (see Fig. 2.4).
The ability to process discrete changes in orientation was also demonstrated
in several triangle reproduction experiments (see for instance Glasauer et al.,
2002, and Fig. 2.5).

It was shown that nonvisual locomotion performance is enhanced by loco-
motor experience, and more surprisingly, by mental simulation. Vieilledent
et al. (2003) asked subjects to preview an hexagone drawn on the ground.
The subjects then underwent a “learning phase” during which they were
equipped with blindfolds and noise-delivering headphones. In one group, the
subjects had to mentally simulate walking along the hexagon’s sides (without
viewing the hexagon). In another group, the subjects were guided nonvisu-
ally along the hexagon’s side. In a third group, the subjects sat at rest during
the “learning phase”. After the “learning phase”, the subjects were asked to
nonvisually reproduce the hexagon by walking. The authors showed that the
subjects from the first and the second group performed significantly better
than those from the third group. Moreover, the effects of mental simulation
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Figure 2.4: Nonvisual reproduction of a previously seen circle in two mental
conditions (adapted from Takei et al., 1996).

and physical practice were comparable.

2.2.2 The control strategies underlying nonvisual lo-
comotion

Two strategies are usually proposed to account for the task of walking with-
out vision towards a previously seen target. The first strategy consists of
planning in advance the movements needed to reach the target and then
executing the plan. The second strategy implies an online control of locomo-
tion via the retention and the updating of the target’s distance or location
(Thomson, 1983; Farrell and Thomson, 1999).

To comparatively assess the two strategies, Farrell and Thomson (1999)
designed a clever experiment where subjects had to walk with or without
vision towards a previously seen target placed at 8 paces, 8 paces minus
40cm or 8 paces plus 40cm in front of them. In each trial, a subject had
to start with his right foot and to land on the target with his left foot. By
analyzing the variability of lengths of the final steps, the authors showed
that the subject functionally adjusts the lengths of his final steps, on a trial-
to-trial basis, in order to land on the target with the specified foot. This
online control behavior was moreover present in both visual and nonvisual
conditions. Based on this result, the authors suggested that, during nonvisual
locomotion, humans monitor their positions in an online manner, with respect
to a memorized target.
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Figure 2.5: Nonvisual reproduction of a previously seen triangles by normal
and vestibular subjects (adapted from Glasauer et al., 2002).

2.2.3 The role of inertial and substratal information in
nonvisual locomotion

The online strategy mentioned above requires in particular to update the
target’s position (or the distance to the target) during the movement. In
absence of vision, this is done by integrating vestibular and proprioceptive
signals, as well as efferent copies of motor commands (Loomis et al., 1999).
These idiothetic sources of information may then be further categorized in
two groups: vestibular signals provide inertial information, while proprio-
ception and efferent copies provide substratal information (Mittelstaedt and
Mittelstaedt, 2001).

Glasauer et al. (1994) showed that vestibular patients could walk towards
previously seen targets as accurately as normal subjects, which indicate that
inertial information is not necessary for the control of linear locomotion. Fur-
thermore, by affecting differentially inertial and substratal signals (e.g. by
using treadmills and manipulating step lengths), Mittelstaedt and Mittel-
staedt (2001) also showed that substratal information is dominant in nonvi-
sual locomotion.

On contrary, the vestibular system plays a crucial role in tasks where
changes in orientation are required (e.g. circle or triangle reproduction tasks,
see previously). In such tasks, it was first demonstrated that the linear and
rotational components of locomotion are controlled separately (see Berthoz
et al., 1999; Hicheur et al., 2005a). While inertial information is not needed
for the processing of the linear component, it is essential for the process-
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ing of the rotational component. Indeed, in the triangle reproduction task,
vestibular patients produced the same distance errors as normal subjects,
but significantly larger orientation errors (Glasauer et al., 2002, see Fig. 2.5).

2.3 Steering behavior

The changes in the body orientation mentioned previously are achieved through,
in particular, continuous and progressive adjustments of the head and trunk
directions in the horizontal plane, which are defined as the “steering behav-
ior” (Patla et al., 1999a). The steering behavior constitutes another level of
description of goal-oriented locomotion, intermediate between the stepping
activity and the formation of whole-body trajectories.

It was observed that changes in the steering behavior significantly affect
the formation of locomotor trajectories. For instance, following an unex-
pected head yaw perturbation, the locomotor trajectory was found to deviate
towards the direction of the perturbation (Vallis and Patla, 2004, Fig. 2.6).

Figure 2.6: Effect of an unexpected head yaw perturbation on the trajec-
tory of the center of mass. A perturbation of the head yaw directed to the
left made the trajectory deviate towards the left (dotted lines). When this
perturbation was directed to the right, the trajectory deviated towards the
right (dashed lines). This effect was present in both visual and nonvisual
locomotion (adapted from Vallis and Patla, 2004).

Conversely, the properties of whole-body trajectories determine the head
and trunk rotation patterns. For instance, in straight trajectories, the head
mostly aligns with the direction of movement (or the heading), but in curved
trajectories, the head is oriented towards the interior of the curve, thus
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making a nonzero angle with the heading. This phenomenon is termed “head
anticipatory behavior” (Grasso et al., 1996), since the head direction at time
t is only reached by the heading at time t + ∆t (Fig. 2.7). Moreover, it was
shown that the larger the curvature, the more the head anticipates (Hicheur
et al., 2005b, 2007).

∆Heading (t+   t)

Heading (t)

Head direction (t)

Locomotor trajectory

Head re heading < 0°

Figure 2.7: When humans walk along a curved trajectory, their heads point
towards the interior of the curve, thus anticipating the future direction of
movement.

This anticipatory behavior was robustly observed under various condi-
tions: when human subjects walk along circles (Grasso et al., 1996), along
shapes with varying curvature (Hicheur et al., 2005b), along a simple turns
(Imai et al., 2001; Courtine and Schieppati, 2003; Prévost et al., 2003), with-
out vision or backward (Grasso et al., 1998c). Furthermore, the anticipatory
behavior was shown to develop in children between 3 and 8 years old (Grasso
et al., 1998a). Table 2.1 summarizes some of the works investigating the
anticipatory steering behavior.

Several hypotheses were proposed for the role of head anticipatory behav-
ior. First, it was believed to be a component of an eye-head synergy which
aims at anchoring the gaze in the future direction of movement (Grasso et al.,
1998c), as in car driving (Land and Lee, 1994). However, the fact that this
anticipation behavior remains in nonvisual locomotion (Grasso et al., 1996,
1998c; Courtine and Schieppati, 2003) suggests that anchoring gaze is not
the only purpose of head anticipation. Rather, since the head contains also
auditory and vestibular organs, placing the head in the future direction of
movement may provide a stable reference frame from which the coordination
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Reference Free Goal BW NV Trk Eye Pert Dev
Grasso et al. (1996)

√ √ √
Grasso et al. (1998a)

√ √ √ √
Grasso et al. (1998c)

√ √ √
Patla et al. (1999a)

√ √
Imai et al. (2001)

√ √ √
Hollands et al. (2001)

√ √ √
Vallis et al. (2001)

√ √ √
Courtine and Schieppati (2003)

√ √
Prévost et al. (2003)

√ √
Vallis and Patla (2004)

√ √ √
Hicheur and Berthoz (2005)

√
Hicheur et al. (2007)

√ √ √
Pham et al. (2010)

√ √ √ √ √

Table 2.1: Summary of the works investigating the anticipatory steering
behavior. Free: this work includes trajectories whose paths were not pre-
defined. Goal: includes relatively complex goal-oriented trajectories. BW:
tests backward locomotion. NV: tests nonvisual locomotion. Trk: examines
trunk movements. Eye: examines eye movements. Pert: investigates effects
of head yaw perturbations. Dev: investigates the effects of development.

of the other body segments can be planned (Hollands et al., 2001; Hicheur
et al., 2005b).
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Chapter 3

Some studies of locomotion at
the level of whole-body
trajectories

We present in this section three main currents of research that deal with the
formation of locomotor trajectories. According to proponents of the “ecolog-
ical” current, locomotor trajectories may result from dynamic interactions of
the subject with his environment (section 3.1). Another current of research,
which takes inspiration from studies of arm movements, looked for invariants
in locomotor trajectories, in particular those relating locomotor speed to path
curvature (section 3.2). More recently, a robotics-inspired approach put the
emphasis on the nonholonomic coupling between the subject’s orientation
and his walking direction (section 3.3).

3.1 Ecological approaches

Ecological approaches emphasize the dynamic relations of the subject with
his environment. In a task of walking towards a distant target in an environ-
ment filled with obstacles (Fajen and Warren, 2003), the targets are viewed
as attractors, obstacles as repellers and the subject as a dynamical system
evolving in a field of attractors and repellers. Locomotor trajectories can
then be viewed as solutions of the dynamical equation: “the [subject] adopts
a particular route through the scene on the basis of local responses to visu-
ally specified [targets] and obstacles. The observed route is not determined in
advance through explicit planning, but rather emerges in an online manner
from the [subject’s] interactions with the environment”. Variations of this
model (Fajen and Warren, 2007) allow studying the case of moving targets.
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Figure 3.1: (A) actual trajectories recorded in a goal-oriented task with
obstacle avoidance. The goals were represented by crosses and the target was
represented by a circle. Different initial angles were tested. The solid line
corresponded to the most frequently taken path. (B) trajectories simulated
by a dynamical model (adapted from Fajen and Warren, 2003).

The two important features of ecological approaches highlighted by the
previous quote are the online and visual nature of the interactions. Account-
ing for (i) the ability of humans to reach targets in nonvisual locomotion and
(ii) the similarity of visual and nonvisual average trajectories (see our results
later in section 5.2) may thus constitute challenging issues for proponents of
the ecological approaches.

3.2 Invariants of locomotor trajectories

We mentioned previously that the drawing of curved shapes with the hand
is characterized by an inverse relationship between velocity and curvature,
which was mathematically formalized by the so-called “one-third power law”
(see section 1.1). Following the “principle of motor equivalence” evoked in
the Introduction, several works have examined whether locomotor trajec-
tories also obey this law. Vieilledent et al. (2001) asked subjects to walk
along ellipses drawn on the ground and reported that this law was indeed
respected. Hicheur et al. (2005c) argued that ellipses are special cases and
that the results reported by Vieilledent et al. were therefore not conclu-
sive. The authors consequently developped an experimental protocol where
more complex shapes such as cloverleaves or limacon were tested. They re-
ported that the one-third exponent was not observed for all shapes. Rather,
the speed-curvature relationship was quantified by power laws with different
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exponents β which depended on the shapes.

Figure 3.2: Power law in human locomotion. Top: actual geometrical paths
recorded for the cloverleaf (left) and the limacon (right). Middle: velocity
profiles (plain lines), curvature profiles (dashed lines). Bottom: velocity as a
function of curvature (log-log plot) (adapted from Hicheur et al., 2005c).

More recently, Olivier and Cretual (2007) confirmed the result of Hicheur
et al. that one-third power law was not verified by locomotor trajectories
produced in a turning task. However, they showed that, across multiple
trials indexed by i, the following relationship was robustly verified

vi(ti) = γri(ti)
1/3 (3.1)

where ti is the instant in trial i when the maximum curvature was attained,
ri(ti) and vi(ti) are the radius of curvature and the speed at this instant.

3.3 Nonholonomic coupling of orientation and

walking direction

A bicycle, a car or a wheeled robot do not move sideways but tangentially
to their main axes. This constraint acting on wheeled vehicles is known as
a nonholonomic constraint (Laumond, 1998). Observing that humans also
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walks forward and not sideways, Arechavaleta et al. (2006) suggested that
this nonholonomic constraint also governs human locomotion. To test this
hypothesis, the authors designed the “walking towards and through a distant
doorway” protocol mentioned in the Introduction (for a precise description
of that protocol, see section 5.2). They then compared the walking direction
profile θ(t) with the head, trunk and pelvis angle profiles (φH(t), φT (t), φP (t)
respectively). They found that the trunk orientation best approximated the
walking direction after time shift, that is

φ̇T (t + ǫ) ≃ θ̇(t) (3.2)

where ǫ = 1/6s corresponds to the trunk anticipation time (see also our study
of head and trunk anticipatory behavior in chapter 7).

Based on this result, Arechavaleta et al. (2008a) suggested that human
locomotion can be described by a bicycle-like system

ẋT

ẏT

θ̇

φ̇T

 =


cos(θ)
sin(θ)

tan(φT /L)
0

u1 +


0
0
0
1

u2 (3.3)

where (xT , yT ) is the position of the shoulders’ midpoint (taken as reference
for the body position, see also the General Methodology, section 4.1.2), L is
the length between the front wheel and the back wheel (computed based on
the value of the trunk anticipation time ǫ), u1 is the driving speed and u2 is
the turning rate. To verify this hypothesis, the authors extracted u1 and u2

from the experimental data (the locomotor tengential speed and the turning
speed) and injected the values into the system to calculate (xT , yT ). They
showed that 87% of the 1560 recorded trajectories could be approximated by
this model with an error of less than 20cm.

Going a step further, Arechavaleta et al. (2008b) proposed an extended
version of this model which includes a third command u3 representing the
curvature. They showed that an optimal control scheme minimizing u1, u2

and u3 could reproduce the experimental trajectories (see Arechavaleta et al.,
2008b, and Fig. 3.3).

Undoubtedly, the nonholonomic approach has provided important in-
sights for the understanding of goal-oriented locomotion. However, in our
opinion, the current versions of the nonholonomic models still display some
serious issues. First, while there exists a clear correlation between the head-
ing and the trunk direction, these two variables are by no means identical
because of the anticipatory steering behavior (see section 2.3 and our study
in section 7.1). The authors did address this issue by adding a constant
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Figure 3.3: A nonholonomic model for trajectories formation. Left: geo-
metric paths (red: actual, black: simulation by the nonholonomic model).
Right top: velocity profiles. Right bottom: curvature profiles (adapted from
Arechavaleta et al., 2008b).

anticipation time ǫ. However, as shown in our study of section 7.1, the antic-
ipation time is in fact a complex quantity, which changes during the steering
and which also depends on the global curvature of the trajectory. How this
essential modulation of the nonholonomic constraint affects the trajectories
simulated by the model is an important question.

Second, the optimization process of the current nonholonomic model
seems to yield a constant velocity profile even for curved trajectories (see
e.g. Fig. 3.3), which is not observed in actual movements (for instance, there
exists an inverse relationship between velocity and curvature, see section 3.2).
The variation of the velocity over the whole movement can be as large as 50%
of the average velocity (see e.g. Fig. 3.2), which is by no means negligible.

Third, a common shortcoming of all the models presented in this chapter
is their deterministic nature. Yet, the variability patterns displayed by lo-
comotor trajectories and by human movements in general are important to
study (see section 1.3) but cannot be investigated using deterministic models.
This aspect is discussed in detail in chapters 6 and 9.

The models we present in chapters 8 and 9 address some of the issues
we have just raised. However, since they do not take into account the non-
holonomic constraint, our models lack several important features of human
locomotion. We believe that our modeling approach and the nonholonomic
view are in fact complementary: combining the two approaches thus repre-
sents a promising direction of research.
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Part II

Experimental study
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Chapter 4

General methodology and
notations

This chapter presents the main methodology and notations used in the loco-
motion experiments (Experiments 1 to 6). The specific methodology of each
particular experiment is detailed in the Methods section of that experiment.

Section 4.1 describes the experimental methods used to record subject’s
movements (cameras, markers sets, etc.) while section 4.2 presents the main
analyses that were performed on the recorded experimental data.

4.1 Materials and methods

4.1.1 Motion capture system

In order to record subject’s whole-body movements and segmental displace-
ments, we used the Vicon R© (Oxford Metrics, Oxford, UK) motion capture
system (see Fig. 4.1). Several light-reflective markers were attached to the
subject. The 3D positions of these markers were recorded at a 120Hz sam-
pling frequency in all experiments, except in Experiment 6, where a 200Hz
sampling frequency was used.

In Experiments 1 and 2, the full markers set (39 markers) was used,
allowing a full-body motion capture. In the other experiments, more limited
sets of markers were used according to need. The following markers were
considered in the data analyses

• Head markers: four markers were attached to the subject’s head. These
markers were used to reconstruct the head orientation in the horizontal
plane
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Figure 4.1: The laboratory where Experiments 2, 3 and 4 took place. The
lab was equipped with Vicon R© infrared cameras. A subject with light-
reflective markers was walking towards the white cardboard arrow placed
on the ground.

• Shoulders markers: Two markers were placed on the subject’s left and
right acromions. These markers were used to compute the orientation
of the trunk. In addition, the subject’s position in space was defined
by the midpoint of the shoulders markers (see below)

• Feet markers: Two markers were placed on each foot, one on the heel
and one between toes 2 and 3 (toe 1 is the big toe). These two markers
were used to reconstruct the successive positions of the foot during the
locomotor task

4.1.2 Definition of the “locomotor trajectory”

To study whole-body trajectories in space, we used, as stated above, the mid-
point of the segment joining the two shoulders markers (Fig. 4.2). Indeed,
because of their particular positions on the body, shoulders markers were the
most faithfully reconstructed by the motion capture system. Moreover, the
shoulders’ markers’ midpoint is very easy to compute, in contrast with other
possible reference points such as the Center of Mass (CoM), whose localiza-
tion requires the capture of the full marker set as well as anthropometric
data (Olivier and Cretual, 2007).

However the choice of the reference point induce some differences. First,
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Figure 4.2: Markers set and definition of the locomotor trajectory. The tra-
jectory was defined by projecting the midpoint of the two shoulders’ markers
on the ground.

since humans tend to lean towards the interior of the curve while walking
along a curved path, the projection of the shoulders’ midpoint on the ground
lies inside the curved path (Hicheur et al., 2005c). Thus, the curvature
computed based on the shoulders’ midpoint 2D trajectory is larger than that
of the predefined paths. Similarly, since the CoM is localized lower than the
shoulders’ line, the shoulders’ midpoint 2D curvature is often larger than
the CoM 2D curvature. However, it should be noted that the differences
between the shoulders’ midpoint 2D trajectory and the CoM 2D trajectory
(less than 10 centimeters) were rather small with respect to the lengths of
these trajectories (more than 5 meters in our experiments).

4.2 Data analysis

The data collected by the motion capture system was analyzed using com-
puter softwares, mainly the free software GNU Octave. We were interested
in the average behavior across repetitions of the same subject or across sub-
jects, as well as the variability around this average behavior. In particular,
we performed comparisons of the average behaviors and of the variabilities
recorded in different conditions.
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4.2.1 Filtering and time-rescaling

The data were filtered only when we needed to calculate derivatives (velocity,
acceleration, jerk, curvature, etc.) In such cases, a second-order Butterworth
filter with cut-off frequency 6.25Hz was applied before the derivation.

To homogenize the trajectories before calculating average and variability
values, we first localized the time instants t0 and t1 when the trajectory
begins and ends (see the Methods in each experiment for detail). We then
time-rescaled the trajectory such that t0 = 0 and t1 = 1.

This procedure, while necessary, presents a serious drawback: it “erases”
the movement duration. We were therefore not able to study some important
aspects involving movement duration, such as the duration-accuracy trade-off
(Fitts, 1954; Tanaka et al., 2006).

4.2.2 Statistical analysis of locomotor trajectories

The average trajectory (xav(t), yav(t))0≤t≤1 of a given set of N trajectories
{(xi(t), yi(t))0≤t≤1}1≤i≤N was computed as follows

xav(t) =
1

N

N∑
i=1

xi(t), yav(t) =
1

N

N∑
i=1

yi(t) (4.1)

The Trajectory Deviation (TD) 1, which measures the variability of sam-
ple trajectories around the average trajectory, was calculated as [see Fig. 4.3(A)]

TD(t) =

√√√√ 1

N − 1

N∑
i=1

(xi(t)− xav(t))2 + (yi(t)− yav(t))2. (4.2)

The variability profile, which is central in our analyses, was defined as the
time-evolution of the Trajectory Deviation (TD(t))0≤t≤1.

To quantify the variability of the trajectories over the whole movement,
we considered the Average Trajectory Deviation (ATD) and the Maximal
Trajectory Deviation (MTD)

ATD =

∫ 1

0

TD(t)dt (4.3)

MTD = max
0≤t≤1

TD(t) (4.4)

1We used the term “deviation” in reference to the usual 1D “standard deviation”.
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Figure 4.3: Trajectory and velocity deviations

Variance ellipses For a graphical examination of trajectory variabilities,
we plotted the variance ellipses calculated by principal component analysis.
Intuitively, the variance ellipse at time t is centered at (xav(t), yav(t)) and
its orientation and magnitude indicate how the (xi(t), yi(t)) (i = 1 . . . N are
distributed around (xav(t), yav(t)). Note that r1(t)

2 + r2(t)
2 = TD(t)2 where

r1 and r2 are the lengths of the ellipse’s semi-major and semi-minor axes.

4.2.3 Statistical analysis of velocity profiles

In order to compare velocity profiles in terms of their variations in time
rather than in terms of their absolute variabilities (which are due in part to
the variability of the walking tempos in different subjects), we considered the
normalized velocity profile, which was defined as

vi(t) =

√
ẋi(t)2 + ẏi(t)2∫ 1

0

√
ẋi(t)2 + ẏi(t)2dt

(4.5)

The average normalized velocity profile and the instantaneous normalized
Velocity Deviation (nVD) were then computed by [see Fig. 4.3(B)]

vav(t) =
1

N

N∑
i=1

vi(t) (4.6)

nVD =

√√√√ 1

N − 1

N∑
i=1

(vi(t)− vav(t))2 (4.7)
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Finally, we defined the Average and Maximal normalized Velocity Devi-
ations (AnVD and MnVD) over the whole movement as

AnVD =

∫ 1

0

nVD(t)dt (4.8)

MnVD = max
0≤t≤1

nVD(t) (4.9)

4.2.4 Comparison of trajectories in different conditions

In order to quantify the similarity of trajectories between two different con-
ditions, say A and B, we considered the Trajectory Separation (TS) defined
as

TSA/B(t) =
√

(xA(t)− xB(t))2 + (yA(t)− yB(t))2 (4.10)

We then defined the average and maximal trajectory errors (ATSA/B and
MTSA/B) over the whole trajectory as

ATSA/B =

∫ 1

0

TSA/B(t)dt (4.11)

MTSA/B = max
0≤t≤1

TSA/B(t) (4.12)

Note that ATSA/B and MTSA/B take into account the instantaneous errors
at all time instants. They are therefore sensitive to differences at both the
geometric level and the velocity profile level.
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Chapter 5

The formation of locomotor
trajectories in humans: a
stereotyped behavior

5.1 Overview

Let’s start from the situation evoked at the beginning of the Introduction: a
person is standing at some position in a room and has to walk towards and
through a distant doorway to get out of that room [Fig. 1(A)]. We remarked
in chapter 1 that a similar task for the hand (namely: bring the hand from a
given position in space towards another position) involved serious difficulties,
in particular, those associated with the redundancy problem. Here, we face
the same difficulties: an infinite number of locomotor trajectories (paths
+ velocity profiles) can bring the person from his initial position towards
the door’s position. A given trajectory can be implemented by an infinite
number of sequences of foot positions (FP), which in turn can be generated
by an infinite number of possible muscle activation patterns, etc. Moreover,
the difficulties associated with the redundancy problems are amplified by the
greater complexity of the locomotor activity (at the motor, sensory, cognitive,
etc. levels).

In this context, we set out to identify the level at which goal-oriented
locomotion is planned and controlled. We considered two possible levels:
the step- and the trajectory-level. In a step-level strategy, subjects would
plan and execute precise sequences of foot positions leading to the target.
On contrary, in a trajectory-level strategy, subjects would plan first a tra-
jectory and then implement such a trajectory by appropriate sequences of
foot positions. To comparatively assess the two possibilities, we recorded in
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Experiment 1 the whole-body trajectories and the foot positions of subjects
performing the “walking towards a distant doorway” task. We assessed the
variability of the trajectories across repetitions and subjects, and compared
this variability with the variability of the corresponding sequences of FP.
Our basic assumption was that, if locomotion is planned and controlled at
the step-level, then the sequences of FP would be stereotyped. Otherwise, if
the sequences of FP are much more variable than the whole-body trajectories,
then a trajectory-level control is more likely.

If locomotion is planned and controlled at the level of whole-body tra-
jectories, it would then be interesting to examine how these trajectories are
affected by changes in the sensory and motor conditions. In Experiment 2,
we thus asked subjects to perform a task similar to the “walking towards a
distant doorway” task in different sensory (walking with or without vision)
and motor (walking forward or backward) conditions. The results then allow
discussing the hypothesis that locomotor trajectories are planned and con-
trolled at a high cognitive level, and to some extent, independently of their
sensorimotor implementations.

Experiment 1 was designed and run by G. Arechavaleta, H. Hicheur, J.-
P. Laumond and A. Berthoz in June 2005. The analysis was performed by
these authors and Q.-C. Pham and was presented in Hicheur et al. (2007),
to which the reader is referred for more details. Experiment 2 was designed
and run by Q.-C. Pham and H. Hicheur in February 2007. We thank A.-H.
Olivier and A. Cretual for their help with this experiment. The results of
this experiment were first reported in Pham et al. (2010), to which the reader
is referred for more details.

5.2 Experiment 1: stereotypy of locomotor

trajectories, variability of foot positions

5.2.1 Methods

Subjects and materials

Six male subjects participated in this experiment. Each subject generated
120 trajectories (40 spatial targets × 3 repetitions), so that a total of 720
trajectories were recorded.

The targets consisted of a 1m × 1m × 2m door (width, depth and height
respectively) placed at various positions and orientations in the laboratory
(Fig. 5.1 and Fig. 5.2). Fourteen targets were used: their distances from the
starting position ranged between 3m and 6.5m and their orientations with
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respect to the subject’s initial walking direction ranged between −150◦ to
+150◦.

Figure 5.1: In Experiment 1, the targets of consisted of a 1m × 1m × 2m
door (width, depth and height respectively) placed at various positions and
orientations in the laboratory.

Protocol

The subject had to start from a fixed position in the laboratory and walk
toward and through a distant doorway (Fig. 5.1). To constrain the subject’s
initial walking direction, we asked him to begin his walk 1m before crossing
the start line, orthogonally to the lab’s X-axis. He was then completely free
to choose his walking speed and no specific restriction was provided regarding
the path to follow.

The subject was not asked to stop right after entering the doorway. Typ-
ically, the subject walked straight for a few meters (about four steps) after
going through the doorway before returning to the starting position. The
experimenter stopped recording a few meters after the subject had passed
through the door.

Analysis

Categorization and computation of the trajectories The tested tra-
jectories were classified a priori into four categories according to the amount
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Figure 5.2: Fourty targets were used in Experiment 1. Each target was
labelled by two numbers: its position (e.g. 21) and its orientation (e.g. 180).

of trajectory curvature they required: quasi-straight trajectories (ST), tra-
jectories of low (LC), medium (MC) and high (HC) curvature (see Table 5.1).
Fig. 5.3 shows four actually recorded trajectories, one per category.

To homogenize the computation of trajectories across subjects and repeti-
tions, we cut out the initial and final parts of the trajectories. For each trial,
we thus considered only data between instant t0 when the subject crossed
over the X-axis and instant t1 when he reached the middle of the doorway.
Finally, the trajectory was time-rescaled so that t0 = 0 and t1 = 1 (see
section 4.2.1).

Variability of trajectories and of velocity profiles To quantify the
variability of whole-body trajectories, we used the measures defined in chap-
ter 4, namely: Trajectory Deviation (TD), Average and Maximal Trajectory
Deviation (ATD and MTD), normalized Velocity Deviation (nVD), Average
and Maximal normalized Velocity Deviations (AnVD and MnVD). Note that
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HC MC LC ST
11-120 11-180 21-210 37-270
15-060 20-000 25-330 38-270
16-150 21-180 26-210 42-270
20-030 25-000 30-330 43-270
21-150 26-180 36-210 47-270
25-030 30-000 40-330 48-270
26-150 31-180 41-210 52-270
30-030 35-000 41-240 53-270
31-150 36-180 45-330 57-270
35-030 40-000 46-210 58-270

Table 5.1: Categorization of trajectories

all the Deviations were computed in an inter-subject fashion.

Variability of the sequences of FP We examined the pattern of FP from
the beginning of the task until the subjects reached the goal. To this purpose,
we first detected the successive steps performed by subjects before computing
the variability of the foot positions (fx, f y) across the different repetitions of
the same subject. We used heel-strike and toe-off events for defining steps
(Hicheur et al., 2006). These events were derived from the time course of heel
and toe Z-position profiles and corresponded to the local minima of these two
signals. We considered one step as the interval separating two successive heel
strikes of the same foot and computed the FP at these particular events.

A first type of inter-subject variability can arise from the anatomical dif-
ferences between the subjects (as presented before, they had different heights
and this resulted in different step lengths). In the present analysis, we did
not consider the inter-subject variability in the sequences of FP (which is
considerably higher than the intra-subject variability; not presented) but we
calculated, for each subject and for a particular target, the variability of the
FP across repetitions.

Typically, a subject performed M to M + 1 steps to reach the goal. In
order to compare the sequences of FP across trials, we selected the first
M steps and calculated, for each step i ∈ [1,M ], the variability around the
average foot position (fx

av(i), f
y
av(i)). More precisely, the Foot Deviation (FD)

at step i was given by

FD(i) =

√√√√ 1

N − 1

N∑
j=1

(fx
j (i)− fx

av(i))
2 + (f y

j (i)− f y
av(i))2 (5.1)
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Figure 5.3: Four sample trajectories, one per category.

where N is the number of repetitions executed by the subject for this target
(here, N = 3), (fx

j (i), f y
j (i)) the position of the foot at step i in repetition j 1.

Next, the Average and Maximal Foot Deviation (AFD and MFD) were
given by

AFD =
1

M

M∑
i=1

FD(i) (5.2)

MFD = max
1≤i≤M

FD(i) (5.3)

This analysis was performed for each subject and we then averaged the AFD
and MFD values across subjects (intra-subject analysis).

In order to compare the variability of the sequences of FP with that of
whole-body trajectories, we also expressed the former as a percentage of the

1Note that the corresponding equation in the original manuscript (Eq. (3) in Hicheur
et al., 2007) was incorrect. The FD calculations in Hicheur et al. (2007) did however
comply with the correct equation given in the current manuscript.
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step length. The latter was also expressed, at this stage of the analysis, as a
percentage of the trajectory length.

5.2.2 Results

For all the 40 trajectories, we observed very similar geometrical forms of the
locomotor paths and velocity profiles across repetitions and subjects. This
indicates a stereotypy at the level of the spatial and kinematic attributes of
the locomotor trajectories. In contrast, we observed much more variability
when locomotion was analysed at the level of the sequences of FP in space.

Spatial and kinematic stereotypy of the locomotor trajectories

Trajectories As illustrated in Fig. 5.4 (for all the tested targets) and in
Fig. 5.5(A) (for four typical targets), we observed that the locomotor tra-
jectories produced by the different subjects across different repetitions were
very similar.

For a more quantitative assessment, we considered the Average and Max-
imal Trajectory Deviations (ATD and MTD). As illustrated by Fig. 5.6(A),
the average ATD and MTD were lower than 0.10m and 0.17m, respectively.

We observed that the larger the turn amplitude, the greater the Trajec-
tory Deviation [F(3,531) = 58.15, p < 0.01 for the ATD and F(3,531) =
66.39, p < 0.01 for the MTD]. However, it was remarkable that, even for the
highly curved trajectories, the ATD was ∼ 10cm.

Velocity profiles At the more detailed level of the velocity profiles, we
also observed a strong similarity across subjects and repetitions. This is illus-
trated in Fig. 5.5(B) for four typical targets, in which were plotted the stan-
dard deviations around the average normalized velocity profiles. Fig. 5.6(B)
quantitatively confirms this observation: the MnVDs and AnVDs were al-
ways lower than 0.1.

Variability of the sequences of FP

While all subjects generated stereotyped locomotor trajectories, their be-
haviour was much more variable when examined at the level of the step.
Part of this variability can be related to the anatomical differences between
subjects (see Methods).

In the present section, we calculated various parameters of the stepping
behaviour within trials of single subjects (intra-subject analysis): this was
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done in order to quantify the spatial dispersion of the FP independently of
the inter-subject anatomical differences.

The FP at the step instants are presented for all subjects and for four
typical trajectories in Fig. 5.7. One can already see in this figure the con-
trast between the variability of the sequences of FP and the similarity of the
corresponding trajectories.

The different types of spatial dispersion (associated with different sub-
jects) of the FP are illustrated in Fig. 5.8 where we plotted data of single
subjects. We observed that the subjects, when performing different trials
of the same target, generated a similar trajectory but placed their feet at
different positions. The global body trajectory in space remained unaffected
because every deviation (from one trial to another) of a given foot towards
the right or the left of the X-axis was compensated for by a displacement
of the position of the contralateral foot in the opposite direction [this was
observed in most of the subjects, see Fig. 5.8(A-D)].

Another source of foot positioning variability across repetitions was that
subjects alternated between the left and the right foot for initiating their
walk. Even after taking this into account, the FP – independently of whether
we considered the left or the right foot – still displayed a large spatial dis-
persion across repetitions [see Fig. 5.8(B,C)]. The trajectories presented in
Fig. 5.8(B) thus combined these two sources of variability. Finally, we ob-
served in a minority of cases that stereotypy in the body trajectories in space
was associated with somewhat similar foot positioning across repetitions [see
Fig. 5.8(D)].

The quantifications of these observations were presented in Fig. 5.7(C),
where the spatial dispersion of the FP across repetitions was plotted for the
four categories of trajectories. The spatial dispersion of the FP around the
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average FP ranged between 0.14m and 0.22m and was not dependent upon
the type of trajectory [F(3,492) = 0.93, p > 0.01 for the AFD and F(3,492)
= 3.34, p > 0.01 for the MFD].

These absolute values of FP spatial dispersion obtained at the level of
the step (AFD) were twice as high as the corresponding ATD (reported in
Fig. 5.6). This greater variability was even more evident when these param-
eters were expressed either in percentage of the step length (for the AFD) or
in percentage of the trajectory length (for the ATD), see Fig. 5.8(E,F). The
statistical significance of these differences was particularly strong [F(1,164)
= 647.04, p < 0.01 for the AFD of the left foot versus the ATD, and F(1,172)
= 711.06, p < 0.01 for AFD of the right foot versus the ATD]. The same
observations hold for the maximal deviation parameters [F(1,164) = 457.03,
p < 0.01 for MFD of the left foot versus MTD and F(1,172) = 693.89,
p < 0.01 for the MFD of the right foot versus MTD].

Taken together, these results indicate that for a simple goal-oriented task
subjects generated very similar trajectories but using different sequences of
FP: this suggests that the locomotor trajectory is unlikely to be constructed
as a succession of “foot reachings”.

5.3 Experiment 2: influence of vision and gait

direction on locomotor trajectories

The stereotypy of whole-body trajectories, which contrasted with a larger
variability of the sequences of foot positions reported in the previous study,
suggests that goal-oriented locomotion is planned and controlled at the level
of whole-body trajectories.

In the present experiment, we investigate the influence of changes in the
sensory and motor conditions on these trajectories. More precisely, we asked
subjects to do a goal-oriented locomotor task, in four experimental condi-
tions: Visual Forward (VF, color code in figures: red), Nonvisual Forward
(NF, magenta), Visual Backward (VB, green), Nonvisual Backward (NB,
cyan). We then examined how these different conditions affected the loco-
motor trajectories produced.

5.3.1 Methods

Subjects and materials

Fourteen male subjects participated in this experiment. Each subject gen-
erated 132 trajectories (4 conditions × 11 targets × 3 repetitions), so that
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a total of 1848 trajectories were recorded. The targets consisted of a 0.2m
× 1.2m cardboard arrow placed on the ground at various positions and ori-
entations in the laboratory (Fig. 5.9 and Fig. 5.10). Nineteen targets were
used: their distances from the starting position ranged between 4m and 7.5m
and their orientations with respect to the subject’s initial travelling direction
ranged between −180◦ and +180◦. Three targets were placed straight ahead
of the subject (“straight” targets) while the others were placed on the side
(“angled” targets) (Fig. 5.10). The three straight targets were used for all
subjects. A subgroup of 6 subjects walked towards the 8 targets located on
the left, while the remaining 8 subjects walked towards the 8 targets on the
right. Thus, each subject was tested on 11 targets.

Figure 5.9: In Experiment 2, the targets consisted of a a 0.2m × 1.2m card-
board arrow placed at various positions and orientations in the laboratory.

The choice of the arrow (instead of the door used in Experiment 1) was
motivated by the nonvisual trials: in these trials, we needed to remove the
target quickly and silently after the observation period (see Protocol).

Protocol

The subject had to start from a fixed position in the laboratory and to walk
towards a distant target indicated by an arrow (Fig. 5.9). As in Experi-
ment 1, we constrained the subject’s initial walking direction by asking him
to start at position (0,-1m) and to walk the first meter [from (0,-1m) to (0,0)]
orthogonally to the X-axis. After crossing the X-axis, no specific restriction
relative to the path to follow was provided to the subject. We imposed the
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and a letter (e.g W) indicating its orientation.

subject’s final walking direction by asking the subject to enter the arrow by
the shaft and to stop walking above the arrow head.

The subject walked either with eyes open (visual conditions: V) or closed
(nonvisual conditions: N). In this experiment, he was asked to walk at his
preferred, normal, speed. In the visual conditions (VF, VB), the arrow was
visible throughout the whole movement. In the nonvisual conditions (NF,
NB), the subject first observed the arrow while standing at the starting po-
sition. This observation period typically lasted less than 3 seconds. When
the subject was ready, he closed his eyes and attempted to complete the
task without vision. The subject was asked to complete the task with the
same initial and final constraints as in the VF condition — namely, walk
the first meter orthogonally to the X-axis, enter the arrow by the shaft and
stop above the arrow head. Right after the observation period, the experi-
menter removed the arrow in order to avoid any tactile feedback. Once the
subject had completely stopped, he was asked to keep his eyes closed while
the experimenter took his hand and guided him randomly for a few seconds
in the laboratory before stopping at a random position. The subject was
then allowed to re-open his eyes and to go back to the starting position.
This procedure prevented the subject from visual feedback during both task
execution and post-task periods, avoiding in this way any spatial calibration
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of the room using kinaesthetic cues.
The subject walked either forward (VF, NF) or backward (VB, NB).

The subject’s head movements were not constrained, such that during VB
locomotion, he could turn his head on the side in order to view the arrow.

The trials in the four conditions were executed in the same session and
were randomized in order to reduce learning effects associated with a par-
ticular condition or target. The subject completed two to three trials before
the experiment actually started in order to be familiar with the task and to
dispel any fear of hitting the walls during the nonvisual trials (the distance
between the most distant target and the wall was ∼ 3m).

Analysis

To quantify the variability of the trajectories in the different conditions, we
considered the measures defined in chapter 4, namely: the instantaneous Tra-
jectory Deviation (TD) and the Maximal Trajectory Deviation (MTD) over
the whole movement. We noted TDVF, TDVB, etc. the TD corresponding to
condition VF, VB, etc.

Similarly, to quantify the similarity of the average trajectories in two
different conditions, we considered the Trajectory Separation (TS) and the
Maximal Trajectory Separation (MTS), e.g.: TSVF/VB, MTSVF/NF, etc.

Targets pooling

As evoked above, six subjects walked towards targets located on their left
and eight subjects walked towards targets located on their right (Fig. 5.10).
We found no significant effect of the side on the parameters of interest:
for instance, the MTSL/R (MTS between the average trajectory of the left-
trajectories and that of the right-trajectories) was smaller than the MTDR

(MTD of the right-trajectories) in conditions VF and NF. In the two-way
ANOVA test with replications where the factors were the measure (MTSL/R

vs MTDR) and the visual condition, the effect of the measure was significant
[F(1,40) = 37.4, p < 0.05] and there was no significant interaction effect
[F(1,40) = 2.82, p > 0.05]. Thus, in all subsequent analyses, we flipped
the left-trajectories towards the right and pooled them together with their
symmetrical counterparts (trajectories of target 4 with those of target 6,
trajectories of target 5 with those of targets 7).
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5.3.2 Results

Effects of vision

Comparison of Visual Forward (VF) and Nonvisual Forward (NF)
conditions For a given target, the average trajectories in the VF condi-
tion and in the NF condition were found to be very similar at the path level
[Fig. 5.3.2(A1,B1,C1)]. This observation was verified even for targets impos-
ing strongly curved trajectories [e.g. target 5S, Fig. 5.3.2(C1)] or for targets
imposing changes in curvature sign [e.g. target 5W, Fig. 5.3.2(B1)].

At the level of velocity profiles, one could also observe similar patterns in
the VF and NF conditions [Fig. 5.3.2(A2,B2,C2)]. We noted however that
the normalized velocity profiles started at a higher value in the NF than in
the VF condition, and that their maximum values were reached also earlier:
for e.g. target 5W, the maximum velocity was reached at t ≃ 0.2 in NF and
t ≃ 0.4 in VF [Fig. 5.3.2(B2)].

Quantitatively, the average MTSVF/NF across the 11 tested targets was
0.30m [Fig. 5.3.2(D)] in absolute terms, or 5.5% of the VF trajectory length.
These values are to be compared with the average MTDVF, which was 0.31m
or 5.7%, and the average MTDNF, which was 0.74m or 13.4%.

In contrast with the similarity of the average trajectories, the variability
profiles were largely dissimilar. In absolute terms, the values of MTDVF and
MTDNF reported above already showed that trajectories were much more
stereotyped in the VF than in the NF condition.

In addition, the shapes of the variability profiles were very different
[Fig. 5.3.2(A3,B3,C3)]. In the VF condition, the variability profiles were
bump-shaped: at time t = 0, the variability was close to 0, then it increased
until t ≃ 0.5, and then decreased towards 0 at the end of the movement t = 1.
By contrast, the variability in the NF condition never decreased towards 0 at
t = 1. All these remarks will be developped in chapter 6, where we study in
more detail the variability profiles and provide some elements to interprete
their shapes.

Comparison of Visual Backward (VB) and Nonvisual Backward
(NB) conditions Here, we also found a large similarity of the average
trajectories in the VB and NB conditions, albeit to a lesser extent than
previously found in the comparison of the VF and NF conditions. This
observation was verified at both the path level [Fig. 5.12(A1,B1,C1) and at
the velocity profile level [Fig. 5.12(A2,B2,C2)]. However, the same remark
regarding the slight differences in the shapes of the velocity in the VF/NF
comparison could also be made for the VB/NB comparison.
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Quantitatively, the average MTSVB/NB across the 11 tested targets was
0.50m [Fig. 5.12(D)] in absolute terms, or 9.2% of the VB trajectory length.
These values are to be compared with the average MTDVB, which was 0.38m
or 6.4%, and the MTDNB, was 0.90m or 15.7%.

Regarding the shapes of the variability profiles, we observed, as in the
VF/NF comparison, large differences in terms of both magnitude and shapes
between VB and NB conditions [Fig. 5.12(A3,B3,C3)].

Effects of gait direction

Comparison of Visual Forward (VF) and Visual Backward (VB)
conditions In targets which imposed no change in curvature sign (all tar-
gets except 4W, 4N, 5W, 5N), the average trajectories observed in the VF
and VB conditions were very similar at the path level [targets 4E and 5S
Fig. 5.13(A1,C1)]. In targets which imposed a change in curvature sign (4W,
4N, 5W, 5N), the VB paths were slightly shifted to the interior of the main
curve with respect to the VF paths [targets 5W: Fig. 5.13(B1); also target
4W: not shown]. However, quantitatively, this difference resulted in a MTS
smaller than 0.4m [Fig. 5.13(D)]. In terms of the velocity profiles, we found
very similar patterns, in every targets [Fig. 5.13(A2,B2,C2)]. This similarity
was larger here than in the previous VF/NF and VB/NB comparisons.

Quantitatively, the average MTSVF/VB across the 11 tested targets was
0.22m [Fig. 5.12(D)] in absolute terms, or 4.0% of the VF trajectory length.
These values are to be compared with the the average MTDVF, which was
0.31m or 5.7%, and the average MTDVB, which was 0.38m or 6.4%.

Finally, we noted that the variability profiles were similar in the two
conditions, both in terms of magnitudes (average MTDVF = 0.31m, average
MTDVB = 0.38m) and shapes [Fig. 5.13(A3,B3,C3)].

Comparison of Nonvisual Forward (NF) and Nonvisual Backward
(NB) conditions Here, the similarity of the average trajectories was not
as strong as in the previous comparison. Yet it was still remarkable given
the difficulty of the task (walking to distant targets defined in both position
and orientation without visual feedback). At the path level, the average
trajectories had globally the same forms, with some shift between the two
conditions [Fig. 5.14(A1,B1,C1)]. In particular, in targets which imposed a
change in curvature sign, we observed that, as in the VF/VB comparison,
the NB paths were shifted towards the interior of the main curve with respect
to the NF paths [target 5W: Fig. 5.14(B1); also target 4W: not shown]. As
in the VF/VB comparison, the velocity profiles were very similar in the two
compared conditions, in all targets [Fig. 5.14(A2,B2,C2)].
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Quantitatively, the average MTSNF/NB across the 11 tested targets was
0.38m (Fig. 5.14(D)) in absolute terms, or 6.9% of the NF trajectory length.
These values are to be compared with the the average MTDNF, which was
0.74m or 13.6%, and the average MTDNB, which was 0.90m or 16.5%.

In terms of the variability profiles, we observed a larger variability in the
NB conditions (see the values given above). However the difference between
the NF and NB conditions was low as compared to the VF/NF and VB/NB
comparisons. In addition, the variability profiles displayed similar shapes
[Fig. 5.14(A3,B3,C3)].

Results summary

The main findings provided by this experiment can be summarized as follows

• The average trajectories were globally similar across visual and gait
direction conditions, at both the path and velocity profile levels

• The variability profiles were globally similar across gait direction con-
ditions

• Vision largely affected the variability profiles, both in terms of magni-
tude (larger variability in the nonvisual conditions than in the visual
conditions) and shape.

At a finer level of analysis, we also reported that

• In targets which imposed a change in curvature sign, the backward
(VB, NB) paths were shifted towards the interior of the main curve
with respect to the forward (VF, NF) paths

• The normalized velocity profiles were similar across gait conditions,
but were slightly different across visual conditions: in the nonvisual
conditions (NF, NB), the velocity reached its maximal value earlier
than in the visual conditions (VF, VB).

5.4 Discussion

5.4.1 The spatial control of locomotion

We observed in Experiment 1 that subjects produced stereotyped trajecto-
ries, which contrasted with much more variable sequences of foot positions.
The variability of the sequences of foot positions may seem contradictory with
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the observation made by Patla et al. (1999b), who showed that humans pre-
cisely control the landing positions of the feet in obstacle-avoidance tasks.
However, it should be recalled that our experiment took place in a large,
obstacle-free room. We propose that in such environments, goal-oriented lo-
comotion is planned and controlled at the trajectory-level, in a “top-down”
fashion (Berthoz, 1997), and not as precise sequences of foot “pointings”.
This idea is reminiscent of the “spatial control of hand movements” hy-
pothesis put forward by Morasso (see also our review in section 1.1), which
postulates that the central command is formulated in terms of trajectories
of the hand in space and not in terms of joint kinematics or muscle activity.

The second argument in favour of the “top-down” strategy is provided by
the comparison of forward and backward locomotion. Indeed, it was shown
that these two modes of locomotion involved very different patterns of muscle
activity (see Grasso et al., 1998b, and also our review in section 2.1.2). We
observed nevertheless that the trajectories produced in forward and backward
locomotion were very similar, at the geometric (paths), kinematic (paths +
velocity profiles) and statistical (variability profiles) levels. This observa-
tion thus further indicates that whole-body trajectories may be planned and
controlled at a high cognitive level, and to some extent, independently of
their precise implementations (in terms of sequences of foot positions or of
patterns of muscle activity).

5.4.2 The nature of the control variable(s)

The previous discussion is also related to the conceptual distinction between
kinematic and kinetic variables usually presented in the literature. While
kinematic variables (e.g. the hand’s position, velocity, acceleration, jerk, etc.
measured in the laboratory reference frame) describe the movement of the
end-effector in the extracorporal space, kinetic variables (e.g. the torques
applied at the joints, the muscle activations, etc.) are related to the internal
mechanical properties of the motor system (see our review in section 1.2).

In the case of arm movements, the motor apparatus can be realistically
modelled by a two-link manipulator controlled by torques applied at the
joints (Uno et al., 1989). In this context, the opposition between kinematic
control of the end-effector (the hand) and kinetic control of the torques can
be readily investigated. For locomotion, given the greater dimensionality of
the motor system (at the segmental, muscular, motor commands, etc. levels),
it is less easy to formulate a kinetic control hypothesis.

In any case, the two observations discussed in the previous section ar-
gue in favor of a kinematic control of goal-oriented locomotion, in terms of
whole-body trajectories in extracorporal space. While these observations do
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not rule out the possibility that the CNS may take into account kinetic vari-
ables (such as the forces exerted on the ground or at the legs’ joints or the
patterns of muscle activations) in the generation of locomotor trajectories,
we suggest that these variables are rather used at the motor implementation
level. Following this idea, the transformation from kinematic objectives into
dynamic strategies may be acquired with learning (see also Winter and Eng,
1995).

5.4.3 Visual and nonvisual locomotion may share the
same open-loop process

Experiment 2 first showed that, in order to reach a distant target, subjects
produced very similar average trajectories in the Visual Foward (VF) and
Nonvisual Forward (NF) conditions (see also the comparison of VB and NB
average trajectories). If we consider only the final part rather than the en-
tire trajectory, this finding implies that the average final position and final
walking direction in condition NF are close to those in condition VF, which
in turn correspond to the target’s position and orientation since in condition
VF, the task’s final constraints were well respected. In previous studies of
nonvisual locomotion (see our review in section 2.2), it was also reported
that, in a task where the subject had to walk without visual feedback to a
previously seen target, the average final position of the subject almost coin-
cided with the actual position of the target. This precise average response
was interpreted as reflecting the veridicality of the subjects’ “visual space
perception” (see Loomis et al., 1992). However, in these studies, the targets
consisted of spots placed at various distances in front of the subject. Using
targets defined in both position and orientation and placed at various off-axis
positions, our study confirms and generalizes the aforementioned results. It
also suggests that the notion of veridicality of visual space perception may
not be limited to “straight ahead distances” but may be also valid for the
perception of “off-axis distances” and of changes in the body orientation.

But more importantly, not only the average final positions and orien-
tations, but also the entire average trajectories that the subjects had to
produce to reach these positions and orientations were similar between con-
ditions VF and NF (and between VB and NB). Since the average trajectory
is obtained by indeed “averaging out” all the fluctuations, it reflects the
open-loop process that governs the subject’s movements in absence of per-
turbations (Todorov and Jordan, 2002). Thus, the similarity of the average
trajectories implies that the control mechanisms in visual and nonvisual lo-
comotion share a common open-loop process. This idea may have a deep
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theoretical implication. Indeed, a number of neuroscientists believe that our
representation of space is strongly related to our movements (see for instance
Berthoz and Petit, 2009), a notion that can be summarized by the following
statement of the great French mathematician Henri Poincaré: “To localize an
object in space is to build a representation of the movements one has to make
in order to reach it” (Poincaré, 1902, chapter 4, our translation) 2. Following
this line of thinking, the proposed common open-loop process may represent
the physiological basis of the psychological notion of “veridicality of visual
space perception”.

In a recent article, Fajen and Warren (2003) challenged the very existence
of open-loop processes in the control of locomotion. Based on a simulation
study where the targets were modeled by attractors, the obstacles by repellers
and the subject by a simple second-order dynamical system evolving in a field
of attractors and repellers, these authors argued that “the [subject] adopts a
particular route through the scene on the basis of local responses to visually
specified [targets] and obstacles. The observed route is not determined in
advance through explicit planning, but rather emerges in an online manner
from the [subject’s] interactions with the environment”. It should also be
remarked that these interactions, which are crucial in Fajen and Warren’s
approach, are fundamentally based on the availability of visual inputs (see
also our review in section 3.1). The similarity of the average trajectories
in conditions VF and NF reported in the present article suggests, on the
contrary, that the formation of locomotor trajectories is not exclusively driven
by vision. Rather, we suggest that a combination of open-loop and online
control mechanisms underlies the steering of locomotion. The precise nature
of the online control mechanisms in question is investigated in chapter 6.

2However, we disagree with Poincaré when he pushed further into this “subjectivist”
position and challenged the very existence of objective reality in Poincaré (1905): “Non,
sans doute, une réalité complètement indépendante de l’esprit qui la conçoit, la voit ou la
sent, c’est une impossibilité. Un monde si extérieur que cela, si même il existait, nous
serait à jamais inaccessible. Mais ce que nous appelons la réalité objective, c’est, en
dernière analyse, ce qui est commun à plusieurs êtres pensants, et pourrait être commun
à tous; cette partie commune, nous le verrons, ce ne peut être que l’harmonie exprimée
par des lois mathématiques”. A sharp critism of this idealistic viewpoint can be found in
Lénine (1908) (see also chapter 2 in Berthoz and Petit, 2009).
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Chapter 6

The control mechanisms
underlying the formation of
locomotor trajectories

6.1 Overview

We showed in chapter 5 that whole-body trajectories produced in a “walk-
ing towards and through a distant doorway” task were highly reproducible
across repetitions and subjects. In particular, the variability of the recorded
trajectories around the average trajectory was found to be much lower than
the variability of the sequences of foot positions in the same task. Moreover,
the average trajectory was found to be very similar across different walking
conditions (with vision/without vision, walking forward/walking backward).
These observations suggested that goal-oriented locomotion is controlled at
the level of whole-body trajectories.

In this chapter, we investigate the nature of the control mechanism at
work during the production of these trajectories. A basic assumption of our
study is that, theoretically, this control mechanism may be divided in two
parts (Fig. 6.1): (i) an open-loop process, which can be executed indepen-
dently of sensory feedbacks and (ii) a feedback module, which can modify
the open-loop process based on sensory feedbacks in order to correct the
perturbations that may arise during task execution.

Within this framework, we discuss two issues (indicated by the question
marks on Fig. 6.1): (i) does online feedback control exist in visual and
nonvisual locomotion? and (ii) what is the precise nature of the feedback
control scheme?

More specifically, based in particular on the analysis of the variability
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Goal

Goal

?

Open−loop process

Sensory feedback (visual, vestibular, proprioceptive...)

Movement

Online feedback

Optimal feedback control
Trajectory tracking / ?

module

Figure 6.1: Sketch of a general controller, including both an open-loop pro-
cess and a feedback module. The question marks indicate some of the issues
studied in the present chapter: namely, (i) does online feedback control exist
in visual and nonvisual locomotion? and (ii) what is the precise nature of the
feedback control scheme, trajectory tracking or optimal feedback control?

profiles, we argue that online feedback control is present in both visual and
nonvisual locomotion and suggest the relations between the visual and non-
visual control strategies (Experiment 3). We then investigate the precise
nature of the online feedback control and discuss two competing hypotheses
(Experiment 5):

(i) the “desired trajectory” (DT) hypothesis which assumes two separate
stages in the production of a movement: a planning stage when a de-
sired optimal trajectory is computed and an execution stage when this
DT is implemented with trajectory-tracking mechanisms correcting any
deviation away from the DT

(ii) the optimal feedback control hypothesis (Todorov and Jordan, 2002)
which states that “deviations from the average trajectory are corrected
only when they interfere with task performance” (goal-directed correc-
tions, as opposed to desired-trajectory-related corrections)

The reader is referred to section 1.3 for a more detailed discussion about
“desired trajectory” tracking and optimal feedback control.

Another issue that we also discuss concerns the influence of walking speed
on the control of locomotor trajectories (Experiment 4). This is important
to understand the nature of execution noise in locomotion.
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Experiments 3 and 4 were designed and run by Q.-C. Pham and H.
Hicheur in February 2008. We thank A.-H. Olivier and A. Cretual for their
help with these experiments. Experiment 5 was designed and run by Q.-C.
Pham and H. Hicheur in October 2008. The results of these experiments were
first reported in Pham and Hicheur (2009), to which the reader is referred
for more details.

6.2 Experiment 3: influence of vision on the

variability profiles

6.2.1 Methods

Subjects and Materials

Five male subjects participated in this experiment. Each subject generated
80 trajectories (2 visual conditions × 5 targets × 8 repetitions), so that a
total of 400 trajectories were recorded.

As in Experiment 2 (section 5.3), the targets consisted of a 0.2m × 1.2m
cardboard arrow placed on the ground at various positions and orientations
(Fig. 6.2). Five targets were used: two “straight” targets (targets 1 and 2)
and three “angled” targets (targets 3, 4 and 5).

1m

1

2

5
4

3

Starting
position

Figure 6.2: Five targets were used in Experiments 3 and 4: two “straight”
targets (targets 1 and 2) and three “angled” targets (targets 3, 4 and 5).
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Protocol

Two conditions were tested in this experiment: walking with vision (visual:
VI) and without vision (nonvisual: NV). The protocol for each trial was
the same as in Experiment 2 (see section 5.3 for details, note that VI corre-
sponds to VF in Experiment 2, while NV corresponds to NF). We increased
the number of repetitions per target and per condition to 8 (up from 3 in
Experiment 2) in order to study intra-subject variability profiles with better
reliability. As usual, the trials were randomized in order to reduce learning
effects.

Analysis

In addition to the usual measures (TD: Trajectory Deviation, TS: Trajectory
Separation, MTD: Maximal Trajectory Deviation, MTS: Maximal Trajectory
Separation, etc.) defined in chapter 4, we considered here two other quanti-
ties: the Steps Number and the Linearity Coefficient.

Number of steps In Experiment 1 (section 5.2), we carried out an exten-
sive step-level analysis in order to compare the variability of foot placements
with that of whole-body trajectories. Here the purpose of the step-level anal-
ysis was solely to assess whether the subjects used a steps-counting strategy
in the nonvisual trials. For this, we considered the Z-coordinates of the left
and right heel markers as functions of time. The total number of local max-
ima of these two signals then gave the number of steps (SN, Steps Number)
executed by the subject. The trial-to-trial variability of this quantity was
given by the Steps Number Deviation (SND) computed as

SND =

√√√√ 1

N − 2

N∑
i=2

(SNi − SNav)2 (6.1)

where N is the number of repetitions executed by the subject for this target
(here, N = 8).

Note that we discarded the first trial in the computation of both the
average and the standard deviation of the SNs. Indeed, since the steps-
counting strategy consists of (i) count the number steps executed in one
visual trial and (ii) reproduce the same number of steps in the corresponding
nonvisual trials, the discard was done to include only the nonvisual trials
that were preceded by at least one visual trial (and for symmetry, we applied
this procedure to visual trials as well).
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Linearity coefficient To measure how close a variability profile is from a
linear profile, we computed its Linearity Coefficient (LC). The LC of a time
series (yi(ti), 1 ≤ i ≤ N) quantifies the distance between this time series and
its best linear approximation y = ct, with 0 ≤ LC ≤ 1 and LC = 1 for a
linear profile. First, the optimal coefficient c was computed by

c =

∑T
i=1 yiti∑T
i=1 t2i

(6.2)

Next, the squared approximation error was given by

ESS =
T∑

i=1

(yi − cti)
2 (6.3)

Finally, the Linearity Coefficient was given by

LC = 1− ESS/Var(y) (6.4)

6.2.2 Direct results

Vision affects the variability around the average trajectories

The observation made in section 5.3 that variability was larger in nonvisual
locomotion than in visual locomotion was confirmed here on an intra-subject
basis (Fig. 6.3). In the two-way ANOVA test where the factors were the
visual condition and the target, the main effect of the visual condition on the
MTD was found to be significant [F(1,40) = 86.1, p < 0.05] , and there was
no significant interaction effect [F(4,40) = 0.61, p > 0.05].

No steps-counting strategy in nonvisual trials

It could be argued that, despite the randomized order of the trials, the sub-
jects may have used a steps-counting strategy (see Methods). Such a strategy
would imply a low trial-to-trial variability in the number of steps in condition
NV. We observed, on the contrary, that the average SND across targets and
subjects was 0.79 in condition NV, which was higher than in condition VI
(SND = 0.54), where arguably no steps-counting strategy was used. In the
two-way ANOVA test where the factors were the visual condition and the
target, the main effect of the visual condition on the SND was found to be
significant [F(1,40) = 7.6, p < 0.05], and there was no significant interaction
effect [F(4,40) = 0.82, p > 0.05].
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Figure 6.3: Comparison of variability profiles in the Visual (VI: plain lines)
and Nonvisual (NV: dashed lines) conditions. (A) Variability profiles for
subject L.H. A1: target 1, . . . , A5: target 5. (B) Same as in A, but for
subject N.V. (C) Average Maximal Trajectory Deviation (MTD) across tar-
gets in condition VI (dark gray bars) and in condition NV (light gray bars),
average Maximal Trajectory Separation (MTS) across targets between con-
ditions VI and NV (black bars). Here, the MTD and MTS were computed
in an intra-subject fashion. First, for each subject, a MTD (or MTS) was
computed over the 8 trials corresponding to this subject, then the average
values and standard deviations of the MTD (or MTS) of the 5 subjects were
plotted. (D) Linearity coefficients LC. (0 ≤ LC ≤ 1 and LC = 1 for a linear
function, see Methods).
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The bump-shape of the variability profiles in visual locomotion

We noted that in both conditions VI and NV, the variability was low at
the beginning of the movement. This is related to the fact that, for a given
target, the subject started all the trials from the same starting position.

In condition VI, the variability was also close to zero at the end of the
movement. This is because, when vision was available, the subject could
complete all the trials successfully by stopping at the requested final position.
Regarding the middle part of the variability profiles, the straight targets and
the angled targets yielded different behaviors. For the former, the variability
was close to zero during the whole movement [see the plain lines in Fig.
6.3(A1,A2,B1,B2)] while for the latter, the variability was higher around the
middle of the movement than around the ends, hence yielding a “bump-
shape” variability profile [Fig. 6.3(A3,A4,A5,B3,B4,B5)].

The special shapes of the variability profiles in nonvisual locomo-
tion

In condition NV, contrary to condition VI, the variability did not decrease
towards zero at the end of the movement. For the straight targets (targets 1
and 2), the variability increased approximately linearly with time, so that the
variability profiles could be approximated by a straight line [see the dashed
lines in Fig. 6.3(A1,A2,B1,B22)]. This was confirmed by the calculation of
the average Linearity Coefficients across subjects, which were close to 1 for
these targets [Fig. 6.3(D)].

For the most angled targets (targets 4 and 5), the variability profiles were
not linear: the average LC across subjects was around 0.65 for these targets.
Indeed, the variability profiles corresponding to these targets were clearly
composed of two parts: a first part where the variability increased linearly
and a second part where the variability remained constant [see the dashed
lines in Fig. 6.3(A4,B4)] or even decreased [Fig. 6.3(A5,B5)]. We propose in
section 6.2.3 a hypothesis accounting for this remarkable feature.

6.2.3 Variability around the average trajectory: com-
bination of two independent components

A hypothesis on the structure of the variability profiles

We propose to study now in more detail the structure of the variability pro-
files observed in the nonvisual condition. In this experiment, two parameters
were varied: the presence or absence of visual feedback and the “complexity”
of the target, that is, more specifically, whether the target was “straight” or
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Visual condition/Target Straight targets Angled targets
Visual 0 + 0 0 + Bump

Nonvisual Line + 0 Line + Bump

Table 6.1: The “two-sources” hypothesis. In each cell, we indicated the
putative contribution of source 1 (vision-dependent, “trajectory-complexity”-
independent) + the putative contribution of source 2 (vision-independent,
“trajectory-complexity” dependent).

“angled”. We make the hypothesis that these two parameters independently
contribute to the variability profiles.

More precisely, our hypothesis states that the variability recorded for the
different targets and visual conditions results from the accumulation of the
variabilities produced by two mutually independent sources. The first source
is vision-dependent and “trajectory complexity”-independent: that is, inde-
pendent of whether the target is “straight” or “angled”. The second source
is “trajectory complexity”-dependent and vision-independent. The psycho-
logical and physiological interpretations of these two sources are addressed
later (see Discussion, section 6.5).

The variability resulting from source 1 – which is “trajectory complexity”-
independent – can be isolated by examining the trials involving only “straight”
targets: indeed, for these “easy” trials, the contribution of source 2 – which
is “trajectory complexity”-dependent – should be minimal. Now, from the
results above, we know that the variability in question is almost zero in the
visual condition, and that it increases approximately linearly with time in the
nonvisual condition. Similarly, the variability resulting from source 2 – which
is vision-independent – can be isolated by examining the trials executed with
vision. For the “straight” targets, this variability is almost zero, while for the
“angled” targets, this variability describes, as a function of time, the shape
of a bump.

An observation supporting the hypothesis

The proposed “two-sources” hypothesis allows now to make the following
nontrivial observation: the special shape of the variability profiles observed
in condition NV for the “angled” targets can be decomposed as the sum of
a straight line (source 1) and of a bump profile (source 2): see Table 6.1 for
a summary.

To illustrate this, let us denote by TDn
VI and TDn

NV the variability profiles
corresponding to target n in conditions VI and NV respectively. The above
observation implies that TDn

NV would be similar to the sum of the bump-
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shaped variability profile observed for the same target in condition VI (TDn
VI),

plus a straight-line variability profile (for simplicity, we chose the variability
profile corresponding to target 2: TD2

NV).
Fig. 6.4(A) shows the comparison of TD4

NV with the sum TD4
VI + TD2

NV

for the five tested subjects. Similarly, Fig. 6.4(B) shows the comparison of
TD5

NV with the sum TD5
VI + TD2

NV. One can observe in each case a good
match between the compared profiles.

However, this observation should not be taken literally. While the pro-
posed hypothesis concerns the noise sources, we compared above the tra-
jectory variabilities, that is, the output of the whole trajectory generation
process. In this respect, it should be noted that, whenever the trajectory
generation mechanisms contain nonlinearities, the additivity of the two noise
sources would not translate into the additivity of the trajectory variability
profiles. Following this remark, we did not seek to find the best combina-
tion of the two squared variability profiles (indeed, the variability profiles
were given by the 2D “standard deviations” of the trajectories, but for lin-
ear systems only variances add up). We chose instead to show directly the
sum of the variability profiles, as a way to hint how the special shapes of
the variability profiles can be obtained from the combination of a line and
a bump profile. In order to assess the hypothesis in a more formal way, it
is necessary to evaluate the input-output relationship between the incoming
noise and the resulting trajectory variability. This is addressed in chapter 9
where we propose a possible implementation of the trajectory generation
mechanism.

6.3 Experiment 4: influence of speed on the

variability profiles

6.3.1 Methods

Five male subjects participated in this experiment. Each subject generated
80 trajectories (2 visual conditions × 5 targets × 8 repetitions), so that a
total of 400 trajectories were recorded.

The methodology and the protocol used in this experiment were the same
as in Experiment 3, except that we varied the speed instruction: subjects
were asked to walk either at their preferred speed (Normal speed – NS) or
at a higher speed (Fast speed – FS). Vision was available in both speed
conditions.
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Figure 6.4: Testing the “two-sources” hypothesis. (A) Actual and predicted
variability profiles for target 4 and subjects A. N. (A1), D. P. (A2), G. N.
(A3), L. H. (A4), N. V. (A5). Plain line: variability profile for target 4 in
condition VI, Dashed-dotted line: variability profile for target 2 in condition
NV. Compare the dashed line (variability profile for target 4 in condition
NV) with the dotted line (sum of the plain line and the dashed-dotted line).
(B) Same legends as in (A), but for target 5.
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6.3.2 Results

The speed instructions were well respected: subjects did walk faster in the FS
condition than in condition NS. The average speed across targets, subjects
and trials was 1.34 ± 0.11m.s−1 in condition NS and 1.60 ± 0.16m.s−1 in
condition FS. From condition NS to FS, the subjects increased their speed
by up to 30% (the speed increase ranged between 13% and 30%). In the
two-way ANOVA test where the factors were the speed condition and the
target, the main effect of the speed condition was significant [F(1,40) = 55.1,
p < 0.05] and there was no significant interaction effect [F(4,40) = 0.09,
p > 0.05].

The average trajectories were also similar in the two speed conditions
[Fig. 6.5(C)]. The average Maximal Trajectory Separation MTSNS/FS com-
puted across targets and subjects was 0.18± 0.06m while the average MTDNS

was 0.18 ± 0.08m. In the two-way ANOVA test where the factors were the
speed condition and the target, the main effect of speed condition was not
significant [F(1,40) = 0.01, p > 0.05]. However, the interaction effect was sig-
nificant [F(4,40) = 5.7, p < 0.05]. In other words, the difference between the
average trajectories in the two conditions was globally of the same magnitude
as the variability within condition NS, but target-wise, there were differences
between MTSNS/FS and MTDNS. However, for the most interesting targets
(targets 4 and 5), we found that MTSNS/FS < MTDNS [Fig. 6.5(C)].

The variability profiles measured in the two speed conditions were very
similar, in terms of both shape and magnitude (see [Fig. 6.5(A,B) for typical
variability profiles]. For the straight targets, the variability was low through-
out the movement, and for the angled targets, bump-shaped variability pro-
files were consistently observed across both speed conditions. Quantitatively,
in the two-way ANOVA test where the factors were the speed condition and
the target, the main effect of speed condition on the MTDs was not signifi-
cant [F(1,40) = 0.006, p > 0.05], neither was the interaction effect [F(4,40)
= 1.2, p > 0.05]

6.4 Experiment 5: testing the “desired-trajectory”

hypothesis

This simple experiment adapts a hand movement experiment from Todorov
and Jordan (2002) to the context of locomotion in order to test the “desired-
trajectory” hypothesis (see this chapter’s Overview and section 1.3).
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Figure 6.5: Comparison of variability profiles in the Normal speed (NS: plain
lines) and Fast speed (FS: dashed lines) conditions. For details, see legends of
Fig. 6.3. (A) Variability profiles for subject B.B. (B) Same as in A, but for
subject R.K. (C) Average Maximal Trajectory Deviation across targets in
condition NS (dark gray bars) and in condition FS (light gray bars), average
Maximal Trajectory Separation across targets between conditions NS and FS
(black bars).
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6.4.1 Methods

Five subjects (three males, two females) participated in this experiment.
Each subject generated 30 trajectories (3 sessions × 10 repetitions), so that
a total of 150 trajectories were recorded.

The experiment was divided in three sessions separated by several hours.
In the first session, the task was the same as in Experiments 2, 3 and 4:
namely, walking towards a distant arrow. We used only one target, similar
to target 5 in Fig. 6.2. The subject performed 10 trials in this session,
all with vision and at normal speed. We computed the average trajectory
(xav(t), yav(t))0≤t≤1 across these 10 trials. We denoted respectively by P1,
P2 and P3 the spatial positions (xav(0.33), yav(0.33)), (xav(0.5), yav(0.5))
and (xav(0.67), yav(0.67)).

In the second session, we placed a piece of black tape on the ground at
position P2. The subject was then asked, as in the first session, to walk
towards the distant arrow. In addition, he had now to go through the via-
point indicated by the piece of black tape. Again, the subject had to perform
10 repetitions.

The third session was similar to the second session, except that the subject
had to go successively through the three via-points P1, P2 and P3.

In this experiment, the average trajectories and the variability profiles
were computed differently, in a manner similar to that described in the legend
of Fig. 5 in Liu and Todorov (2007). This was done in order to better assess
the effects of the spatial via-points.

6.4.2 Results

We noted first that the average trajectories recorded in the three sessions
were very similar, as we could expect from the experimental set-up. For
instance, the Maximal Trajectory Separation between the average trajectory
of session 1 (0-via-point) and that of session 2 (1-via-point) was 0.12 ± 0.07m.
Similarly, the MTS between the average trajectory of session 1 (0-via-point)
and that of session 3 (3-via-points) was 0.11 ± 0.06m.

Consistently with the previous results, the variability profiles observed in
the 0-via-point condition were bump-shaped [Fig. 6.6(A1,B)]. By contrast,
the variability profiles in the 1-via-point condition were clearly two-peaked,
with a local minimum occurring around t = 0.5 [Fig. 6.6(A2,B)]. The variabil-
ity profiles in the 3-via-points condition displayed smaller variations than in
the two previous conditions. In particular, we observed no significant peaks
or valleys [Fig. 6.6(A3,B)].

Quantitatively, the MTD in the 1-via-point (0.06 ± 0.02m) and the 3-
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Figure 6.6: Testing the “desired trajectory” hypothesis. (A) Average trajec-
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erage variability profiles computed across subjects. Plain line: no via-point;
Dashed line: 1 via-point; Dotted line: 3 via-points. We also indicated the
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via-points (0.05 ± 0.008m) conditions were lower than the MTD in the 0-
via-point condition (0.18 ± 0.06m) [Fig. 6.6(C)]. The one-way ANOVA test
revealed that the number of via-points (0, 1 or 3) has a significant effect on
the MTDs [F(2,12) = 16.3, p < 0.05]. Post-hoc Tukey tests revealed that
this effect was significant between the 0- and 1-via-point conditions, between
the 0- and 3 via-points conditions, but not between the 1- and 3-via-points
conditions.

6.5 Discussion

6.5.1 Origin of the variability and nature of the control
mechanisms in the visual condition

We showed in chapter 5 that subjects produced stereotyped trajectories in
order to reach a distant target. However, we also noticed some variabilities
around the average trajectories. Here, by increasing the number of repetitions
per subjects per target and by using more complex experimental paradigms,
we could analyze with a greater precision the intra-subject variability profiles
and get deeper into the understanding of the control mechanisms underlying
goal-oriented locomotion.

Execution noise in locomotion

Within the theoretical framework of computational motor control, it was
proposed that movement variability may arise during three processes: target
localization, movement planning and movement execution (Schmidt et al.,
1979; van Beers et al., 2004). We assume here that this three-sources dis-
tinction also holds for locomotor “reaching”. Given this, we argue that the
variability profiles observed in the visual conditions of Experiments 3, 4 and
5 mostly resulted from execution noise. Indeed, regarding first the target lo-
calization process, the target was clearly visible and remained so during the
whole movement. Second, since we conducted an intra-subject analysis, the
contribution of planning variability to the overall variability was reduced: in-
deed, a large part of planning variability arises from differences in subjects’
morphologies or personal preferences. Finally, we reason by analogy with
hand movements and follow van Beers et al. who demonstrated that, for
hand movements, “in general, execution noise account[ed] for at least a large
proportion of movement variability”.

In hand movements, execution noise may arise at different levels (van
Beers et al., 2004; Faisal et al., 2008): motor commands (the elaboration and
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the transmission of the neural signals may be corrupted at any stage of the
neural chain, from cortical structures to motoneurons) or muscle contrac-
tions (the motor response of a muscle to a given neural signal is inherently
variable), etc. Since locomotion involves the production of complex muscle
contraction patterns (lower-body muscles for forward propulsion, but also
arm and trunk muscles for stability and neck muscles for steering purposes),
execution noise can also step in at all these levels. However, since the number
of muscles involved in locomotion is much larger than in hand movements, the
exact relationship between whole-body trajectory variability and the muscles’
execution noises is harder to establish.

As evoked in this chapter’s Overview, locomotion involves also a “navi-
gational” aspect in addition to the purely motor aspect. Indeed, locomotion
is the only motor activity in which the spatial position and orientation of
the body change throughout movement execution. In this respect, special
attention should be devoted to the references frames that are used for the
perception of movement (Berthoz, 1991): in contrast with the case of hand
movements, these reference frames move during the locomotor task. The
errors in the updating of the body’s position and orientation due to the ma-
nipulation of different reference frames may then contribute to the variability
of the trajectory during movement execution. To study in detail the specific
contribution of the motor and “navigational” levels to execution noise, a
differential analysis may be conducted, for example, by comparing the vari-
ability observed during navigation in virtual environments with that observed
during real-world locomotion.

Online feedback control of locomotion in the visual condition

To fully explain the variability of locomotor trajectories, one has to under-
stand not only the nature of the noise but also that of the control mechanisms
at work, since the form of the variability arises from the interplay between
these two elements. A given noise pattern may indeed give rise to different
variability profiles depending on the control scheme used by the subject.

More precisely, we have distinguished in the Overview two families of
control schemes: purely open-loop control and online feedback control. As
already mentioned, in a purely open-loop control scheme, there are no feed-
back corrections during the performance of the task. Errors can hence only
accumulate, leading to monotonically increasing variability (Todorov and
Jordan, 2002, see also our modeling results in chapter 9). By contrast, the
results of Experiments 3 and 4 showed that, for the “angled” targets, the
variability profiles in condition VI always increased at the beginning of the
movement but then decreased towards zero at the end of the movement,
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yielding bump-shaped profiles (see also chapter 9). Taken together, these
observations indicate that online feedback control is present in visual loco-
motion. This is not surprising since in general, purely open-loop control
exists only in very fast, balistic movements such as fast arm reaching. Here,
since the movements we studied lasted from 3 to 10 seconds, this allows the
detection of errors and the implementation of online corrections if necessary.

On the “desired-trajectory” hypothesis for locomotion

The precise nature of the online feedback control cannot however be deter-
mined solely from the variability profiles recorded in Experiments 3 and 4.
Indeed, both the “desired-trajectory” (DT) hypothesis and the fully optimal
control hypothesis would yield bump-shaped variability profiles in the lim-
ited conditions of these experiments. However, the results of Experiment 5
are incompatible with a basic DT control scheme. Indeed, as indicated in the
Overview, the DT hypothesis implies that, during a planning stage, a desired
optimal trajectory is computed. Empirically, this DT can be equated to the
average trajectory computed across a large number of trials. Then, during
the execution stage, a “trajectory-tracking” mechanism is used to achieve
the DT. In Experiment 5, since the average trajectories were forced by the
experimental protocol to be similar in the three conditions (0-, 1- and 3-via-
points), the DT hypothesis would predict practically no difference between
the statistics of the trajectories produced in these conditions. Thus, the
large differences we reported concerning the variability profiles in the three
conditions indicated that the DT hypothesis should be rejected.

We note nonetheless that the results of Experiment 5 cannot rule out
a variation of the DT hypothesis which consists of (i) constructing sev-
eral desired sub-trajectories (2 sub-trajectories in the 1-via-point condition
– the first trajectory between the starting position and the via-point, the
second trajectory between the via-point and the final condition –, and 4
sub-trajectories in the 3-via-points conditions) and (ii) tracking sequentially
these sub-trajectories. While this variation may seem unlikely (indeed, in
post-experiment interviews, the subjects reported that they conceived the
trajectory as a whole and not as a sequence of sub-trajectories glued to-
gether at the via-points), it cannot be theoretically ruled out. This remark
also applies for the original experiments of Fig. 3 in Todorov and Jordan
(2002) which inspired our Experiment 5 (see also our review in section 1.3).

A more likely explanation of the results of Experiment 5 involves an op-
timal feedback control scheme. Within this scheme, online corrections would
be made with respect to the task goal [namely, go through the via-points (if
present) and reach the targets] and not with respect to any intermediate rep-
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resentation (e.g. a desired trajectory). In the 0-via-point condition, since no
other constraints than the goal is specified, random deviations away from the
average trajectory are not corrected if they do not interfere with this task,
allowing the variability to accumulate around the middle of the trajectory,
thus yielding bump-shaped variability profiles. By contrast, when via-points
are imposed, corrections would be made to ensure that the trajectory go
through these via-points, resulting in low variability around the via-points
(see also the discussion about “trajectory redundancy” in Todorov and Jor-
dan (2002). We explore this hypothesis by designing an optimal feedback
control model in chapter 9.

6.5.2 Online control of locomotor trajectories in non-
visual locomotion

We showed in chapter 5 that, in order to reach a distant target, subjects
produced very similar average trajectories in the Visual (VI) and Nonvi-
sual (NV) conditions. Based on this observation, we then suggested that
visual and nonvisual locomotion share the same open-loop process (see sec-
tion 5.4.3).

While it is easy to conceive that online feedback control is present in
normal visual locomotion, the fact that such a mechanism may also be present
when vision is totally excluded during task execution may be more surprising.
Yet we observed in Experiment 3 that the nonvisual variability profiles were
not always monotonic: for “angled” targets, the variability decreased near
the end of the trajectory. The same arguments as previously then implies
that online control is also present in nonvisual locomotion.

The idea that online control may be present in nonvisual locomotion
was proposed earlier in the literature by Farrell and Thomson (1999). In
their experiment, the subject had to walk with or without vision towards
a previously seen target placed at 8 paces, 8 paces minus 40cm or 8 paces
plus 40cm in front of him. He had to start with his right foot and to land
on the target with his left foot. The authors showed that, in both visual
conditions, the subject functionally adjusts the lengths of his final steps, on
a trial-to-trial basis, in order to land on the target with the specified foot
(see also our review in section 2.2).

The precise nature of that online control has however remained unclear.
For instance, while Farrell and Thomson rightly remarked that, in the non-
visual condition, “[the subjects] adjust their step lengths in a way similar to
that seen in the visual condition”, they did not provide an interpretation of
the nature of the processes common or specific across visual conditions.
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Here, the “two-sources” hypothesis (see section 6.2.3), directly addressed
the nature of this online control. Indeed, we showed that the variability in
the nonvisual condition results from the combination of a vision-dependent
component and a “trajectory-complexity”-dependent component.

The first component – whose contribution is zero in condition VI and an
increasing linear function of time in condition NV – can be interpreted as
resulting from the errors in the subject’s estimation of his state which, in
turn, are caused by the absence of visual feedbacks.

The second component – whose contribution is zero for “straight” tar-
gets and bump-shaped for “angled” targets – can be interpreted as resulting
from the interplay between execution noise and optimal feedback control,
as explained previously in the case of visual locomotion. The fact that this
component is present also in nonvisual locomotion, under almost the same
form, thus suggests that the very control mechanisms that governs visual
locomotion underlie nonvisual locomotion as well.

Whether our conclusions about the control mechanisms at work during
nonvisual locomotion also hold in adventitiously and congenitally blind sub-
jects remains yet to be investigated. We believe indeed that a better un-
derstanding of the control mechanisms governing nonvisual locomotion and
navigation can help develop new tools assisting visually impaired individuals
in their daily activities.
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Chapter 7

Some other experimental
results

We present in this chapter some preliminary results that concern other as-
pects of trajectory formation. In section 7.1, we study the relations between
the steering behavior (in particular, head and trunk turning profiles) and
other levels of locomotor control: the stepping activity and the formation of
whole-body trajectories. In section 7.2, we examine the relations between
locomotor trajectory formation and navigation through a new experiment
(Experiment 6). In particular, we investigate the control principles under-
lying discrete navigational choices (such as, e.g. choosing one route out
of several possible routes). Finally, we present Experiment 7 (section 7.3),
which provides a direct test for affine invariance in hand trajectories.

The results concerning the steering behavior were first presented in Pham
et al. (2010), to which the reader is referred for more details. Experiment 6
was designed and run by Q.-C. Pham, H. Hicheur and J. Wiener in November
2007. Experiment 7 was designed and run by Q.-C. Pham and D. Bennequin
in June 2008.

7.1 Back to Experiment 2: anticipatory steer-

ing behavior

As noted in our review (see section 2.3), most works devoted to the study of
the head anticipatory behavior were based on experimental protocols involv-
ing straight or predefined paths. These works thus did not allow examining
the dynamic relations between the steering behavior and the formation of
locomotor trajectories.

Here, we analyze the head and trunk turning profiles based on the data
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collected in Experiment 2 (see section 5.3 for details about the experimental
protocol). Briefly, we asked subjects to walk from a starting position and
orientation in space towards a distant target defined also in position and
orientation. The subjects had to do so under four conditions: Visual For-
ward (VF), Nonvisual Forward (NF) Visual Backward (VB) and Nonvisual
Backward (NB).

This protocol thus allowed (i) studying the steering behavior in freely-
generated locomotor trajectories and (ii) assessing the separate and com-
bined effects of gait reversal (walking backward) and absence of vision on
the steering behavior.

7.1.1 Methods

Definition of head and trunk angles

In section 5.3, we studied whole-body trajectories using the midpoint of the
shoulders’ markers. Here, our analysis of the steering behavior is based on
the data recorded for the head and shoulders markers.The head and trunk
orientations in the horizontal plane were computed based on the four head
markers and the two shoulders markers respectively (see General Methodol-
ogy in section 4.1 and Fig. 7.1 below). The trunk direction was given by the
orthogonal direction to the shoulders segment defined by the two shoulders
markers.

Light−reflective
marker

1: Absolute Head angle (AH)
2: Relative Head angle (RH)
3: Relative Trunk angle (RT)
4: Head/Trunk angle (HT)

Head direction
Trunk direction

3 4

1
Lab X−axis

Locomotor trajectory Heading

direction
TrunkHeading

Head
direction

2

Figure 7.1: Definition of head and trunk angles

As shown in Fig. 7.1, we considered four time-varying angles: the Abso-
lute Head angle (AH, angle between the head direction and the laboratory
X-axis), the Relative Head angle (RH, angle between the head direction and
the heading), the Relative Trunk angle (RT, angle between the trunk direc-
tion and the heading) and the Head/Trunk angle (HT, angle between the
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head direction and the trunk direction). The “heading” just mentioned is
the tangent direction to the trajectory (or the travelling direction, see Imai
et al., 2001).

Stereotypy of the steering behavior

Several statistics were computed to assess the stereotypy of the head turn-
ing behavior, in the same way as in the General Methodology (chapter 4)
for assessing the stereotypy of whole-body trajectories. First, the average
Absolute Head angle profile (AHav(t))0≤t≤1 was computed as

AHav(t) =
1

N

N∑
i=1

AHi(t) (7.1)

where N is the number of trajectories recorded for a given target (here,
N = 14 subjects × 3 repetitions = 42).

The Absolute Head angle Deviation (AHD), which measures the variabil-
ity of the AH around the average profile, was then defined by

AHD(t) =

√√√√ 1

N − 1

N∑
i=1

(AHi(t)− AHav(t))2 (7.2)

The Maximum Absolute Head angle Deviation (MAHD) was next given
by

MAHD = max
0≤t≤1

AHD(t) (7.3)

We defined similarly the RHD (Relative Head angle Deviation), MRHD
(Maximum RHD), RTD (Relative Trunk angle Deviation), MRTD (Maxi-
mum RTD), HTD (Head/Trunk angle Deviation) and MHTD (Maximum
HTD).

Degree of head and trunk anticipation

When humans walk forward on a straight trajectory, the directions of their
head and trunk mostly align with the heading, which corresponds to RH
≃ RT ≃ HT ≃ 0 (the residual oscillations induced by the stepping activity
are neglected, see Hicheur and Berthoz, 2005). By contrast, when they walk
along a curved path, their head and trunk significantly deviate from the
heading and are directed towards the interior of the curve, thus making
nonzero angles with the heading. Furthermore, the larger these angles, the
more the head and the trunk anticipate with respect to the heading. Thus,
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to quantify the degree of head and trunk anticipation, we computed, for each
trial 1 ≤ i ≤ N the Maximum Relative Head angle (MRH), the Maximum
Relative Trunk angle (MRT) and the Maximum Head/Trunk angle (MHT)
as

MRHi = max
0≤t≤1

|RHi(t)| (7.4)

MRTi = max
0≤t≤1

|RTi(t)| (7.5)

MHTi = max
0≤t≤1

|HTi(t)| (7.6)

These values can then be averaged across subjects and repetitions (1 ≤
i ≤ N) yielding average and standard deviation values. At this point, it
should be noted that the SD of the MRHi obtained by this calculation should
not be confused with the MRHD defined previously.

In the backward conditions (VB and NB), since the “natural” angle be-
tween the head (and trunk) direction and the heading is−180◦ [see Fig. 7.4(A)],
the MRHi (and the MRTi) was computed by

MRHi = max
0≤t≤1

|RHi(t) + 180◦| (7.7)

Timing of anticipation

In addition to the degree of anticipation, it was also interesting to assess
its timing, which may provide insights into the temporal coordination of
the different segments during steering (Imai et al., 2001). To this purpose,
we determined the time instants when the maxima defined in the preceding
section were attained. For instance, the Time of Maximum Relative Head
angle (TMRH) was defined by

TMRHi = argmax0≤t≤1|RHi(t)| (7.8)

The Time of Maximum Relative Trunk angle (TMRT) and the Time of
Maximum Head/Trunk angle (TMHT) were defined similarly.

Finally, these values could also be averaged across subjects and repetitions
(1 ≤ i ≤ N), yielding average and standard deviation values.

7.1.2 Results

Head orientation in space

The examination of the average Absolute Head angle (AH) profiles (Fig. 7.2)
revealed large differences between conditions VF, NF and NB on one hand,
and condition VB on the other.
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Figure 7.2: Absolute Head (AH) angles in the four tested conditions (VF: red,
NF: magenta, VB: green, NB: cyan). (A) Average AH profiles. A1: target
4E, A2: target 5W, A3: target 5S. Left scale for the forward conditions
(VF, NF) and right scale for the backward conditions (VB, NB). (B) AH
variability profiles. (C) Variability of the AH profiles: Maximal Absolute
Head angle Deviation (MAHD) in degrees.

102



In conditions VF, NF and NB, the head direction at the beginning and
the end of a trajectory was aligned with the heading: orthogonal to the
X-axis at the beginning (AHav(0) = 90◦ in VF and NF, AHav(0) = −90◦

in NB), and aligned with the arrow’s direction at the end of the trajectory
(AHav(1) = target angle in VF and NF, AHav(1) = −target angle in NB).
Between t = 0 and t = 1, the average AH profiles had sigmoid-like shapes
– with some differences, however, among the three conditions [red, magenta
and cyan lines in Fig. 7.2(A1,A2,A3); this is studied in more detail in the
next section].

By contrast, in condition VB, the head direction was not aligned with the
heading at the beginning of the trajectory: AHav(0) ≃ −45◦. Indeed, right
from the start, subjects turned their head backwards to look at the target
“over their shoulders”. In addition, between t = 0 and t = 1, the average AH
profiles displayed large variations in time [green lines in Fig. 7.2(A1,A2,A3)],
unlike the smooth sigmoid-shape profiles observed in conditions VF, NF and
NB.

In term of the variabilities, the AHDs were relatively low in conditions
VF, NF and NB and much larger in condition VB [Fig. 7.2(B1,B2,B3)].
Quantitatively, the average MAHDs across targets were respectively 14.4◦,
19.7◦ and 24.3◦ in conditions VF, NF, NB, while the average MAHD was
63.6◦ for VB [see also Fig. 7.2(C)].

These observations confirm the results reported in Hicheur et al. (2007)
where we demonstrated the stereotypy of the head turning behavior. More-
over, they extend those results to the cases of nonvisual forward and back-
ward locomotion. Together with the similarity of the average AH profiles in
the VF, NF and NB conditions, they suggest that the head orientation dur-
ing nonvisual forward and backward locomotion is controlled following the
same strategy as in visual forward locomotion. In the sequel, we analyze in
greater details these strategies, with a particular emphasis on the “anticipa-
tory” aspects. Condition VB appeared to be a specific condition where the
subjects adopted highly variable steering strategies and as such, VB steering
results will not be presented in the next sections.

Head anticipatory behavior in conditions VF and NF

Condition VF The examination of the Relative Head angles (RH) profiles
[Fig. 7.3(B1,B2,B3)] revealed a clear anticipatory behavior. In condition VF
(red lines), one may distinguish two main parts. In the first part, between
t = 0 and t ≃ 0.3, the RH remained close to zero. Here there was no
anticipation: the head remained mostly aligned with the heading. This part
corresponded indeed to the straight portion of the trajectory.
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Figure 7.3: Head anticipatory behavior. (A) Anticipatory behavior in forward and
in backward locomotion. (B) Average RH profiles (plain lines) ± SD (dashed lines) for
conditions VF (red), NF (magenta) and NB (cyan). B1: target 4E, B2: target 5W, B3:
target 5S. (C) Variability of the RH profiles: Maximal Relative Head angles Deviation
(MRHD). (D) Degree of head anticipation: Maximal Relative Head angles (MRH) av-
eraged across subjects and repetitions (and the corresponding SD bars). (E) Timing of
head anticipation: time when MRH was attained, averaged across subjects and repetitions.
(F) Regression analysis of the dependence between path curvature and head anticipation.
We tested the model (Maximum Relative Head angle) = β×(Maximum Curvature) for
condition VF (F1), NF (F2) and NB (F3).

104



In the second part, for targets where the subject had to steer towards the
right [targets 4E and 5S: Fig. 7.3(B1,B3)], the RH first decreased to reach
its minimal value around t = 0.6. Then, it increased again, to get back
near 0 at t = 1. The RH was thus negative for 0.3 ≤ t ≤ 1: the head was
oriented towards the interior of the curve. This part corresponded to the
curved portion of the trajectory. Similarly, for targets where the subject had
to steer towards the left [targets 5W: Fig. 7.3(B2)], the RH first increased
and then decreased, yielding also an anticipatory behavior. The average
Maximal RH across subjects and repetitions ranged between 12.4◦ (target
1N) and 77.8◦ (target 5S).

In agreement with previous studies (Hicheur et al., 2005b, 2007), we noted
that the more curved the trajectories, the larger the MRH [Fig. 7.3(D), red
bars]. The linear regression analysis performed over the angled trajectories
(that is, excluding targets 1N, 2N and 3N) revealed a good correlation be-
tween the MRH and the Maximum Curvature (MC) [β = 25.3, cor = 0.79,
see Fig. 7.3(F1)].

Condition NF In condition NF, the anticipatory behavior could also be
clearly observed. The NF profiles displayed similar shapes as the VF profiles,
but with a smaller magnitude [Fig. 7.3(B1,B2,B3), magenta lines].

Quantitatively, the average MRHs ranged between 10.0◦ (target 3N) and
61.9◦ (target 5S) in this condition. The MRH values were significantly smaller
than in condition VF (ANOVA test). However, similarly to condition VF,
the more curved the trajectories, the larger the MRH [Fig. 7.3(D), magenta
bars]. The linear regression analysis performed over the angled trajectories
confirmed this observation [β = 18.0, cor = 0.61, see Fig. 7.3(F2)]. Note
that βNF < βVF because the MRHs were smaller in NF than in VF while
the curvatures were approximately the same in the two conditions due to the
similarity of the paths.

Finally, we noted that these anticipatory behaviors were stereotyped
across subjects and repetitions: the average Maximum RH Deviation (MRHD)
across targets was 14.1◦ for condition VF and 15.1◦ for condition NF [Fig. 7.3(C)].

Head anticipatory behavior in condition NB

Note that, since when walking backward the “natural” angle between the
head direction and the heading is −180◦ (see Methods), the anticipatory
behavior in backward conditions happens when the head direction at time t
is reached by the opposite of the heading only at time t + ∆t with ∆t > 0.
Geometrically, this means that the head is oriented towards the exterior of
the curve [see Fig. 7.3(A) and also Grasso et al. 1998c]. Numerically, this
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means RH < −180◦ for targets where the subject had to steer towards the
right (targets 4E and 5S) and RH > −180◦ for targets where the subject had
to steer towards the left (targets 5W).

Given this, we observed a clear anticipatory behavior in condition NB
[Fig. 7.3(B1,B2,B3), cyan lines]. The magnitude of the anticipation was
smaller than in conditions VF and NF: the average MRHs ranged between
10.8◦ (target 1N) and 51.9◦ (target 4W). The dependence of the degree of
anticipation on trajectory curvature could also be observed [Fig. 7.3(D), cyan
bars]. The linear regression analysis performed over the angled trajectories
confirmed this observation [β = 12.4, cor = 0.43, see Fig. 7.3(F3)]. Here,
we also noted that βNB < βNF < βVF for the same reason as in the previous
section.

Head/trunk coordination for anticipation

The orientation of the head with respect to the trajectory can be achieved
through the combination of trunk/heading and head/trunk rotations. Fig. 7.4(A1,A2,A3)
show the Relative Trunk angle (RT) profiles (angle between the trunk direc-
tion and the heading). The anticipatory behavior could be clearly observed
in the three conditions. Again, the magnitude of the anticipation was the
largest in condition VF, followed by condition NF and then NB. We also
noted that the magnitude of anticipation was smaller for the trunk than
for the head. Indeed the average MRTs were significantly smaller than the
MRHs (ANOVA test).

Fig. 7.4(B1,B2,B3) show the Head/Trunk angle (HT) profiles. Again,
this angle was larger in VF than in NF than in NB. Globally, we observed
indeed that MHT < MRT < MRH (ANOVA test).

Regarding the timing of the anticipation, we observed that the maxi-
mum of the anticipation occurred earlier for HT than for RT [Fig. 7.4(E)
shows the time when RT reached its maximum and Fig. 7.4(F) shows the
time when HT reached its maximum]. Thus, in the first part of the curve
(0.3 ≤ t ≤ 0.5), head anticipation was achieved mainly by turning the head
with respect to the trunk, and in the second part (0.5 ≤ t ≤ 0.8) head antici-
pation was achieved mainly by turning the trunk with respect to the heading
[Fig. 7.4(C1,C2,C3)]. In this second part, the head does practically not move
with respect to the trunk [HT is close to 0, see Fig. 7.4(B1,B2,B3)].

Regarding now the distribution of head anticipation between RT and HT,
we observed graphically in Fig. 7.4(C1,C2,C3) that, overall, RT contributed
more than HT. This was confirmed by comparing the average values of RT
and of HT for 0.3 ≤ t ≤ 1 : the contribution of RT to head anticipation was
≃ 65% while that of HT was ≃ 35% in all targets and conditions [Fig. 7.4(D)].
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Figure 7.4: Head/Trunk coordination for anticipation in conditions VF (red), NF (ma-
genta) and NB (cyan). (A) Average Relative Trunk angle (RT) profiles (plain lines) ± SD
(dashed lines). A1: target 4E, A2: target 5W, A3: target 5S. (B) Average Head/Trunk
angle (HT) profiles (plain lines) ± SD (dashed lines). (C) Contribution of Relative Trunk
vs contribution of Head/Trunk to head anticipation in time: a value of 100% means that
only RH contributes while a value of 0% means that only Head/Trunk contributes. (D)
Contribution of Relative Trunk vs contribution of Head/Trunk to head anticipation over
the whole trajectory. (E) Time when Maximum RT was attained, averaged across subjects
and repetitions. (F) Time when Maximum HT was attained, averaged across subjects and
repetitions.
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It was remarkable that all the above observations on the head/trunk co-
ordination (timing and distribution) were applicable for the three conditions
VF, NF and NB, with only minor differences.

7.1.3 Discussion

Two important aspects were brought into light by our results. First, the
steering behavior was found to be similar in the three conditions Visual For-
ward, Nonvisual Forward and Nonvisual Backward. In particular, we demon-
strated here for the first time that the head anticipates the future walking
direction [Grasso et al. (1998c) have already remarked this phenomenon but
their results lacked statistical support]. Second, we described quatitatively
and temporally the relative contributions of the head and the trunk in the
anticipatory behavior. Assessing the contribution of these findings to the
understanding of how humans steer is one of our current objectives.

7.2 Experiment 6: formation of trajectories

and navigation

As mentioned in the Introduction, we mean by navigation a sequence of
discrete choices, for instance: to navitage from the Arc de Triomphe to the
Eiffel tower, one has the choice of going westward by Avenue Kléber or
eastward by Avenue d’Iéna. Thus navigation can be viewed as a process that
operates at a higher level than the production of trajectories that we have
considered so far. We investigate in this section the relations between these
two levels.

7.2.1 Methods

Subjects and materials

Sixteen subjects participated in this experiment. All subjects were right-
handed. Each subject generated 80 trajectories (except subject C. M. who
did only 48 trials), so that a total of 1248 trajectories were recorded.

The target consisted of either an “arrow” or a “point”. The “arrow” was
materialized by a 0.2m × 1.2m cardboard arrow placed on the ground. The
“point” was materialized by a cardboard disk of radius 0.08m (Fig. 7.5).

In each trial, a subject was instructed to walk through three via-points
before reaching the target (see details in Protocol). The via-points were
indicated by cardboard disks of radius 0.08m.
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Left arrow

Straight arrow
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Figure 7.5: Targets and via-points configurations.

Two markers were placed on the subject’s left and right shoulders. Their
positions were recorded with the infrared camera system described in the
General Methodology (chapter 4).

Protocol

The subject had to start from the starting position (0, 0) and walk through
three spatial via-points before reaching the target. The order for visiting the
via-points was not imposed.

Four targets were considered: the “left arrow” (LA), the “right arrow”
(RA), the “straight arrow” (SA) and the “point” (PT). The point and the
arrows’ shafts were fixed at position (0, 5m). The straight arrow was aligned
with the Y-axis, while the left and right arrows were rotated by respectively
+45◦ and −45◦ with respect to the Y-axis (Fig. 7.5).

When the target was an arrow, the subject had to enter the arrow by the
shaft and stop above the arrow head, as in Experiments 2, 3, 4 and 5 reported
in the previous chapters. When the target was the point, the subject had to
stop above the point.

As mentioned above, the subjects had to walk through three via-points
before reaching the target. We considered four different arrangements of
these via-points, referred to as the EQUI, LEFT, RIGHT and UP configu-
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rations.
In the EQUI configuration, a proximal, axial via-point was placed at

(0, 1.66m), while two distal, off-axis via-points were placed at (−1.25m, 3.33m)
and symmetrically at (+1.25m, 3.33m).

The LEFT and RIGHT configurations share the proximal via-point with
the EQUI configuration, but the Y-coordinates of the distal via-points were
slightly modified to introduce some asymmetry. In the LEFT configuration,
the left via-point was moved closer to the X-axis, at position (−1.25m, 3.33m− δ)
where δ = 0.1m. The right via-point was, on the other hand, moved further
from the X-axis, at position (−1.25m, 3.33m + δ). In the RIGHT config-
uration, the right via-point was placed closer to the X-axis, at position
(−1.25m, 3.33m− δ), while the left via-point was placed further from the
X-axis, at position (+1.25m, 3.33m + δ).

Finally, the UP configuration was the image of the EQUI configuration by
the reflection of axis ∆ where ∆ is parallel to the X-axis and passes through
the point (0, 2.5m).

Sixteen conditions were obtained by pairing each of the four targets with
each of the four configurations. Each condition was tested three times, re-
sulting in 48 trials. These trials were randomized in order to reduce learning
effects.

After these 48 trials had been completed, we asked the subject to walk
the 16 conditions again, but the order for visiting the via-points was now
imposed. Indeed, while there exist up to six possible orders, two particular
ones were considered as “most natural” in the EQUI, LEFT and RIGHT
configurations. The first order, termed “left-first”, consisted of the following
sequence: first the proximal via-point, then the left distal via-point and
finally the right distal via-point. Similarly, the second one, termed “right-
first”, consisted of the sequence: proximal, right distal, left distal. Thus,
in this second session of the experiment, the subject had to make, for each
configuration, one trial following the “left-first” and one following the “right-
first” order, resulting in 32 trials. These trials were also randomized.

The first session (of 48 trials), in which the via-points orders were not
imposed, was termed “free”, while the second session (of 32 trials) was termed
“constrained”.

7.2.2 Results

In the previous chapters, we investigated how subjects chose a trajectory in
terms of its geometry and kinematics in order to reach a distant target. This
can be considered as a continuous choice, since the trajectory in question
was chosen among a continuum of possible trajectories joining the starting
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position and the target. Here, in addition, the subjects had also to make a
discrete navigational choice, in terms of the sequence in which they visit the
via-points.

As mentioned above, for conditions EQUI, LEFT and RIGHT, two par-
ticular orders can be considered as the most natural: the “left-first” and
“right-first” orders. Fig. 7.6 shows sample trajectories produced by one sub-
ject.

EQUI config
left arrow

LEFT config
straight arrow

LEFT config
right arrow

Figure 7.6: Trajectories produced by one typical subject.

In the “EQUI config – left arrow” trials, where the via-points were in a
symmetrical disposition, the subject chose to go first to the left via-point
in order to reach the arrow after the last via-point with a “natural” walk-
ing direction. We say here that his choice was motivated by the arrow’s
orientation.

In the “LEFT config – straight arrow” trials, since now the arrow was
symmetrical, the choice of the subject was determined by the via-points
configuration. The choice made by the subject was indeed associated with a
shorter trajectory length (comparison with the constrained trials).

In the “LEFT config – right arrow” trials, the via-points configuration
and the arrow yielded contradictory indications. We observed that in this
case, the choice of the subject was determined by the arrow: he indeed chose
a longer route (comparison with the constrained trials) in order to arrive at
the arrow with a natural “walking” diretion.

Fig. 7.7 shows the statistics computed across all subjects and repetitions.
Our previous remarks concerning one particular subject were confirmed on
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a larger scale.
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Figure 7.7: Categorization of the trajectories.

7.2.3 Discussion

The prelimary results showed that minimizing trajectory length was not the
only objective underlying nagivational choices. Indeed, when this objective
was contradictory with another one (associated here with the final walking
direction), the subjects were often urged to take longer routes. Discerning
the precise criteria (trajectory length, smoothness, amount of body turns,
etc.), based on the data provided by this Experiment 6, is one of our current
projects.

7.3 Experiment 7: a direct test for affine in-

variance in hand movements

As mentioned in our review (see section 1.1.3), geometry-based theories have
been recently proposed to explain some invariants observed in human move-
ments. In particular, Bennequin et al. (2009) argued that a mixture of several
geometries (euclidian, equi-affine and affine) may govern the production of
locomotor and hand trajectories.

In the case of hand movements, the authors assumed a priori that the
hand velocity v can be decomposed as

v = vβ0

0 vβ1

1 vβ2

2 (7.9)

where v0, v1 and v2 denote respectively the expected euclidian velocity under
constant affine, equi-affine and euclidian velocities, and β0, β1 and β2 are

112



three weighting parameters. They then looked for the triplet (β0,β1,β2) that
yields the best fit to the experimental data. Observing that β2 was smaller
than β0 and β1 in the optimal triplet, the authors then concluded that equi-
affine and affine geometries are dominant in the planning and control of hand
trajectories.

However, such a reasoning may constitute a case of “circular theorizing”
[see Engelbrecht (2001), we note however that Bennequin et al. (2009) did
provide other direct tests supporting their theory]. In order to address this
issue, we propose in this section a direct test for affine invariance, which
does not assume the a priori decomposition of Eq. (7.9). More precisely,
we test whether the prediction that “when curve segments are similar under
transformations belonging to the [affine] group, the parameterizations of these
segments will also be similar” (Bennequin et al., 2009) holds true.

7.3.1 Methods

Subjects, materials, protocol

Four subjects, one male and three females, participated in this experiment.
All subjects were right-handed.

A white A3 (29.7cm × 42.0cm) sheet of paper was placed horizontally on
a table. In each trial, a subject sat in front of the table and had to make
scribblings on the sheet’s surface with his right index (same protocole as
shown in Fig. 2 on page 157, except that the computer screen was replaced by
a sheet of paper). A marker was attached to the tip of his index. The position
of this marker was recorded with the infrared camera system described in the
General Methodology (chapter 4). The subject was asked to make continuous
movements with his index while respecting the following three constraints:
stay within the sheet, fill the sheet equally, avoid abrupt movements and
cusps (see a typical scribbling in Fig. 7.8).

Each trial consisted of 30 seconds of scribbling. The subject made three
trials (separated by ∼ 1 minute) at his preferred speed. He was then asked
to make three other trials, at a faster speed. A total of 4 subjects × 6 trials
= 24 trajectories were thus recorded in this experiment.

Analysis

Hausdorff distance and L2 distance We consider two distance measures
in this study: the Hausdorff distance and the L2 distance. The Hausdorff
distance between two ensembles X and Y is given by

dH(X,Y ) = max{sup
x∈X

inf
y∈Y

‖x− y‖, sup
y∈Y

inf
x∈X

‖x− y‖}. (7.10)
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Figure 7.8: A typical normal speed trial. (A) The geometric path of the
trajectory. Two random sub-trajectories are highlighted in blue and red.
(B) The velocity profile of the entire trajectory.

When applied to two trajectories, the Hausdorff distance thus quantifies the
proximity of the two geometric paths, irrespective of the parameterizations
(or equivalently, of the velocity profiles).

The L2 distance between two trajectories Γ1 and Γ2 is given by

dL2(Γ1, Γ2) =

√∫ 1

0

‖Γ1(t)− Γ2(t)‖2dt. (7.11)

This distance thus takes into account the geometric paths but also the pa-
rameterizations of the trajectories.

Sub-trajectories From each recorded trajectory, we extracted 40 random
sub-trajectories. The duration of each sub-trajectory was selected uniformly
randomly in the interval (0.4s, 1s). The starting time of each sub-trajectory
was also selected randomly from a uniform distribution [see Fig. 7.8(A), which
depicts two random sub-trajectories extracted from a given trajectory].

Given a sub-trajectory Γi = (pi(t))t∈[0,Ti]
indexed by i , we note Λi its ge-

ometric path, (vi(t))t∈[0,Ti]
its time-varying velocity vector and Li its length.

Out of the 780 possible pairs of sub-trajectories of each trial, we extracted
450 random pairs. Thus, the database for each speed condition consisted of
5400 = 450× 12 pairs of sub-trajectories.

Optimal affine transformation Given two sub-trajectories Γ1 and Γ2,
we looked first for an affine transformation fa which minimizes the Hausdorff
distance between the geometric path of fa(Γ1) and that of Γ2 [see Fig. 7.9(A)
for an example]. This was done by numerically optimizing the six coefficients
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that define any affine transformation (four corresponding to the linear map
and two corresponding to the translation).
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Figure 7.9: An optimal affine transformation between two sub-trajectories.
(A) Geometric paths of the sub-trajectories Γ1 (red), Γ2 (blue) and of the
image of Γ1 by the optimal affine transformation [fa(Γ1), green]. (B) Normal-
ized velocity profiles of Γ1 (red), Γ2 (blue) and fa(Γ1) (green). The constant
normalized velocity profile is depicted in magenta.

Affine, euclidian and constant parameterizations Since fa is optimal
with respect to the Hausdorff distance, we know that the geometric path Λ
of fa(Γ1) is “close” to Λ2. To compare the temporal structures, we needed
to endow Λ with a parameterization. We considered three possible param-
eterizations of Λ, which could be also formulated in the form of velocity
profiles.

The first velocity profile, denoted va, is simply that of fa(Γ1), i.e.

∀t ∈ [0, T1] va(t) = ‖va(t)‖ =

∥∥∥∥dfa(p1)

dt

∥∥∥∥ = ‖Jfav1(t)‖ = ‖Aav1(t)‖,
(7.12)

where Jf denotes the Jacobian matrix of a mapping f and Aa denotes the
linear mapping associated with the affine transformation fa. If hand trajec-
tories are perfectly affine-invariant and that Λ perfectly matches Λ2, then
we will have T1 = T2 and va = v2 for all t ∈ [0, T1]. For this reason, we call
va the affine velocity profile of Λ.

The second velocity profile, denoted ve, is obtained by “transporting” the
velocity profile of Γ1 onto Λ, i.e.

∀t ∈ [0, T1] ve(t) =
L

L1

v1(t), (7.13)

where L is the length of Λ (the rescaling was done to ensure that we have∫ T1

0
ve(t)dt = L). If hand trajectories are perfectly euclidian-invariant and
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that Λ perfectly matches Λ2, then we will have T1 = L1

L2
T2 and ve = L2

L1
v2 for

all t ∈ [0, T1]. For this reason, we call ve the euclidian velocity profile of Λ.
Finally, we consider the constant velocity profile vc, which is defined by

∀t ∈ [0, T1] vc(t) =
L

T1

. (7.14)

To compare velocity profiles defined for different durations, we needed
to normalize them as described in section 4.2.3 of the General Methodol-
ogy. After normalization, we could compute the L2 distance between two
normalized profiles by

dL2(v1, v2) =

√∫ 1

0

(v1(t)− v2(t))2dt. (7.15)

Note that this distance is different from the Average normalized Velocity
profile Separation (AnVS defined in section 4.2.3), which corresponds in fact
to the L1 distance.

7.3.2 Results

Testing affine invariance

We first tested directly the prediction mentioned in the beginning of this sec-
tion: “when curve segments are similar under transformations belonging to
the [affine] group, the parameterizations of these segments will also be simi-
lar”. More precisely, we compared the L2 distance between the normalized
velocity profile of Γ2 and respectively the normalized affine, euclidian and
constant velocity profiles defined previously.

In Fig. 7.9(B), one can see qualitatively that the affine velocity profile
(green line) was more similar to the velocity profile of Γ2 (blue line) than the
initial velocity profile of Γ1 (red line). The quantitative results are plotted
in Fig. 7.10. One can observe a clear positive correlation between dH(Λ, Λ2)
and dL2(va, v2). This positive correlation was not trivial since, by contrast,
there was practically no correlation in the cases of vc and ve.

Comparing different parameterizations

However, il could be argued that the positive correlation observed previously
resulted solely from the fact that va yielded bad results for large Hausdorff
distances. We thus concentrate here on pairs of sub-trajectories with low
Hausdorff distances (that is, whose paths were affinely similar). In addition,
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Figure 7.10: Correlations between spatial similarity and parameterization
similarity. Each pair of sub-trajectories was represented by a dot whose X-
coordinate was the Hausdorff distance between the two trajectories of the
pair and whose Y-coordinate was the distance between the two velocity pro-
files. (A,B,C) affine, euclidian and constant velocity profiles, normal speed.
(D,E,F) affine, euclidian and constant velocity profiles, fast speed.
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Hausdorff dist (%) Normal Speed Fast Speed
1.00 ≤ d < 1.25 44 8
1.25 ≤ d < 1.50 78 22
1.50 ≤ d < 1.75 143 57
1.75 ≤ d < 2.00 193 78
2.00 ≤ d < 2.25 174 135
2.25 ≤ d < 2.50 160 152
2.50 ≤ d < 2.75 125 174
2.75 ≤ d < 3.00 112 209
3.00 ≤ d < 3.25 143 230
3.25 ≤ d < 3.50 143 270
3.50 ≤ d < 3.75 172 226
3.75 ≤ d < 4.00 152 231
4.00 ≤ d < 4.25 158 222
4.25 ≤ d < 4.50 157 186
4.50 ≤ d < 4.75 172 206
4.75 ≤ d < 5.00 172 201

Table 7.1: Number of pairs in each bin in the two speed conditions.

to avoid artifacts caused by the normalization of the velocities, we examined
directly the distance between trajectories, that is, the L2 distance between
Γ1 and Λ, where the latter was endowed respectively with va, ve and vc.

We first categorized the pairs of sub-trajectories into bins according to
their Hausdorff distances expressed in percentage of the length of Γ2. The
size of each bin is given in Table 7.1. For each bin, we computed the average
and the SD of the L2 distances across the pairs in the bin.

The results are plotted in Fig. 7.11. One can clearly see that, in both
speed conditions, the affine parameterization yielded better results than the
euclidian and the constant ones for low Hausdorff distances (up to dH ≃ 2.5%
of L2 in the normal speed condition and up to dH ≃ 2% of L2).

7.3.3 Discussion

We demonstrated that there exists a positive correlation between (i) the affine
similarity the geometric paths of two sub-trajectories and (ii) the similarity of
their parameterizations. By contrast, when the parameterization of one of the
two sub-trajectories was defined according to euclidian geometry or replaced
by a constant parameterization then this correlation disappeared. These
observations constitute direct evidence for the existence of affine invariance
in movement timing.
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Figure 7.11: Comparison of different parameterizations. Average and SD
of the L2 distance between Γ2 and Λ endowed with respectively the affine
(green), euclidian (red) and constant (cyan) velocity profiles. (A) normal
speed. (B) fast speed.

The existence of affine invariance in movement timing was further sup-
ported when we showed that, for sub-trajectories whose geometric paths were
affinely similar, the velocity profile of one sub-trajectory was similar to the
affine “image” of the profile of the other sub-trajectory. This similarity was
stronger than in the case of the euclidian “image” or in the case of a constant
velocity profile.

Since affine and euclidian invariance cannot make any valid prediction
when the sub-trajectories are largely affinely dissimilar, the constant velocity
profiles, which yield “safe” parameterizations, produced better comparison
results for large Hausdorff distances.

Because of time constraints, we could not consider equi-affine parameter-
izations at the current stage of the analysis. This will be done in the very
near future.

Finally, we note that this experiment can be easily adapted to the case of
“locomotor scribblings”. This will provide a direct test for the existence of
affine geometry in the planning and control of locomotor trajectories. Follow-
ing Bennequin et al. (2009), we make the prediction that euclidian geometry
is more present in locomotion than in hand movements.
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Part III

Modeling study
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Chapter 8

Deterministic models of
trajectories formation

8.1 Overview

The previous chapters have equipped us with some important knowledge
about the planning and control of locomotion. First, whole-body trajectories
in goal-oriented tasks are stereotyped, implying a trajectory-level control of
locomotion (see section 5.2). Second, the average trajectories produced in
different sensory and motor conditions are highly similar, indicating that
the formation of these trajectories is, to some extent, independent of their
sensorimotor implementation (see section 5.3). Third, a detailed analysis of
variability profiles suggested that the formation of trajectories in visual and
nonvisual locomotion is supported by similar open-loop and online feedback
processes (see chapter 6).

The purpose of this and the following chapter is to provide a theoretical
framework that can account for the above findings. Taking once again in-
spiration from the computational motor control literature (see our review in
section 1.2), we make the hypothesis that the formation of locomotor trajec-
tories is an optimized process. In particular, from the observation that loco-
motor trajectories are generally smooth, we investigate here whether maxi-
mum smoothness models can simulate experimentally recorded trajectories.

The comparative study of the Minimum Squared Derivative models was
conducted by Q.-C. Pham, H. Hicheur, G. Arechavaleta, J.-P. Laumond and
A. Berthoz, and published in Pham et al. (2007). The modified minimum
jerk model was designed by Q.-C. Pham and H. Hicheur and presented in
Pham and Hicheur (2009). For more details, the reader is referred to the
original articles.
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8.2 Comparison of Minimum Squared Deriva-

tive (MSD) models

Qualitatively, a trajectory is smooth if there are no abrupt variations in
time. This implies that higher-order time derivatives of the position have
low absolute values. While earlier studies (Hogan, 1984; Flash and Hogan,
1985) mostly focused on the squared jerk cost, other costs such as the squared
acceleration or the squared snap (snap is the time derivative of jerk) can also
be considered. More generally, the nth-order MSD cost is given by:∫ 1

0

((
dnx

dtn

)2

+

(
dny

dtn

)2
)

dt (8.1)

The case n = 1 corresponds to the minimum velocity cost, n = 2 to minimum
acceleration, n = 3 to minimum jerk and n = 4 to minimum snap.

Richardson and Flash (2002) conducted a comparative study where they
examined the abilities of MSD models of different orders to simulate hand
trajectories. In particular, they found that third- and fourth-order MSD
models (minimum jerk and minimum snap) usually performed better than
those of other orders. In addition to quantitative fit, the trajectories simu-
lated by the third- and fourth-order MSD models displayed typical qualita-
tive characteristics of human hand trajectories: smoothness of the trajectory,
straight hand paths and bell-shaped velocity profiles in reaching tasks (see
section 1.1), inverse relationship between velocity and curvature in drawing
tasks (the so-called “one-third power law”, see our review in section 1.1.2),
etc.

At the trajectory level, human locomotion seems to share some of these
qualitative features. Indeed, one can observe that human locomotor trajec-
tories are generally smooth. Straight paths are also generated for reaching
a spatial goal in an environment free of obstacles, provided that the initial
body orientation is compatible with such a path. Finally, humans tend to
decelerate in the curved parts and accelerate in the straighter parts of a tra-
jectory. This last observation was confirmed by a recent comparative study
(Hicheur et al., 2005c) where the authors quantitatively examined the rela-
tionship between velocity and curvature in locomotor tasks where subjects
had to walk along complex shapes. While the one-third exponent was not
observed for these shapes, the inverse variations of velocity and curvature
could be reproduced by multiple power laws whose exponents depended on
the shapes (see our review in section 3.2). This variability of the exponents
suggested that the power laws relating the velocity to curvature in human
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locomotion could be by-products of more general principles, for instance the
optimality principles just mentioned.

Taken together, these observations raise the possibility that MSD prin-
ciples underlie the generation of human locomotion trajectories. If verified,
this would suggest that the same set of principles account for different types
of movements (hand movements and locomotor movements in our case) and
would provide interesting theoretical insights into the understanding of the
functional organization of the motor system in general. In order to test
this hypothesis, we compared the trajectories recorded in Experiment 1 (see
section 5.2) with the optimal trajectories simulated by four MSD models.

8.2.1 Methods

Description of the model

As mentioned above, MSD principles have proved to be particularly relevant
for modeling hand movements. In order to test how such smoothness-based
principles can simulate locomotor trajectories, we constructed mathemati-
cally MSD trajectories as follows.

For a given target, we first extracted a set of 12 parameters (initial and
final positions, velocities and accelerations for the x and y components) from
the experimental data (Experiment 1, section 5.2)

x0 =
1

N

N∑
i=1

xi(0), vx
0 =

1

N

N∑
i=1

ẋi(0), ax
0 =

1

N

N∑
i=1

ẍi(0) (8.2)

and similarly for x1, vx
1 , ax

1 , y0, vy
0 , ay

0, y1, vy
1 , ay

1 (N corresponds to the
number of trajectories recorded for this target).

Some of these 12 parameters were task-related and thus were not related
to any spontaneous strategy. Indeed, according to the experimental protocol,
the initial and final positions (x0, y0, x1, y1) corresponded, respectively, to
the origin of the laboratory’s reference frame and to the centre of the door.
Similarly, the initial walking direction was imposed to be parallel to the Y-
axis while the final walking direction was constrained by the orientation of the
door. As subjects were carefully monitored during the session, the extracted
values of these parameters were very close to the imposed ones: over the
709 trajectories, the average distance (± SD) between the actual and the
imposed initial positions was 3.0 ± 2.5cm, the average distance between the
actual and the imposed final positions was 3.2 ± 2.2cm, the average absolute
difference between the actual and the imposed initial orientations was 9.6 ±
7.9◦ and the average absolute difference between the actual and the imposed
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final orientations was 5.9 ± 4.4◦. Thus, our choice to extract these values
from the data rather than to compute them a priori from the task was only
motivated by convenience.

In contrast, initial and final accelerations (ax
0 , ay

0, ax
1 , ay

1) and initial and
final speeds (the norms of the velocity vectors) were not imposed by the task
and thus contained information about the subjects’ movement strategies or
their personal preferences. Considering these parameters as free parameters
in the optimization procedure yielded close-to-zero values, which was not
consistent with the observations. On the other hand, estimating them by
an independent method would be complicated and not relevant with respect
to our objectives (see Discussion for more details on the issue of putting
experimental values into the models).

On the computational level, as our objective consisted of simulating the
whole trajectory kinematics (path and velocity profile), these values actually
contained relatively little information. In contrast, the original two-thirds
power law (Lacquaniti et al., 1983), the modified two-thirds power law (Vi-
viani and Schneider, 1991) or the constrained minimum jerk model (Todorov
and Jordan, 1998) aimed at simulating only the velocity profile. Moreover,
these models required as inputs the entire recorded path in conjunction with
either the end-point velocities and accelerations (for the constrained mini-
mum jerk model) or the entire velocity profile (for the modified two-thirds
power law). However, it should be recognized that some of the trajectories
studied in the references cited above were more complex than ours.

It should also be noted that the movement duration was implicitly ex-
tracted in the time-rescaling procedure (see also General Methodology, chap-
ter 4).

Next, we derived the planar trajectory (x(t), y(t)) that minimizes the cost
given in equation 2 and verifies the following 12 boundary conditions

x(0) = x0, x(1) = x1, ẋ(0) = vx
0 , ẋ(1) = vx

1 , ẍ(0) = ax
0 , ẍ(1) = ax

1

y(0) = y0, y(1) = y1, ẏ(0) = vy
0 , ẏ(1) = vy

1 , ÿ(0) = ay
0, ÿ(1) = ay

1

(8.3)

In usual MSD approaches, the number of boundary conditions depends on
the order of the derivative that is minimized. For instance, the minimum
velocity, minimum acceleration, minimum jerk and minimum snap models
require, respectively, 4, 8, 12 and 16 boundary conditions. However, these
choices are arbitrary and are not motivated by any theoretical consideration
(see Harris, 2004; Harris and Harwood, 2005, for a detailed discussion of
the issue of boundary conditions in models of biological movements). They
introduce furthermore a bias in favour of the higher-order MSDs. In our
comparative approach, we chose to use the same set of boundary conditions
given by Eq. (8.3) in all four models in order not to favour any particular
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model. The mathematical details for the derivation of the MSD trajectories
are given in Box 1.

Box 1 (Computation of MSD trajectories)

As the MSD cost functional [Eq. (8.1)] and the boundary conditions
[Eq. (8.3)] are uncoupled in x and in y, it is sufficient to find optimal
functions separately for x and y (Flash and Hogan, 1985). The problem
thus consists of finding a function x defined on [0,1] that minimizes the
functional ∫ 1

0

(
dnx

dtn

)2

dt (8.4)

and verifies the boundary conditions

x(0) = x0, x(1) = x1, ẋ(0) = vx
0 , ẋ(1) = vx

1 , ẍ(0) = ax
0 , ẍ(1) = ax

1 (8.5)

Minimum jerk trajectories For MSD of orders n ≥ 3, it turns out
that the optimum function x is a polynomial of degree 2n − 1 in the
variable t (see Flash and Hogan, 1985, for a proof of this result). For
instance, when n = 3 (minimum jerk), x is a 5th-degree polynomial:

x(t) = a5t
5 + a4t

4 + a3t
4 + a2t

2 + a1t + a0 (8.6)

The six boundary conditions then yield a 6th-order linear system that in
turn uniquely determines the six coefficients a0,. . . ,a5.

Minimum snap trajectories For n = 4, x is a 7th-degree polynomial,
which corresponds to eight unknown coefficients, say a0,. . . ,a7. Using the
six boundary conditions, we can express a0,. . . ,a5 as affine functions of
a6 and a7. Replacing next a4 and a5 by their expressions in terms of a6

and a7 in the cost functional∫ 1

0

(
d4x

dt4

)2

dt =

∫ 1

0

(840a7t
3 + 360a6t

2 + 120a5t + 24a4)
2dt (8.7)

yields a second-order polynomial in the variables a6 and a7. Standard
minimization techniques of multivariate polynomials then allow us to
obtain algebraic expressions of a6, a7 and then a0,. . . ,a5.
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Minimum velocity and minimum acceleration trajectories in re-
stricted solutions spaces If n ≤ 2, the problem is ill-posed (Harris
and Harwood, 2005) in the sense that no optimal trajectory exists. How-
ever, if we restrict the solution space to the set of polynomials of degree
less than or equal to d (where d is an integer ≥ 6), then we can find a
unique optimal trajectory xd. As d grows, the cost associated with xd de-
creases (because the solution space is larger). However, when d →∞, xd

converges to a trajectory that no longer verifies the boundary conditions.
As minimum jerk and minimum snap principles yield polynomials of

degrees less than or equal to 7, we set d = 7 in order to make unbiased
comparisons of the four models.

In the case n = 2 (minimum acceleration), the problem thus consists
of finding the optimal function x in the form

x(t) = a7t
7 + a6t

6 + a5t
5 + a4t

4 + a3t
4 + a2t

2 + a1t + a0 (8.8)

that verifies the boundary conditions of Eq. (8.5) and minimizes the cost∫ 1

0

(
d2x

dt2

)2

dt =

∫ 1

0

(42a7t
5 + 30a6t

4 + 20a5t
3 + 12a4t

2 + 6a3t + 2a2)
2dt

(8.9)
The same procedure as in the minimum snap case can be applied to find
the optimal coefficients a0,. . . ,a7.

The case n = 1 (minimum velocity) can be treated similarly.

Analysis of the models’ performances

To evaluate the models’ performance, we compared the trajectories simu-
lated by the models with actual trajectories recorded in Experiment 1 (see
section 5.2). As in section 5.2, the trajectories were classified into four cat-
egories according to their curvature: quasi-straight trajectories (ST), trajec-
tories of low (LC), medium (MC) and high (HC) curvature.

The comparisons were quantified by the following measures: Average and
Maximal Trajectory Error (ATE and MTE), Average and Maximal normal-
ized Velocity Error (AnVE and MnVE). Each measure was indexed by the
subscripts “v” (velocity), “a” (acceleration), “j” (jerk) and “s” (snap) indi-
cating the MSD model corresponding to that measure.
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Trajectory error At the level of the trajectory, we computed, for each
target, the instantaneous Trajectory Error (TEM) of the simulated trajectory
(xM(t), yM(t)) (where M is the model in question) with respect to the average
trajectory (xav(t), yav(t)) as

TEM(t) =
√

(xM(t)− xav(t))2 + (yM(t)− yav(t))2 (8.10)

We then defined the Average and Maximal Trajectory Errors (ATEM and
MTEM) over the whole trajectory as

ATEM =

∫ 1

0

TEM(t)dt (8.11)

MTEM = max
0≤t≤1

TEM(t) (8.12)

Note that ATEM and MTEM take into account the instantaneous errors
at all time instants. They are therefore sensitive to dissimilarities at both
the geometric path level and at the velocity profile level.

Velocity profile error If the actual and simulated trajectories have similar
geometric paths, it makes sense to compare their velocity profiles. We com-
puted the normalized velocity profile of the simulated trajectory (xM(t), yM(t))
as

vM(t) =

√
ẋM(t)2 + ẏM(t)2∫ 1

0

√
ẋM(t)2 + ẏM(t)2dt

(8.13)

The Average and Maximal normalized Velocity Errors (AnVEM and MnVEM)
over the whole trajectory could then be defined as

AnVEM =

∫ 1

0

|vM(t)− vav(t)|dt (8.14)

MnVEM = max
0≤t≤1

|vM(t)− vav(t)| (8.15)

8.2.2 Results

Minimum velocity model

The simulations of the minimum velocity model for four representative tar-
gets (one target per category) are shown in Fig. 8.1. The geometric paths
simulated by this model tended to be the straightest possible. Thus, the
simulations were accurate for the targets of category ST. By contrast, for the
targets that required some amount of curvature (HC, MC and LC), the sim-
ulated paths were strongly bent towards the interior of the curve, resulting
in large inaccuracies around the middle of the trajectories.
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Figure 8.1: Simulations of the minimum velocity model for four representa-
tive trajectories. (A) Geometric paths of the average (solid lines) and the
simulated (dashed lines) trajectories. The variance ellipses (in grey) are also
plotted in order to show the spatial variability around the average trajectory
at every time instant (see Materials and methods). (B) Normalized velocity
profiles of the average (solid lines) and of the simulated (dashed lines) tra-
jectory. The standard deviation around the average velocity profile is shaded
in grey. The dark grey horizontal line shows the mean value (in time) of the
normalized velocity profiles.
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Minimum acceleration model

The simulations of the minimum acceleration model are presented in Fig. 8.2.
Qualitatively, for categories HC, MC and LC, the geometric paths simulated
by this model were much more accurate than those simulated by the minimum
velocity model. However, the simulated paths were still not satisfactory for
categories HC and MC, which included the most curved trajectories. Indeed,
as in the minimum velocity model, the simulated paths for these categories
tended to be straighter than the actual paths. More specifically, in the regions
of relatively high curvatures, the simulated paths fell outside the grey area
of the variance ellipses, implying that their distances to the average paths
were greater than the experimental variability in these regions.

The comparison of the velocity profiles only makes sense when the geo-
metric paths are similar, i.e. in the case of category ST for the minimum
velocity model and in the case of categories LC and ST for the minimum
acceleration model. In these cases, the average velocity profiles were almost
constant in time, which was well reproduced by both models.

Minimum jerk and minimum snap models

The simulations of these models are presented in Fig. 8.3 and 8.4, respec-
tively. The trajectories simulated by the two models were very similar for the
four representative targets. In contrast with the two previous models, the
geometric paths simulated by these two models for the HC and MC trajecto-
ries were smoothly curved and bear impressive resemblance with the average
recorded trajectories. In particular, the simulated paths always lay inside
the grey area of the variance ellipses, implying that the distances between
the simulated and the average paths were smaller than the experimental
variability at every time instant.

At the level of the velocity profiles, we noted that the average velocity
profiles were approximately constant in time for categories LC and ST (the
only minor variations were due to the step-level oscillations). This was well
reproduced by both models. For categories HC and MC, in the average ve-
locity profile, the velocity decreased and became minimal around t = 0.7
(where t is time scaled from 0 to 1) before increasing again. This variation
of the velocity was related to the variation of curvature in the corresponding
geometric paths. The inverse relationship in human locomotion was experi-
mentally observed by Vieilledent et al. (2001) and by Hicheur et al. (2005c)
(see our review in section 3.2). The simulated velocity profiles successfully
captured this behavior, although with some slight overshoots. For instance,
for the representative target of category HC, the velocity profile of the mini-
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Figure 8.2: Simulations of the minimum acceleration model for four repre-
sentative trajectories. For details, see legend of Fig. 8.1.
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Figure 8.3: Simulations of the minimum jerk model for four representative
trajectories. For details, see legend of Fig. 8.1.
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Figure 8.4: Simulations of the minimum snap model for four representative
trajectories. For details, see legend of Fig. 8.1.
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mum jerk trajectory had almost the same global behavior as the average one:
both decreased and became minimal around t = 0.7 before increasing again.
However the variations in the simulated profile were slightly larger than the
variations in the average profile (this phenomenon is further discussed in
section 8.3).

Quantitative examination

Trajectory errors The average and maximal trajectory errors as defined
in Methods are presented in Fig. 8.5. As noted above, the minimum velocity
model (dark grey bars) produced acceptable simulations only for straight
trajectories (category ST). As soon as the targets imposed some amount of
trajectory curvature (categories LC, MC and HC), the minimum velocity
trajectories differed completely from the actual trajectories.

Figure 8.5: (A) Average and (B) maximal trajectory errors (ATE and MTE;
the suffixes v, a, s, j refer, respectively, to velocity, acceleration, jerk and
snap) in centimetres: dark grey bars for minimum velocity, medium grey
bars for minimum acceleration, light grey bars for minimum jerk and white
bars for minimum snap, averaged over targets corresponding to the same
category. For comparison, the average and maximal trajectory deviations
(ATD and MTD) are also plotted (black bars).

The minimum acceleration model (medium grey bars) performed some-
what better, but for categories HC and MC it was still not satisfactory. For
example, the average maximal simulation error over the 20 targets belonging
to these categories, MTEHC+MC

a (0.147m) was of the same amplitude as the
corresponding experimental variability (black bars) MTDHC+MC (0.151m).

By contrast, minimum jerk (light grey bars) and minimum snap (white
bars) models provided strikingly good simulations. In fact, as noted above,
the simulations of minimum jerk and minimum snap models were mostly
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similar. As a matter of fact, the largest difference between the two models
was observed for target 31-150 (category HC), where the maximal distance
between the two simulated trajectories was 0.036m. Over the 20 targets
of categories HC and MC, the average (± SD) maximal distance between
minimum jerk and minimum snap trajectories was only 0.021m (± 0.006m).

Even in the case of the highly curved trajectories of category HC, the
distance between the average trajectory and the minimum jerk trajectory
was < 0.13m over the whole trajectory (MTEHC

j = 0.127m). As the average
trajectory length for this category was 3.7m, this corresponded to a maximal
error of only 3.4%. Moreover, the simulation errors of the minimum jerk
and minimum snap models were smaller than the experimental variability.
For categories HC and MC, MTEHC+MC

j (0.103m) was much smaller than

MTDHC+MC (0.151m). This result is related to our previous qualitative ob-
servation that the paths simulated by these models always lay inside the
variance ellipses.

Next, we compared statistically the experimental variability with the re-
spective performances of minimum acceleration, minimum jerk and minimum
snap models over the 20 targets belonging to categories HC and MC (we ob-
served that the three models yielded similar performance for the straight
and close-to-straight trajectories ST and LC). We recall that, on average,
MTDHC+MC = 0.151m; MTEHC+MC

a = 0.147m; MTEHC+MC
j = 0.103m and

MTEHC+MC
s = 0.107m. The one-way ANOVA test with replications revealed

a significant difference among the four means [F(3,76)=5.73, p < 0.05]. The
post-hoc Tukey test revealed that there was no significant difference between
MTD and MTEa, or between MTEj and MTEs. By contrast, there was a
significant difference between MTD and MTEj, or between MTEa and MTEj.

The superiority of minimum jerk and minimum snap models over mini-
mum acceleration and minimum velocity models can be explained as follows.
Minimizing the mean squared velocity cost is almost equivalent to finding
the shortest path, i.e. the straightest path in euclidean geometry, that sat-
isfies the boundary conditions. This prevents the minimum velocity model
from simulating accurate trajectories as soon as the targets required some
amount of curvature. As for the minimum acceleration model, the mean
squared acceleration cost penalises, by definition, large variations in time of
the velocity vector. This is not consistent with the experimental observation
of significant variations in the velocity vector (in particular, the variations in
the orientation of this vector) around the regions of high curvature in MC
and HC trajectories. By contrast, minimum jerk and minimum snap allow
more flexibility for the variations in the velocity vector and are thus more
capable of generating smoothly curved trajectories.
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Velocity profile errors The average and maximal normalized velocity
errors as defined in Methods are presented in Fig. 8.6. These errors in terms of
the velocity profiles followed the same tendency as those in terms of trajectory
kinematics: in all categories, the velocity profiles of minimum jerk (light grey
bars) and minimum snap (white bars) trajectories differed very slightly from
the average velocity profiles. Even for category HC, the AnVE was only 6%
(of the average actual velocity) while the MnVE over the trajectory was <
12%. In absolute terms, these errors were close to the experimental variability
(black bars).

Figure 8.6: (A) Average and (B) maximal normalized velocity errors (AnVE
and MnVE; the suffixes v, a, s, j refer, respectively, to velocity, acceleration,
jerk and snap): dark grey bars for minimum velocity, medium-grey bars for
minimum acceleration, light-grey bars for minimum jerk and white bars for
minimum snap, averaged over targets corresponding to the same category.
For comparison, the average and maximal normalized velocity deviations
(AnTD and MnTD) are also plotted (black bars). In the process of com-
puting the above quantities, all velocity profiles were normalized so that
their average values over the movement duration equals 1 (see Materials and
methods).

8.3 Modified minimum-jerk model

8.3.1 Methods

In the previous section, we presented a minimum jerk model that could re-
produce with great accuracy locomotor trajectories of moderate curvature.
However, we noticed that the velocity profiles of the simulated trajectories
displayed slightly larger variations than that experimentally observed. More-
over, it is likely that this phenomenon becomes even worse for trajectories
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with larger curvature, making the original minimum jerk model unsuitable
for simulating the heavily curved trajectories recorded in Experiment 2 (see
section 5.3). Here we propose a modified version of this model to tackle this
issue.

Description of the model

We added an extra term that penalizes large variations of the velocity. The
influence of this term was weighted by a constant µ that we set to a unique
value in all the simulations for genericity. We thus looked for the trajectory
(x(t), (t))0≤t≤1 that minimizes∫ 1

0

(
...
x2 +

...
y2 + µ

(
d

dt

√
ẋ2 + ẏ2

)2
)

dt (8.16)

subject to the constraints of Eq. (8.3) where the 12 boundary conditions
(x0, v0

x, a0
x,. . . ) were set to the respective average experimental values as

in Eq. (8.2). We found approximated solutions by numerically solving this
optimization problem in the subspace of polynomials of degrees ≤ 7 (see
Box 1 for more details).

Analysis of the model’ performance

We compared the trajectories simulated by the model with that recorded in
Experiment 2 (see section 5.3). For clarity, we classified the targets in two
groups: group I contained the straight and moderately angled targets (1N,
2N, 3N, 4N, 5N, 4E, 5E) and group II contained the highly angled target
(4W, 5W, 4S, 5S).

As in the previous section, the comparisons were quantified by the ATE,
MTE, AnVE and MnVE (see section 8.2.1). These measures are indexed by
“j” (jerk) for the original minimum jerk model and by “m” (modified) for
the modified model.

8.3.2 Results

For the straight and moderately angled targets of group I, the original and
the modified minimum jerk models yielded accurate simulations, in terms of
both trajectory path [Fig. 8.7(A1)] and velocity profile [Fig. 8.7(A2)]. The
average MTEj across the targets of group I was 0.11m, and the average
MTEm was 0.14m, while the average MTD was 0.26m [Fig. 8.7(D)]. The
difference between the three means was significant [F(2,18) = 10.2, p <
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0.05]. A post-hoc Tukey test revealed that the difference between MTD
and MTEj and the difference between MTD and MTEm were significant,
while the difference between MTEj and MTEm was not. The last result
can be explained by the fact that, since the magnitude of the variations
in the velocity profiles simulated by the original model were not too large,
the addition of the extra term in the objective function did not affect the
simulated trajectories [Fig. 8.7(A1,A2)].

By contrast, for the highly angled targets of group II, the velocity pro-
files simulated by the original minimum jerk model showed large fluctuations
[Fig. 8.7(B2,C2)]. This resulted in a larger dissimilarity between the simu-
lated and the experimentally recorded trajectories, in terms of both velocity
profiles and geometric paths [Fig. 8.7(B1,(C1)]. Quantitatively, the aver-
age MTEj across the targets of group II was 0.54m, the average MTEm was
0.29m, while the average MTD was 0.40m [Fig. 8.7(D)]. The difference be-
tween the three means was significant [F(2,18) = 10.2, p < 0.05]. A post-hoc
Tukey test revealed that the difference between MTEj and MTEm was sig-
nificant, meaning that the modified minimum jerk did significantly better
than the original model. Indeed, the addition of the extra term effectively
reduced the variations of the speed, so that the velocity profiles simulated
by the modified model very closely resembled the experimentally observed
ones [Fig. 8.7(B2,C2)]. In terms of geometric paths, the modified model also
“bent” the minimum jerk paths towards the observed paths, although no
“instruction” about the path was specified in the modified model.

8.4 Discussion

8.4.1 Predictive power of the models

As pointed out by Todorov and Jordan (2002), the predictive power of a
model is not only measured by how well it fits the experimental data. At
least two other characteristics must be taken into account. The first char-
acteristic is the quantity of information that needs to be extracted from the
experimental data. Obviously, the less information extracted from the data,
the greater the challenge for the model. In order to simulate the velocity
profiles of curved hand movements, the constrained minimum jerk model
requires, as inputs, the entire movement path and the initial and final veloci-
ties (Todorov and Jordan, 1998). Viviani and Flash (1995) used experimental
values of the velocity and acceleration at several via-points in order to sim-
ulate the velocity profiles in curves drawing tasks. By contrast, our models,
which simulate both the paths and the velocity profiles, required to extract
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Figure 8.7: Modeling results for the Modified Minimum Jerk model. (A)
modeling results for target 4E. A1: geometric path of the average trajectory
(plain line) and variance ellipses around the average trajectory (gray area),
geometric path of the trajectory simulated by the original minimum jerk
model (dashed line) and by the modified minimum jerk model (dotted line).
A2: average velocity profile (plain line), velocity profile simulated by the
original minimum jerk model (dashed line) and by the modified minimum jerk
model (dotted line). (B) Same as (A), but for target 5W. (C) Same as (A),
but for target 5S. (D) Maximal Trajectory Deviation/Error (MTD/MTE)
in meters: MTD in the VI condition (dark gray bars), MTE for the original
minimum jerk model (light gray bars), MTE for the modified minimum jerk
model (white bars).
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only a small number of parameters, namely: the initial and final speeds and
accelerations, and the movement duration (see the descriptions of the mod-
els).

The second characteristic for estimating the predictive power of a model
is the presence and the number of free parameters that must be “tuned”
in order to fit the data. For instance, Viviani and Schneider (1991) pro-
posed a modified power law for modeling the velocity profile of curved hand
movements

v(t) = γ(κ(t) + ǫ)β (8.17)

In this model, the velocity gain factor γ and the exponent β needed to be
tuned in order to fit the actual velocity profile. By contrast, the original MSD
models did not contain any such free parameters. The modified minimum jerk
model contained one free parameter µ. However, the value of this parameter
was chosen once for all, contrary to Viviani and Schneider’s model, where
multiple values of γ and β were considered.

8.4.2 Common strategies may govern the formation of
hand and whole-body trajectories

Hand and whole-body movements differ greatly in their spatial and tempo-
ral scales: for instance, hand trajectories are usually tens of centimetres long
while travelled distances during locomotor tasks are usually more than 10
times longer. This difference in magnitude is associated with a difference
in the nature and the number of muscles involved in the production of the
movement: while hand movements activate mostly the arm muscles, locomo-
tor activity mobilizes practically all of the body muscles (lower limbs muscles
for body propulsion, upper body muscles for trunk stabilization, neck muscles
for steering, etc.).

However, some recent studies suggested that the generation of hand and
whole-body movements share common strategies. For instance, Papaxanthis
et al. (2003) reported that vertical whole-body and arm movements exe-
cuted in the sagittal plane share kinematic similarities. The authors then
suggested that the central nervous system (CNS) uses similar motor plans
for the performance of arm and whole-body movements in the sagittal plane.
The comparison of the velocity-curvature relations in human locomotion and
in hand movements has also been conducted, using the same (up to a scal-
ing factor) predefined curved paths in the two types of movements (Hicheur
et al., 2005c, see also our review in section 3.2). At the computational level,
Harris and Wolpert (1998) tested the assumption that the CNS learns a new
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movement by minimizing the variance of the final effector position for both
hand and eye movements.

In this context, our observation that the minimum jerk and minimum
snap models best simulate locomotor trajectories should be related to the
case of hand movements, where very similar results were reported (Flash and
Hogan, 1985; Richardson and Flash, 2002, see also our review in section 1.2).
For instance, in the task of periodic drawing of closed shapes, Richardson
and Flash showed that MSD models of order n ≥ 3 provided more accurate
predictions than MSD models of lower orders.

From a theoretical viewpoint, our finding that the same models could ac-
count for both hand and whole-body movements further supports the “motor
equivalence principle” evoked in the Introduction, which hypothesized that
common mechanisms are implemented by the motor system in the genera-
tion of various types of movements. More specifically, this hypothesis can be
related to the theory put forward by Bernstein (1967), according to whom
there may exist, at the higher levels of the motor system, kinematic repre-
sentations of movements that are independent of the nature (in our case, the
arm or the whole locomotor system) of the actual effector.

However, it should be noted that, contrary to the case of hand move-
ments where the laboratory (allocentric) reference frame (RF) and the body
(egocentric) RF are equivalent, here the body RF moves and turns with re-
spect to the laboratory RF when the subject is moving. In this context, the
quantities used in our models (the position of the subject and its deriva-
tives) are only interesting when computed in the laboratory RF since, in
his body RF, the subject’s position is constant in time. From a theoretical
viewpoint, while egocentric and allocentric strategies for spatial navigation
and spatial memory are usually debated in the literature (see Berthoz and
Viaud-Delmon, 1999), the question of what RF(s) are actually used for the
planning and control of goal-oriented locomotion has received little attention.
Here, our results suggest that whole-body trajectories are optimized in the
laboratory RF.

Finally, we would like to bring the reader’s attention to the issues raised
by Engelbrecht (2001) regarding the danger of circular theorizing when us-
ing optimization principles in motor control. We believe that our approach
avoids some of these issues and intend to discuss this in detail in a future
contribution.
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Chapter 9

Optimal feedback control
models

9.1 Overview

The models presented in the previous chapter were sucessful in reproducing
the average trajectories for a large variety of targets, formalizing thereby
the observation that locomotor trajectories are smooth and strengthening
the hypothesis that locomotion and arm movements share common control
objectives. However, being in essence deterministic, these models are of no
help for our understanding of trajectory variability. Yet, the analysis of the
variability profiles in chapter 6 provided a large amount of information about
the nature of the control mechanisms at work during locomotion. There is
therefore a need for a stochastic models that can help integrate these find-
ings about trajectory variability into a theoretical framework, while allowing
testing positively formulated control mechanisms.

In particular, we propose that the online control of whole-body trajec-
tories in visual and nonvisual locomotion (see sections 6.5.1 and 6.5.2) may
be based on optimal feedback control (see our review in section 1.3). To test
this idea, we designed a simplified optimal feedback control model and com-
pared the simulations of this model (and those of alternative models) with
the experimentally recorded trajectories. This model also allows formally
testing whether the combination of the two sources (vision-independent and
“trajectory-complexity”-independent, see section 6.2.3) could give rise to the
special shape of the varibility profiles observed in Experiment 3 (see sec-
tion 6.2).

The different models of this chapter were designed by Q.-C. Pham and
H. Hicheur and presented in Pham and Hicheur (2009). For more details,
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the reader is referred to the original article.

9.2 Visual condition (VI)

9.2.1 Description of the model

The model given by Algorithm 1 implements a simplified optimal feedback
control scheme (Hoff and Arbib, 1993; Todorov and Jordan, 2002). Following
the experimental results of chapter 6, this model relied on an open-loop
process which is complemented by an online feedback module (see Fig.6.1
and Fig. 9.1 for illustrations). The open-loop process was based on the
maximum-smoothness principle (see chapter 8) while the feedback module
was based on the optimal feedback control principle.

Algorithm 1 (see Fig. 9.1 for illustration)

1. Discretize the movement into n steps (10 ≤ n ≤ 20 depending on the
target)

2. At each step i, compute first a Minimum Modified Jerk trajectory
between the current state s(i) (position, velocity, acceleration at
time i) and the final state. This is the “initially planned trajectory”

3. Add a random perturbation to s′(i + 1), the state of the “initially
planned trajectory” at step i+1. This yields the actual state s(i+1)

4. Interpolate a smooth trajectory between s(i) and s(i+1) (for simplic-
ity, we used a MJ trajectory since it is the lowest-order polynomial
trajectory T that satisfy T (0) = s(i) and T (1) = s(i+1) see Box 1).
This yields the actual sub-trajectory between i and i + 1

5. Repeat from step 2

This model is a not a fully optimal feedback control model in the sense
of Todorov and Jordan (2002) because in the step where we computed the
(i + 1)th optimal sub-trajectory (step 2 of Algorithm 1), we minimized the
deterministic cost instead of the “cost-to-go” (which also takes into account
the statistics of the noise, see Todorov and Jordan, 2002). However, this
model preserves the main idea of optimal feedback control, namely, that the
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s(i)

s(i+1)

s’(i+1)

Initially planned trajectory

Target

Re−planned trajectory
Random perturbation

Figure 9.1: Description of the models (condition VI). Illustration for the
simplified optimal feedback control of Algorithm 1.

sub-trajectories are recomputed at every step optimally with respect to the
final target and not with respect to any intermediate representation of the
task (such as a “desired trajectory”).

The initial and final velocities and accelerations in Algorithm 1 were set
to the average experimental values, as in the deterministic models (see chap-
ter 8). To reproduce the small baseline variability present at the beginning
and at the end of the movement, the initial and final positions were chosen
from a 2D Gaussian distribution with standard deviation (σx

baseline = 0.027m;
σy

baseline = 0.027m) and centered around the actual starting position and the
actual target’s position.

Regarding the perturbations added at step 3 of the Algorithm, Harris and
Wolpert (1998) argued that the amount of execution noise (see Discussion)
is likely an increasing function of the “motor commands”. However, since we
did not model directly the whole locomotor apparatus but only its outcome
– the locomotor trajectory – it is unclear how execution noise may be “con-
verted” into trajectory perturbations. Here, in the context of locomotion, a
series of observations suggests that the magnitude of the trajectory pertur-
bations caused by execution noise is likely determined by the instantaneous
trajectory curvature and not by, for instance, velocity or acceleration. First,
trajectory variability was higher for the angled targets, which impose curved
trajectories, than for the straight targets (Experiment 3, section 6.2). This
rules out velocity as a determining factor, because velocity was usually lower
for curved trajectories. Second, the variability profiles were the same in the
Normal (NS) and Fast Speed (FS) conditions (Experiment 4, section 6.3)
although kinematic quantities, such as velocity or acceleration, were larger
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in the FS condition than in the NS condition. By contrast, the observed ge-
ometric paths (hence the curvature distributions) were the same in the two
conditions.

Thus, we set the magnitude of the trajectories perturbations to be an
increasing affine function (van Beers et al., 2004) of the absolute value of
the curvature (in a different context, the absolute value of the curvature was
used in a model of locomotor trajectories formation, see Arechavaleta et al.,
2008b, and also section 3.3). The total trajectory perturbation is then the
sum of a constant perturbation and a signal-dependent perturbation that
scales linearly with the absolute value of the curvature

σx
exec = σy

exec = σconst + |κ(t)|σsd (9.1)

where σconst=0.03m and σsd=0.14m2 for all targets.
Finally, it should be noted that our method of adding noise directly to the

states (and not to the commands) constitutes a simplification. A more rigor-
ous version of our model would require reformulating the MMJ optimization
into a dynamical model, as Hoff and Arbib (1993) did for the original MJ
optimization. However, in our case, the addition of the γ term in the MMJ
made such a reformulation much more difficult.

9.2.2 Results

In condition VI, the sample trajectories simulated by the optimal feedback
control model [Fig. 9.2(B)] were globally similar to trajectories observed
in one typical subject [Fig. 9.2(A)]. The variability profiles generated by
the model also reproduced the typical features of actual variability profiles,
namely: low and approximately constant profile for the straight targets [tar-
get 2: Fig. 9.2(C)] and bump-shaped profile for the angled target [target 5:
Fig. 9.2(D)].

9.3 Nonvisual condition (NV)

9.3.1 Description of the model

To understand the variability patterns observed in condition NV, we evaluate
two competing control schemes: a purely open-loop control scheme and an
online feedback control scheme in presence of uncertainties on the position
of the target.
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Figure 9.2: Modeling results for the stochastic models, visual (VI) condition.
(A) eight actual trajectories of subject N. V. for target 5. (B) eight sample
trajectories simulated by the stochastic model for target 5. (C) Variability
profiles for target 2. Plain line: average variability profile across subjects.
Dashed line: variability profile computed over 20 simulated trajectories. (D)
same as in C, but for target 5.
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Purely open-loop control (Models OL) We modeled three possible
purely open-loop control schemes, which are specified in terms of the time
series of velocity, acceleration or jerk, as follows.

We computed first the Minimum Modified Jerk (MMJ) trajectory be-
tween the initial and final states as defined in the deterministic model (see
section 8.3). We then computed, by successive differentiations, three 2D time
series (vx(i), vy(i)), (ax(i), ay(i)) and (jx(i), jy(i)), representing respectively
the velocity, acceleration and jerk corresponding to this MMJ trajectory. In
model OLv, we added Gaussian random perturbations with standard devi-
ation σv(i) to vx(i) and vy(i) (i = 1 . . . N) to obtain a random time series
(ṽx(i), ṽy(i)). Note that σv(i) was also an affine function of the instanta-
neous trajectory absolute curvature (the coefficients were the same as above,
but appropriately rescaled to match the experimental final variability). The
time series (ṽx(i), ṽy(i)) was finally integrated with respect to time to yield
a random trajectory.

In model OLa (respectively OLj), instead of adding the perturbation to
the velocity vectors, we added Gaussian random perturbations with standard
deviation σa(i) [resp. σj(i)] to the acceleration (respectively jerk) vectors.
Then these random vectors were integrated twice (respectively three times)
to yield a random trajectory.

Online feedback control (Model OF) This model was based on the sim-
plified optimal feedback control model used for condition VI (Algorithm 1).
Remark first that, in the VI model, the subject’s state s(i) (position, ve-
locity, acceleration) was assumed to be perfectly known to the subject at
every time step. To model the absence of vision in condition NV, we intro-
duced perturbations in the subject’s estimation of his state. For simplicity,
we assumed that these perturbations yielded errors in terms of subject’s es-
timated orientation and distance to target [the reduction of the state to the
pair (distance, orientation) is rather classical in studies of nonvisual loco-
motion, see for instance Loomis et al. (1993); Glasauer et al. (2002) and
also section 2.2]. Remark now that, from a computational viewpoint, these
errors can be rendered, in our model, by perturbing directly the target’s ori-
entation and position in space [however, in relation with the discussion on
egocentric and allocentric strategies for navigation Burgess et al. (2002), it
should be noted that the physiological mechanisms underlying the errors in
the estimation of self’s state and of the target’s state may completely differ].

To make this clear, consider for instance that the subject makes an error ǫ
in the estimation of his orientation. This is equivalent to assume that he
actually makes no error in the estimation of his orientation, but that the
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subjects’ estimation of the “external world” is rotated by an angle −ǫ around
the subject. Since the “external world” in our model comprised only the
target, this corresponds to the following perturbations of the target: (i) a
rotation centered on the subject and of angle −ǫ of the target’s position and
(ii) a shift of −ǫ of the target’s angle [see Fig. 9.3(B)]. Similarly, an error
δ in the subject’s estimation of his distance to the target corresponds to a
translation of the “external world” by −δ along the subject-target axis.

More specifically, we modified Algorithm 1 by adding, between step 4 and
step 5, the following step “4b”

Algorithm 2 (Modification of Algorithm 1 for condition NV)
[see Fig. 9.3(A), 9.3(B) for illustration]

4b. (i) Draw a random distance δ from a Gaussian distribution of
mean 0 and of standard deviation σδ (σδ = 0.03m in the sim-
ulations). Shift the target’s position by −δ along the subject-
target axis

(ii) Draw a random angle ǫ from a Gaussian distribution of mean 0
and of standard deviation σǫ (σǫ = 1.8◦ in the simulations).
Rotate the target’s position by −ǫ around the subject. Shift
the required final velocity (vx

1 , vy
1) and acceleration (ax

1 , ay
1)

angle by −ǫ

There exist several other possibilities to model the absence of vision. One
can for instance add an extra 2D-Gaussian perturbation to the target’s po-
sition at each time step in order to simulate the spatial memory decay. One
can set σδ and σǫ as functions of the execution noise intensity. The estima-
tion process can also be more complex, for instance, combining optimally
vestibular and proprioceptive measurements with internal simulations (see
the state estimation literature for hand movements reviewed in e.g. Jordan
and Wolpert, 1999). However, we chose to follow the simple approach above
in this first modeling study. It will be necessary in future works to design
new experiments and refine this part of the model in order to study in detail
the effects and the interactions of spatial memory decay and of the different
sensory signals (e.g. visual, vestibular and proprioceptive) on the variability
of nonvisual trajectories.
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Figure 9.3: Description of the models (condition NV). (A) Illustration for Al-
gorithm 2. (B) Effect of an error in the subject’s estimation of his orientation
in space.

9.3.2 Results

In condition NV, the sample trajectories simulated by model OF [Fig. 9.4(B)]
were globally similar to trajectories observed in one typical subject [Fig. 9.4(A)].
Regarding the variability profiles, for the straight targets, the sample variabil-
ity profile produced by model OF (online feedback control) has the form of a
sigmoid, but which was very close to a straight line [dashed line, Fig. 9.4(C)].
For the angled targets, the sample variability profile produced by model OF
increased approximately linearly until t = 0.8 and then slightly decreased
[dashed line, Fig. 9.4(D)].

By contrast, this non-monotonicity, which is a characteristic feature of
actual variability profiles (see the results of Experiment 3), could not be
reproduced by none of the purely open-loop models. Indeed, in all of these
models, the variability profiles were always increasing [dashed-triply-dotted,
dashed-dotted and dotted lines, Fig. 9.4(D)].

9.4 Discussion

We made in chapter 6 several remarks about how the properties of the vari-
ability profiles may reflect the control mechanisms underlying locomotion.
First, we argued that purely open-loop control would lead to monotonically
increasing variability profiles, since, in absence of feedback corrections, errors
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Figure 9.4: Modeling results for the stochastic models, nonvisual (NV) con-
dition. (A) eight actual trajectories of subject N. V. for target 5. (B)
eight sample trajectories simulated by the stochastic model for target 5.
(C) Variability profiles for target 2. Plain line: average variability profile
across subjects. Dashed line: variability profile computed over 20 simulated
trajectories. (D) Variability profiles for target 5. Plain line: average vari-
ability profile across subjects. Dashed line: variability profile computed over
20 sample trajectories (model OF). Dashed-triply-dotted line: model OLv

(open-loop control, noisy velocity). Dashed-dotted line: model OLa (open-
loop, noisy acceleration). Dotted line: model OLj (open-loop, noisy jerk).
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can only accumulate. This remark was confirmed by the modeling study: the
purely open-loop models (OLv, OLa, OLj) indeed produced monotonically in-
creasing variability profiles.

Second, remarking that the special shape of the variability profile ob-
served in condition NV could be decomposed as the sum of a straight line
and a bump, we formulated the hypothesis that two sources of noise inde-
pendently contribute to the variability of locomotor trajectories (the “two-
sources” hypothesis, see section 6.2.3). Here, model OF also contained two
main sources of noise (we do not discuss the small baseline noise whose con-
tribution was negligible). The first source is associated with the interplay
between execution noise and feedback corrections (see Algorithm 1). This
source, in isolation, produced bump-shape variability profiles. The second
source is associated with the state estimation errors (see Algorithm 2). This
source, in isolation, produced straight profiles. By showing that the combi-
nation of these two sources could give rise to a non-monotonic shape similar
to that observed in section 6.2.3, we confirmed, in a direct way, the “two-
sources” hypothesis.

Third, from the results of the via-points experiment (section 6.4), we con-
cluded that the online control of locomotion is unlikely based on the tracking
of some “desired trajectory”. Here, by designing an optimal feedback con-
trol model that could simulate accurately the statistical properties of actual
trajectories, we show positively that optimal feedback control may underlie
the control of both visual and nonvisual locomotion.
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General discussion
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Summary of the results and
discussion

Consider again the situation evoked at the beginning of this thesis: a person
is standing at some position in a room and has to walk towards and through
a distant doorway to get out of that room [Fig. 1(A)]. We raised a number
of questions concerning this task, for instance: what trajectory in space
does the person choose to achieve this objective? if he has to perform this
task several times, will the resulting trajectories be similar or not? following
what criteria does he select a particular trajectory among the infinitely many
possible trajectories? etc. We summarize in the present chapter some of the
answers provided by our experimental and modeling studies. We would like
also to discuss, from a broader perspective, the contribution of our results to
the understanding of human locomotion in particular and of motor control
in general.

Summary of the main results

We showed in chapter 5 that locomotor trajectories produced to reach a
distant target defined in position and orientation (the doorway) were highly
similar across repetitions and across subjects. This stereotypy contrasted
with a large variability of the sequences of foot positions. This led us to
suggest that, in a large, obstacle-free environment, goal-oriented locomotion
is planned and controlled globally at the level of whole-body trajectories
in space, rather than as sequences of foot positions or patterns of muscle
activity. We then showed that the whole-body trajectories in question were,
on average, unaffected by changes in the sensory and motor conditions. The
average trajectories produced to reach a distant target were indeed found to
be highly similar across sensory (walking with or without visual feedback)
and motor (walking forward or backward) conditions. These observations
further supported the hypothesis that locomotor trajectories are planned
and controlled at the higher levels of the Central Nervous System (CNS),
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and to some extent, independently of their sensori-motor implementation.
Although globally stereotyped, the trajectories we recorded still displayed

some variability, which we next examined. Based on the analysis and the
comparison of variability profiles in the visual and nonvisual conditions, we
showed that a combination of open-loop and feedback processes underlie the
planning and control of locomotor trajectories. In particular, assuming this
architecture, the similarity of the average trajectories in visual and nonvisual
locomotion would reflect the identity of the open-loop processes in these two
conditions. Finally, we showed that the online feedback processes may be
based on optimal feedback control schemes, rather than on the tracking of
some “desired-trajectories”.

The nature of the open-loop and the feedback processes was then further
investigated though a modeling study. We showed in particular that parsi-
monious maximum smoothness models accurately accounted for the average
trajectories recorded in a large variety of targets. We then formalized the
control architecture mentioned previously by designing a stochastic model
whose open-loop module was based on the maximum smoothness principle
and whose feedback module was based on optimal feedback control. These
models could simulate with great accuracy both the average trajectories and
the variability patterns experimentally observed in visual and nonvisual lo-
comotion. This result provided a positive and constructive support for the
control architecture hypothesized based on the experimental observations.

Contribution of our work to the understanding

of locomotion and of motor control

While the study of locomotion at the level of whole-body trajectories has
already been undertaken in a number of previous works (see our review in
chapter 3), we believe that the results just summarized provide the first
systematic account of how locomotor trajectories are planned and controlled
in humans.

Indeed, as noted in the Introduction, most previous works on locomotor
trajectories considered either straight-ahead walking or predefined paths and
thus could not address how humans plan and control complex trajectories in a
free environment. Arechavaleta et al. (2006) did study spontaneously gener-
ated trajectories (these authors are indeed credited with the invention of the
“walking towards and through a distant doorway” paradigm) but they were
interested primarily in verifying the nonholonomic constraint (see our review
in section 3.3) and neglected to assess whether the locomotor trajectories are
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stereotyped in the first place.
Yet, the demonstration of the stereotypy of locomotor trajectories allowed

identifying these trajectories as a possible “controlled variable” monitored by
the central nervous system. This step furthermore constituted the prerequi-
site for the subsequent experimental (effects of sensory and motor conditions,
control strategies) as well as modeling (maximum smoothness, optimal feed-
back control) studies.

Correlatively, another important and innovative aspect of our study was
the detailed analysis of variability profiles. Indeed, while the analysis of the
variability along the average trajectory has been performed in some studies
of hand movements (see our review in section 1.3.2), only discrete variability
analyses have been considered so far in locomotion (e.g. variability of the final
position in locomotor “reaching” or variability of the intermediate positions
in triangle completion or polygon walking tasks, see our review in section 2.2).
Perhaps, the most advanced use of variability analysis was made by Farrell
and Thomson (1999) who calculated the variability of the lengths of the final
steps in a locomotor “reaching” task. By doing so, as mentioned in our
review (see section 2.2.2), the authors could provide some insights into the
control strategies underlying nonvisual locomotion.

Here, systematizing and extending Farrell and Thomson’s approach were
crucial in identifying the precise nature of the control mechanisms at work
during goal-oriented visual and nonvisual locomotion. More generally, we
believe that most studies of locomotion or navigation will benefit from a
systematic analysis of the time-varying variability patterns.

Taken together, our results provide the conceptual basis for future studies
of locomotion at the level of trajectories. Such studies may include external
perturbations or manipulate sensory signals (for instance using wedge prisms,
virtual reality or vestibular stimulations, etc.) in order to carry forward our
understanding of human goal-oriented locomotion.

Relations with computational motor control

Computational motor control has undergone several conceptual developments
over the past decades: from the identification of movements invariants, through
the conception of (deterministic) optimal control models, to the formulation
of stochastic control schemes motivated by the analysis of movement vari-
ability (see our review in chapter 1). As evident from the summary of the
results, our approach of locomotion has greatly benefited from these concep-
tual developments.
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Conversely, what insights can our results provide for the understanding
of motor control in general? As noted in the Discussion of chapter 8, the
productions of hand and locomotor movements greatly differ in their spatial
and temporal scales, as well as in the nature and the number of the underlying
physiological apparatuses (the arm in hand movements and the entire body
in locomotion). In this context, the fact that several properties (such as the
spatial control, the smoothness of the trajectories or the optimality of the
feedback control mechanisms) are shared by the two types of movements may
have important conceptual consequences.

First, if a property, or “law”, is verified in many types of movements
then this increases the genericity of the law, which can then be regarded
as a “general organizing principle”. For instance, the idea that the motor
system, in general, operates like an optimal feedback controller is further
strengthened by our results.

Second, as also noted in the Discussion of chapter 8, the fact that hand
and locomotor movements share so many important properties further sup-
ports Bernstein’s “motor equivalence principle”. More precisely, also ac-
cording to Bernstein (1967), at the higher levels of the motor system, hand
movements and locomotion may share common “kinematic representations”
(this notion is also related to the “spatial control” put forward by Morasso,
1981). Going further, we speculate that these “kinematic representations”
are not the only neural functions common to the two types of movements.
We propose that the other shared properties – smoothness of the trajecto-
ries and optimal feedback control – may also originate from common neural
functions and from the common neural structures that subserve these func-
tions. Indeed, a number of neurophysiological studies have identified precise
neural structures that may subserve specific “computational” functions (see
in particular the review of “computational neuroanatomy” by Shadmehr and
Krakauer, 2008). For instance, the parietal cortex may serve as a state esti-
mator, the basal ganglia may be involved in optimal control while the primary
and the premotor cortices may act as feedback controllers. In this context,
can we speculate that the smoothness of hand and locomotor trajectories re-
sults from similar optimization processes that take place in the basal ganglia,
or that goal-directed optimal feedbacks of hand and locomotor trajectories
are underlied by similar mechanisms in the primary and premotor motor cor-
tices? Addressing these questions requires new neurophysiological data from
both clinical (as in Shadmehr and Krakauer, 2008) and neuroimaging studies
(starting perhaps with imaginary locomotion).
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Some current and future
directions of research

We conclude by presenting some current and future directions of research.

Direct comparison of locomotor and hand tra-

jectories

While the hand/locomotion comparative view presented previously may seem
appealing, we have noted a number of differences between hand and locomo-
tor trajectories. For instance, as evoked in our review (see section 3.2), the
“one-third power law”, which robustly applies for hand drawing of curves,
is not verified by locomotor trajectories. Correlatively, we also mentioned
in the Discussion of the “affine experiment” (section 7.3) the prediction of
Bennequin et al. (2009) that euclidian rather than full-affine geometry may
be dominant in locomotion.

Here, we propose to directly assess the similarity of hand and locomotor
trajectories. For this, we adapted Experiment 6 (see section 7.2) to the
context of hand movements. We designed a protocol almost identical to that
of Experiment 6, with the only difference that all distances were scaled down
by a factor of 18.5 (see Fig. 7.5). Instead of walking through the via-points
towards the final target, we asked the same subjects of Experiment 6 to make
hand movements (see Fig. 2). This experiment was designed and run by Q.-
C. Pham, H. Hicheur and J. Wiener in November 2007. We thank Y. Dupraz
for his help in manufacturing the experimental materials.

Some preliminary results are shown in Fig. 3. We believe that a quali-
tative and comparative comparison of the hand trajectories recorded in this
experiment with the locomotor trajectories recorded in Experiment 6 will
give further insights into the relations between the mechanisms governing
the production the two types of movements.
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Figure 2: Protocol for the hand movement experiment. A subject sat in front
of a table with the tip of his index lying on the plastic pane that covered the
computer screen. He was asked to produce hand trajectories while making
as few body movements as possible (the furthest target was well within the
reaching range of the subjects so that, in practice, the subjects used only their
arms while the rest of their bodies remained still). At the beginning of each
trial, the subject put the tip of his index on the disk representing the starting
position. The computer screen displayed the via-points and the target. The
subject was then asked to guide his index through the via-points and reach
the target while always keeping the tip of his index on the plastic pane. He
was asked to monitor only the tip of his index, and not to care about e.g.
the orientation of the finger. A light-reflective marker was attached to the
tip of the index. The position of this marker was recorded with the infrared
camera system described in the General Methodology (chapter 4).
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Figure 3: Some preliminary results of the hand/locomotion comparison. One
can observe a global similarity of the hand and the locomotor trajectories.
However hand trajectories seem to be more “acute” than locomotor ones.

Clinical and developmental aspects

All our experiments up to now have involved healthy adult subjects. Fol-
lowing our previous reflections on clinical studies, it would be interesting to
assess how the stereotypy or the optimality of the locomotor behavior are
affected in patients with motor or cognitive deficits. As argued previously,
this would provide further insights into the neural structures underlying the
planning and control of locomotor trajectories. Conversely, in a medical per-
spective, our results on the stereotypy and the smoothness of trajectories may
also help design new tests for detecting and evaluating locomotor disorders.

Studying how and when these features are acquired in children is another
promising extension of our study. Indeed, such a developmental approach has
provided precious insights into the origin and the nature of several “laws”
underlying human movements [see for instance the developmental study of
the “one-third power law” in Viviani and Schneider (1991) or of the steering
behavior in Grasso et al. (1998a)].

In fact, we are currently involved in a study headed by Dr V. Belmonti
(Department of Developmental Neuroscience, University of Pisa, Italy), which
involves children from 5 to 12 years old, some of whom are affected by spas-
tic bilateral cerebral palsy (in particular, spastic diplegia). This neurological
disorder is associated with motor, and sometimes, mental troubles of varying
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degrees.
In the pilot experiment, the subjects (one diplegic subject aged 6 and

three normal subjects aged 6 to 12) were asked to walk out of a corridor
towards one of three spatial targets (Fig. 4). This protocol was very simi-
lar to those of our Experiments 1 to 5 (see chapters 5) and 6. The target
was illuminated either at the beginning of the trial (LighPre) or just as the
subject got out of the corridor (LightPost). In addition, the experimenter
either walked behind the subject (Touch) or let the subject walk alone (No-
Touch). Clinical experiments have indeed shown that some of these children
can improve their locomotion if lightly touched or even just followed by an
adult. This finding seems to point to perceptual and cognitive factors affect-
ing motor performance in cerebral palsy, which represents a supplementary
motivation for our approach.

Figure 4: A diplegic subject executing the goal-oriented locomotor task (con-
dition LightPre/NoTouch). Photo courtesy of Dr V. Belmonti, University of
Pisa, Italy.

Fig. 5 shows the trajectories of a 6 years old diplegic subject and of
three normal subjects, aged 6 to 12 in the four conditions (LightPre/Touch,
LightPre/NoTouch, LightPost/Touch, LightPost/NoTouch).

One can observe from these preliminary results that the trajectories of
the diplegic subject were somewhat jerkier than those of the normal subject
at the same age. In addition, the smoothness of the trajectory also seemed
to increase with age.

We are now proceeding to run the full experiment, which will involve
more subjects and test more repetitions per subject. This will allow us
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Figure 5: Trajectories of diplegic and normal children aged 6 to 12 in a goal-
oriented task. The subjects had to walk out of the corridor (indicated by
the parallel lines) towards one of the three targets (indicated by small disks).
Plots courtesy of Dr V. Belmonti, University of Pisa, Italy.

examining whether the previous preliminary observations are confirmed on
a larger scale. We shall also be able to study the intra-subject variability
profiles with better reliability.

Robotics applications

Research in motor control has greatly benefited from ideas originally devel-
opped in mechanical engineering or robotics. In fact, the field of “compu-
tational motor control” can be considered as the application of control the-
ory to biological systems. In particular, many concepts used in the present
work, such as redundancy, optimal control, open-loop and feedbacks pro-
cesses, etc. are direct translations of the respective control theory notions.
Regarding more precisely human locomotion, the recent developments of hu-
manoid robotics have provided physiologists with some new and exciting
ideas: for instance, the efficiency of passive-dynamics walking robots sug-
gests the importance of passive-dynamics in human locomotion (see a review
by Collins et al., 2005, and Fig. 6).

Conversely, roboticists have recently begun to take inspiration from bi-
ological systems to build efficient and adaptive robots. To stay within the
field of locomotion, one can mention the salamander-like robot constructed
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Figure 6: Three passive-dynamics bipedal robots (adapted from Collins et al.,
2005).

by Ijspeert et al. (2007), who used coupled Central Pattern Generators (see
our review of CPGs in section 2.1.1) to generate highly adaptive swimming
and walking patterns (Fig. 7). Regarding more precisely bipedal locomotion,
one can mention for example Manoonpong et al. (2007), who took inspiration
from the neural architecture controlling human locomotion in the design of a
bipedal robot (Fig. 8). In this context, are our results on the trajectory-level,
“top-down” control of locomotion (chapter 5), on the optimal control of loco-
motor trajectories (chapters 8 and 9) or on the steering behavior (section 7.1)
of any help in the conception of walking humanoid robots? Addressing this
question is the focus of our future investigations.
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Figure 7: A CPG-based salamander-like robot. (A) the control architecture
based on coupled CPGs. (B) photo of the robot (adapted from Ijspeert et al.,
2007).

Figure 8: A bipedal robot with a human-inspired control architecture
(adapted from Manoonpong et al., 2007).
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Poincaré, H. (1902). La science et l’hypothèse. Flammarion, Paris.
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This Appendix reproduces the articles written during my thesis. Part A
contains the “human locomotion” articles whose contents have been pre-
sented in the previous chapters. Part B contains the “contraction theory”
articles that I have worked on during my thesis, as part of another project.

172



Contents

Appendix A: Human locomotion articles 174
A.1 Formation of locomotor trajectories I: stereotypy . . . . . . . . 174
A.2 Formation of locomotor trajectories II: optimal control . . . . 190
A.3 Open-loop and feedback processes in locomotion . . . . . . . . 204
A.4 Influence of vision and of gait direction on locomotion . . . . . 221

Appendix B: Contraction theory articles 250
B.1 A contracting model of the basal ganglia . . . . . . . . . . . . 250
B.2 Stochastic contraction and incremental stability . . . . . . . . 265
B.3 Discrete and hybrid stochastic contraction . . . . . . . . . . . 271

173



Appendix A

Human locomotion articles

A.1 The Formation of Trajectories during Goal-

Oriented Locomotion in Humans. I. A

Stereotyped Behavior.

By H. Hicheur, Q.-C. Pham, G. Arechavaleta, J.-P. Laumond and A. Berthoz.
Published in European Journal of Neuroscience, vol. 26, pp. 2376-2390, 2007.

174



The formation of trajectories during goal-oriented
locomotion in humans. I. A stereotyped behaviour
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Abstract

Human locomotion was investigated in a goal-oriented task where subjects had to walk to and through a doorway starting from a fixed
position and orientation in space. The door was located at different positions and orientations in space, resulting in a total of 40
targets. While no specific constraint was provided to subjects in terms of the path they were to follow or the expected walking speeds,
all of them generated very similar trajectories in terms of both path geometry and velocity profiles. These results are reminiscent of
the stereotyped properties of the hand trajectories observed in arm reaching movements in studies over the last 20 years. This
observation supports the hypothesis that common constraining mechanisms govern the generation of segmental and whole-body
trajectories. In contrast, we observed that the subjects placed their feet at different spatial positions across repetitions, making
unlikely the hypothesis that goal-oriented locomotion is planned as a succession of steps. Rather, our results suggest that common
planning and ⁄ or control strategies underlie the formation of the whole locomotor trajectory during a spatially oriented task.

Introduction

When moving from a point A to point B in space, a great variety of
trajectories can be taken. Even for a single (successful) trajectory, a
theoretically infinite number of motor behaviours can be imple-
mented by the motor system (a notion known as ‘motor redun-
dancy’). As the generation of a single motor behaviour is associated
with several levels of description, the elaboration of the motor
command appears to be a particularly complex problem. Indeed, a
great number of kinematic patterns (the velocity profiles of the
segments involved in the task, for instance), dynamic patterns (the
patterns of forces required to move these segments), myoelectric
patterns (the muscular activation patterns producing these forces) or
neuronal discharge pattern (the motor units innervating the muscles)
may be combined for the generation of the successful motor
behaviour (see Wolpert, 1997, for a review). In the case of multijoint
movements, the problem becomes even more complex as the high
dimensionality of the system results in an increased motor redun-
dancy.
In contrast with this theoretical complexity, it has been experimen-

tally observed that the arm reaching movements exhibit several motor
invariants which are systematically reproduced by different subjects
across repetitions. In this type of task, hand trajectories have been
found to be highly stereotyped and particularly smooth. They are also
marked by bell-shaped velocity profiles (for review see Bullock &
Grossberg, 1988) and by a specific relation between path curvature
and hand velocity, known as the two-thirds power law (Lacquaniti

et al., 1983). The observation that hand trajectories exhibit many
invariants in different motor tasks (in contrast with much more
variable joint angular profiles) led Morasso (1981) to propose that the
central command underlying arm pointing movements is formulated in
terms of hand trajectories in space. The kinematic nature of the control
of arm movements was then associated with the notion of end-point
movement control. However, the distinction between the different
kinematic coordinates in which the CNS may encode (for instance) the
direction of movement is still an open question (Soechting & Flanders,
1994).
The existence of such robust invariant features of motor execution

was proposed as being the product of general principles governing
movement execution. Among these principles, the optimal nature of
motor control in biological systems was emphasized and minimizing
cost functions were systematically used in computational approaches
of movement learning and control (Todorov, 2004). These aspects are
detailed in the companion paper.
In contrast with the numerous behavioural and computational

studies devoted to the understanding of the trajectories in arm
movements in humans, the generation and the control of whole-
body displacements in space has received little attention. However,
in addition to its purely sensorimotor component, locomotion also
must be understood and analysed as a spatially oriented activity
requiring navigational guidance. It immediately follows that char-
acterizing locomotion at the level of trajectory is of crucial interest.
Recent studies have assessed the vestibular contribution to the
control of direction and distance during human locomotion
(Glasauer et al., 2002), multisensory contributions to the control
of walking along a straight trajectory (Kennedy et al., 2003) and
the nature of the visual strategies governing the steering of
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locomotion (Warren et al., 2001; Wilkie & Wann, 2006). Recently,
we examined the principles underlying the control of locomotor
trajectories by testing the hypothesis that common principles govern
the generation of hand and whole-body trajectories (Hicheur et al.,
2005b). In tasks where subjects had to walk along different types of
curved paths, we observed a strong correlation between path
curvature and walking velocity reminiscent of the power law
observed for hand movements (Lacquaniti et al., 1983), but with
significant deviations from the two-thirds exponent. We discussed
the functional significance of our results by taking into account
both the central and peripheral mechanisms that might account for
the close relationships between path geometry and trajectory
kinematics observed during human locomotion. It should be noted
that these observations were restricted to a steering task where
subjects had to walk along predefined paths.

Here, we investigated the generation of whole-body trajectories in a
simple goal-oriented task. We wanted to examine whether the
locomotor behaviour, analysed at the level of the step and at the
level of the trajectory, exhibit motor invariants as observed in arm
reaching movements. As locomotion is a motor activity mobilizing all
the body segments, the locomotor systems are of a higher dimen-
sionality and the redundancy of the motor solutions allowing the
displacement of the whole body towards the spatial target is
theoretically greater than that of arm movements. Nevertheless, a first
reason explaining why such different movements (arm movements and
locomotion) might share common principles was suggested by
Georgopoulos & Grillner (1989). These authors proposed an analogy
between hand reaching tasks and accurate foot placement during
locomotion: in order to perform the visuomotor coordination in these
two contexts, the same neural structures seem to be involved in the
accurate positioning of the limb. The generation of the limb trajectory
would thus be realised according to common mechanisms. In the case
of goal-oriented locomotion, and following this suggestion, it is
possible to hypothesize that the trajectory of the whole body could be
built as a sequence of foot ‘pointings’ on the ground.

The purpose of the current study was to describe the spatial and
temporal features of the locomotor trajectories. In particular, we tested
the hypothesis that, as for hand movements, the body trajectories in
space exhibit geometric and kinematic stereotypy while various motor
strategies can be implemented for reaching the desired goal. To do
this, we designed a goal-oriented locomotor task similar to a ‘walking
towards and through a distant doorway’ situation. Subjects had to start
from a fixed position and orientation in space and to walk throughout a
door located at different positions and orientations in space.

This first manuscript presents numerous quantitative analyses
showing that human locomotor trajectories are generated according
to common spatial or temporal criteria. In the companion paper
(Pham et al. 2007), we propose a computational approach for
modelling the principles underlying the generation of locomotor
trajectories.

Materials and methods

Subjects: experimental setup

Six healthy male subjects volunteered for participation in the
experiments. Each of them generated 120 trajectories corresponding
to 40 spatial targets · 3 trials so that a total of 720 trajectories
(6 subjects · 120 trials) were recorded for the experiment (parts of
the recorded data were used for a study presented at the IEEE
BioRobotics conference, Pisa, Italy, 2006; see Arechavaleta et al.,
2006). Subjects gave their informed consent prior to their inclusion in

the study. Experiments conformed to the Code of Ethics of the
Declaration of Helsinki. The mean age, height and weight of the
subjects were, respectively, 26.00 ± 2.76 years, 1.80 ± 0.07 m and
72.8 ± 6.15 kg. Three-dimensional positions of light-reflective mark-
ers were recorded using an optoelectronic Vicon V8 motion-capture
system wired to 24 cameras at a 120-Hz sampling frequency. Subjects
were equipped with 39 markers of which 10 were directly used for the
analysis. Three reflective markers were fixed on a helmet (� 200 g).
The helmet was donned so that the midpoint between the two first
markers was aligned with the head yaw rotation (naso-occipital) axis.
Thus the line which indicates the head orientation passed through
these two markers (Head Forward F and Backward B). To assess the
body displacement in space we used the midpoint between left and
right shoulder markers, which were located on left and right
acromions, respectively (see Hicheur et al., 2005b). Two markers
were located on the pelvis (left and right anterior superior iliac spines)
and two markers were located on each foot: they were placed at the
top of the foot (subjects were allowed to wear shoes) between toes 2
and 3 (1 is the big toe), and on the heel at the same height as toe
marker. These markers were used for detecting the step events
(explained below). We defined head, trunk, pelvis and trajectory
reference frames as illustrated in Fig. 1A. Forty targets were used for
the experiment: the target consisted of a doorway which was placed at
a specific (x,y) position in the motion-capture space with an
orientation a (Fig. 1B and E). Four markers were rigidly fixed to
the target and were recorded during the whole duration of all trials.
This allowed us to verify that the position and the orientation of the
door (for a given condition) were the same for all subjects.

Protocol

The aim of this protocol was to study the locomotor trajectories
generated by different subjects and to test whether these trajectories
display properties similar to those reported for hand reaching
movements.
Subjects had to start from a fixed position in the laboratory and walk

toward and through the doorway (Fig. 1A). To verify that all subjects
began the task in the same conditions we asked them to begin their
walk 1 m before crossing the start line and with a body initial
orientation which had to be approximately orthogonal to the X-axis of
the laboratory. They were then completely free to choose their walking
speed and no specific restriction was placed on them regarding the
path to follow. They were not asked to stop walking after entering the
doorway because this instruction could have biased their behaviour a
few steps before reaching the door. Rather, they were left free either to
directly come back to the starting position or to walk in the laboratory
for several seconds before coming back to the starting position.
Typically, subjects walked straight for a few metres (about four steps)
after passing through the doorway before returning to the starting
position. The experimenter stopped recording the movement of the
subject a few metres after he passed through the door. The angular
displacement of the body in space induced by the different orientations
of the doorway (see Table 1) ranged between )150 and +150�. As
subjects were carefully monitored during the session, the average
distance (±SD, across all the recorded trajectories) between the actual
and the imposed initial positions was 3.0 ± 2.5 cm, the average
distance between the actual and the imposed final positions was
3.2 ± 2.2 cm, the average absolute difference between the actual and
the imposed initial orientations was 9.6 ± 7.9� and the average
absolute difference between the actual and the imposed final
orientations was 5.9 ± 4.4�.
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Analysis

In this study, we wanted to understand whether whole-body trajec-
tories are organised according to common spatial or temporal criteria
across different subjects during goal-oriented locomotion. We there-
fore focused on two levels of description of the locomotor behaviour.
Firstly, we examined the geometric and kinematic properties of the
locomotor trajectories in order to characterize the spatial control of the
whole-body movement. This approach can be associated with the
notion of end-point trajectory control. Secondly, we studied in detail
the succession of locomotor cycles. This approach tests whether
locomotion is planned as a succession of discrete cycles from which
emerges the global trajectory.

Categorization and computation of the trajectories

The tested trajectories were classified into four categories according to
the amount of body turn they required: quasi-straight trajectories (ST),

and trajectories of low (LC), medium (MC) and high (HC) curvature
(see Table 1).
The total distances travelled by subjects ranged between

4.50 ± 0.25 m (across subjects and trials) for the nearest target
and 9.38 ± 2.54 m for the furthest target. However, in order to
compare the different trajectories with precise criteria, the final
calculation of the travelled distance was performed between the
instant t0 where subjects crossed over the X-axis and the instant t1
where they entered the doorway, according to the task requirements
(the final position was calculated at the instant where the body
crossed over the middle of the door). This method yielded values of
trajectory length between 2.03 ± 0.08 and 6.46 ± 0.01 m (across
subjects and trials). The individual values (across subjects and
trials, for each tested target), in terms of trajectory length, duration
and average walking speed, are presented for the 40 targets
according to each category in Table 1.
After this procedure, and for each target, the trajectories were

time-resampled so that for all subjects and trials of the same target,

Fig. 1. (A) Experimental protocol: subjects had to start from a fixed position in the laboratory and to walk through a distant doorway. The position and the
orientation a of the door were the two manipulated parameters and 40 combinations, position and orientation, were tested. (B) The spatial deviation of the actual
trajectory from the mean trajectory was measured as the distance integrated over time between the mean (across subjects and trials) and the actual trajectories.
(C) The variability of the velocity or turning profiles (kinematic profile) was measured as the deviation between the actual kinematic profile and the mean kinematic
profile (across subjects and trials). (D) For different repetitions of a given condition, the spatial dispersion of the foot positions around the mean foot position was
measured. (E) Spatial disposition of the 40 tested targets (see also Table 1). Each target position is represented by a small black disk. The possible target orientations
for each target position are indicated by arrows.
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t0 ¼ 0 and t1 ¼ 1. This was done in order to compare the actual
trajectories to the mean trajectory. The number of frames (Nf) of the
re-sampled trajectories was chosen individually for each tar-
get across trials, as the Nf contained in the trial (trajectory) with
the shortest duration. Thus, all the trajectories recorded for a
single target had the same Nf. A Matlab routine (Mathworks
V6.5�) was then implemented in order to re-sample the indi-
vidual trajectories according to this parameter: this routine
consists of a linear interpolation of the new (re-sampled) trajectory
using Nf as the number of frames contained in this re-sampled
trajectory.

After the 40 trajectories were sorted in the four categories, all the
quantitative parameters (see below) were computed separately for each
target. A mean value for each of these parameters was then calculated
for each group of trajectories across the 10 targets (· 6 sub-
jects · 3 trials) ranked in each category.

Spatial variability of the trajectories

In order to examine the similarity in the time courses and forms of the
trajectories produced by the different subjects, we computed the mean
trajectory (across subjects and trials) and calculated, for each trajectory
toward a given target, the deviation from the mean trajectory; this gave
an index of the spatial variability in the trajectories (see Fig. 1C).
The averaged trajectory (xav(t),yav(t)) was calculated as follows:

xavðtÞ ¼
1

Nf

XN f

i¼1
xiðtÞ; yavðtÞ ¼

1

Nf

XNf

i¼1
yiðtÞ

 !
ð1Þ

where Nf is the number of frames contained in the re-scaled trajectory.
The trajectory deviation (TD) was computed as the sum of the

instantaneous distances between the averaged (xav(t),yav(t)) and the
actual (xi(t),yi(t)) trajectory, and was calculated as follows:

Table 1. Mean values across six subjects and three trials, in terms of turn amplitude, travelled distance, duration and walking speed for each particular target and
for each target category

Trajectory
groups

Target
position*

Target
orientation*

Turn
(�)

Distance
(m)

Duration
(s)

Speed
(m ⁄ s)

HC 11 120 )150 2.90 ± 0.18 2.66 ± 0.29 1.09 ± 0.06
HC 15 060 150 3.17 ± 0.29 2.71 ± 0.39 1.18 ± 0.07
HC 16 150 )120 2.98 ± 0.16 2.65 ± 0.27 1.13 ± 0.07
HC 20 030 120 3.28 ± 0.25 2.68 ± 0.40 1.23 ± 0.09
HC 21 150 )120 3.47 ± 0.14 2.96 ± 0.28 1.18 ± 0.08
HC 25 030 120 3.77 ± 0.20 3.01 ± 0.33 1.26 ± 0.08
HC 26 150 )120 4.02 ± 0.19 3.32 ± 0.29 1.21 ± 0.07
HC 30 030 120 4.23 ± 0.24 3.38 ± 0.43 1.27 ± 0.10
HC 31 150 )120 4.52 ± 0.15 3.68 ± 0.31 1.24 ± 0.08
HC 35 030 120 4.76 ± 0.21 3.67 ± 0.34 1.30 ± 0.08
Mean HC 3.71 ± 0.65 3.07 ± 0.41 1.21 ± 0.07
MC 11 180 )90 2.03 ± 0.08 1.68 ± 0.19 1.21 ± 0.10
MC 20 000 90 2.97 ± 0.13 2.31 ± 0.26 1.29 ± 0.09
MC 21 180 )90 3.11 ± 0.09 2.51 ± 0.26 1.25 ± 0.10
MC 25 000 90 3.40 ± 0.14 2.59 ± 0.27 1.32 ± 0.09
MC 26 180 )90 3.60 ± 0.11 2.86 ± 0.25 1.26 ± 0.09
MC 30 000 90 3.89 ± 0.15 3.01 ± 0.30 1.30 ± 0.08
MC 31 180 )90 4.10 ± 0.12 3.18 ± 0.29 1.30 ± 0.10
MC 35 000 90 4.39 ± 0.15 3.31 ± 0.34 1.34 ± 0.10
MC 36 180 )90 4.60 ± 0.10 3.57 ± 0.30 1.30 ± 0.09
MC 40 000 90 4.87 ± 0.14 3.65 ± 0.30 1.34 ± 0.08
Mean MC 3.70 ± 0.86 2.87 ± 0.61 1.29 ± 0.04
LC 21 210 )60 2.81 ± 0.07 2.09 ± 0.22 1.36 ± 0.10
LC 25 330 60 3.10 ± 0.07 2.25 ± 0.13 1.38 ± 0.06
LC 26 210 )60 3.31 ± 0.04 2.43 ± 0.18 1.37 ± 0.09
LC 30 330 60 3.58 ± 0.07 2.58 ± 0.20 1.39 ± 0.09
LC 36 210 )60 4.33 ± 0.08 3.25 ± 0.31 1.34 ± 0.11
LC 40 330 60 4.55 ± 0.06 3.37 ± 0.27 1.36 ± 0.09
LC 41 210 )60 4.84 ± 0.08 3.62 ± 0.23 1.34 ± 0.07
LC 41 240 )30 4.66 ± 0.03 3.26 ± 0.24 1.44 ± 0.11
LC 45 330 60 5.06 ± 0.08 3.71 ± 0.32 1.37 ± 0.11
LC 46 210 )60 5.36 ± 0.10 3.97 ± 0.33 1.36 ± 0.10
Mean LC 4.16 ± 0.89 3.05 ± 0.66 1.37 ± 0.03
ST 37 270 0 3.97 ± 0.01 2.66 ± 0.16 1.50 ± 0.08
ST 38 270 0 3.96 ± 0.01 2.65 ± 0.12 1.50 ± 0.07
ST 42 270 0 4.47 ± 0.01 2.99 ± 0.24 1.50 ± 0.12
ST 43 270 0 4.47 ± 0.01 3.05 ± 0.21 1.47 ± 0.09
ST 47 270 0 4.98 ± 0.01 3.42 ± 0.20 1.46 ± 0.08
ST 48 270 0 4.98 ± 0.01 3.44 ± 0.26 1.45 ± 0.11
ST 52 270 0 5.97 ± 0.01 4.18 ± 0.15 1.43 ± 0.05
ST 53 270 0 5.98 ± 0.01 4.14 ± 0.25 1.45 ± 0.09
ST 57 270 0 6.45 ± 0.01 4.38 ± 0.25 1.48 ± 0.09
ST 58 270 0 6.46 ± 0.01 4.31 ± 0.22 1.50 ± 0.08
Mean ST 5.17 ± 0.97 3.52 ± 0.68 1.47 ± 0.03

Mean values are ±SD. *See Fig. 1E for details of position and orientation). HC, high curvature; MC, medium curvature; LC, low curvature; ST, quasi-straight
trajectory.
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TD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Nf

XNf

i¼1
xiðtÞ � xavðtÞð Þ2 þ yiðtÞ � yavðtÞð Þ2

� �vuut ð2Þ

The averaged and maximal deviations between the actual trajecto-
ries and the mean trajectory are denoted ATD and MTD, respectively.
This procedure was repeated for each of the 40 tested targets.

Spatial variability of the foot placements

We examined the pattern of foot positions from the beginning of
the task until the subjects reached the goal. To this purpose, we first
detected the successive steps performed by subjects before
computing the variability in the foot locations (xf(t),yf(t)) across
the different repetitions of the same subject. We used heel-strike
and toe-off events for defining steps (Hicheur et al., 2006). These
events were derived from the time course of heel and toe Z-position
profiles and correspond to the local minima of these two signals.
We considered one step as the interval separating two successive
heel strikes of the same foot and computed the foot positions at
these particular events.
A first type of intersubject variability was observed at the level of

the foot placements during the task because of the anatomical
differences between the subjects (as presented before, they had
different heights and this resulted in different step lengths). In the
present analysis, we did not consider the intersubject differences
(which considerably increased the magnitude of the variability; not
presented) in the foot placement but we calculated, for each subject
and for a particular target, the variability of the foot positions across
the different repetitions. This was done in order to compare the pattern
of the successive positions of the feet across trials. Typically, a subject
performed M to M + 1 steps to reach the goal. In order to compare the
spatial position of the feet across trials, we selected the first M steps
and calculated, for each step, the dispersion around the mean foot
position. This was quantified in exactly the same way as described for
the parameters previously presented. However, the measure here was
discrete because we did not integrate the variability continuously
throughout the trajectory but rather measured it at the different step
instants (see Fig. 1B). In order to compare this spatial variability in the
foot positioning with that of the whole-body trajectory, we also
expressed the spatial dispersion of the foot as a percentage of the step
length. The spatial deviation from the mean trajectory presented above
was also expressed, at this stage of the analysis, as a percentage of the
trajectory length.
The foot position variability computed at the step instants is given

by the parameter FD where:

FD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

M

XM
j¼1

xfeetj ðtÞ � xav:feetðtÞ
� �2 þ yfeetjðtÞ � yav:feetðtÞ

� �2� �vuut
ð3Þ

whereM is the number of steps produced by a subject in order to reach
the target, and where (xfeetj(t),(yfeetj(t)) and (xav.feetj(t),yav.feetj(t)) are the
actual and mean foot positions, respectively. We computed, as for the
previous parameters, the averaged and the maximal dispersion of the
foot (left and right) around the mean foot position (AFD and MFD,
respectively). This analysis was performed for each subject and we
then averaged this value across subjects.

Kinematic variability: velocity profiles and turning behaviour

In addition to the spatial variability of the locomotor behaviour
analysed both at the trajectory and step level, we performed a
quantitative examination of the velocity and turning profiles variability
throughout the trajectory, across subjects and trials.

Velocity profiles

The instantaneous tangential velocity of the body was computed

according to the formula vðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_xðtÞ2 þ _yðtÞ2

q
. In order to measure

the variability of the velocity profile among the different subjects and
trials, we computed the mean velocity profile vav(t) and calculated the
deviation from the mean velocity profile VD and its associated
averaged and maximal deviations (AVD and MVD, respectively),
following the same procedure as the one used in equations 1 and 2.
However, here the deviation accounts for a one-dimensional variabil-
ity (Fig. 1C).

Turning behaviour: head, trunk and pelvis rotation in space

Also of interest was the variability of body rotation in space among
subjects and trials. The calculation of the parameter h(t) corresponds to
the angle formed by the shoulder segment and the laboratory X-axis: it
provides a measure of the time course of the body turning behaviour in
a space-fixed reference frame. We computed the parameters BD (body
deviation) and the parameters ABD (average BD) and MBD (maximal
BD) in order to examine the extent to which subjects produced similar
turning behaviours. We performed the same measurements for the
head and pelvis rotation profiles and this basically resulted in similar
qualitative observations. Thus, the measure of variability is provided
for the trunk rotation profile only (Fig. 7E).

Anticipatory head behaviour

During human locomotion when the body turns along a curved path, the
head angle anticipates the instantaneous walking direction. In the
present study, we quantified the variability of this head anticipatory
behaviour across subjects and for the different targets. This was done in
order to address the motor implementation of the trajectory (e.g. how
the head drives the steering behaviour). Indeed, it was found that this
anticipatory head behaviour remains in the blindfolded condition
(Grasso et al., 1996; Prevost et al., 2002; see also Hicheur et al., 2005a
for a review) and that spatial, rather than temporal, cues drive the
anticipatory head motion. In this last study, it was observed that subjects
initiated 90� turns at a constant distance from the point of maximum
curvature rather than at a constant time. Here, we performed a similar
analysis but testing turns of different amplitudes (see Table 1) in order to
examine whether this observation holds across the different tested
targets. We calculated, for all the recorded trajectories (and 40
associated targets), the time and the distance before the turn initiation.
The turn initiation was measured as the instant where the head
maximally deviates from the walking direction provided by the tangent
to the trajectory. We then computed the time s and the distance d at
which this instant occurred. These parameters referred to the instant and
position where the target was reached and are expressed as percentages
of trajectory length or total movement duration. The amplitude of the
maximal head deviation was also calculated for all trajectories.

Statistical analysis

We performed repeated-measurements anova and t-tests with the
Statistica 5.1 software package (Statsoft �) in order to compare the
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variability calculated across the four categories of trajectories. The
mean and maximal deviations from the averaged trajectory were
compared in order to quantify the effect of the trajectory’s curvature
magnitude on the variability of the behaviour. The level of
significance of the tests was set at P < 0.01. A second set of
tests was devoted to comparing the spatial variability expressed
either as percentages of the trajectory length or as percentages of
the step length (see previous section). The variability parameters
were computed for the 720 recorded trajectories (however,
because we lost foot markers in a few trials, the real number of
trajectories included in the different statistical tests was 713) and a
total of 4385 steps were analysed (2161 left steps and 2224 right
steps).

While the trajectories were categorized according to the turn
amplitude (see Table 1), we performed a second series of statistical
tests in which we analysed the effects of the path length and the
door orientation (and its required turn amplitude) as well the
interaction between these two variables (path length · turn ampli-
tude) for all the tested targets, irrespective of the categories
presented in Table 1 (the targets being defined in terms of position
and orientation). To this purpose, we performed a multiple
regression analysis for the three independent variables mentioned
above (path length, turn amplitude and interaction term) across the
713 recorded trajectories. This was done in order to detect potential
significant effects of these independent variables on a particular
dependent variable (e.g. the mean walking speed, the mean
deviation from the average trajectory, the mean deviation from
the mean foot position, the mean deviation from the average
velocity profile, and the maximal head deviation and its spatial and
temporal occurrences; see above).

Results

For all the 40 trajectories we observed very similar geometrical forms
of the locomotor paths and velocity and body rotation profiles across
the different repetitions and subjects. This indicates stereotypy at the
level of the spatial, kinematic and ‘behavioural’ attributes of the
locomotor trajectories. In contrast, we observed much more variability
when the locomotion was analysed at the level of the foot positions in
space.

Spatial stereotypy of the locomotor trajectories

As illustrated in Fig. 2 (for all the tested targets) and in Fig. 3A (for
four typical targets), we observed that the locomotor trajectories
produced by the different subjects across different repetitions were
very similar. We measured the spatial stereotypy as the ATD and
MTD. As illustrated in the histograms presented in Fig. 3B, the ATD
and MTD were < 10 and 17 cm, respectively. We observed that the
larger the turn amplitude, the greater the deviation from the
mean trajectory (F3,531 ¼ 58.15, P < 0.01 for the ATD and
F3,531 ¼ 66.39, P < 0.01 for the MTD). However, it is remarkable
that even for the highly curved trajectories the ATD was � 10 cm.
The results from the multiple regression analysis, performed for all
the tested orientations, confirmed the previous result observed at the
level of the different categories of trajectories. Indeed, the turn
amplitude was found to significantly affect the ATD
(F1,711 ¼ 136.71, P < 0.01). The path length was not found to
significantly affect this parameter (F1,711 ¼ 1.20, P > 0.01) but an
interaction between the path length and door orientation was
observed (F1,711 ¼ 185.86, P < 0.01).

Spatial variability of the foot placement

While all subjects generated stereotyped locomotor trajectories, their
behaviour was much more variable when examined at the level of the
step. Part of this variability can be related to the anatomical differences
between subjects (see Materials and methods).
In the present section, we calculated various parameters of the

stepping behaviour within trials of a single subject (intrasubject
analysis): this was done in order to quantify the spatial dispersion of
the foot positions independently of the anatomical intersubject
differences.
The foot positions at the step instants are presented for all subjects

and for four typical trajectories in Fig. 4A. This figure shows the
contrast between the foot placements and the corresponding trajecto-
ries plotted on the right side of the same figure. The different types of
spatial dispersion of the feet are illustrated in Fig. 5A. In most of the
configurations accounting for this variability we observed that
subjects, when performing different trials of the same target, generated
a similar trajectory but located their feet at different positions. The
global body trajectory in space remained unaffected because every
deviation (from one trial to another) of a given foot towards the right
or the left of the X-axis was compensated for by a displacement of the

Fig. 2. (A–D) Trajectories for all the tested targets, classified into four
categories: high (HC), medium (MC) and low (LC) curvatures and quasi-
straight (ST) trajectory groups. Ten targets were tested for each category. Note
that for a single target position, two orientations might have been tested (see
Table 1 and Fig. 1D for the target positions for which two orientations were
tested).
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position of the contralateral foot in the opposite direction (this was
observed in most of the subjects; see Fig. 5A–D).
Another source of foot positioning variability across repetitions is

due to the fact that subjects alternated between the left and the right
foot for initiating their walk. Even after taking this into account, the

foot positions (independently of whether we considered the left or the
right foot) still exhibited some spatial dispersion across successive
paths (see Fig. 5B and C). The trajectories presented in Fig. 5B thus
combine these two sources of variability (e.g. anatomical differences
and alternating right–left foot). Finally, we observed in a minority of

Fig. 3. (A–D) Actual (grey) and mean (black) trajectories computed for four typical targets. (E) Mean and maximal deviations from the mean trajectory calculated
for each target category.
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cases that stereotypy in the body trajectories in space was associated
with somewhat similar foot positioning across successive paths (see
Fig. 5D).

The quantification of these observations is presented in Fig. 4C, in
which the spatial dispersion of the foot positions across repetitions is
plotted for the four categories of trajectories. The spatial dispersion of
the feet around the mean foot positions was not dependent upon the
type of trajectory (F3,492 ¼ 0.93, P > 0.01 for the ATD and
F3,492 ¼ 3.34, P > 0.01 for the MTD) and ranged between 14 and
22 cm. The results from the multiple regression analysis, performed
for all the tested orientations, confirmed that the variability in the foot
placements was not dependent on the turn amplitude or on the path
length. Indeed, the turn amplitude was not found to significantly affect
the deviation from the mean trajectory (F1,702 ¼ 0.96, P > 0.01; note
that 10 trials were not analysed because of lost foot markers; see
Materials and methods). The path length was also not found to
significantly affect this parameter (F1,702 ¼ 0.10, P > 0.01) and no
interaction between the path length and door orientation was observed
(F1,702 ¼ 0.76, P > 0.01).

These absolute values of foot spatial dispersion obtained at the level
of the step were twice as high as the ATD with respect to the mean

trajectory presented in Fig. 3. This greater variability is even more
evident if these parameters are expressed either as percentages of the
step length or as percentages of the trajectory length (see histograms in
Fig. 5E and F). The statistical significance of these differences is
particularly strong (F1,164 ¼ 647.04, P < 0.01 for the left foot
dispersion around the mean left foot position compared with the
spatial deviation around the mean trajectory, and F1,172 ¼ 711.06,
P < 0.01 for the right foot spatial dispersion compared to the deviation
from the mean trajectory). The same observations hold for the
maximal deviation parameters (F1,164 ¼ 457.03, P < 0.01 for the left
foot spatial dispersion compared to the deviation from the mean
trajectory and F1,172 ¼ 693.89, P < 0.01 for the same comparison
performed with the right foot).
Taken together, these results show that for a simple goal-oriented

task subjects generated very similar trajectories but using different foot
placements: this indicates that the locomotor trajectory is unlikely to
be constructed as a succession of ‘foot reaching’. In the subsequent
sections, we tested whether the motor implementation of the trajectory
(in terms of either how subjects modulated their walking speed or how
they changed their body orientation along the trajectory) presented
stereotyped features across subjects.

Fig. 4. (A) Foot location for four typical targets (same ones as in Fig. 3) for all subjects and trials and (B) corresponding trajectories: note the similarity between
the trajectories and the more variable foot placements. (C) Mean and maximal spatial dispersion (in m) of the foot positions calculated for each target category.

Trajectories in locomotion I: stereotypy 2383

ª The Authors (2007). Journal Compilation ª Federation of European Neuroscience Societies and Blackwell Publishing Ltd
European Journal of Neuroscience, 26, 2376–2390



Kinematic stereotypy

Velocity profiles

In addition to the spatial proximity of the locomotor trajectories
(which corresponds to the static component of the trajectory, that is,
the locomotor path), we observed that the velocity profiles were very
similar across subjects and repetitions. This is illustrated in Fig. 6A–D,

in which are plotted the velocity profiles produced by the different
subjects for the four categories of trajectories. The histograms
quantifying the proximity between these profiles are presented in the
bottom of the same figure (Fig. 6E). In contrast with what was
observed for the spatial attribute of the trajectory, VD (the mean
deviation from the average velocity profile; � 0.10 m ⁄ s) was not
affected by the length or the amount of body turn induced by the

Fig. 5. (A) Foot locations at the step instants (the left and right foot locations are plotted for each of the three consecutive trials) and corresponding trajectories for
a particular subject and four typical targets. Note that the number of steps for completing the task may vary from M to M + 1 for the same target (see Materials and
methods). (B–D) Same plots for three other subjects. Note the similarity between the trajectories and the greater variability of the foot locations in space.
(E) Spatial dispersion of the actual foot locations around the mean foot positions expressed as percentages of the step length. (F) Spatial dispersion of the actual
trajectories around the mean trajectory expressed as percentages of the trajectory length.
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trajectories (F3,531 ¼ 2.33, P > 0.01 for the mean deviation from the
mean velocity profile and F3,531 ¼ 1.50, P > 0.01 for the maximal
deviation). The multiple regression analysis failed to reveal any
interaction effect (turn amplitude · path length) on the prediction of
the MVD (F1,711 ¼ 4.72, P > 0.01). VD significantly varied accord-
ing to the turn amplitude (F1,711 ¼ 6.81, P < 0.01) but was not
significantly affected by the path length (F1,711 ¼ 1.24, P > 0.01).
However, this analysis revealed that the mean walking speed as
well as the minimum of walking speed significantly (P < 0.01) varied
with both the turn amplitude and the path length (the interaction effect
turn amplitude · path length was also significant; P < 0.01).

Turning behaviour: head, trunk and pelvis rotation in space

Although subjects generated similar velocity profiles, the time course
of their turning behaviour could have been different throughout the
trajectory execution. However, as depicted in Fig. 7A–D, the subjects
generated very similar turning behaviours as quantified by the
continuous reorientation of the body in space (head, trunk and pelvis
angles with respect to the X-axis of the laboratory reference frame).
We observed that the variability of the body rotation in space

(calculated from the trunk segment; see Materials and methods) was
< 6� on average and < 15� at most (Fig. 7E).
A statistically significant difference was observed between the four

categories of trajectories (F3,531 ¼ 107.87, P < 0.01 for ATD and
F3,531 ¼ 116.57, P < 0.01 for MTD): the more curved the trajectory
the greater the deviations from the mean body rotation profile
(however, only a 6� difference from the mean body rotation profile
was observed for the most curved trajectory on average). This profile is
similar to the one observed for ATD; although these deviations were
small at the absolute level, they can be explained as follows. The
amplitude of the turn induced by the curved trajectories was of a
decreasing magnitude and reached its minimum for the near-to-straight
walking. By normalizing the deviation with respect to a fixed value
corresponding to the amplitude of the turn induced by the target
orientation (this amplitude was calculated as the angle between the
door and the Y-axis of the laboratory), the pattern of an increasing
variability with an increasing curvature of the trajectory can be replaced
by a deviation from the mean body rotation profile which is comparable
across the four categories of targets. This possible explanation also
holds for the deviation from the actual trajectory. However, we prefer to
report absolute rather than relative measurements because this

Fig. 6. (A–D) Actual (grey) and mean (black) walking velocity profiles computed for four typical targets (same ones as in Fig. 3) (E) Mean and maximal
deviations around the mean velocity profile calculated for each target category.
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describes the way the magnitude of curvature affects the variability of
the locomotor behaviour.
In any case, and for all the trajectories, the very small magnitude of

variability in the computed spatial and kinematic profiles provides
evidence for a stereotyped behaviour during a goal-oriented locomotor
task in humans.

Anticipatory head behaviour: time and distance before turn
initiation

In agreement with previous observations we observed that, for the
trajectories analysed here, the head direction anticipated the actual

walking direction. This was observable both when computing the head
deviation in the trajectory reference frame (Fig. 8A–D) and when
computing the head, trunk and pelvis orientation profiles in the
laboratory reference frame (Fig. 7A–D). In the second case, the head
orientation was systematically in advance of the trunk and pelvis
orientation (in the case of left turns, this is illustrated by the fact that
the curve corresponding to the head orientation is ahead of those of the
trunk and pelvis, and vice versa), confirming that the head drives the
steering of the locomotion.
The amplitude of the maximal head angular deviation is presented

in Fig. 8B. In the case of straight-ahead walking, the maximal head
deviation reached � 10�, which corresponds to the natural oscillations
induced by step alternation. The maximal head deviation (from 23 to

Fig. 7. Actual (A1, B1, C1 and D1) and mean (A2, B2, C2 and D2) body rotation profiles (head, trunk and pelvis rotations in the horizontal plane of the laboratory
reference frame) computed for four typical targets (same ones as in Fig. 3) (C) Mean and maximal deviations around the body rotation profile calculated for each
target category.
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45�) was greater for the more curved trajectories (F3,531 ¼ 2158.6,
P < 0.01). The multiple regression analysis revealed a statistically
significant interaction effect (turn amplitude · path length) on the
prediction of the maximal head deviation (MHD; F1,711 ¼ 1008.27,
P < 0.01). A statistically significant difference was also observed
when individually comparing the different path lengths
(F1,711 ¼ 154.75, P < 0.01) and the different door orientations
(F1,711 ¼ 1421.06, P < 0.01) for all the recorded trajectories.

The instant and the distance at which the maximum of head
deviation occurred also inform about the spatial and temporal
sequencing of the steering (re-orientations in space) of the whole
body. These parameters are expressed either as percentages of the total
movement duration or as percentages of the trajectory length
(Fig. 8B). The greater variability in these parameters was obtained
for the near-to-straight trajectories; this illustrates the fact that no
systematic anticipatory behaviour of the head was observed for this
condition. In contrast, we observed that the maximum head deviation
ranged from � 42 (for the least curved trajectory) to � 36% (for the
most curved trajectory) of the trajectory length and movement
duration.

Interestingly, the variability in these measurements was also a
function of the type of trajectory: the more curved the trajectory the

less the variability (and the more systematic the behaviour). We were
not able to distinguish whether subjects initiated their turn at a specific
spatial position rather than at a specific instant before the target.
Nevertheless, we observed that, on average, the head maximal rotation
always occurred before completing the first half of movement.
Furthermore, our results show that the turn-amplitude parameter
dictated the time and the distance (before the target was reached) at
which the head maximally anticipated (F3,531 ¼ 72.415, P < 0.01
when comparing this maximal head deviation between the different
groups of trajectories). The multiple regression analysis revealed a
statistically significant interaction effect (turn amplitude · path
length) on the prediction of the spatial occurrence of the MHD only
(F1,711 ¼ 12.53, P < 0.01). This was associated with a statistically
significant effect of the turn amplitude (F1,711 ¼ 7.30, P < 0.01) but
no significant effect of the path length was observed (F1,711 ¼ 4.09,
P > 0.01; note that P ¼ 0.04). A different result was observed at the
level of the temporal occurrence of the MHD: the effects of both the
turn amplitude (F1,711 ¼ 1.97, P > 0.01) and of the interaction term
(path length · turn amplitude; F1,711 ¼ 5.16, P > 0.01; note that
P ¼ 0.02) were not significant. In contrast, the path length was found
to significantly affect the temporal occurrence of the MHD
(F1,711 ¼ 7.72, P ¼ 0.01). Taken together, the results of these

Fig. 8. (A–D) Actual (grey) and mean (black) head rotation profiles (trajectory reference frame) computed for four typical targets (same ones as in Fig. 3) (E) Turn
initiation: magnitude of the maximal head deviation MHD calculated for each target category. (F) Time and distance from the target (as percentages of the total
duration and as percentages of the trajectory length, respectively) at which the head maximally deviates (note the greater variability with the decreasing curvature).
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statistical comparisons showed that the turn initiation (as quantified by
the MHD) was a function of both the turn amplitude and the path
length. Furthermore, the path length seemed to mainly affect the
instant where the turn was initiated while the turn amplitude tended to
preferentially affect the distance from the target at which the turn was
initiated.

Discussion

When a subject is asked to go through a distant doorway (starting from
a known position and body orientation in space), he has several
possibilities for planning and executing the movement or the sequence
of movements allowing him to reach this goal. At least two strategies
can be used: one consists of placing his feet at specific positions on the
ground, implementing step-by-step a trajectory of the whole body.
Alternatively, the subject can plan the whole trajectory and implement
different movements allowing him to follow this trajectory. While
these two possibilities are not exclusive and might be combined in
some way (for instance in the presence of an unexpected obstacle) we
observed that, in a simple goal-oriented task, on repeated trials
subjects reproduced very similar trajectories, albeit using much more
variable spatial foot positioning (this greater variability was evident
from both the intersubjects and intrasubject analysis). The observation
of a stereotypy of the locomotor trajectories is particularly striking
because locomotion mobilizes all body segments. This results, at a
theoretical level, in a greater dimensionality of the motor system and
the corresponding number of motor solutions (redundancy) compared
to the motor apparatus involved in the generation of arm movements.
Indeed, we observed that for reaching the same target the subjects

did not position their feet at the same positions in space. In contrast,
the paths they followed were very similar in terms of both spatial and
kinematic variability.

The spatial control of locomotion: path stereotypy and step
variability

We believe that these observations are the first reported for human
locomotion and are partly reminiscent of the results published more
than 20 years ago regarding hand reaching movements (e.g. Morasso,
1981). However, locomotion is a special case because it supposes the
integration of two levels of understanding and description of the
movement. The first is related to the stepping level and is not
necessarily coincident with the second one, which is related to the task
for which it is necessary to consider the locomotor trajectory as a
whole. While our results show that it is unlikely that locomotor
trajectories are constructed as succession of ‘foot pointings’ we
observed, in agreement with the concept of dimensionality and
redundancy evoked in the Introduction, that various combinations of
foot placement (originating from different leg movements) are
performed by subjects in order to reach the target. However, it should
be noted that in avoidance tasks where the foot placement was
constrained it was shown that minimal displacement of the foot from
its normal landing spot was validated as an important factor for
selecting alternate foot placement (Patla et al., 1999). In contrast, in
our simpler and less constrained environment the kinematic invariance
observed at the level of the trajectory might be taken as evidence for a
spatial control of locomotion where the spatial accuracy of the body
displacement in the environment is explicitly specified in the motor
planning and execution. While this statement raises the question of
which control variable can be used at this stage, we demonstrate here
that the control of the trajectory is expressed in terms of space-related

displacement of the body rather than foot-related displacement. In a
similar vein, based on the observation that a significantly greater
variability was observed in the joint angular displacements than in the
hand trajectories (for different tasks), Morasso (1981) proposed the
hypothesis that the central command is formulated in terms of
trajectories of the hand in space. In our case, the different combina-
tions of foot displacements may also be associated with different
motor strategies allowing the steering of the body along the planned
trajectory of the body in space.

Stereotypy in the steering behaviour: a top-down scheme for the
control of locomotion

It must be emphasized that the stereotypy of the locomotor behaviour
reported in this study not only concerns the spatial aspect (the
geometry of the locomotor path) but also characterizes the temporal
component of the locomotor trajectory. Indeed, the velocity profiles as
well as the body turning profiles were also very similar across subjects
throughout the trajectory. This means that not only did the subjects
follow similar paths but they also regulated their steering behaviour
along the trajectory in a similar manner. This is not contradictory with
the observation of the variable foot positioning because the motor
behaviour here is considered at the trajectory level. However, as
revealed by the multiple regression analysis, the individual and
combined effects of the door orientation (and its required turn
amplitude) and of the door position (and its associated path length) on
the spatial variability of the trajectories and on the velocity profiles
should be noted here. While the variability of these parameters is
< 20cm for the MTD and < 0.10 m ⁄ s for the MVD for all the tested
targets, the observation of an increasing variability with the turn
amplitude and the path length may restrict our observations (of
stereotyped trajectories and velocity profiles) to a particular size of the
locomotor space. Further experiments might help in testing how
stereotyped would be trajectories generated in larger environments.
For straight trajectories, the velocity was nearly constant while it

decreased with the increasing magnitude of the turn. An interesting
observation here is that the velocity variations were very similar across
subjects: subjects could have abruptly decelerated their walking
velocity when negotiating the turn or they could have reduced their
velocity early before entering the turn, then maintaining a constant
low velocity during the turn. However, they all decreased their
velocity continuously and progressively, resulting in smooth locomo-
tor trajectories (this aspect is studied at the theoretical level in the
companion paper).
The analysis of the steering behaviour confirmed the initiatory role

of the head for the steering behaviour: a top-down temporal
sequencing of the body reorientation, beginning first with the head
then followed by the trunk and the pelvis, was observed. While this
organization could not be observed for the nearly straight trajectories,
the anticipatory deviation of the head towards the future walking
direction was found to be a function of the magnitude of the turn; the
greater the turn, the larger the head deviation and the later (and the
closer to the target) occurred the maximum of head deviation.
However, for this last parameter we were not able to distinguish
between the spatial and ⁄ or temporal cues that drive the head deviation
but we did observe that there was a combined effect of the turn
amplitude and the path length on the spatial and temporal occurrences
of the maximal head deviation. As mentioned earlier, it is unlikely that
the formation of the whole-body trajectories would emerge from a
planning strategy based on the foot positioning, given the variability
of the latter parameter. Thus, the body displacement in space might be
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expressed, at the planning level, either by the head or the trunk
movement in space.

As the head contains both the vestibular and visual systems, and is
linked to the remaining parts of the body by the neck which contains
proprioceptive sensors, the head movement in space might be a critical
variable for the steering of locomotion. This has been formalized by
Imai et al. (2001) as the gravito-inertial acceleration (GIA) vector and
it corresponds to the sum of linear accelerations acting on the head.
These authors showed that orienting mechanisms direct the eyes, head
and trunk movements to tilts of the GIA in space during curved
walking. In addition to these orienting mechanisms, the stabilization of
gaze through vestibulo-ocular and vestibulocollic reflexes (resulting in
a stabilization of the visual scene) might facilitate the smooth changes
in the body reorientations in space (as observable in Fig. 7A–C) from
the turning profiles where continuous, rather than abrupt, direction
changes characterize the steering behaviour).

Independently of the availability of sensory information, spatial
memory abilities might also significantly contribute to the control of
the locomotor trajectories. Here, we restricted our experimental
protocol to the simplest goal-oriented task and we did not manipulate
either sensory information or spatial memory, so it would be
interesting to further examine their contribution to the stereotyped
behaviour of subjects in a future study where perturbations might be
applied to the displacement of the subjects. Taken together, all these
observations confirm that the head serves as a mobile reference
frame for the spatial control of the whole-body displacement in space
(see Pozzo et al., 1990 and Hicheur et al., 2005a for a review).

Common principles may govern the formation of both hand and
locomotor trajectories

Locomotion, which involves all the body limbs, is part of the basic
motor repertoire of humans. However, the dimensionality of the
locomotor system is higher than that of the motor system responsible
for the hand movement, making it difficult to define the conceptual
link between the system that controls the hand movement and that
which controls the whole-body movement.

Recently, however, Papaxanthis et al. (2003) showed, by studying
upward and backward movements performed in the sagittal plane, that
similar planning strategies for whole-body and arm movements might
be implemented by human subjects. While they discussed their
observations with respect to how gravitoinertial forces are integrated
in the elaboration of the motor command for hand and whole-body
movements, here we would like to discuss possible similarities in the
spatial control of hand and whole-body movements. Indeed, we
studied a spatially oriented locomotor task and suggested an analogy
with hand reaching tasks. For hand movements, the possibility that the
control of movement is realised according to the end-effector
coordinates in space was proposed both in experimental observations
and theoretical studies (see Introduction). For instance, it was
proposed that the CNS learns reaching movements by minimizing
the variance of the final end-effector position (Harris & Wolpert,
1998). At first glance, it would be inappropriate to speculate that
locomotion is controlled on the basis of a final position of the body in
space; indeed, because locomotion is most often performed in
temporal and spatial scales greater than those of hand movements,
the formation of the locomotor trajectory could well be planned in a
piecewise manner.

This possibility of segmenting the planning of the locomotor
trajectories in a sequential manner has also been proposed by Viviani
& Cenzato (1985) for hand drawing movements. The authors based

this interpretation on the observation that one parameter in the
velocity–curvature relationships (the so-called one-third power law),
the velocity gain factor, was modulated at particular points separating
geometrically distinct parts of the trajectory. We recently observed
such modulation when studying human locomotion along predefined
complex trajectories (Hicheur et al., 2005b), suggesting that the
control strategy or a number of the control parameters of the body
displacement in space are tuned according to some spatial criterion
which still remains to be identified. In our study, the possibility that a
segmentation process is present might be associated with the
observation that subjects first walked along a straight line before
initiating a turn in order to reach the goal. However, for a given target
we were unable to detect whether the subjects initiated their turn at a
specific (invariant) distance or time before reaching the target, so the
hypothesis of a segmented control of locomotion cannot be supported
using these parameters. It should be noted that, even for hand
movements, this hypothesis has been considerably challenged recently
(Richardson & Flash, 2002).
In our opinion, the main reason that could explain the analogy

between the planning of either hand or whole-body trajectories is that,
during motor learning, the CNS plans and regulates the movement by
choosing optimal solutions. This possibility, which has been amply
tested in many experimental situations and theoretically formalized for
arm reaching movements (see Todorov, 2004 for a recent review), may
be studied in a systematic way in animal and human locomotion (the
topic of the companion paper).
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Abstract

Despite the theoretically infinite number of possible trajectories a human may take to reach a distant doorway, we observed that
locomotor trajectories corresponding to this task were actually stereotyped, both at the geometric and the kinematic levels. In this
paper, we propose a computational model for the formation of human locomotor trajectories. Our model is adapted from smoothness
maximization models that have been studied in the context of hand trajectory generation. The trajectories predicted by our model are
very similar to the experimentally recorded ones. We discuss the theoretical implications of this result in the context of movement
planning and control in humans. In particular, this result supports the hypothesis that common principles, such as smoothness
maximization, may govern the generation of very different types of movements (in this case, hand movements and whole-body
movements).

Introduction

The existence of invariant properties of biological motion has been
reported in many experimental studies, in particular those related to
arm movements in animals and humans (Jordan & Wolpert, 1999). For
instance, in the case of reaching and drawing experiments, stereotyped
behaviours in terms of velocity profiles and smoothness of the hand
trajectories in space are reported in the literature (Morasso, 1981;
Atkeson & Hollerbach, 1985). This stereotypy is particularly striking
in light of the theoretically infinite number of motor solutions to reach
a spatial target. The existence of such motor invariants and stereotypy
were proposed to be the by-product of control laws characteristic of
biological systems. As a consequence, computational approaches have
been developed over the past 20 years in order to formulate the
principles underlying the motor control.

In the companion paper (Hicheur et al., 2007), we demonstrated
for the first time that locomotor trajectories produced by humans in
a simple goal-oriented task were also highly stereotyped. We also
observed that this stereotypy of whole-body trajectories contrasted
with a much greater variability in the feet placement. This
observation indicates that goal-oriented locomotion should be
considered not only at the level of the steps but also at the level
of the whole trajectory. It is then necessary to develop a
computational approach to provide some elements of understanding
of the mechanisms underlying the generation of locomotor trajec-
tories.

Optimal control approaches

This paper addresses this problem within the framework of optimi-
zation theory. The optimal nature of locomotor behaviour was first
investigated from a biomechanical viewpoint at the level of the step
formation. For instance, it has been shown that humans choose
walking or running so as to minimize the metabolic energy cost at
their current speed, as measured by their consumption of oxygen
(Alexander, 1989).
Optimization theory is an appealing framework as it is related to the

possibility that the sensorimotor system is the product of processes
such as evolution, development, learning or adaptation that continu-
ously act to improve behavioural performance (Todorov, 2004). In
practice, optimality principles have been successful in modelling a
great variety of biological movements.
For instance, observing that skilled movements are generally

smooth and graceful, Hogan (1984) proposed a minimum jerk
principle to predict qualitative and quantitative features of single-joint
forearm movements. This is motivated by the assumption that
minimizing the squared jerk (jerk is mathematically defined as the
third-order derivative of the position) may be equivalent to maximiz-
ing smoothness. Flash & Hogan (1985) generalized this model to the
case of multijoint motion. They showed in particular that planar
trajectories (x(t),y(t)) that minimize the following squared jerk cost:

Z1
0

d3x
dt3

� �2

þ d3y
dt3

� �2
 !

dt ð1Þ

displayed qualitative and quantitative similarities with experimentally
recorded hand trajectories.
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In the above approach, the optimal trajectory is determined only by
the kinematics of the hand and is thus independent of the physical
system that generates the movement. Alternatively, Uno et al. (1989)
proposed a minimum torque change model that takes into account
dynamic properties of the arm. They modelled the arm as a two-joint
manipulator controlled by torques applied at the joints, and showed
that the trajectories that minimize the total squared time derivatives of
the torques displayed some features of actual hand trajectories.
Recently, a number of studies have emphasized the importance of

biological noise present in the motor system at many levels, ranging
from the neural commands to the muscular apparatus. These studies
presented computational approaches that involve a stochastic compo-
nent and were successful in predicting several properties of human
movements (see for instance the minimum variance model of Harris &
Wolpert, 1998, or the optimal stochastic feedback control framework
of Todorov & Jordan, 2002).

Minimum squared derivative (MSD) principles

Qualitatively, a trajectory is smooth if there are no abrupt variations in
time. This implies that higher-order time derivatives of the position
have low absolute values. While earlier studies (Hogan, 1984; Flash &
Hogan, 1985) mostly focused on the squared jerk cost (see above),
other costs such as the squared acceleration or the squared snap (snap
is the time derivative of jerk) can also be considered. More generally,
the nth-order MSD cost is given by:

Z1
0

dnx
dtn

� �2

þ dny
dtn

� �2
 !

dt ð2Þ

The case n ¼ 1 corresponds to the minimum velocity cost, n ¼ 2 to
minimum acceleration, n ¼ 3 to minimum jerk and n ¼ 4 to
minimum snap, etc.
Richardson & Flash (2002) conducted a comparative study in which

they examined the capacities of MSD principles of different orders to
predict hand trajectories. In particular, they found that 3rd- and 4th-
order MSD principles (minimum jerk and minimum snap) usually
performed better than those of other orders. In addition to quantitative
fit, the trajectories predicted by 3rd- and 4th-order MSD principles
displayed typical qualitative characteristics of human hand trajecto-
ries: smoothness of the trajectory, straight hand paths and bell-shaped
velocity profiles in reaching tasks, inverse relationship between
velocity and curvature in drawing tasks (the so-called two-thirds
power law: Lacquaniti et al., 1983), etc.
At the trajectory level, human locomotion seems to share some of

these qualitative features. Indeed, one can observe that human
locomotor trajectories are generally smooth. Straight paths are also
generated for reaching a spatial goal in an environment free of
obstacles, provided that the initial body orientation is compatible
with such a path. Finally, humans tend to decelerate in the curved
parts and accelerate in the straighter parts of a trajectory. This last
observation was confirmed by a recent comparative study (Hicheur
et al., 2005) where the authors quantitatively examined the
relationship between velocity and curvature in locomotor tasks
where subjects had to walk along complex shapes. While the two-
thirds exponent was not observed for these shapes (as opposed to the
case of hand movements: Viviani & Flash, 1995), the inverse
variations of velocity and curvature could be reproduced by multiple
power laws whose exponents depended on the shape. This variability
of the exponents suggested that the power laws relating the velocity

to curvature in human locomotion could be by-products of more
general principles, for instance the optimality principles mentioned
above.
Taken together, these observations raise the possibility that MSD

principles underlie the generation of human locomotion trajectories.
If verified, this would suggest that the same set of principles
account for different types of movements (hand movements and
locomotor movements in our case) and would provide interesting
theoretical insights into the understanding of the functional
organization of the motor system in general. In order to test this
hypothesis, we designed an experiment in which subjects had to
produce a wide variety of locomotor trajectories. We then compared
the experimentally recorded trajectories with the optimal trajectories
predicted by four smoothness maximization models derived from
the MSD approach.

Materials and methods

Experimental data

The experimental protocol is presented in detail in the companion
paper. Subjects gave their informed consent prior to their inclusion in
the study. Experiments conformed to the Code of Ethics of the
Declaration of Helsinki. Briefly, we designed a goal-oriented
locomotor task similar to a ‘walking through a distant doorway’
situation in order to observe the formation of relatively complex
locomotor trajectories. We asked the subjects to walk along the
laboratory-based Y-axis for about one meter before reaching the
actual initial position (the origin (0,0) of the laboratory’s reference
frame), so that their walking direction was approximately orthogonal
to the X-axis when they reached the point (0,0). They then had to
walk towards and through a distant doorway (also designated below
as ‘the target’) located at various positions and with various
orientations (see Fig. 1). The doorway was � 1 m wide, so that the
subjects had no difficulty going through it at normal walking speeds.
Between the point (0,0) and the target, no specific instructions were
provided to the subjects relative to the path to follow. The subjects
were also free to choose their walking speed over the whole
trajectory.
In order to facilitate the analysis, we classified the 40 tested

targets in four categories according to the different turning magni-
tudes induced by the door orientations. The four categories were: HC
(high curvature), MC (medium curvature), LC (low curvature) and
ST (straight; see Fig. 2 for an illustration of four typical trajectories
recorded in one subject). The experimental database used for our
study was composed of 709 trajectories (we had to eliminate 11
faulty trials out of the 40 targets · 6 subjects · 3 trials ¼ 720
trials). The analysis was performed on the time interval separating
the instant t0 when subjects crossed the X-axis and the instant t1
when they reached the centre of the door, according to the task
requirements (see Fig. 2). The trajectory was then time-rescaled so
that t0 ¼ 0 and t1 ¼ 1.

Modelling approach

As mentioned in the introduction, MSD principles have proved to be
particularly relevant for modelling hand movements. In order to test
how such smoothness-based principles can predict locomotor trajec-
tories, we constructed mathematically MSD trajectories as follows.
For a given target, we first extracted a set of 12 parameters (initial

and final positions, velocities and accelerations for the x and y
components) from the experimental data:
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x0 ¼
1

N

XN

1

xið0Þ vx
0 ¼

1

N

XN

1

_xið0Þ ax
0 ¼

1

N

XN

1

€xið0Þ ð3Þ

and similarly for x1; vx
1; a

x
1; y0; v

y
0; a

y
0; y1; v

y
1; a

y
1(N corresponds to the

number of trajectories recorded for this target).
Some of these 12 parameters were task-related and thus were not

related to any spontaneous strategy. Indeed, according to the
experimental protocol, the initial and final positions (x0, y0, x1, y1)
corresponded, respectively, to the origin of the laboratory’s reference
frame and to the centre of the door. Similarly, the initial movement
direction was imposed as parallel to the Y-axis while the final
movement direction was constrained by the orientation of the door. As
subjects were carefully monitored during the session, the extracted
values of these parameters were very close to the imposed ones: over
the 709 trajectories, the average distance (± SD) between the actual
and the imposed initial positions was 3.0 ± 2.5 cm, the average
distance between the actual and the imposed final positions was
3.2 ± 2.2 cm, the average absolute difference between the actual and
the imposed initial orientations was 9.6 ± 7.9� and the average
absolute difference between the actual and the imposed final
orientations was 5.9 ± 4.4�. Thus, our choice to extract these values
from the data rather than to compute them a priori from the task was
only motivated by convenience.
In contrast, initial and final accelerations (ax

0; a
y
0; a

x
1; a

y
1) and initial

and final speeds (the norms of the velocity vectors) were not imposed
by the task and thus contained information about the subjects’
movement strategies or their personal preferences. Considering these
parameters as free parameters in the optimization procedure yielded
close-to-zero values, which was not consistent with the observations.
On the other hand, estimating them by an independent method would
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be complicated and not relevant with respect to our objectives (see
Discussion for more details on the issue of putting experimental values
into the models).
At a computational level, as our objective consisted of predicting

the whole trajectory kinematics (path and velocity profile), these
values actually contained relatively little information. In contrast, the
original two-thirds power law (Lacquaniti et al., 1983), the modified
two-thirds power law (Viviani & Schneider, 1991) or the constrained
minimum jerk model (Todorov & Jordan, 1998) aimed at predicting
only the velocity profile. Moreover, these models required as inputs
the entire recorded path in conjunction with either the end-point
velocities and accelerations (for the constrained minimum jerk model)
or the entire velocity profile (for the modified two-thirds power law).
However, it should be recognized that some of the trajectories studied
in the references cited above were rather more complex than ours.
It should also be noted that the movement duration was implicitly

extracted in the time-rescaling procedure.
Next, we derived the planar trajectory (x(t),y(t)) that minimizes the

cost given in equation 2 and verifies the following 12 boundary
conditions:

xð0Þ ¼ x0; xð1Þ ¼ x1; _xð0Þ ¼ vx
0; _xð1Þ ¼ vx

1;€xð0Þ ¼ ax
0;€xð1Þ ¼ ax

1

yð0Þ ¼ y0; yð1Þ ¼ y1; _yð0Þ ¼ vy
0; _yð1Þ ¼ vy

1; €yð0Þ ¼ ay
0; €yð1Þ ¼ ay

1

ð4Þ

In usual MSD approaches, the number of boundary conditions
depends on the order of the derivative that is minimized. For instance,
the minimum velocity, minimum acceleration, minimum jerk and
minimum snap models require, respectively, 4, 8, 12 and 16 boundary
conditions. However, these choices are arbitrary and are not motivated
by any theoretical consideration (see Harris, 2004 and Harris &
Harwood, 2005 for a detailed discussion of the issue of boundary
conditions in models of biological movements). They introduce
furthermore a bias in favour of the higher-order MSDs. In our
comparative approach, we chose to use the same set of boundary
conditions given by equation 4 in all four models in order not to
favour any particular model. The mathematical details for the
derivation of the MSD trajectories are given in the Appendix.

Performance of the models

We performed a series of quantitative comparisons between the actual
and the predicted trajectories either at the global level of the trajectory
or at the more detailed level of the velocity profile.
In the companion paper, similar comparisons were conducted in

order to assess the stereotyped behaviour of actual trajectories
corresponding to a single task. For this, the average trajectory was
compared to actual trajectories, resulting in several measurements [e.g.
average and maximal trajectory deviations (ATD and MTD) and
average and maximal velocity deviations (AVD and MVD)].
Here, we were interested in the predictive capacities of our models.

We thus compared the average trajectory corresponding to a given task
to the trajectories predicted by our models for the same task. This was
reasonable as actual trajectories were stereotyped and, consequently,
very similar to the average trajectory.

Trajectory prediction

In order to quantify the prediction error at the level of the trajectory,
we computed, for each target, the instantaneous trajectory error (TEc)

of the predicted trajectory (xc(t),yc(t)) (replace ‘c’ with ‘v’ for
minimum velocity, ‘a’ for minimum acceleration, ‘j’ for minimum jerk
and ‘s’ for minimum snap) with respect to the average (av) trajectory
(xav(t),yav(t)) as:

TEcðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxcðtÞ � xavðtÞÞ2 þ ðycðtÞ � yavðtÞÞ2

q
ð5Þ

We then defined the average and maximal trajectory errors (ATEc and
MTEc) over the whole trajectory:

ATEc ¼
Z1
0

TEcðtÞdt ð6Þ

MTEc ¼ max
0�t�1

TEcðtÞ ð7Þ

Note that ATEc and MTEc take into account the instantaneous
errors at all time instants. They are therefore sensitive to
dissimilarities at both the geometric level and at the velocity
profile level.
For each category X (X ¼ HC, MC, LC, ST), the average ATEc and

MTEc over all targets belonging to this category were denoted,
respectively, ATEX

c and MTEX
c :

For a graphical examination of the models’ performances, we also
plotted in Figs 3–6 the variance ellipses calculated by principal
component analysis. Intuitively, the variance ellipse at time t is centred
at (xav(t),yav(t)) and its orientation and magnitude indicate how the
(xi(t),yi(t)) (i ¼ 1…N, where N corresponds to the number of
trajectories recorded for this target) are distributed around (xav(t),
yav(t)). Note that r1(t)

2 + r2(t)
2 ¼ TD(t)2 where r1 and r2 are the

lengths of the ellipse’s semi major and semi minor axes and TD is the
trajectory deviation defined in the companion paper.

Velocity profile prediction

In contrast to the companion paper, the goal here is to compare the
velocity profiles in terms of their variations in time rather than in terms
of their absolute variabilities (which are due in part to the variability of
the walking tempos in different subjects; these have been measured in
the companion paper).
For a given trajectory (xi(t),yi(t)), we thus considered the normalized

velocity profile defined as:

viðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_xiðtÞ2 þ _yiðtÞ

2
q

R1
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_xiðuÞ2 þ _yiðuÞ

2du
q ð8Þ

The average normalized velocity profile and the instantaneous
normalized velocity deviation (nVD) were then defined as:

vavðtÞ ¼
1

N

XN

1

viðtÞ ð9Þ

nVDðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N � 1

XN

1

ðviðtÞ � vavðtÞÞ2
vuut ð10Þ

Finally, we defined the Average and Maximal normalized Velocity
Deviations (AnVD and MnVD) over the trajectory as:
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AnVD ¼
Z1
0

nVDðtÞdt ð11Þ

MnVD ¼ max
0�t�1

nVDðtÞ ð12Þ

Next, we computed the normalized velocity profile of the predicted
trajectory (xc(t),yc(t)) as:

vcðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_xcðtÞ2 þ _ycðtÞ

2
q

R1
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_xcðuÞ2 þ _ycðuÞ

2du
q ð13Þ

Finally, average and maximal normalized velocity errors (AnVEc and
MnVEc) over the whole trajectory were computed as:
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Fig. 3. Prediction of the minimum velocity model for four representative trajectories. (A) Geometric paths of the average (solid lines) and the predicted (dashed
lines) trajectories. The variance ellipses (in grey) are also plotted in order to show the spatial variability around the average trajectory at every time instant (see
Materials and methods). (B) Normalized velocity profiles of the average (solid lines) and of the predicted (dashed lines) trajectory. The standard deviation around
the average velocity profile is shaded in grey. The dark grey horizontal line shows the mean value (in time) of the normalized velocity profiles.
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AnVEc ¼
Z1
0

vcðtÞ � vavðtÞj jdt ð14Þ

MnVEc ¼ max
0�t�1

vcðtÞ � vavðtÞj j ð15Þ

For each category X (X ¼ HC, MC, LC, ST), the average AnVEc and
MnVEc over all targets belonging this category were denoted,
respectively, AnVEX

c and MnVEX
c

Statistical analysis

We performed repeated-measurements anova with the Statistica 5.1
software package (Statsoft �) in order to compare statistically the
performance of the models. More specifically, given two models, we
compared their maximum trajectory errors in order to assess whether
one model was significantly better than the other. We also tested
whether the maximum trajectory errors of a model were significantly
smaller or greater than the corresponding maximum trajectory
deviations (the experimental variabilities).
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Fig. 4. Prediction of the minimum acceleration model for four representative trajectories. For details, see legend of Fig. 3.
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Results

Qualitative examination

Minimum velocity model

In Fig. 3, we plotted the predictions of the minimum velocity model
for four representative targets, one for each category. We observed that
the geometric paths predicted by this model tended to be the
straightest possible. Thus, the predicted paths for the targets of
category STwere accurate. However, for the targets that required some
amount of curvature (HC, MC and LC), the predicted paths were
strongly bent towards the interior of the curve, resulting in a big
inaccuracy around the middle of the path.

Minimum acceleration model

Predictions of the minimum acceleration model are presented in Fig. 4.
Qualitatively, for categories HC, MC and LC, the geometric paths
predicted by this model were much more accurate than those predicted
by the minimum velocity model. However, the predictions were still
not satisfactory for categories HC and MC, which included the most
curved trajectories. Indeed, as in the minimum velocity model, the
predicted paths for these categories tended to be straighter than the
actual paths. More specifically, in the regions of relatively high
curvatures, the predicted paths fell outside the grey area of the
variance ellipses, implying that their distances to the average paths
were greater than the experimental variability in these regions.
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Fig. 5. Prediction of the minimum jerk model for four representative trajectories. For details, see legend of Fig. 3.
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The comparison of the velocity profiles only makes sense when the
geometric paths are similar, i.e. in the case of category ST for the
minimum velocity model and in the case of categories LC and ST for
the minimum acceleration model. In these cases, the average velocity
profiles were almost constant in time, which was well reproduced by
both models.

Minimum jerk and minimum snap models

The predictions of these models are presented in Figs 5 and 6,
respectively. We first observed that the trajectories predicted by the

two models were very similar for the four representative targets. In
contrast to the two previous models, the geometric paths predicted by
these two models for the HC and MC trajectories are smoothly curved
and bear impressive resemblance with the average ones. As an
illustration, the predicted paths always lay inside the grey area of the
variance ellipses, implying that the distance between the predicted and
the average paths was smaller than the experimental variability at
every time instant.
At the level of the velocity profiles, we noted that the average

velocity profiles were approximately constant in time for categories
LC and ST (the only minor variations were due to the step-level
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Fig. 6. Prediction of the minimum snap model for four representative trajectories. For details, see legend of Fig. 3.
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oscillations). This was well reproduced by both models. For categories
HC and MC, in the average velocity profile, the velocity decreased and
became minimal around t ¼ 0.7 (where t is time scaled from 0 to 1)
before increasing again. This variation of the velocity was related to
the variation of curvature in the corresponding geometric paths. The
inverse relationship in human locomotion has been experimentally
observed by Vieilledent et al. (2001) and by Hicheur et al. (2005). The
predicted velocity profiles successfully captured this behaviour,
although with some slight overshoot. For instance, for category HC
the velocity profile of the minimum jerk trajectory had almost the
same global behaviour as the average one: both decreased and became
minimal around t ¼ 0.7 before increasing again. However the
variations in the predicted profile were slightly larger than the
variations in the average profile.

Quantitative examination

We next proceed to a more precise, quantitative comparison between
average and predicted trajectories.

Trajectory errors

The average and maximal trajectory errors as defined in Methods are
plotted in Fig. 7. As noted above, the minimum velocity model (dark
grey bars) produced acceptable predictions only in the case of straight
trajectories (category ST). As soon as the targets imposed some
amount of trajectory curvature (categories LC, MC and HC), the
minimum velocity trajectories differed completely from the actual
trajectories.

The minimum acceleration principle (medium grey bars) performed
somewhat better but for categories HC and MC it was still not
satisfactory. For example, the average maximal prediction error over
the 20 targets belonging to these categories, MTEHC þ MC

a (14.7 cm),
was not significantly different (F1,19 ¼ 0.27, P > 0.01) from the
corresponding experimental variability (black bars) MTDHC+MC

(15.1 cm).
In contrast, minimum jerk (light grey bars) and minimum snap

(white bars) principles provided strikingly good predictions. In fact, as
noted above, the predictions of minimum jerk and minimum snap
models were mostly similar. As a matter of fact, the largest difference
between the two models was observed for target 31–150 (category
HC), where the maximal distance between the two predicted

trajectories was 3.6 cm. Over the 20 targets of categories HC and
MC, the average (± SD) maximal distance between minimum jerk and
minimum snap trajectories was only 2.1 cm (± 0.6 cm).
Even in the case of the highly curved trajectories of category HC, the

distance between the average trajectory and the minimum jerk
trajectory was < 13 cm over the whole trajectory (MTEHC

j ¼ 12.7 cm).
As the average trajectory length for this category was 3.7 m, this
corresponds to a maximal error of only 3.4%. Moreover, the prediction
errors of the minimum jerk and minimum snap models were smaller
than the experimental variability. For categories HC and MC,
MTEHC þ MC

j (10.3 cm) was significantly smaller (F1,19 ¼ 20.7,
P < 0.01) than MTDHC+MC (15.1 cm). This result is related to our
previous qualitative observation that the paths predicted by thesemodels
always lay inside the variance ellipses.
Next, the respective performances of minimum acceleration,

minimum jerk and minimum snap models were compared over the
20 targets belonging to categories HC and MC (we observed that the
three models yielded similar performance for the straight and close-to-
straight trajectories ST and LC). The average maximal prediction error
over these targets were MTEHC þ MC

a ,14.7 cm; MTEHC þ MC
j ,10.3 cm;

and MTEHC þ MC
s ,10.7 cm. The difference between the minimum

acceleration and minimum jerk average MTEs was statistically
significant (F1,19 ¼ 29.10, P < 0.01). The difference between the
minimum jerk and minimum snap average MTEs was also significant,
albeit to a lesser extent (F1,19 ¼ 9.80, P < 0.01).
The superiority of minimum jerk and minimum snap models over

minimum acceleration and minimum velocity models can be explained
as follows. Minimizing the mean squared velocity cost is almost
equivalent to finding the shortest path, i.e. the straightest path in
Euclidean geometry, that satisfies the boundary conditions. This
prevents the minimum velocity model from predicting accurate
trajectories as soon as the targets required some amount of curvature.
As for the minimum acceleration model, the mean squared acceler-
ation cost penalises, by definition, large variations in time of the
velocity vector. This is not consistent with the experimental observa-
tion of significant variations in the velocity vector (in particular, the
variations in the orientation of this vector) around the regions of high
curvature in MC and HC trajectories. In contrast, minimum jerk and
minimum snap allow more flexibility for the variations in the velocity
vector and are thus more capable of generating smoothly curved
trajectories.

Fig. 7. (A) Average and (B) maximal trajectory errors (ATE and MTE; the suffixes v, a, s, j refer, respectively, to velocity, acceleration, jerk and snap) in
centimetres: dark grey bars for minimum velocity, medium grey bars for minimum acceleration, light grey bars for minimum jerk and white bars for minimum snap,
averaged over targets corresponding to the same category. For comparison, the average and maximal trajectory deviations (ATD and MTD) are also plotted (black
bars).
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Velocity profile errors

The average and maximal normalized velocity errors as defined
in Materials and Methods are plotted in Fig. 8. These errors in terms
of the velocity profile followed the same tendency as those in terms of
trajectory kinematics: in all categories, the velocity profiles of mini-
mum jerk (light grey bars) and minimum snap (white bars) trajectories
deviated very slightly from the average velocity profiles. Even for
category HC, the average normalized velocity error was only 6% (of
the average actual velocity) while the maximal normalized velocity
error over the trajectory was < 12%. In absolute terms, these errors
were close to the same order of magnitude as the experimental
variability (black bars).

Discussion

Despite the great number of possible trajectories to reach a distant
doorway, humans exhibit stereotyped behaviour in terms of both path
geometry and trajectory kinematics (see companion paper). This
suggests that some underlying principles may govern the formation of
whole-body trajectories in space. In the present study, we developed a
comparative approach in which we tested four optimization models
already studied in the literature in the context of hand trajectory
generation (Richardson & Flash, 2002). To assess their validity, we
applied these models to a wide range of locomotor tasks involving
trajectories of various lengths and curvatures. Through qualitative and
quantitative examinations, we established that two out of the four
models, namely the minimum jerk and the minimum snap models,
provided predictions remarkably close to actual trajectories, at both the
geometric and the kinematic levels.

Predictive power of the models

As pointed out by Todorov & Jordan (2002), the predictive power of a
model is not only measured by how well it fits the experimental data.
At least two other characteristics must be taken into account. The first
characteristic is the quantity of information that needs to be extracted
from the experimental data. Obviously, the less information extracted
from the data, the greater the challenge for the model. In order to
predict the velocity profiles of curved hand movements, the
constrained minimum jerk model requires, as inputs, the entire

movement path and the initial and final velocities (Todorov & Jordan,
2002). Viviani & Flash (1995) used experimental values of the
velocity and acceleration at several via-points in order to predict the
velocity profiles in curves drawing tasks. In contrast, our models
(which predict both the path and the velocity profile) were required to
extract only a small number of parameters, namely the initial and final
speeds and accelerations, and the movement duration (see Materials
and methods). The last parameter was extracted in the time-rescaling
procedure, which normalizes the durations of actual and simulated
trajectories. This procedure is pervasive in the literature (Flash &
Hogan, 1985; Uno et al., 1989; Harris & Wolpert, 1998; Todorov &
Jordan, 1998; Richardson & Flash, 2002) but, in light of our current
discussion, it also reduces the predictive power of the model. Recently,
Tanaka et al. (2006) proposed a variation of the minimum variance
model (Harris & Wolpert, 1998) that was able to determine the
movement duration from a first principles approach. The authors
considered the movement duration as a parameter to be optimized, and
performed the subsequent optimization under the constraint that the
movement achieves a predetermined level of accuracy. Within our
experimental protocol, the determination of the movement duration
and, more generally, the issue of speed–accuracy tradeoff in human
locomotion could not be satisfactorily investigated; testing different
walking speeds and varying the constraints on the spatial accuracy
(e.g. varying the size of the doorway) will help in addressing these
questions in future studies.
The second characteristic for estimating the predictive power of a

model is the presence and the number of free parameters that must be
tuned in order to fit the data. For instance, Viviani & Schneider (1991)
proposed a modified power law for modelling the velocity profile of
curved hand movements:

vðtÞ ¼ cðjðtÞ þ eÞb ð16Þ

In this model, the velocity gain factor c and the exponent b needed to
be tuned in order to fit the actual velocity profile. In contrast, our
models did not contain any such free parameters.

Accuracy demands and smoothness of the trajectories

Also related to the above discussion on the speed–accuracy tradeoff is
the relationship between the task’s accuracy demands and the

Fig. 8. (A) Average and (B) maximal normalized velocity errors (AnVE and MnVE; the suffixes v, a, s, j refer, respectively, to velocity, acceleration, jerk and snap):
dark grey bars for minimum velocity, medium-grey bars for minimum acceleration, light-grey bars for minimum jerk and white bars for minimum snap, averaged
over targets corresponding to the same category. For comparison, the average and maximal normalized velocity deviations (AnTD and MnTD) are also plotted (black
bars). In the process of computing the above quantities, all velocity profiles were normalized so that their average values over the movement duration equals 1 (see
Materials and methods).
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smoothness of the resulting trajectories. Sosnik et al. (2006) have
reported that stringent accuracy demands resulted not only in an
increased movement duration but also in a decreased movement
smoothness. In our experiments, the doorway was large enough (see
Materials and methods) that it allowed subjects to get through without
any difficulties at normal walking speeds, resulting in smooth trajec-
tories, as we observed. Again, varying e.g. the size of the doorway in
future experiments will help in further exploring the relationship
between the accuracy demands and the smoothness of the resulting
locomotor trajectories.

The role of online control in the implementation of locomotor
trajectories

Although trajectories corresponding to a given task were highly
stereotyped, there still existed a small trial-to-trial variability, ranging
between 10 and 15 cm for the straight and highly curved trajectories,
respectively (see the companion paper). This variability could be
related to morphological differences between the subjects and to the
noise present in the human sensory and motor systems (Harris &
Wolpert, 1998).

Remarkably, the variability was smaller at the beginning and the
end of the trajectory and larger in between (see for instance the HC
trajectory in Fig. 3A). If the movement was executed in open-loop
(i.e. in a purely feedforward manner), the variability would increase
throughout the movement. Thus, the observed variability pattern
indicates that an online feedback control process is at work during
the implementation of the optimal trajectory (presumably accord-
ing to a minimum jerk or minimum snap criterion, as suggested by
our results). The nature of such a control process is, however, less
clear. In the case of hand movements, a number of hypotheses have
been proposed, including trajectory-tracking mechanisms through
servo control (McIntyre & Bizzi, 1993) or optimal feedback control
schemes (Todorov & Jordan, 2002). Within this context, increasing
the complexity of the goal-oriented task (for instance using a
multiple via-points task, as in Todorov & Jordan, 2002), applying
external perturbations during the movement execution or testing
specifically the contribution of sensory information (for instance by
manipulating the visual inputs with prism glasses, as in Rushton
et al., 1998) will help in unveiling the nature of the online control
process at work during the implementation of locomotor trajec-
tories.

Common strategies may govern the formation of hand and
whole-body trajectories

As evoked in the companion paper, recent studies suggest that the
generation of hand and whole-body movements share common
strategies. For instance, Papaxanthis et al. (2003) have recently
observed that vertical whole-body and arm movements executed in
the sagittal plane share kinematic similarities. The authors then
suggested that the central nervous system (CNS) uses similar motor
plans for the performance of arm and whole-body movements in
the sagittal plane. The comparison of the velocity–curvature
relations in human locomotion and in hand movements has also
been conducted, using the same (up to a scaling factor) predefined
curved paths in both types of movements (Hicheur et al., 2005). At
the computational level, Harris & Wolpert (1998) tested the
assumption that the CNS learns a new movement by minimizing
the variance of the final effector position for both hand and eye
movements.

In this context, our observation that the minimum jerk and
minimum snap models best predict locomotor trajectories should be
related to the case of hand movements, where very similar results
have been reported (Flash & Hogan, 1985; Richardson & Flash,
2002). For instance, in the task of periodic drawing of closed
shapes, Richardson & Flash (2002) showed that MSD models of
order n > 2 provided more accurate predictions than MSD models
of lower orders.
However, hand and whole-body movements differ greatly in their

spatial and temporal scales: for instance, hand trajectories are
usually tens of centimetres long while travelled distances during
locomotor tasks are usually > 10· longer. This difference in
magnitude is associated with a difference in the nature and the
number of muscles involved in the production of the movement:
while hand movements activate mostly the arm muscles, locomotor
activity mobilizes most of the body muscles (lower limbs muscles
for body propulsion, upper body muscles for trunk stabilization,
neck muscles for steering, etc.). Thus, the fact that the same models
could account for both hand and whole-body movements is a
striking observation and strongly supports the hypothesis that
common mechanisms (in our case, maximizing movement smooth-
ness) are implemented by the motor system in the generation of
various types of movements. More specifically, this hypothesis
could be related to a theory put forward by Bernstein (1967),
according to which there exist, at the higher levels of the motor
system, kinematic representations of movements that are indepen-
dent of the nature (in our case, the arm or the whole locomotor
system) of the actual effector.

The nature of the control variable(s)

The last remark is associated with the conceptual distinction
between kinematic and dynamic variables usually presented in the
literature (Jordan & Wolpert, 1999). While kinematic variables
(e.g. the hand’s position, velocity, acceleration, jerk, etc. measured
in the laboratory reference frame) describe the movement of
the end-effector in the extracorporeal space, dynamic variables
(e.g. the torques applied at the joints, the muscle activations, etc.)
are related to the internal mechanical properties of the motor
system.
In the case of arm movements, the motor apparatus can be

realistically modelled by a two-link manipulator controlled by
torques applied at the joints (Uno et al., 1989). In this context, the
opposition between kinematic control of the end-effector (the hand)
and dynamic control of the torques can be readily investigated. For
locomotion, however, given the greater dimensionality of the motor
system (at the segmental, muscular, etc. levels), there is a
theoretically greater complexity of the motor control problem.
Thus, the issue of identifying precisely which variables are being
controlled could not be satisfactorily addressed in this study; testing
other locomotor tasks and using different kinds of perturbations will
help in further exploring the mechanisms underlying the generation
of locomotor trajectories. Nevertheless, two series of observations
argue in favour of a kinematic control of goal-oriented locomotion.
First, we provided evidence in the companion paper that locomotor
trajectories are stereotyped, in particular at the kinematic level. In
the present study, we were able to accurately predict locomotor
trajectories with kinematic-based models. While this does not rule
out the possibility that the CNS may take into account dynamic
variables in the generation of locomotor trajectories, we suggest that
dynamic variables are rather used at the motor implementation
level. Following this idea, the transformation from kinematic
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objectives into dynamic strategies may be acquired with learning
(see also Winter & Eng, 1995).
Finally, it should be noted that, contrary to the case of hand

movements where the laboratory (allocentric) reference frame (RF)
and the body (egocentric) RF are equivalent, here the body RF moves
and turns with respect to the laboratory RF when the subject is
moving. In this context, the kinematic quantities used in our models
(the position of the subject and its derivatives) are only interesting
when computed in the laboratory RF as, in his body RF, the subject’s
position is constant in time. From a theoretical viewpoint, while
egocentric and allocentric strategies for spatial navigation and spatial
memory are usually debated in the literature (see Berthoz & Viaud-
Delmon, 1999), the question of which RF(s) are actually used for the
planning and control of goal-oriented locomotion has received little
attention. Here, our results suggest that whole-body trajectories are
optimized in the laboratory RF. However, further refinements of our
experiments and models will also have to consider the possibility of
egocentric components in the mechanisms underlying the formation of
whole-body trajectories.

An integrative approach for the study of human locomotion

While our approach focused on the global, trajectory-level, descrip-
tions, some fine-grained properties of the locomotor activity can be
captured only if the step-level parameters are taken into account. For
instance, the variations of the tangential velocity during the step cycle
must be included in our models in order to account for the small
oscillations observed in the velocity profiles (see for example the
average velocity profile corresponding to target 42–270 in Fig. 3B).
Recently, Arechavaleta et al. (2006) proposed a robotics-inspired

approach that emphasized the nonholonomic nature of human
locomotion. For a wheeled vehicle (e.g. a bicycle, a car, a car with
trailers, etc.), the kinematic constraint that forces the vehicle to move
in the direction of its main axis is known as being nonholonomic
(Laumond, 1998). This constraint dramatically reduces the possible
movements of the vehicle and, as a result, it strongly affects the nature
of the vehicle’s optimal trajectories. For instance, as a wheeled vehicle
cannot move sideways, the quickest way to parallel park is not
associated with a straight path (as it would be in the usual geometry)
but consists rather of a series of complicated manoeuvres. In the
context of human locomotion, this constraint was interpreted as
forcing the subject to move in the direction of his ‘axis’, which was
defined as the orthogonal direction to the shoulders’ segment. This
constraint was partly verified experimentally (see Arechavaleta et al.,
2006 for more details). However, in the models presented here, we did
not take into account the body orientation and the related nonholo-
nomic constraint. Nevertheless, our models could predict the trajec-
tories with great accuracy, which suggests that, for the range of turning
amplitudes tested in our experiments, the body orientation may not be
a determining factor in the generation of locomotor trajectories. For
more demanding tasks (involving for instance very narrow turns), it is
likely that constraints on the body orientation such as the nonholo-
nomic one exert a positive effect on the whole-body trajectories. Both
experimental and theoretical issues regarding the integration of such
elements into our models are the subject of ongoing research.
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Abbreviations

AnVD, average normalized velocity deviation; AnVEc, average maximal
normalized velocity error; ATD, average trajectory deviation; ATEc, average
trajectory error; AVD, average velocity deviation; HC, high curvature; LC, low
curvature; MC, medium curvature; MnVD, maximal normalized velocity
deviation; MnVEc, maximal normalized velocity error; MSD, minimum
squared derivative; MTD, maximal trajectory deviation; MTEc, maximal
trajectory error; MVD, maximal velocity deviation; nVD, normalized velocity
deviation; ST, straight; TEc, instantaneous trajectory error. Subscripts;
a, minimum acceleration; av, average; c, (subscript) standing for v, a, j or s;
j, minimum jerk; s, minimum snap; v, minimum velocity.
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Appendix

As the MSD cost functional (2) and the boundary conditions (4) are
uncoupled in x and in y, it is sufficient to find optimal functions
separately for x and y (Flash &Hogan, 1985). The problem thus consists
of finding a function x defined on [0,1] that minimizes the functional

Z1
0

dnx
dtn

� �2

dt ð17Þ

and verifies the boundary conditions

xð0Þ ¼ x0; xð1Þ ¼ x1; _xð0Þ ¼ vx
0; _xð1Þ ¼ vx

1;€xð0Þ ¼ ax
0;€xð1Þ ¼ ax

1

ð18Þ

Minimum jerk trajectories

For MSD of orders n ‡ 3, it turns out that the optimum function x is a
polynomial of degree 2n ) 1 in the variable t (see Flash & Hogan,
1985 for a proof of this result). For instance, when n ¼ 3 (minimum
jerk), x is a 5th-degree polynomial:

xðtÞ ¼ a5t5 þ a4t4 þ a3t3 þ a2t2 þ a1t þ a0 ð19Þ

The six boundary conditions then yield a 6th-order linear system that
in turn uniquely determines the six coefficients a0, … a5.

Minimum snap trajectories

For n ¼ 4, x is a 7th-degree polynomial, which corresponds to eight
unknown coefficients, say a0, … a7. Using the six boundary
conditions, we can express a0, … a5 as affine functions of a6 and
a7. Replacing next a4 and a5 by their expressions in terms of a6 and a7
in the cost functional

Z1
0

d4x
dt4

� �2

dt ¼
Z1
0

ð840a7t3 þ 360a6t2 þ 120a5t þ 24a4Þ2dt ð20Þ

yields a second-order polynomial in the variables a6 and a7. Standard
minimization techniques of multivariate polynomials then allow us to
obtain algebraic expressions of a6, a7 and then a0, … a5.

Minimum velocity and minimum acceleration trajectories in
restricted solutions space

If n £ 2, the problem is ill-posed (Harris &Harwood, 2005) in the sense
that no optimal trajectory exists. However, if we restrict the solution
space to the set of polynomials of degree less than or equal to d (where d
is an integer ‡ 6), then we can find a unique optimal trajectory xd.
As d grows, the cost associated with xd decreases (because the solution
space is larger). However, when d fi ¥, xd converges to a trajectory that
no longer verifies the boundary conditions.
As minimum jerk and minimum snap principles yield polynomials

of degrees less than or equal to 7, we set d ¼ 7 in order to make
unbiased comparisons of the four models.
In the case n ¼ 2 (minimum acceleration), the problem thus

consists of finding the optimal function x in the form

xðtÞ ¼ a7t7 þ a6t6 þ a5t5 þ a4t4 þ a3t3 þ a2t2 þ a1t þ a0 ð21Þ

that verifies the boundary conditions (18) and minimizes the cost

Z1
0

d2x
dt2

� �2

dt¼
Z1
0

ð42a7t5þ30a6t4þ20a5t3þ12a4t2þ6a3tþ2a2Þ2dt

ð22Þ

The same procedure as in the minimum snap case can be applied to
find the optimal coefficients a0, … a7.
The case n ¼ 1 (minimum velocity) can be treated similarly.
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Pham QC, Hicheur H. On the open-loop and feedback processes that
underlie the formation of trajectories during visual and nonvisual
locomotion in humans. J Neurophysiol 102: 2800–2815, 2009. First
published September 9, 2009; doi:10.1152/jn.00284.2009. We inves-
tigated the nature of the control mechanisms at work during goal-
oriented locomotion. In particular, we tested the effects of vision,
locomotor speed, and the presence of via points on the geometric and
kinematic properties of locomotor trajectories. We first observed that
the average trajectories recorded in visual and nonvisual locomotion
were highly comparable, suggesting the existence of vision-indepen-
dent processes underlying the formation of locomotor trajectories.
Then by analyzing and comparing the variability around the average
trajectories across different experimental conditions, we were able to
demonstrate the existence of on-line feedback control in both visual
and nonvisual locomotion and to clarify the relations between visual
and nonvisual control strategies. Based on these insights, we designed
a model in which maximum-smoothness and optimal feedback control
principles account, respectively, for the open-loop and feedback
processes. Taken together, the experimental and modeling findings
provide a novel understanding of the nature of the motor, sensory, and
“navigational” processes underlying goal-oriented locomotion.

I N T R O D U C T I O N

The study of human locomotion includes different levels of
analysis from the neuronal discharges governing the muscular
activity (see Capaday 2002 for a review) to the mechanical
forces exerted on the ground, allowing the propulsion of the
body. While the understanding the locomotor behavior per se
greatly benefited from such analyses, only few studies were
devoted to clarify the relations between the mechanical, sen-
sorimotor aspects of locomotion and its “navigational,” cogni-
tive components (see Hicheur et al. 2005a for a review). Yet it
is critical to provide an integrative view of locomotion, asso-
ciating our knowledge of the mechanical, sensorimotor, and
navigational components of locomotion within a unifying
framework: indeed, these different components are necessarily
taken into account by the central nervous system (CNS) for the
production of the locomotor commands.

It is well known in the field of motor control that the same
shape can be implemented by various effectors (the “principle
of motor equivalence”) (see Bernstein 1967). For example, one
can draw the letter A with the finger, the hand, or even by
running on a flat surface. Following this idea, we have previ-
ously tested the hypothesis that the control of locomotor

trajectories obey the same laws as those originally formulated
for hand movements, such as the 2/3 power law relating the
path curvature to the tangential velocity of the body (Hicheur
et al. 2005b; see also Olivier and Crétual 2007; Vieilledent
et al. 2001). While this hypothesis could be partially supported,
more general principles accounting for the formation of whole-
body trajectories remained to be investigated in particular those
based on the optimal nature of motor control.

We have thus recently undertaken the study of goal-oriented

locomotion in a task involving walking toward and through a
distant doorway (Arechavaleta et al. 2006; Hicheur et al.
2007). While neither the paths nor the walking speeds were
constrained, we observed that humans generated stereotyped

trajectories at both the geometric (the paths) and kinematic (the
velocity and turning profiles) levels, which contrasted with a
large variability of feet placements (Hicheur et al. 2007). This
indicated that locomotion is not controlled as a mere sequence

of steps: rather higher-level cognitive strategies govern the
formation of whole-body trajectories. While providing an in-
tegrative view on human locomotion by addressing both its
step- and trajectory-related aspects, this approach also brought
about a new understanding of locomotion that takes advantage
of the recent theoretical advances in computational motor

control (for reviews, see Jordan and Wolpert 1999; Todorov
2004). A further step in this direction was made when, based
on the observation that locomotor trajectories were particularly
smooth, we reported that a maximum-smoothness model, orig-
inally formulated for hand movements (Flash and Hogan
1985), could also predict locomotor trajectories with great
accuracy (Pham et al. 2007).

Our ambition in the present article is to further develop this
integrative and computational approach to provide a deeper
understanding of the control mechanisms at work during the
production of locomotor trajectories in a goal-oriented task.
For instance, the maximum smoothness model, which is de-
terministic, could not explain the variability around the aver-
age trajectories. Yet the analysis of movement variability is
crucial for the understanding of human movements. In the
particular case of locomotion, Winter and Eng (1995) showed,
by studying the variability of the knee and hip angles, that the
“controlled variable” is rather the sum of these two angles than
any of them taken separately (in other words, a synergetic
control of the joint angles). More recently, the optimal feed-
back control theory, which specifically relies on the analysis of
movement variability, was proposed as a general theory of
human movements (Todorov and Jordan 2002).
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In the present article, we therefore not only study the
average locomotor trajectories but also the variability profiles
(how variability evolves in time). To discover the fine structure
of these variability profiles, we adopted a differential ap-
proach, where variability profiles in different experimental
conditions were compared. In particular, we varied the visual
condition (walking with eyes open or closed), the speed con-
dition (walking at normal or fast speed), and the presence of
via points along the locomotor path. Yet the comparison of the
variability in two different conditions can only be fruitful if this
variability is structured around the same average behavior. We
thus conducted a first experiment where we tested, for a large
range of spatial targets, whether the average trajectories in
visual and nonvisual locomotion were similar or not. In the
subsequent experiments, we used a more restricted number of
spatial targets but a larger number of repetitions per target to
examine and compare with better confidence the variability
profiles.

A basic assumption of our study is that, theoretically, the
control mechanism governing the formation of locomotor tra-
jectories may be divided in two parts (Fig. 1): an open-loop
process, which can be executed independently of sensory
feedbacks, and a feedback module, which can modify the
open-loop process based on sensory feedbacks to correct the
random perturbations that may occur during task execution.
Based on the experimental results, we argue that on-line
feedback control is present in both visual and nonvisual loco-
motion and suggest the relations between the visual and non-
visual control strategies. We then investigate the precise nature
of the on-line feedback control and discuss two competing
hypotheses: the “desired trajectory” hypothesis, which assumes
two separate stages in the production of a movement: a plan-
ning stage when a desired optimal trajectory is computed and
an execution stage when this desired trajectory is implemented
with “trajectory tracking” mechanisms correcting any devia-
tion away from the desired trajectory; and the optimal feedback
control hypothesis (Todorov and Jordan 2002), which states
that “deviations from the average trajectory are corrected only

when they interfere with task performance” (goal-directed
corrections, as opposed to desired-trajectory-related correc-
tions).

To test these hypotheses in a direct way, we also consider
several models of trajectory formation relying on either purely
open-loop or optimal feedback control. By analyzing and
comparing the models’ predictions with experimental data (in
terms of both average trajectories and variability profiles), we
provide evidence that locomotor trajectories, even in the ab-
sence of vision, are controlled in an optimal way.

E X P E R I M E N T A L M E T H O D S

Four experiments were conducted involving a total of 22 healthy
subjects. Subjects gave their informed consent prior to their inclusion
in the study. The experiments conformed to the Code of Ethics of the
Declaration of Helsinki. In experiment 1, we studied the effect of
vision on the average trajectories and on the magnitude of the
variability around the average trajectory. Experiment 2 was designed
to more specifically examine the time course of the variability (vari-
ability profile) in the visual (VI) and nonvisual (NV) conditions.
Experiment 3 addressed the influence of speed and experiment 4
aimed at assessing the desired trajectory hypothesis in the context of
locomotion.

Materials

A number of light-reflective markers were attached to the subject:
42 in experiments 1–3 (allowing full-body movement capture), and 2
in experiment 4 (the 2 shoulder markers). The three-dimensional (3D)
positions of these markers were recorded at a 120-Hz sampling
frequency using an optoelectronic Vicon V8 motion-capture system
wired to 12 cameras. To study whole-body trajectories in space, we
used the midpoint between the left and right shoulder markers that
were located on the left and right acromions, respectively (see Hicheur
et al. 2007). In experiment 2, we used in addition the left and right heel
markers to compute the number of steps.

In all trials, the target was indicated by a cardboard arrow of
dimension 1.20 � 0.25 m (length and width, respectively). The arrow
was placed at a specific (x,y) position in the motion capture space with
an orientation � (Fig. 2, A–C).

Goal

Goal

?

Open−loop process

Sensory feedback (visual, vestibular, proprioceptive...)

Movement

Online feedback

component

Optimal feedback control

Trajectory tracking / ? FIG. 1. Sketch of a general controller, including
an open-loop process and a feedback module. The
question marks indicate some of the issues investi-
gated in the present article: namely, does on-line
feedback control exist in visual and nonvisual loco-
motion and what is the precise nature of the feed-
back control scheme, trajectory tracking or optimal
feedback control?
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Experiments 1–3 took place in a laboratory of dimensions �10 �
10 � 5 m (length, width, and height, respectively). Experiment 4 was
carried out in a smaller laboratory (�6 � 8 � 4 m).

Experiment 1

Fourteen male subjects participated in this experiment. The mean
age, height, and weight of the subjects were, respectively, 24.6 � 3.2
yr, 1.80 � 0.04 (SD) m, and 73.3 � 5.7 kg.

In each trial, the subject had to start from a fixed position in the
laboratory and to walk toward a distant target indicated by an arrow
(Fig. 2A). We constrained the subject’s initial walking direction by
asking him to start at position (0,�1 m) and to walk the first meter
[from (0,�1 m) to (0,0)] orthogonally to the x axis (Fig. 2, A–C). After
crossing the x axis, no specific restriction relative to the path to follow
was provided to the subject. We imposed the subject’s final walking
direction by asking the subject to enter the arrow by the shaft and to
stop walking above the arrowhead.

The subject walked either with eyes open (VI) or closed (NV). In
this experiment, he was asked to walk at his preferred normal speed.
In condition VI, the arrow was visible throughout the whole move-
ment. In condition NV, the subject first observed the arrow while
standing at the starting position. This observation period typically
lasted �3 s. When the subject was ready, he closed his eyes and
attempted to complete the task without vision. The subject was asked
to complete the task with the same initial and final constraints as in
condition VI—namely, walk the first meter orthogonally to the x axis,
enter the arrow by the shaft, and stop above the arrowhead. Right after
the observation period, the experimenter removed the arrow to avoid
tactile feedbacks. Once the subject had completely stopped, he was
asked to keep his eyes closed while the experimenter took his hand
and guided him randomly for a few seconds in the laboratory before
stopping at a random position. The subject was then allowed to
re-open his eyes and to go back to the starting position. This procedure
prevented the subject from acquiring visual feedbacks during both
task and posttask periods (avoiding in this way spatial calibrations of
the room using kinesthetic cues). The trials were randomized to avoid
learning effects for a particular condition or target. The subject
completed two to three trials before the experiment actually started to
be familiar with the task and to dispel any fear of hitting the walls
during the nonvisual trials (the distance between the most distant
target and the wall was �3 m).

The angular displacement of the body in space induced by the
different orientations of the arrow ranged between �180 and 180°

(Fig. 2B). Three targets were placed straight ahead of the subject
(straight targets), while the others were placed on the side (angled
targets).

The three straight targets were used for all subjects. A subgroup of
six subjects walked toward the angled targets located on the left, while
the remaining eight subjects walked toward the angled targets on the
right. Thus each subject generated 66 trajectories corresponding to 11
spatial targets (3 straight � 8 angled) � two conditions (VI and
NV) � 3 trials so that a total of 924 trajectories (14 subjects � 66
trials) were recorded for this experiment.

Experiment 2

The methodology used in this experiment was the same as in
experiment 1 except that here we examined specifically the time
course of the variability profiles in conditions VI and NV. We
increased the number of repetitions to eight per condition and target.
This allowed us to study intrasubject variability profiles with a greater
reliability.

This experiment was realized in the same laboratory as experiment
1. We tested five male subjects, four of whom had already participated
in experiment 1, which took place 12 mo before. The mean age,
height, and weight of the subjects were, respectively, 29.2 � 4.2 yr,
1.80 � 0.06 m, and 68.8 � 5.1 kg.

We reduced the number of targets to five: two straight targets and
three angled targets (Fig. 2C). Thus each subject executed 80 trials (2
visual conditions � 5 targets � 8 repetitions). As in experiment 1, the
trials were randomized to reduce learning effects. A total of 400
trajectories (5 subjects � 80 trials) were recorded.

Experiment 3

The methodology and the protocol used in this experiment were the
same as in experiment 2 except that we varied the speed instruction:
subjects were asked to walk either at their preferred speed (normal
speed, NS) or at a higher speed (fast speed, FS). Vision was available
in both speed conditions.

We tested five male subjects in this experiment, three of whom had
already participated in experiment 1, which took place 12 mo before.
The mean age, height, and weight of the subjects were, respectively,
equal to 25.8 � 3.6 yr, 1.80 � 0.02 m, and 75.9 � 3.7 kg. As in
experiment 2, a total of 400 trajectories (5 subjects � 2 speed
conditions � 5 targets � 8 repetitions) were recorded.
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FIG. 2. A: experimental protocol: the subject had

to start from a fixed position in the laboratory and
walk toward a distant arrow placed on the ground. He
had to enter the arrow by the shaft and stop above the
arrow head. B: spatial layout of the 19 targets in
experiment 1: each target was referred to by a number
(1–7) indicating its position and by a letter (N: north,
S: south, E: east, W: west) indicating its orientation.
C: spatial layout of the 5 targets in experiment 2.

D: the instantaneous trajectory deviation [TD(t)] mea-
sures the variability of actual trajectories around the
average trajectory (Eq. 1). E: the instantaneous ve-
locity deviation [VD(t)] measures the variability of
actual velocity profiles around the average velocity
profile (Eq. 5).
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Experiment 4

This simple experiment adapted a hand movement experiment from
(Todorov and Jordan 2002) to the context of locomotion to test the
“desired trajectory” hypothesis (see INTRODUCTION).

The experiment was divided in three sessions separated by several
hours. In the first session, the task was the same as in the previous
experiments, namely, walking toward a distant arrow. We used only
one target, similar to target 5 in Fig. 2C. The subject performed 10
trials in this session all with vision and at normal speed. We then
computed the average trajectory [xav(t),yav(t)], 0 � t � 1 across these
10 trials. We denoted, respectively, by P1, P2, and P3 the spatial positions
[xav(0.33),yav(0.33)], [xav(0.5),yav(0.5)], and [xav(0.67),yav(0.67)].

In the second session, we placed a piece of black tape on the ground
at position P2. The subject was then asked, as in the first session, to
walk toward the distant arrow. In addition, he had now to go through
the via point indicated by the piece of black tape. Again the subject had
to perform 10 repetitions. The third session was similar in all aspects to the
second session except that the subject had to go successively through
the three via points, P1–P3.

We tested five subjects, three males and two females. None had
participated in the previous experiments. The mean age, height,
and weight of the subjects were, respectively, equal to 30.2 � 3.8
yr, 1.74 � 0.08 m, and 68.0 � 11.9 kg. A total of 150 trajectories
(5 subjects � 3 sessions � 10 repetitions) were recorded.

Data analysis

All the data analyses below were performed with the free software
GNU Octave unless otherwise stated.

Computation of the trajectories

The beginning (t � 0) of each trajectory was set to the time
instant when the subject crossed the x axis. To have the same
criterion for the VI and NV conditions, the end of each trajectory
(t � 1) was set to the time instant when the subject’s speed became
�0.06 m/s (this value was �5% of the average nominal walking
speed). We chose this strictly positive threshold because even
when the subject had completely stopped, the speed of their
shoulders’ midpoint was not exactly zero due to the small residual
movements of the upper body.

When a derivative of the position (velocity, acceleration, etc.) was
needed, a second-order Butterworth filter with cut-off frequency 6.25
Hz was applied before the derivation.

Average trajectories, variability profiles, velocity profiles

For a given target, the average trajectory [xav(t), yav(t)] was defined
by

xav�t	 �
1

N
�
i�1

N

xi�t	; yav �
1

N
�
i�1

N

yi�t	 (1)

where N corresponds to the number of trajectories recorded for this
target (n � 42 for the intersubject analysis of experiment 1; n � 8, 8,
and 10, respectively, for the intrasubject analyses of experiments 2–4).

To measure the variability of actual trajectories around the average
trajectory, we defined the instantaneous trajectory deviation (TD) at
time t as (see Fig. 2E for illustration)

TD�t	 � � 1

N � 1
�
i�1

N


xi�t	 � xav�t	�
2 � 
yi�t	 � yav�t	�

2 (2)

We then defined the maximum trajectory deviation (MTD) by

MTD�t	 � max
0�t�1

TD�t	 (3)

Variance ellipses were calculated by principal component analysis:
the variance ellipse at time t is centered at [xav(t), yav(t)] and its
orientation and size indicate how the [xi(t), yi(t)] (i � 1, . . . , N) are
distributed around [xav(t), yav(t)]. Note that r1(t)2 � r2(t)2 � TD(t)2

where r1 and r2 are the lengths of the ellipse’s semi major and semi
minor axes (Pham et al. 2007).

The variability profiles and the variance ellipses of experiment 4
were computed differently, in a manner similar to that described in the
legend of Fig. 5 in Liu and Todorov (2007). This was done to better
assess the effects of the spatial via points.

If a set of trajectories have similar geometric paths, it makes sense
to study also the variability of their velocity profiles. For this, we
defined the normalized velocity profile vi and the average normalized
velocity profile vav as follows

vi �
�ẋi

2 � ẏi
2

�
0

1

�ẋi
2 � ẏi

2dt

; vav �
1

N
�
i�1

N

vi (4)

Next, the instantaneous velocity deviation (VD) can be defined by

VD�t	 � � 1

N � 1
�
i�1

N


vi�t	 � vav�t	�
2 (5)

Note that because the velocity profiles were normalized, vi and VD
have no units.

Comparison of trajectories in two conditions

For comparing the average trajectories recorded in two different
conditions, say A and B, we defined, for each target, the instantaneous
trajectory separation (TS) by

TSA/B�t	 � �
xA�t	 � xB�t	�2 � 
yA�t	 � yB�t	�2 (6)

where (xA,yA) and (xB,yB) denote the average trajectories respectively
in condition A and in condition B.

We then defined the maximum trajectory separation (MTS) by

MTSA/B�t	 � max
0�t�1

TSA/B�t	 (7)

Targets pooling in experiment 1

In experiment 1, six subjects walked toward targets located on their
left and eight subjects walked toward targets located on their right (see
Fig. 2B). We found no significant effect of the side on the parameters
of interest: for instance, the MTSL/R (MTS between the average
trajectory of the left trajectories and that of the right trajectories) was
smaller than the MTDR (MTD of the right trajectories) in both
conditions VI and NV. In the two-way ANOVA test with replications
where the factors were the measure (MTSL/R vs. MTDR) and the
visual condition, the effect of the measure was significant [F(1,40) �
37.4, P � 0.05], and there was no significant interaction effect
[F(1,40) � 2.82, P � 0.05]. Thus for all the following analyses, we
flipped the left trajectories toward the right and pooled them together
with their symmetrical trajectories (trajectories of target 4 with those
of target 6, trajectories of target 5 with those of targets 7).

Step-level analysis in experiment 2

In Hicheur et al. (2007), we carried out an extensive step-level
analysis to compare the variability of feet placements with that of
whole-body trajectories. Here the purpose of the step-level analysis
was solely to assess whether the subjects used a steps-counting

2803PROCESSES UNDERLYING GOAL-ORIENTED LOCOMOTION

J Neurophysiol • VOL 102 • NOVEMBER 2009 • www.jn.org

 on N
ovem

ber 4, 2009 
jn.physiology.org

D
ow

nloaded from
 



strategy in the nonvisual trials, which may consist of count the number
steps executed in one visual trial and reproduce the same number of
steps in the corresponding nonvisual trials.

For this, we considered the z coordinates of the left and right heel
markers as functions of time. The total number of local maxima of
these two signals then gave the number of steps (SN, steps number)
executed by the subject. The trial-to-trial variability of this quantity
was given by the steps number deviation (SND)

SND � � 1

N � 2
�
i�2

N

�SNi � SNav	
2 (8)

where N is the number of repetitions (n � 8 here). Note that we
discarded the first trial in the computation of both the average and the
SD of the SNs. The discard was done to include only the nonvisual
trials that were preceded by at least one visual trial (this is required by
the steps-counting strategy, see preceding text). For symmetry, we
discarded also the first visual trial.

Linearity coefficient

To measure how close a variability profile is from a linear profile,
we defined a linearity coefficient (LC). The LC of a time series [yi(ti),
1 � i � N] quantifies the distance between this time series and its best
linear approximation y � ct, with 0 � LC �1 and LC � 1 for a linear
profile. First, the optimal coefficient c was computed by

c � ��
i�1

T

yiti�����
i�1

T

ti
2� (9)

Next, the squared approximation error was given by

ESS � �
i�1

T

�yi � cti	
2 (10)

Finally, the LC was given by

LC � 1 � ESS/Var�y	 (11)

Statistical tests

Student’s t-test and ANOVA tests were performed with Gnumeric
(GNOME Foundation, Cambridge, MA) while Tukey tests were
performed with Matlab (The MathWorks, Natick, MA). The level of
significance of the tests was set to P � 0.05.

In experiment 1, paired t-test were performed to compare the MTDs
in conditions VI and NV or the MTD in condition VI with the
MTSVI/NV. In both cases, the values to be compared were paired with
respect to the target (df � 10).

In experiment 2, we used two-way ANOVA tests with replica-
tions (or 2-way repeated-measures ANOVA) to assess the effect of
the visual condition on the MTDs and on the SNDs. The first factor
of the test was the visual condition (df � 1), and the second factor
was the target (df � 4).

Two-way ANOVA tests with replications were used to assess the
effect of the speed instruction on the actually measured average
speeds or the MTDs. The first factor of the test was the speed
condition (df � 1), and the second factor was the target (df � 4). We
also compared the MTD in condition NS with the MTSNS/FS using a
similar two-way ANOVA test.

In experiment 4, we used a one-way ANOVA test with replications
to assess the effect of the via-point condition (no, 1, or 3 via points)
on the MTDs. If a significant effect was found, we performed post hoc
Tukey tests to assess the effect of the via-points within each pair of
conditions.

E X P E R I M E N T A L S T U D Y

Results

VISION DOES NOT AFFECT THE AVERAGE TRAJECTORIES (EXPERI-

MENT 1). Average trajectories in the VI and NV conditions
were similar both at the geometric level (the paths) and the
kinematic level (the velocity profiles): see Fig. 3, A, 1 and 2, B,
1 and 2, and C, 1 and 2. Specifically, the NV trajectories
displayed all the typical features observed in the VI trajecto-
ries: straight paths for straight targets, smoothly curved paths
for angled targets, inverse relationship between velocity and
curvature. The similarity was particularly striking even for the
most angled targets such as 4W, 5W, 4S, and 5S.

More quantitatively, the average MTSVI/NV across targets was
0.30 � 0.10 m (or 5.7 � 2.9% of trajectory length). There was no
statistically significant difference between the MTSVI/NV and the
MTDVI, which was 0.31 � 0.10 m (paired 2-tailed t-test, df � 10,
t � �0.18, P � 0.05). In other words, the difference between the
average trajectories in the two conditions was of the same mag-
nitude as the variability within condition VI.

VISION AFFECTS THE VARIABILITY AROUND THE AVERAGE TRA-

JECTORIES (EXPERIMENTS 1 AND 2). Intersubject variability
(experiment 1). While the average trajectories in the VI and
NV conditions were similar, the absence of visual feedbacks
yielded large differences in terms of the variability profiles. In
experiment 1, the average MTDNV across targets was equal to
0.74 � 0.13 m, which was significantly larger than the MTDVI

(paired 1-tailed t-test, df � 10, t � 16.0, P � 0.05). Moreover,
the shapes of the intersubject variability profiles differed
greatly between the two conditions (this is further discussed
later).

Intrasubject variability (experiment 2). The preceding obser-
vation that the intersubject variability was larger in nonvisual
locomotion than in visual locomotion was confirmed in experi-
ment 2 on an intrasubject basis (Fig. 4C). In the two-way ANOVA
test where the factors were the visual condition and the target, the
main effect of the visual condition on the MTD was found to be
significant [F(1,40) � 86.1, P � 0.05], and there was no signif-
icant interaction effect [F(4,40) � 0.61, P � 0.05].

We noted, however, that the difference between the average
trajectories of conditions VI and NV in experiment 2 was larger
than the corresponding values reported in experiment 1: here the
average MTSVI/NV across targets and subjects was 0.54 � 0.25 m
(Fig. 4C), whereas the average MTSVI/NV across targets was
0.30 � 0.10 m in experiment 1. This difference could be explained
by the fact that in experiment 2, the average trajectories were
computed across 8 trials (intrasubject average), whereas in exper-
iment 1, these were computed across 42 trials (intersubject aver-
age). Had we grouped together the five subjects of experiment 2
(thus averaging across 40 trials), this would yield a value of
0.35 � 0.12 m for MTSVI/NV, a value comparable to that of
experiment 1 given in the preceding text.

NO STEPS-COUNTING STRATEGY IN NONVISUAL TRIALS (EXPERI-

MENT 2). It could be argued that despite the randomized order
of the trials, the subjects may have used a steps-counting
strategy (see METHODS). Such a strategy would imply a low
trial-to-trial variability in the number of steps in condition NV.
We observed, on the contrary, that the average SND across
targets and subjects was 0.79 in condition NV, which was
higher than in condition VI (SND � 0.54), where arguably no
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steps-counting strategy was used. In the two-way ANOVA test
where the factors were the visual condition and the target, the
main effect of the visual condition on the SND was found to be
significant [F(1,40) � 7.6, P � 0.05], and there was no
significant interaction effect [F(4,40) � 0.82, P � 0.05].

BUMP-SHAPE OF THE VARIABILITY PROFILES IN VISUAL LOCOMOTION

(EXPERIMENT 2). We noted that in both conditions VI and NV,
the variability was low at the beginning of the movement. This

is related to the fact that for given a target, the subject started
all the trials from the same starting position.

In condition VI, the variability was also close to zero at the end
of the movement. This is because when vision was available, the
subject could complete all the trials successfully by stopping at the
requested final position. Regarding the middle part of the vari-
ability profiles, one may distinguish between the straight targets
and the angled targets. For the former, the variability was close
to zero during the whole movement (see the plain lines in Fig.

A1

C1 C2
D

C3

A2

B1 B2

B3

A3

FIG. 3. Experiment 1: comparison of lo-
comotor trajectories in the visual (VI: plain
lines) and nonvisual (NV: dashed lines) con-
ditions. A: comparison for target 4E. A1:
geometric paths of the average trajectories.
Variance ellipses around the average trajec-
tory at every time instant (see METHODS) are
shaded in dark gray (VI) and light gray (NV).
A2: average velocity profiles. The velocity
profiles were normalized so that their aver-
age values over the movement duration
equals 1 (see METHODS). SDs around the
average velocity profiles are shaded in dark
gray (VI) and light gray (NV). A3: variability
profiles [TD(t)]. B: same as in A but for
target 5W. C: same as in A but for target 5S.
D: maximal trajectory deviation/separation
(MTD/MTS) in meters: MTD in condition
VI (dark gray bars), MTD in condition NV
(light gray bars), MTS between the average
trajectory of VI and NV (black bars).
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FIG. 4. Experiment 2: comparison of vari-
ability profiles in the VI (plain lines) and NV
(dashed lines) conditions. A: variability pro-
files for subject LH. A1: target 1 . A5: target 5.
B: same as in A but for subject NV. C: average
MTD across targets in condition VI (dark gray
bars) and in condition NV (light gray bars),
average MTS across targets between condi-
tions VI and NV (black bars). Here the MTD
and MTS were computed in an intrasubject
fashion. First, for each subject, a MTD (or
MTS) was computed over the 8 trials corre-
sponding to this subject, then the average val-
ues and SDs of the MTD (or MTS) across the
5 subjects were plotted. D: linearity coeffi-
cients LC (0 �L C � 1 and LC � 1 for a linear
function, see METHODS).

2805PROCESSES UNDERLYING GOAL-ORIENTED LOCOMOTION

J Neurophysiol • VOL 102 • NOVEMBER 2009 • www.jn.org

 on N
ovem

ber 4, 2009 
jn.physiology.org

D
ow

nloaded from
 



4, A, 1 and 2, and B, 1 and 2), whereas for the latter, the
variability was higher around the middle of the movement than
around the ends, yielding a “bump-shape” variability profile
(A, 3–5, and B, 3–5).

SPECIAL SHAPES OF THE VARIABILITY PROFILES IN NONVISUAL LO-

COMOTION (EXPERIMENT 2). In condition NV, the variability did
not decrease toward zero at the end of the movement as in
condition VI. For the straight targets (targets 1 and 2), the
variability increased approximately linearly with time so that
the variability profiles could be approximated by a straight line
(Fig. 4, A, 1 and 2, and B, 1 and 2, dashed lines). This was
confirmed by the calculation of the average LC across subjects,
which were close to 1 for these targets (Fig. 4D).

For the most angled targets (targets 4 and 5), the variability
profiles were not linear: the average LC across subjects was
�0.65 for these targets. Indeed the variability profiles corre-
sponding to these targets were clearly composed of two parts:
a first part where the variability increased linearly and a second
part where the variability remained constant (see the dashed
lines in Fig. 4, A4 and B4) or even decreased (A5 and B5). We
propose in Variability around the average trajectory a hypoth-
esis accounting for this interesting property.

WALKING SPEED AFFECTS NEITHER THE AVERAGE TRAJECTORIES

NOR THE VARIABILITY PROFILES (EXPERIMENT 3). The speed in-
struction was well respected: subjects did walk faster in con-
dition FS than in condition NS. The average speed across
targets, subjects and trials was 1.34 � 0.11 m/s in condition NS
and 1.60 � 0.16 m/s in condition FS. From condition NS to FS,
the subjects increased their speed by between 13 and 30%. In
the two-way ANOVA test where the factors were the speed
condition and the target, the main effect of the speed condition
was significant [F(1,40) � 55.1, P � 0.05], and there was no
significant interaction effect [F(4,40) � 0.09, P � 0.05].

The average trajectories were also similar in the two speed
conditions (Fig. 5C). The average MTSNS/FS computed across
targets and subjects was 0.18 � 0.06 m, whereas the average
MTDNS was 0.18 � 0.08 m. In the two-way ANOVA test

where the factors were the speed condition and the target, the
main effect of the speed condition was not significant
[F(1,40) � 0.01, P � 0.05]. However, the interaction effect
was significant [F(4,40) � 5.7, P � 0.05]. In other words, the
difference between the average trajectories in the two condi-
tions was globally of the same magnitude as the variability
within condition NS, but target-wise, there were differences
between MTSNS/FS and MTDNS. However, for the most inter-
esting targets (targets 4 and 5), we found that MTSNS/FS �
MTDNS (Fig. 5C).

The variability profiles measured in the two speed conditions
were very similar, in terms of both shape and magnitude (see
Fig. 5, A and B, for typical variability profiles). For the straight
targets, the variability was low throughout the movement, and
for the angled targets, bump-shaped variability profiles were
consistently observed in both speed conditions. In the two-way
ANOVA test where the factors were the speed condition and
the target, the main effect of speed condition on the MTDs was
not significant [F(1,40) � 0.006, P � 0.05], neither was the
interaction effect [F(4,40) � 1.2, P � 0.05].

PRESENCE OF VIA-POINTS AFFECTS THE VARIABILITY PROFILES (EX-

PERIMENT 4). We noted first that the average trajectories re-
corded in the three sessions were very similar, as we could
expect from the experimental setup. For instance, the MTS
between the average trajectory of session 1 (no-via-point) and
that of session 2 (1-via-point) was 0.12 � 0.07 m. Similarly,
the MTS between the average trajectory of session 1 (no-via-
point) and that of session 3 (3-via-points) was 0.11 � 0.06 m.

Consistently with the previous results, the variability
profiles observed in the no-via-point condition were bump-
shaped (Fig. 6, A1 and B). By contrast, the variability profiles
in the 1-via-point condition were clearly two-peaked with a
local minimum occurring around t � 0.5 (Fig. 6, A2 and B).
The variability profiles in the 3-via-points condition displayed
smaller variations than in the two previous conditions. In
particular, we observed no significant peaks or valleys (Fig.
6A3 and B).
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FIG. 5. Experiment 3: comparison of variability
profiles in the normal speed (NS: plain lines) and
fast speed (FS: dashed lines) conditions. For details,
see legend of Fig. 4. A: variability profiles for
subject B. B: same as in A but for subject RK. C:
average MTD across targets in condition NS (dark
gray bars) and in condition FS (light gray bars),
average MTS across targets between conditions NS
and FS (black bars).
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Quantitatively, the MTD in the 1-via-point (0.06 � 0.02 m)
and the 3-via-points (0.05 � 0.008 m) conditions were lower
than the MTD in the no-via-point condition (0.18 � 0.06 m).
The one-way ANOVA test revealed that the number of via
points (0, 1, or 3) has a significant effect on the MTDs
[F(2,12) � 16.3, P � 0.05]. The post hoc Tukey tests revealed
that this effect was significant between the 0- and 1-via-point
conditions and between the 0- and 3 via-points conditions but
not between the 1- and 3-via-points conditions.

Variability around the average trajectory: combination of
two independent components

HYPOTHESIS ON THE STRUCTURE OF THE VARIABILITY PROFILES. We
propose to study now in more detail the structure of the
variability profiles observed in the nonvisual condition, based
on the results of experiment 2. In this experiment, two param-
eters were varied: the presence or absence of visual feedbacks
and the “complexity” of the target; that is, specifically, whether
the target was “straight” or “angled.” We make the hypothesis
that these two parameters independently contribute to the
variability profiles.

More precisely, our hypothesis states that the variability
recorded for the different targets and visual conditions results
from the combination of the variabilities produced by two
mutually independent sources. The first source is vision-depen-
dent and “trajectory complexity”-independent: that is, indepen-
dent of whether the target is straight or angled. The second
source is trajectory complexity-dependent and vision-indepen-
dent. The psychological and physiological interpretations of
these two sources are addressed in the DISCUSSION.

The variability resulting from source 1—which is trajectory
complexity-independent—can be isolated by examining the
trials involving only straight targets: indeed, for these “easy”
trials, the contribution of source 2—which is trajectory com-
plexity-dependent—should be minimal. Now from the results
of experiment 2, we know that the variability in question is
almost zero in the visual condition and that it increases ap-
proximately linearly with time in the nonvisual condition.
Similarly, the variability resulting from source 2—which is
vision-independent—can be isolated by examining the trials
executed with vision. For the straight targets, this variability is
almost zero, whereas for the angled targets, this variability
describes, as a function of time, the shape of a bump (see
RESULTS of experiment 2 in the preceding text).

OBSERVATION SUPPORTING THE HYPOTHESIS. The proposed
“two-sources” hypothesis allows now to make the following
nontrivial observation: the special shape of the variability
profiles observed in condition NV for the angled targets can be
decomposed as the sum of a straight line (source 1) and of a
bump profile (source 2): see Table 1 for a summary.
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FIG. 6. Experiment 4: testing the desired-tra-
jectory hypothesis. A: average trajectories and
variance ellipses around the average trajectories.
A1: no-via-point condition. A2: 1-via-point con-
dition. A3: 3-via-points condition. B: average
variability profiles computed across subjects. —,
no via point; - - -, 1 via point; � � � , 3 via points.
We also indicated the time instants t � 0.33, t �
0.5, and t � 0.67 for which the via points where
computed. C: average MTD across subjects in the
3 conditions.

TABLE 1. The two-sources hypothesis

Visual Condition/Target Straight Targets Angled Targets

Visual 0 � 0 0 � Bump
Nonvisual Line � 0 Line � Bump

In each cell, we indicate the putative contribution of source 1 (vision-
dependent, “trajectory-complexity-independent) � the putative contribution
of source 2 (vision-independent, “trajectory-complexity” dependent).
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To illustrate this, let us denote by TDn
VI and TDn

NV the
variability profiles corresponding to target n in condition VI
and condition NV, respectively. The preceding observation
implies that TDn

NV would be similar to the sum of the bump-
shaped variability profile observed for the same target in
condition VI (TDn

VI), plus a straight-line variability profile
(for simplicity, we chose the variability profile corresponding
to target 2: TD2

NV).
Figure 7A shows the comparison of TD4

NV with the sum
TD4

VI � TD2
NV for the five tested subjects of experiment 2.

Similarly, Fig. 7B shows the comparison of TD5
NV with the

sum TD5
VI � TD2

NV. One can observe in each case a good
match between the compared profiles.

However, this observation should not be taken literally.
While the proposed hypothesis concerns the noise sources, we
compared above the trajectory variabilities, that is, the output
of the whole trajectory generation process. In this respect, it
should be noted that, whenever the trajectory generation mech-
anisms contain nonlinearities, the additivity of the two noise
sources would not translate into the additivity of the trajectory
variability profiles. Following this remark, we did not seek to
find the best combination of the two squared variability profiles

(indeed, the variability profiles were given by the 2D SDs of the
trajectories, but for linear systems only variances add up). We
chose instead to show directly the sum of the variability profiles as
a way to hint how the special shapes of the variability profiles
observed in experiment 2 can be obtained from the combination of
a line and a bump profile. To assess the hypothesis in a more
formal way, it is necessary to evaluate the input-output relation-
ship between the incoming noise and the resulting trajectory
variability. This is addressed in the modeling study where we
propose a possible implementation of the trajectory generation
mechanism.

M O D E L I N G S T U D Y

While integrating the previous experimental findings within
a unifying framework, the following modeling study also
allows testing positively formulated control mechanisms. In
particular, we propose that the on-line control of whole-body
trajectories in visual and nonvisual locomotion may be based
on optimal feedback control. To test this idea, we designed a
simplified optimal feedback control model and compared the
predictions of this model (and those of alternative models) with
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FIG. 7. Testing the 2-sources hypothesis. A:
variability profiles for target 4 and subjects AN

(A1), DP (A2), GN (A3), LH (A4), and NV (A5).
—, variability profile for target 4 in condition
VI; - � -, variability profile for target 2 in condi-
tion NV. Compare - - - (variability profile for
target 4 in condition NV) with � � � (sum of the
— and the - � -). B: same legend as in A but for
target 5.
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the experimentally recorded trajectories. Furthermore, as stated
previously, the model allows formally testing whether the
combination of the two sources (vision-independent and tra-
jectory-complexity-independent) could give rise to the special
shape of the variability profiles observed in experiment 2.

We first describe a modified version of the minimum jerk
model on which our optimal feedback control model is based.

Deterministic modified minimum jerk (MMJ) model

DESCRIPTION OF THE MODEL. In (Pham et al. 2007), we pre-
sented a minimum jerk model (Flash and Hogan 1985) that
could reproduce with great accuracy locomotor trajectories of
moderate curvature. However, we noticed that the original
minimum jerk model predicted velocity profiles that displayed
slightly larger variations than those experimentally observed.
For this reason, the simple minimum jerk model failed to
predict trajectories recorded in the present experiments, which
were highly curved.

To overcome this, we added an extra term that penalizes
large variations of the velocity. The influence of this term is
weighted by a constant � that we set to a unique value (� �
1,000) in all the simulations for genericity. Thus we looked for
the trajectory [x(t), y(t)], 0 � t � 1 that minimizes

�
0

1

�x2 � �y2 � y� d

dt
�ẋ2 � ẏ2� 2

dt (12)

subject to the constraints

x�0	 � x0; ẋ�0	 � v0
x; ẍ�0	 � a0

x; x�1	 � x1; ẋ�1	 � v1
x; ẍ�1	 � a1

x

y�0	 � y0; ẏ�0	 � v0
y; ÿ�0	 � a0

y; y�1	 � y1; ẏ�1	 � v1
y; ÿ�1	 � a1

y
(13)

where the 12 boundary conditions (x0, vx
0, ax

0, . . .) were set to
the respective average experimental values. We found approx-
imated solutions by numerically solving this optimization
problem in the subspace of polynomials of degrees �7 (see
Pham et al. 2007 for more details).

Performance of the model

To assess the quality of the model’s prediction, we defined
the instantaneous trajectory error (TE) of model M (M � j for
the original minimum jerk model and M � m for the modified
minimum jerk model) by

TEM�t	 � � 
xM�t	 � xav�t	�
2 � 
yM�t	 � yav�t	�

2 (14)

where [xav(t), yav(t)] is the experimentally recorded average
trajectory and ([xM(t), yM(t)] is the trajectory predicted by the
model. The maximal trajectory error (MTE) was defined by

MTEM � max
0�t�1

TEM�t	 (15)

We compared, for the targets of experiment 1, the average
trajectories measured in condition VI with the predicted tra-
jectories. For clarity, we divided the targets into two groups:
group I containing straight and moderately angled targets (1N,
2N, 3N, 4N, 5N, 4E, 5E) and group II containing highly angled
targets (4W, 5W, 4S, 5S). One-way ANOVA tests with repli-
cations were then performed to compare the MTD of the

trajectories recorded in condition VI with the MTE of the
models (3 levels: MTD, MTEj, MTEm). If a significant effect
was found, we performed post hoc Tukey tests to compare
between each pair.

Result: the modified minimum jerk can accurately predict the
average trajectories for a wide range of targets

For the straight and moderately angled targets (group I:
targets 1N, 2N, 3N, 4N, 5N, 4E, 5E), the original and the
modified minimum jerk models yielded accurate predictions, in
terms of both trajectory path (Fig. 8A1) and velocity profile
(A2). The average MTEj across the targets of group I was
0.11 m, and the average MTEm was �0.14 m, while the
average MTD was 0.26 m. The difference among the three
means was significant [F(2,18) � 10.2, P � 0.05]. The post
hoc Tukey tests revealed that the difference between MTD and
MTEj and the difference between MTD and MTEm were
significant, whereas the difference between MTEj and MTEm

was not. The last result can be explained by the fact that,
because the magnitude of the variations in the velocity profiles
predicted by the original model were not too large, the addition
of the extra term in the objective function did not affect the
predicted trajectories (Fig. 8A, 1 and 2).

By contrast, for the highly angled targets (group II: targets
4W, 5W, 4S, 5S, see Fig. 8, B2 and C2), the velocity profiles
predicted by the original minimum jerk model showed very
large fluctuations. This resulted in a larger dissimilarity be-
tween the predicted and the experimentally recorded trajecto-
ries, in terms of both velocity profile (Fig. 8, B2 and C2) and
trajectory path (B1 and C1). Quantitatively, the average MTEj

across the targets of group II was 0.54 m, the average MTEm

was 0.29 m, whereas the average MTD was 0.40 m. The
difference among the three means was significant [F(2,9) �
7.7, P � 0.05]. The post hoc Tukey tests revealed that the
difference between MTEj and MTEm was significant, meaning
that the modified minimum jerk does significantly better than
the original model. Indeed the addition of the extra term
effectively reduced the variations of the speed, so that the
velocity profiles predicted by the modified model very closely
resembled the experimentally observed ones (Fig. 8, B2 and
C2). In terms of trajectory paths, the modified model also
“bent” the minimum jerk paths toward the experimentally
observed paths, although no “instruction” about the path was
specified in this model.

Stochastic models

VISUAL (VI) CONDITION. The model given by algorithm 1 im-
plements a simplified optimal feedback control scheme (Hoff
and Arbib 1993; Todorov and Jordan 2002). Following the
experimental results, this model relies on an open-loop process
that is complemented by an on-line feedback module (see Figs.
1 and 9A for illustrations). The open-loop process is based on
the maximum-smoothness principle (see preceding text),
whereas the feedback module is based on the optimal feedback
control principle.

Algorithm 1 (see Fig. 9A for illustration)

1) Discretize the movement into n steps (10 � n � 20
depending on the target).
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2) At each step i, compute first a MMJ trajectory between
the current state s(i) (position, velocity, acceleration at time
step i) and the final state. This is the initially planned trajectory.

3) Add a random perturbation to s�(i � 1), the state of the
initially planned trajectory at step i � 1. This yields the actual
state s(i � 1).

4) Interpolate a smooth trajectory between s(i) and s(i � 1)
(for simplicity, we used a MJ trajectory because it is the
lowest-order polynomial trajectory T that satisfy T(0) � s(i)
and T(1) � s(i � 1): see APPENDIX in Pham et al. 2007 and
references therein). This yields the actual sub-trajectory be-
tween i and i � 1.

var ellipses

Simulated traj 
(modified min jerk)

(min jerk)
Simulated traj

Average traj and

velocity profiles

Actual and simulated

A1

5m

0

0 3m

A

D

2
1

0
0 0.9

B1

5m

0

0 3m

B2
1

0
0 0.9

C1

5m

0

0 3m

C2
1

0
0 0.9

FIG. 8. Modeling results for the determin-
istic modified minimum jerk model. A: mod-
eling results for target 4E. A1: geometric path
of the average trajectory (plain line) and
variance ellipses around the average trajec-
tory (gray area), geometric path of the trajec-
tory predicted by the original minimum jerk
model (dashed line) and by the modified
minimum jerk model (dotted line). A2: aver-
age normalized velocity profile (plain line),
normalized velocity profiles predicted by the
original minimum jerk model (dashed line)
and by the modified minimum jerk model
(dotted line). The normalization was done so
that the mean normalized velocity over the
whole trajectory equals 1 (see METHODS and
also Pham et al. 2007). (B) Same as in A but
for target 5W. C: same as in A but for target
5S. D: MTD in condition VI (dark gray bars),
maximal trajectory error (MTE) for the orig-
inal minimum jerk model (light gray bars),
MTE for the modified minimum jerk model
(white bars).

Resulting
target perturbation

Nonvisual
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FIG. 9. Illustration for the simplified op-
timal feedback control models. A: illustra-
tion for algorithm 1 and for its modified
version (NV condition). B: effect of an error
in the subject’s estimation of his orientation
in space.
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5) Repeat from step 2.
We note that this model is a not a fully optimal feedback
control model in the sense of Todorov and Jordan (2002)
because in the step where we computed the (i � 1)th optimal
subtrajectory (step 2 of algorithm 1), we minimized the deter-
ministic cost instead of the “cost-to-go” (which also takes into
account the statistics of the noise) (see Todorov and Jordan
2002). However, this model preserves the main idea of optimal
feedback control, namely, that the subtrajectories are recom-
puted at every step optimally with respect to the final target and
not with respect to any intermediate representation of the task
(such as a “desired trajectory”).

The initial and final velocities and accelerations in algorithm
1 were set to the average experimental values as in the
deterministic model. To reproduce the small baseline variabil-
ity present at the beginning and at the end of the movement, the
initial and final positions were chosen from a 2D Gaussian
distribution with SD (�baseline

x � 0.027 m; ��baseline
y � 0.027

m) and centered around the actual starting position and the
actual target’s position.

Regarding the perturbations added at step 3 of the algo-
rithm, Harris and Wolpert (1998) argued that the amount of
execution noise (see DISCUSSION) is likely an increasing
function of the “motor commands.” However, because we
did not model directly the whole locomotor apparatus but
only its outcome (the locomotor trajectory), it is unclear
how execution noise may be “converted” into trajectory
perturbations. Here, in the context of locomotion, a series of
observations suggest that the magnitude of the trajectory
perturbations caused by execution noise is likely determined
by the instantaneous trajectory curvature and not by, for
instance, velocity or acceleration. First, trajectory variabil-
ity was higher for the angled targets, which impose curved
trajectories, than for the straight targets (experiments 1 and
2). This rules out velocity as a determining factor, because
velocity was usually lower for curved trajectories. Second,
the variability profiles were the same in the NS and FS
conditions (experiment 3) although the kinematic quantities,
such as velocity or acceleration, were larger in condition FS
than in condition NS. By contrast, the observed geometric
paths (hence the curvature distributions) were the same in
the two conditions.

We thus set the magnitude of the trajectories perturbations to
be an increasing affine function (van Beers et al. 2004) of the
absolute value of the curvature (in a different context, the
absolute value of the curvature was used in a model of
locomotor trajectories formation) (see Arechavaleta et al.
2008). The total trajectory perturbation is then the sum of a
constant perturbation and a signal-dependent perturbation that
scales linearly with the absolute value of the curvature

�exec
x �t	 � �exec

y �t	 � �const � ���t	��sd (16)

where �const � 0.03 m and �sd � 0.14 m2 for all targets.
Finally, it should be noted that our method of adding

noise directly to the states (and not to the commands)
constitutes a simplification. A more rigorous version of our
model would require reformulating the MMJ optimization
into a dynamical model, as Hoff and Arbib (1993) did for
the original MJ optimization. However, in our case, the

addition of the � term in the MMJ made such a reformula-
tion much more difficult.

NV CONDITION. To understand the variability patterns ob-
served in condition NV, we evaluate two competing control
schemes: a purely open-loop control scheme and an on-line
feedback control scheme with state estimation errors.

Purely open-loop control (models OL). Here we model three
possible purely open-loop control schemes, which are specified
in terms of the time series of velocity, acceleration, or jerk.

We computed first the deterministic MMJ trajectory between
the initial and final states (see preceding text). We then com-
puted, by successive differentiations, three 2D time series
[vx(i),vy(i)], [ax(i),ay(i)], and [jx(i),jy(i)], representing respec-
tively the velocity, acceleration and jerk profiles corresponding
to this MMJ trajectory.

In model OLv, we added Gaussian random perturbations
with SD �v(i) to vx(i) and vy(i) (i � 1,. . ., N) to obtain a random
time series [v*x(i),v*y (i)]. Note that �v(i) was also an affine
function of the instantaneous trajectory absolute curvature (the
coefficients were the same as in the preceding text, but appro-
priately rescaled to match the experimental variability at t �
1). The time series [v*x(i),v*y (i)] was finally integrated with
respect to time to yield a random trajectory.

In models OLa (respectively, OLj), instead of adding the
perturbation to the velocity vectors, we added Gaussian ran-
dom perturbations with SD �a(i) [respectively, �j(i)] to the
acceleration (respectively, jerk) vectors. These random vectors
were then integrated twice (respectively, 3 times) to yield a
random trajectory.

On-line feedback control (model OF). This model was
based on the simplified optimal feedback control model used
for condition VI (algorithm 1). Remark first that in the VI
model, the subject’s state s(i) (position, velocity, accelera-
tion) was assumed to be perfectly known to the subject at
every time step. To model the absence of vision in condition
NV, we introduced perturbations in the subject’s estimation
of his state. For simplicity, we assumed that these pertur-
bations yielded errors in terms of subject’s estimated orien-
tation and distance to target [the reduction of the state to the
pair (distance, orientation) is rather classical in studies of
nonvisual locomotion] (see for instance Glasauer et al.
2002; Loomis et al. 1993). Remark now that from a com-
putational viewpoint, these errors can be rendered, in our
model, by perturbing directly the target’s orientation and
position in space [however, in relation with the discussion
on egocentric and allocentric strategies for navigation (Bur-
gess et al. 2002), it should be noted that the physiological
mechanisms underlying the errors in the estimation of self’s
state and of the target’s state may completely differ].

To make this clear, consider for instance that the subject
makes an error 	 in the estimation of his orientation. This is
equivalent to assume that he actually makes no error in the
estimation of his orientation but that the subjects’ estimation
of the “external world” is rotated by an angle -	 around the
subject. Because the external world in our model comprised
only the target, this corresponds to the following perturba-
tions of the target: a rotation centered on the subject and of
angle -	 of the target’s position and a shift of -	 of the
target’s angle (see Fig. 9B). Similarly, an error 
 in the
subject’s estimation of his distance to the target corresponds
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to a translation of the external world by -
 along the
subject-target axis.

More specifically, we modified algorithm 1 by adding,
between steps 4 and 5, the following step “4b”.

Modification of Algorithm 1 for condition NV (see Fig. 9, A
and B, for illustration)

1) Draw a random distance 
 from a Gaussian distribution
of mean 0 and of SD �
 (�
 � 0.03 m in the simulations). Shift
the target’s position by -
 along the subject-target axis.

2) Draw a random angle 	 from a Gaussian distribution of
mean 0 and of SD �	 (�	 � 1.8° in the simulations). Rotate the
target’s position by -	 around the subject. Shift the required
final velocity (v1

x, v1
y) and acceleration (a1

x, a1
y) angle by -	.

There exist several other possibilities to model the absence
of vision. One can for instance add an extra 2D-Gaussian
perturbation to the target’s position at each time step to
simulate the spatial memory decay. One can set �
 and �	 as
functions of the execution noise intensity. The estimation
process can also be more complex, for instance, combining
optimally vestibular and proprioceptive measurements with
internal predictions (see the state estimation literature for hand
movements reviewed in e.g., Jordan and Wolpert 1999). How-
ever, we chose to follow the simple approach above in this first
modeling study. It will be necessary in future works to design
new experiments and refine this part of the model to study in
detail the effects and the interactions of spatial memory decay
and of the different sensory signals (e.g., visual, vestibular and
proprioceptive) on the variability of nonvisual trajectories.

Result: plausibility of optimal feedback control

In condition VI, the sample trajectories predicted by the optimal
feedback control model were globally similar to the trajectories
observed in one typical subject (Fig. 10A). The variability profiles
produced by the model also reproduced the typical features of

actual variability profiles, namely: low and approximately
constant profile for the straight targets (target 2: Fig. 10B1) and
bump-shaped profile for the angled targets (target 5: B2).

In condition NV, the sample trajectories predicted by model
OF (on-line feedback control) were also globally similar to the
trajectories observed in one typical subject (Fig. 10C). Regard-
ing the variability profiles, for the straight targets, the sample
variability profile produced by model OF has the form of a
straight sigmoid, which was very close to a straight line
(dashed line, Fig. 10D1). For the angled targets, the sample
variability profile produced by model OF increased approxi-
mately linearly until t � 0.8 and then slightly decreased
(dashed line, Fig. 10D2).

By contrast, this nonmonotonicity, which is a characteristic
property of actual variability profiles (see the results of exper-
iment 2), could not be reproduced by none of the OL (purely
open-loop) Models. Indeed in all of these models, the variabil-
ity profiles were always increasing (OLv: dashed-triply-dotted,
OLa: dashed-dotted, OLj: dotted lines, Fig. 10D2).

D I S C U S S I O N

Visual and nonvisual locomotion share the same open-
loop process

Our experimental observations first showed that to reach a
distant target, subjects produced very similar average trajecto-
ries in the VI and NV conditions. If we consider only the final
part rather than the entire trajectory, this finding implies that
the average final position and final walking direction in con-
dition NV are close to those in condition VI, which in turn
correspond to the target’s position and orientation because in
condition VI, the task’s final constraints were well respected.
In earlier studies of nonvisual locomotion (see for instance
Loomis et al. 1992; Thomson 1983), it was also reported that
in a task where the subject had to walk without visual feed-
backs to a previously seen targets, the average final position of
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NV, target 5
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VI, target 5
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VI, target 5

(simulated) FIG. 10. Modeling results for the stochastic
models. A: trajectories in the VI condition. A1: 8
actual trajectories of subject NV for target 5. A2:
8 sample trajectories simulated by the stochastic
model for target 5. B: variability profiles in
condition VI. B1: variability profiles for target 2.
—: average variability profile across subjects.
- - -: variability profile computed over 20 simu-
lated trajectories. B2: same as in B1 but for target
5. C: trajectories in the NV condition. C1: 8
actual trajectories of subject NV for target 5. C2:
8 sample trajectories simulated by model OF
(stochastic MMJ � state estimation error) for
target 5. D: variability profiles in condition NV.
D1: variability profiles for target 2. —: average
variability profile across subjects. - - -: variabil-
ity profile computed over 20 sample trajectories
(model OF). D2: variability profiles for target 5.
—: average variability profile across subjects.
- - -: variability profile computed over 20 sample
trajectories (model OF). - � � � -: model OLv

(open-loop control, noisy velocity). - � � � -. Model
OLa (open-loop, noisy acceleration). � � � : model
OLj (open-loop, noisy jerk).

2812 Q.-C. PHAM AND H. HICHEUR

J Neurophysiol • VOL 102 • NOVEMBER 2009 • www.jn.org

 on N
ovem

ber 4, 2009 
jn.physiology.org

D
ow

nloaded from
 



the subject almost coincides with the actual position of the
target. This precise average response was interpreted as reflect-
ing the veridicality of the subjects’ visual space perception (see
Loomis et al. 1992). However, in these studies, the targets
consisted of spots placed at various distances in front of the
subject. Using targets defined in both position and orientation
and placed at various off-axis positions, our study confirms and
generalizes the earlier results mentioned in the preceding text.
It also suggests that the notion of visual space perception
veridicality may not be limited to straight-ahead distances but
may be also valid for the perception of off-axis distances and
of changes in the body orientation.

But more importantly, not only the average final positions
and orientations were similar in the VI and NV conditions, but
also the entire average trajectories that the subjects had to
produce to reach these positions and orientations. Because the
average trajectory is obtained by indeed “averaging out” all
the fluctuations, it reflects the open-loop process that governs
the subject’s movements in absence of perturbations (Todorov
and Jordan 2002). Thus the similarity of the average trajecto-
ries implies that the control mechanisms in visual and nonvi-
sual locomotion share a common open-loop process. This idea
may have a deep theoretical implication. Indeed a number of
neuroscientists believe that our representation of the space is
strongly related to our movements (see for instance Berthoz
and Petit 2006), a notion that can be summarized by the
following statement of the great French mathematician Henri
Poincaré: “To localize an object in space is to build a repre-
sentation of the movements one has to make to reach it”
(Poincaré 1902; chapter 4). Following this line of thinking, the
proposed common open-loop process may represent the phys-
iological basis of the psychological notion of veridicality of
visual space perception.

In a recent article, Fajen and Warren (2003) challenged the
very existence of an open-loop process in the control of
locomotion. Based on a simulation study where the targets
were modeled by attractors, the obstacles by repellers and the
subject by a simple second-order dynamical system evolving in
a field of attractors and repellers, these authors argued that “the
[subject] adopts a particular route through the scene on the
basis of local responses to visually specified [targets] and
obstacles. The observed route is not determined in advance
through explicit planning, but rather emerges in an on-line
manner from the [subject’s] interactions with the environ-
ment.” It should also be remarked that these interactions, which
are crucial in Fajen and Warren’s approach, are fundamentally
based on the availability of visual inputs. In opposition to this
view, the similarity of the average trajectories in the VI and
NV condition reported in the present article suggests that the
formation of locomotor trajectories is not exclusively driven by
vision. Rather as formalized in our experimentally-confirmed
model, a combination of open-loop and on-line control mech-
anisms underlies goal-oriented locomotion.

In the present study, we did not address the physiology
underlying the on-line control mechanisms. For instance, in
condition VI, how optic-flow-based (Warren et al. 2001) or
gaze-direction-based (Rushton et al. 1998) information is
combined and processed in the on-line feedback module
could not be answered in our study. Similarly, in condition
NV, the specific contributions of vestibular and propriocep-
tive feedback and of efference copy/corollary discharge

could not be discriminated here; this may be done through
clinical studies, involving for instance patients with vestib-
ular disorders (Glasauer et al. 2002).

Origin of the variability and nature of the control
mechanisms in visual locomotion

EXECUTION NOISE IN LOCOMOTION. In contrast with the similar-
ity of the average trajectories, we reported large differences in
terms of variability profiles in conditions VI and NV. Before
addressing this aspect, we first discuss in more detail the origin
and nature of the variability in visual locomotion.

Within the theoretical framework of computational motor
control as it has been developed for hand reaching movements,
it was proposed that movement variability may arise during
three processes: target localization, movement planning, and
movement execution (Schmidt et al. 1979; van Beers et al.
2004). We assume here that this three-sources distinction also
holds for “locomotor reaching.” Given this, we argue that the
variability profiles observed in the visual conditions of exper-
iments 2–4 mostly resulted from execution noise. Indeed
regarding first the target localization process, the target was
clearly visible and remained so during the whole movement.
Second, because we conducted an intrasubject analysis, the
contribution of planning variability to the overall variability
was reduced: indeed, a large part of planning variability arises
from differences in subjects’ morphologies or personal prefer-
ences. Finally, we reason by analogy with hand movements
and follow van Beers and colleagues (2004) who demonstrated
that—for hand movements—“in general, execution noise ac-
count for at least a large proportion of movement variability.”

In hand movements, execution noise may arise at different
levels (Faisal et al. 2008; van Beers et al. 2004): motor
commands (the elaboration and the transmission of the neural
signals may be corrupted at any stage of the neural chain, from
cortical structures to motoneurons), muscle contractions (the
motor response of a muscle to a given neural signal is inher-
ently variable), etc. Because locomotion involves the produc-
tion of muscle contraction patterns (lower-body muscles for
forward propulsion, but also arm and trunk muscles for stabil-
ity and neck muscles for steering), execution noise can also
step in at all these levels. However, because the number of
muscles involved in locomotion is much larger than in hand
movements, the exact relationship between whole-body trajec-
tory variability and the muscles’ execution noises is harder to
establish.

As evoked in the INTRODUCTION, locomotion involves also a
“navigational” aspect in addition to the purely motor aspect.
Indeed, locomotion is the only motor activity in which the spatial
position and orientation (in conditions other than straight-ahead
locomotion) of the body and of the sensory systems change
throughout movement execution. In this respect, special atten-
tion should be devoted to the references frames that are used
for the perception of movement (Berthoz 1991): in contrast
with the case of hand movements, these reference frames move
during the locomotor task. For instance, the manipulation of
changing points of view over time may introduce errors in the
recovering of the heading from retinal flow. In any case, the
errors in the updating of the body’s position and orientation
may in turn contribute to the variability of the trajectory during
movement execution. Other cognitive processes, such as the
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fixation of various objects in the environment (see for instance
Turano et al. 2001), may also introduce perturbations at this
level. To study in detail the specific contribution of the motor
and “navigational” levels to execution noise, a differential
analysis may be conducted, for example, by comparing the
variability observed during navigation in virtual environments
with that observed during real-world locomotion.

ON-LINE FEEDBACK CONTROL OF LOCOMOTION IN VISUAL LOCOMO-

TION. To fully explain the variability of locomotor trajecto-
ries, one has to understand not only the nature of the noise but
also that of the control mechanisms at work for the form of the
variability arises from the interplay between these two ele-
ments. A given noise pattern may indeed give rise to different
variability profiles depending on the control scheme used by
the subject.

More precisely, we have distinguished in the INTRODUCTION

two families of control schemes: purely open-loop control and
on-line feedback control. As already mentioned, in a purely
open-loop control scheme, there are no feedback corrections
during task execution. The errors can hence only accumulate,
leading to monotonically increasing variability (see also
Todorov and Jordan 2002). This observation was confirmed by
the modeling study: the purely open-loop models all produced
monotonically increasing variability profiles. By contrast, the
results of experiments 1–3 showed that, for the “angled”
targets, the variability profiles in condition VI always increased
at the beginning of the movement but then decreased toward
zero at the end of the movement, yielding bump-shaped pro-
files. From a computational perspective, these variability pro-
files were well reproduced by the on-line feedback model
corresponding to condition VI. Taken together, these observa-
tions indicate that on-line feedback control is present in visual
locomotion. This is not surprising because in general, purely
open-loop control exists only in very fast, ballistic movements
such as fast hand reaching. Here, since the movements we
studied lasted from 3 to 10 s, this allowed the detection of the
errors and the implementation of on-line corrections if
necessary.

ON THE “DESIRED TRAJECTORY” HYPOTHESIS FOR LOCOMOTION. The
precise nature of the on-line feedback control cannot however
be determined solely from the variability profiles recorded in
experiments 1–3. Indeed both the “desired trajectory” hypoth-
esis and the fully optimal control hypothesis can yield bump-
shaped variability profiles in the limited conditions of these
experiments. However, the results of experiment 4 are incom-
patible with a basic desired trajectory control scheme. Indeed
as indicated in the INTRODUCTION, the desired trajectory hypoth-
esis implies that during the planning stage, a desired optimal
trajectory is computed. Empirically, this desired trajectory can
be assimilated to the average trajectory computed across a
large number of trials. Then during the execution stage, a
trajectory tracking mechanism is used to achieve the desired
trajectory. In experiment 4, because the average trajectories
were forced by the experimental protocol to be very similar in
the three conditions (0, 1, and 3 via points), the desired
trajectory hypothesis would predict practically no difference
between the statistics of the trajectories performed in these
conditions. Thus the large differences we reported regarding
the variability profiles in the three conditions indicated that the
desired trajectory hypothesis should be rejected.

We note nonetheless that the results of experiment 4 cannot
rule out a variation of the desired trajectory hypothesis, which
consists of 1) constructing several desired subtrajectories (2
subtrajectories in the 1-via-point condition —the 1st trajectory
between the starting position and the via point, the 2nd trajec-
tory between the via point and the final position—and 4
subtrajectories in the 3-via-points conditions) and 2) tracking
sequentially these subtrajectories. While this variation may
seem unlikely (indeed, in postexperiment interviews, the sub-
jects reported that they conceived the trajectory as a whole and
not as a sequence of subtrajectories glued together at the via
points), it cannot be theoretically ruled out. This remark also
applies for the original experiment of Fig. 3 in (Todorov and
Jordan 2002) which inspired our experiment 4.

A more likely explanation for the results of experiment 4
involves an optimal feedback control scheme. Within this
scheme, on-line corrections would be made with respect to the
task goal [namely, go through the via points (if present) and
reach the targets] and not with respect to any intermediate
representation (e.g., a desired trajectory). In the no-via-point
condition, because no other constraints than the goal was
specified, random deviations away from the average trajectory
were not corrected if they did not interfere with this task,
allowing variability to accumulate around the middle of the
trajectory, thus yielding bump-shaped variability profiles. By
contrast, when via-points were imposed, the corrections were
made to ensure that the trajectory go through these via-points,
resulting in low variability around the via-points (see also the
discussion about trajectory redundancy in Todorov and Jordan
2002).

On-line control of locomotor trajectories in
nonvisual locomotion

While it is easy to conceive that on-line feedback control is
present in normal visual locomotion, the fact that such a
mechanism may also be present when vision is totally excluded
during task execution may be more surprising. Yet we ob-
served in experiment 2 that the nonvisual variability profiles
were not always monotonic: for “angled” targets, the variabil-
ity decreased near the end of the trajectory. The same argu-
ments as previously then imply that on-line control is also
present in nonvisual locomotion.

The idea that on-line control may be present in nonvisual
locomotion had been proposed earlier in the literature. For
instance, in Farrell and Thomson’s (1999) experiment, the
subject had to walk with or without vision toward a previously
seen target placed at eight paces, eight paces minus 40 cm, or
eight paces plus 40 cm in front of him. He had to start with his
right foot and to land on the target with his left foot. The
authors showed that in both conditions, the subject functionally
adjusts the lengths of his final steps, on a trial-to-trial basis, to
land on the target with the specified foot.

The precise nature of that on-line control has however
remained unclear. For instance, while Farrell and Thomson
rightly remarked that, in the nonvisual condition, “[the sub-
jects] adjust their step lengths in a way similar to that seen in
the visual condition,” they did not provide an interpretation of
the nature of the processes common or specific in visual and
nonvisual locomotion.
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Here, the two-sources hypothesis (see Variability around the
average trajectories), directly addressed the nature of this
on-line control. Indeed we showed that the variability in the
nonvisual condition results from the combination of a vision-
dependent component and a trajectory-complexity-dependent
component.

The first component—the contribution of which is zero in
condition VI and an increasing linear function of time in
condition NV—can be interpreted as resulting from the errors
in the subject’s estimation of his state, which, in turn, are
caused by the absence of visual feedbacks. This was confirmed
by the modeling study, where the perturbation of the subject’s
state estimation at each step could reproduce the variability
profiles experimentally observed in condition NV.

The second component—the contribution of which is zero
for “straight” targets and bump-shaped for “angled” targets—
can be interpreted as resulting from the interplay between
execution noise and optimal feedback control, as explained
previously in the case of visual locomotion. The fact that this
component is present also in nonvisual locomotion, under
almost the same form (see also the modeling study), thus
suggests that the very control mechanisms that governs visual
locomotion underlie nonvisual locomotion as well.

Whether our conclusions about the control mechanisms at
work during nonvisual locomotion also hold in adventitiously
and congenitally blind subjects remains yet to be investigated.
We believe indeed that a better understanding of the control
mechanisms governing nonvisual locomotion and navigation
can help develop new tools assisting visually impaired indi-
viduals in their daily activities.
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Abstract

We study the influence of vision (walking with or without vision) and of gait direction (walking forward or 
backward)  on   the   formation  of  wholebody   trajectories   in   a   goaloriented   task.   In   a   free   environment, 
subjects had to walk from a given position and orientation towards a distant arrow that indicated their final 
position   and   orientation.   We   found   that   the   average   trajectories   were   mostly   similar   in   the   different 
conditions, which suggests that  locomotor trajectories are generated at a high cognitive level, and to some 
extent, independently of the detailed sensorimotor implementations. We also studied how the head and the 
trunk turning behaviors are affected by changes in the sensory and motor conditions.

Keywords : human locomotion, trajectories, vision, backward, anticipation, steering
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Introduction

Locomotion in humans is a complex motor and cognitive activity requiring multiple levels of control: from 
the production of repetitive stepping patterns of the lower limbs,  through the adjustments of upperbody 
segments ensuring dynamic stability,  to the formation of wholebody trajectories in space. These different 
levels are integrated together by the Central Nervous System (CNS) for the production and the regulation of 
the   locomotor   commands,   allowing   navigating   safely   in   a   particular   environment.   In   this   respect,   a 
comprehensive  understanding  of   locomotion   requires   investigating   the  relations  between   these  different 
levels. Here, we set out to address the following question: how does a change in the conditions of production 
of the stepping patterns or a change in the visual conditions affect the formation of wholebody trajectories 
and the steering behavior?

Influence of gait direction and vision on the properties of locomotor trajectories

Influence of gait direction

We   recently   showed,   in   a   simple   goaloriented   task   where   human   subjects   had   to   walk   towards   and 
throughout a doorway, that locomotor  trajectories  were stereotyped, which contrasted with a significantly 
greater variability in the feet placements (Hicheur et al 2007). This suggested that goaloriented locomotion 
is planned and controlled at the level of wholebody trajectories rather than at the level of the steps. However, 
how dramatic changes in the walking conditions, such as the reversal of gait direction (walking backward), 
affects the formation of trajectories remains unknown. At the steplevel, despite the complete reorganization 
of the muscular activation patterns that backward walking implies, the lower limbs kinematics were shown to 
be practically invariant up to time reversal (Thortensson 1986, Grasso et al 1998b). Whether this invariance 
also holds at the level of wholebody trajectories is one of the questions addressed by the present study. If so 
the hypothesis   that   locomotor   trajectories  are planned and controlled at  a “supramotor”  level  would be 
further supported.

Influence of vision

The crucial influence of vision on the formation locomotor trajectories has been investigated by visually
perturbed and nonvisual experimental protocols. Using prisms and virtual environments, researchers studied 
whether   the  perceived   location  of   the   target   (Rushton   et   al   1998),  optic   flow  (Lappe   et   al   1999)  or   a 
combination   thereof   (Warren  et   al  2001)  underlie   locomotion   towards  a  distant   target  when  (normal  or 
altered) visual feedbacks are available. 

When no visual   feedbacks are  available,   it  was  reported  that   subjects  were still  able  to walk  towards a 
previously seen distant target placed up to ~ 10 meters in front of them (Thomson 1983, see Loomis et al 
1992 for a review). Similarly, the processing of discrete (triangle completion experiments: Loomis et al 1993) 
or continuous (circular locomotion experiments: Takei et al 1997) changes in  orientation was shown to be 
faithfully implemented in nonvisual  locomotion.  More recently,  we demonstrated that,   to reach a distant 
target defined in both position and orientation, subjects produced similar  average  trajectories in visual and 
nonvisual locomotion (see Fig. 1 and Pham and Hicheur 2009). This led us to suggest that a common open
loop,  visionindependent process governs the formation of locomotor trajectories. Going a step further, by 
examining the variability around the average trajectories, we showed that similar online control mechanisms, 
likely based on optimal feedback control principles (Todorov and Jordan 2002), underlie visual and nonvisual 
locomotion (Pham and Hicheur, 2009).

Here,  our goal  was  to  investigate  the combined effects  of  vision and gait  direction on the formation of 
locomotor   trajectories.   As   mentioned   above,   this   allows   assessing   the   general   hypothesis   that  these 
trajectories are generated, to a great extent, independently of their detailed sensorimotor implementations 
(this notion has already been proposed and verified in hand movements, see e.g. Morasso 1981, Atkeson and 
Hollerbach 1985).

Anticipatory steering behavior

The goaloriented tasks considered in our experiments require bringing the body from a given orientation in 
space towards another orientation. This change in the body orientation is achieved through continuous and 
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progressive adjustments of the head and trunk orientations throughout movement execution: this is defined as 
the “steering behavior” (Patla et al 1999a). The steering behavior constitutes another level of description of 
goaloriented locomotion, intermediate between the stepping activity and the wholebody trajectory in space.

Changes in the steering behavior significantly affect the formation of locomotor trajectories: for instance, 
expected and unexpected head yaw movements were shown to affect wholebody trajectories (Vallis and Patla 
2004). Conversely, the properties of the trajectories determine head and trunk rotation patterns. For instance, 
in straight trajectories, the head mostly aligns with the instantaneous direction of movement (heading), but in 
curved trajectories, the head is oriented towards the interior of the curve, thus making a nonzero angle with 
the heading (this phenonenon is termed “head anticipatory behavior”, see Grasso et al 1996, and for a review, 
Hicheur et al 2005a). Moreover, it was shown that the larger the trajectory curvature, the more the head 
anticipates (Hicheur et al 2005b, Hicheur et al 2007).

Functionally, the head anticipatory behavior (and more generally, the gaze anticipatory behavior, see Grasso 
et   al   1998a)  may  play   a   fundamental   role   in   the   challenging  biomechanical   task  of   changing  walking 
direction: placing the head (or directing gaze) in the future direction of walking may help provide a reference 
frame from which the other parts of the body will be organized (Grasso et al 1996, Hollands et al 2001).  
Indeed, changes in walking direction were found to be initiated by the head, which is followed by trunk and 
legs’ reorientations (Imai et al 2001). The anticipatory behavior remains in absence of vision (Grasso et al 
1996, Courtine and Schieppati 2003) and develops in children from 3 years old (Grasso et al 1998a). It should 
be noted that in all the  cited  studies, the subjects were instructed to walk along predefined paths or along 
previously seen predefined paths (nonvisual condition). Whether head anticipation patterns are produced as 
functions of the predefined paths or, to some extent, do they contribute to define the actual paths could not 
thus be answered by theses studies.

Here, no constraint relative the path to follow was imposed to the subjects. We also studied in detail the 
steering   behavior   during   backward   locomotion   (preliminary   observations   were   reported   by   Grasso   and 
colleagues (1998c)). Moreover, we examined not only the degree of head anticipation but also the temporal 
coordination   between   the   head   and   trunk   rotations.   This   allows   assessing   the   role   of   each   particular 
component of the anticipatory behavior (head anticipation, trunk anticipation, head/trunk coordination) in the 
different sensory and motor conditions.

 Experimental setting

In order to understand the combined and separate effects of gait direction and of vision i) on the locomotor 
trajectories and ii) on the steering behavior, we designed an experimental protocol where subjects had to walk 
forward  or  backward,  with  or  without  vision.  The  comparison  of   the   locomotor   trajectories  and  of   the 
steering   behavior   across   these   different   conditions   allowed   us   to   test  the   hypothesis   that  locomotor 
trajectories are generated at a high cognitive level, and to some extent, independently of the detailed sensori
motor implementations. It also allowed us to describe the interrelations between the locomotor trajectories 
and the anticipatory steering behavior in the different sensory and motor conditions.
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Methods

In this study, we wanted to study the effects of vision (walking with (V) or without (N) vision) and of gait 
direction (walking forward (F) or backward (B)) on locomotor trajectories and on the steering behavior. We 
used a 2x2 design, implying four experimental conditions: walking with vision forward (VF), with vision 
backward (VB), without vision forward (NF) and without vision backward (NB). Part of the data involving 
the VF and NF conditions was presented in a previous paper (Pham and Hicheur 2009).

Experimental methods

Subjects and materials

Fourteen healthy male subjects volunteered for participation in the experiment. Subjects gave their informed 
consent prior to their inclusion in the study. Experiments conformed to the Code of Ethics of the Declaration 
of Helsinki. The mean age, height and weight of the subjects were respectively equal to 24.6 ± 3.2 years, 1.80 
± 0.04m and 73.3 ± 5.7kg.

Fourtytwo lightreflective markers were attached to the subjects, allowing fullbody movement capture. The 
3D positions of the markers were recorded using an optoelectronic Vicon V8 motion capture system wired to 
12 cameras at a 120Hz sampling frequency. To study wholebody trajectories in space, we used the midpoint 
between left and right shoulder markers which were located on left and right acromions, respectively (see 
Hicheur  et  al  2007).  These markers  were also used  to compute  the  trunk direction (Fig.  2C).  The  four 
markers attached to the subjects' heads were used to compute the head direction (Fig. 2C).

In each trial, the target was indicated by a cardboard arrow of dimension 1.20m x 0.25m. The arrow was 
placed at  a specific  (x,y)  position  in  the motion capture space with an orientation alpha (Fig.  2B).  The 
angular displacement of the body in space induced by the different orientations of the arrow ranged between 
180° to 180°. Three targets were placed directly in front of the subject (straight targets) while the others were 
placed on the side (angled targets), thus imposing curved trajectories. The three straight targets were used for 
all   subjects.  A subgroup of  6  subjects  walked towards   the angled  targets  located on  the  left,  while   the 
remaining 8  subjects  walked  towards   the angled  targets  on  the   right.  Thus,  each  subject  generated 132 
trajectories corresponding to 11 spatial targets (3 straight + 8 angled) x 4 conditions x 3 trials, so that a total 
of 1848 trajectories (14 subjects x 132 trials) were recorded for this experiment.

Incomplete or erroneous trajectories were discarded, resulting in 1608 trajectories being actually processed.

The dimensions of the laboratory where the experiments took place were approximately 10m x 10m x 5m 
(length, width and height respectively).

Protocol

In each trial, the subject had to start from a fixed position in the laboratory and to walk towards a distant 
target indicated by the arrow. We constrained the subject's initial travelling direction (or the heading, see Imai 
et al 2001) by asking him to start at position (0,1m) and to walk the first meter (from (0,1m) to (0,0)) 
orthogonally to the Xaxis (Fig. 2A, 2B).  We imposed the subject's final travelling direction by asking the 
subject  to enter  the arrow by the shaft  and to stop walking above the arrow head.  The initial  and final 
constraints  were  devoted   to  ensure   that   subjects   performed   the   experiment   in   the   same  conditions.  No 
specific restriction relative to the path to follow was provided to the subject in between the initial and final 
positions. 

The subject walked at his preferred, selfselected speed either with eyes open (visual conditions: VF, VB) or 
closed (nonvisual conditions: NF, NB). In the visual conditions, the arrow was visible throughout the whole 
movement. In the nonvisual conditions, the subject first observed the arrow while standing at the starting 
position. When the subject was ready, he closed his eyes and attempted to complete the task – walk the first 
meter orthogonally to the Xaxis,  enter the arrow by the shaft and stop above the arrow head – without 
vision. The experimenter removed the arrow right after the observation period (which typically lasted less 
than 3 seconds) in order to avoid any tactile feedbacks (which might have occurred if the subject would have 
touched the arrow with his feet). Once the subject had completely stopped, he was asked to keep his eyes 

5



closed. The experimenter then took the subject's hand and guided him randomly for a few seconds in the 
laboratory before stopping at a random position. The subject was then allowed to reopen his eyes and to go 
back to the starting position. This procedure prevented subject from postexecution spatial calibrations using 
kinaesthetic cues.

The trials were randomized in order to avoid learning effects for a particular condition or target. The subject 
completed two to three trials before the experiment actually started in order to be familiar with the task and to 
dispel any fear of hitting the walls during the nonvisual trials (the distance between the most distant target 
and the wall was ~ 3m).

Analysis of locomotor trajectories

All the data analyses below were performed with the free software GNU Octave, unless otherwise stated. 
Some of the analyses were described in (Pham et Hicheur 2009), to which the reader is referred for more 
details.

Computation of the trajectories

The beginning (t = 0) of each trajectory was set to the time instant when the subject crossed the Xaxis. In 
order to have the same criterion for the visual and nonvisual conditions, the end of each trajectory (t = 1) was 
set to the time instant when the subject's speed became smaller than 0.06m.s1 (this value was smaller than 
5% of the average nominal walking speed). We chose this strictly positive threshold because even when the 
subject had completely stopped, the speed of their shoulders' midpoint was not exactly zero due to the small 
residual movements of the upperbody.

When a derivative of the position (velocity, acceleration,...) was needed, a secondorder Butterworth filter 
with cutoff frequency 6.25Hz was applied before the derivation.

Average trajectories, variability profiles, velocity profiles

For a given target, the average trajectory (xav(t), yav(t)) was defined as

x avt =
1
N
∑
i=1

N

xi t  ; yav=
1
N
∑
i=1

N

yi t    (1)

where N corresponds to the number of trajectories recorded for a given target and condition (N = 14 subjects 
x 3 trials = 42 when no trial is discarded for this target and condition).

To measure the variability of actual trajectories around the average trajectory, we defined the instantaneous 
Trajectory Deviation (TD) at time t as (see Fig. 2C for illustration)

TDt = 1
N−1∑i=1

N

 xi t−x avt 
2y i t −yavt 

2 (2)

We then defined the Maximum Trajectory Deviation (MTD) as

  MTD t =max
0t 1

TDt  (3)

Variance ellipses were calculated by Principal Component Analysis: the variance ellipse at time t is centred 
at (xav(t), yav(t)) and its orientation and size indicate how the (xi(t), yi(t)) (i = 1 ... N) are distributed around 
(xav(t), yav(t)).

The normalized velocity profile vi and the average normalized velocity profile vav were defined as 
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v i=
 ẋ i

2 ẏi
2

∫
0

1

 ẋi
2
 ẏ i

2 dt

; vav=
1
N ∑i=1

N

v i   (4)

The instantaneous Velocity Deviation (VD) were next defined as (Fig. 2C)

VD t = 1
N−1∑i=1

N

vi t −vav t 
2

 

(5)

Note that, since the velocity profiles were normalized, vi and VD have no units.

Comparison of trajectories in two conditions

For comparing the average trajectories recorded in two different conditions, say A and B, we defined, for 
each target, the instantaneous Trajectory Separation (TS) as

TSA/Bt = xA t−x B t
2
 yAt −yBt 

2 (6)

where (xA,yA) and (xB,yB) denote the average trajectories respectively in condition A and in condition B.

We then defined the Maximum Trajectory Separation (MTS) as

MTSA/Bt =max
0t1

TSA/B t    (7)

Targets pooling

In Experiment 1, six subjects walked towards targets located on their left and eight subjects walked towards 
targets located on their right (see Fig. 2B). We found no significant effect of the side on the parameters of 
interest: for instance, the MTSL/R (MTS between the average trajectory of the lefttrajectories and that of the 
righttrajectories) was smaller than the MTDR (MTD of the righttrajectories) in both VI and NV conditions. 
In the twoway ANOVA test with replications where the factors were the measure (MTSL/R vs MTDR) and the 
visual condition, the effect of the measure was significant (F = 37.4, p < 0.05) and there was no significant 
interaction effect (F = 2.82, p > 0.05). Thus, for all the following analyses, we flipped the lefttrajectories 
towards the right and pooled them together with their symmetrical trajectories (trajectories of target 4 with 
those of target 6, trajectories of target 5 with those of targets 7.

Analysis of the steering behavior: head and trunk absolute and relative orientations

Definition of head and trunk angles

The head and trunk orientations in the horizontal plane were computed based on the four head markers and 
the two shoulders markers respectively (Fig. 2D). The trunk direction was given by the orthogonal direction 
to the shoulders segment defined by the two shoulders markers.

We considered four timevarying angles: the Absolute Head angle (AH, angle between the head direction and 
the laboratory Xaxis),   the Relative Head angle (RH, angle between the head direction and the heading, 
which is defined as the tangent direction to the trajectory, see Imai et al 2001), the Relative Trunk angle (RT, 
angle between the trunk direction and the heading) and the Head/Trunk angle (HT, angle between the head 
direction and the trunk direction) (Fig. 2D).

Stereotypy of head and trunk steering behavior

Several statistics were computed to assess the stereotypy of the head turning behavior, as previously done for 
assessing the stereotypy of wholebody trajectories.
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First, the average Absolute Head angle was computed as 

AHav t=
1
N
∑
i=1

N

AHi t (8)

where N is the number of trajectories recorded for a given target (here, N = 14 subjects x 3 repetitions = 42).

The Absolute Head angle Deviation (AHD), which measures the variability of the AH around the average 
profile, was then defined by

AHD t = 1
N−1∑i=1

N

AHi t −AHav t
2 (9)

The Maximum Absolute Head angle Deviation (MAHD) was next given by

MAHD t =max
0t1

AHD  t (10)

We defined similarly the RHD (Relative Head angle Deviation), MRHD (Maximum RHD), RTD (Relative 
Trunk   angle   Deviation),   MRTD   (Maximum   RTD),   HTD   (Head/Trunk   angle   Deviation)   and   MHTD 
(Maximum HTD). All these parameters quantified the extent to which the head and trunk angular movements 
were similar across repetitions and subjects.

Degree of anticipation

When humans walk forward along a straight path, the directions of their head and trunk mostly align with the 
heading, which corresponds to RH ~ 0, RT ~ 0, HT ~ 0 (the residual oscillations induced by the stepping 
activity are neglected, see Hicheur and Berthoz 2005). By contrast, when they walk along a curved path, their 
head and trunk significantly deviate from the heading and are oriented towards the interior of the curve, thus 
making nonzero angles with the heading. Furthermore, the larger these angles, the more the head and the 
trunk anticipate with respect to the heading. Thus, to quantify the degree of head and trunk anticipation, we 
computed, for each trajectory 1 ≤ i ≤ N the Maximum Relative Head angle (MRH) as

MRH i=max
0t1

∣RHi  t∣ (11)

and similarly for the Maximum Relative Trunk angle (MRT) and the Maximum Head/Trunk angle (MHT).

These values were then averaged across subjects and repetitions (1 ≤  i ≤  N), yielding average and standard 
deviation values. At this point,  it should be noted that the SD of the MRHi  obtained by this calculation 
should not be confused with the MRHD defined above.

In the backward conditions (VB and NB), since the “natural” angle between the head (and trunk) direction 
and the heading is 180° (see Fig. 7A), the MRHi (and the MTHi) was computed by

MRH i=max
0t1

∣RHi  t180∣ (12)

Timing of anticipation

In addition to the degree of anticipation, it was also interesting to assess its timing, which yields insights into 
the temporal  coordination of  the different  segments (Imai et  al  2001).  For  this,  we determined the  time 
instants when the maxima defined in the above paragraph were attained. For instance, the Time of Maximum 
Relative Head angle (TMRH) was defined by
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TMRHi=arg max
0t1

∣RH i t∣ (13)

The   Time   of   Maximum   Relative   Trunk   angle   (TMRT)   and   the   Time   of   Maximum   Head/Trunk   angle 
(TMHT) were defined similarly.

Finally, these values could also be averaged across subjects and repetitions (1 ≤ i ≤ N), yielding average and 
standard deviation values. 

Statistical tests

Student ttests and ANOVA tests were performed with Gnumeric (GNOME Foundation, Cambridge, MA, 
USA) while Tukey tests were performed with Matlab® (The MathWorks Inc., Natick, MA, USA). The level 
of significance of the tests was set to p < 0.05.

We used a linear regression analysis to study the relations between head anticipation and trajectory curvature. 
More precisely, for each trajectory i, we computed the Maximum Curvature (MCi) of the trajectory and we 
performed  the   regression  analysis  of  MRHi  =  beta  MCi,  which  yielded   the  optimal   slope  beta  and   the 
coefficient of determination r2.
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Results

Locomotor trajectories

Effects of vision

Comparison of Visual Forward (VF) and Nonvisual Forward (NF) conditions: The results of this comparison 
were reported in (Pham and Hicheur, 2009), see in particular Fig. 3 in that reference and also Fig. 1 of the 
present article. Briefly, we showed that the average trajectories in conditions VF and NF were similar both at 
the geometric level (the paths)  and at the kinematic level (the velocity profiles). However,  the absence of 
visual feedback yielded large differences in terms of the variability profiles. In particular, MTDNF was shown 
to be significantly larger than MTDVF. Moreover, the shapes of the variability profiles were qualitatively 
different: while in condition VF, the variability decreased towards 0 at the end of the movement, yielding 
bumpshape profiles, it decreased in some targets, but never reached 0 in condition NF.

Comparison of Visual Backward (VB) and Nonvisual Backward (NB) conditions: Here, we also found a large 
similarity of the average trajectories in the VB and NB conditions, albeit to a lesser extent than previously 
found in the comparison of the VF and NF conditions. This observation was verified at both the path level 
(Fig.  3A1,  3B1, 3C1) and atthe velocity profile   level  (Fig.  3A2,  3B2, 3C2).  However,   the  same remark 
regarding the slight differences in the shapes of the velocity profiles in the VF/NF comparison could also be 
made for the VB/NB comparison.

Quantitatively, the average Maximal Trajectory Seperation MTSVB/NB across the 11 tested targets was 0.50m 
(Fig. 3D) in absolute terms, or 9.2% of the VB Trajectory Length (TL). These values are to be compared 
with the average Maximum Trajectory Deviation within condition VB MTDVB, which was 0.38m or 6.4% of 
the  VB TL,  and  the MTDNB,  which  was 0.90m or  15.7% of   the  NB TL.  Regarding  the shapes  of   the 
variability profiles, we observed, as in the VF/NF comparison, large differences in terms of both magnitude 
and shapes between VB and NB conditions (Fig. 3A3, 3B3, 3C3)

Effects of gait direction

Comparison of Visual Forward (VF) and Visual Backward (VB) conditions: In targets which imposed no 
change in curvature sign  (or equivalently whose paths did not contain an inflection point,  i.e. all  targets 
except 4W, 4N, 5W, 5N), the average trajectories observed in the VF and VB conditions were very similar at 
the path level (targets 4E and 5S, Fig. 4A1, 4C1). In targets which imposed a change in curvature sign (4W, 
4N, 5W, 5N), the VB paths were slightly shifted to the interior of the main curve with respect to the VF paths 
(targets  5W: Fig.  4B1;  also  target  4W: not  shown).  However  quantitatively,   this  difference resulted  in  a 
MTSVF/VB smaller than 0.4m (Fig. 4D). In terms of the velocity profiles, we found very similar patterns, in 
every targets (Fig. 4A2, 4B2, 4C2). This similarity was larger here than in the previous VF/NF and VB/NB 
comparisons.

Quantitatively, the average MTSVF/VB across the 11 tested targets was 0.22m (Fig. 4D) in absolute terms, or 
4.0% of the VF TL. These values are to be compared with the average MTDVF, which was 0.31m or 5.7% of 
the VF TL, and the average MTDVB, which was 0.38m or 6.4% of the VB TL.

Finally, we noted that the variability profiles were similar in the two conditions, both in terms of magnitudes 
(average MTDVF = 0.31m, average MTDVB = 0.38m) and shapes (Fig. 4A3, 4B3, 4C3)

Comparison of Nonvisual Forward (NF) and Nonvisual Backward (NB) conditions: Here the similarity of the 
average trajectories was not as strong as in the previous comparison. Yet it was still remarkable given the 
difficulty  of   the   task  (walking  to distant   targets defined  in both position and  orientation without  visual 
feedback). At the path level,   the average trajectories globally displayed the same forms, with some shift 
between   the   two   conditions   (Fig.   5A1,   5B1,   5C1).   In  particular,   in   targets   which   imposed   achange   in 
curvature sign, we observed that, as in the VF/VB comparison, the NB paths were shifted towards the interior 
of the main curve with respect to the NF paths (target 5W: Fig. 5B; also target 4W: not shown). As in the VF/
VB comparison, the velocity profiles were very similar in the two compared conditions, in all targets (Fig. 
5A2, 5B2, 5C2). 
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Quantitatively, the average MTSNF/NB across the 11 tested targets was 0.38m (Fig. 5D) in absolute terms, or 
6.9% of the NF trajectory length. These values are to be compared with the average MTDNF, which was 
0.74m or 13.6% of the NF TL, and the average MTDNB, which was 0.90m or 16.5% of the NB TL. 

In terms of the variability profiles, we observed a larger variability in condition NB (see the values given 
above). However the difference between conditions NF and NB was low as compared to the VF/NF and VB/
NB comparisons. In addition, the variability profiles displayed similar shapes (Fig. 5A3, 5B3, 5C3).

Taken together, these results show that the average trajectories were highly similar across gait directions and 
vision conditions (the variability across conditions was comparable – and inferior for most of the cases – to 
the variability within a single condition).  The variability  profiles  were found  to differ  across  the  visual 
conditions but not across gait directions.

 Steering behavior: head and trunk turning profiles

Absolute head orientation

The  examination  of   the  average  Absolute  Head  angle   (AH)  profiles   (Fig.  6)   revealed   large  differences 
between conditions VF, NF and NB on one hand, and condition VB on the other. 

In conditions VF, NF and NB, the head direction at the beginning and the end of a trajectory was aligned 
with the heading: orthogonal to the Xaxis at the beginning (AHav(0) = 90° in VF and NF, AHav(0) = 90° in 
NB), and aligned with the arrow's direction at the end of the trajectory (AHav(1) = target_angle in VF and 
NF, AHav(1)  =   –target_angle in NB).  Between  t  = 0 and  t  = 1,  the average AH profiles approximately 
followed sigmoidshape profiles – with some differences, however, among the three conditions (red, magenta 
and cyan lines in Fig. 6A1, 6A2, 6A3; this is studied in more detail in the next section).

By contrast, in condition VB, the head direction was not aligned with the heading at the beginning of the 
trajectory: AHav(0) ~ 45°. Indeed, right from the start, subjects turned their head backwards to look at the 
target “over their shoulders”. In addition, between t  = 0 and t = 1, the average AH profiles displayed large 
variations in time (green lines in Fig. 6A1, 6A2, 6A3), unlike the smooth sigmoidshape profiles observed in 
conditions VF, NF and NB. 

In term of variability, the AH Deviations (AHD) were relatively low in the VF, NF, and NB conditions and 
much larger in condition VB (Fig. 6B1, 6B2, 6B3). Quantitatively, the average MAHDs across targets were 
respectively 14.4°, 19.7° and 24.3° in conditions VF, NF, NB, while the average MAHD was 63.6° for VB 
(see also Fig. 6C). These observations confirmed the results  reported  in (Hicheur et al  2007) where we 
demonstrated the stereotypy of the head turning behavior in condition VF. Moreover, they extended those 
results to the cases of nonvisual forward and backward locomotion. The similarity of the average AH profiles 
in the VF, NF and NB conditions suggest that the head orientations during nonvisual forward and backward 
locomotion are controlled following similar strategies as in visual forward locomotion. In the sequel,  we 
analyze in greater details these strategies, with a particular emphasis on the “anticipation” aspects. The VB 
appeared to be a specific condition where subjects adopted highly variable steering strategies and as such, 
VB steering results will not be presented in the next parts of the Results.

Head anticipatory behavior in conditions VF and NF

Condition VF: The examination of the Relative Head angles (RH) profiles (Fig. 7B1, 7B2, 7B3) revealed a 
clear anticipation behavior. In the VF condition (red lines), one may distinguish two main parts. In the first 
part, between  t  = 0 and  t  ~ 0.3, the RH remained close to zero. Here there was no anticipation: the head 
remained mostly aligned with  the heading.  This part  corresponded indeed to  the  straight  portion of  the 
trajectory.

In the second part, for targets where the subject had to steer towards the right (targets 4E and 5S: Fig. 7B1, 
7B3), the RH first decreased to reach its minimal value around t = 0.6. Then, it increased again, to get back 
near 0 at t = 1. The RH was thus negative for 0.3 ≤ t ≤ 1: the head was oriented towards the interior of the 
curve. This part corresponded to the curved portion of the trajectory. Similarly, for targets where the subject 
had to steer towards the left (targets 5W: Fig. 7B2), the RH first increased and then decreased, yielding also 
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an anticipatory behavior. The average Maximal RH across subjects and repetitions ranged between 12.4° 
(target 1N) and 77.8° (target 5S).

In agreement with previous studies (Hicheur et al 2005b, Hicheur et al 2007), we noted that the more curved 
the   trajectories,   the   larger   the  MRH  (Fig.   7D,   red  bars).  The   linear   regression   analysis   (see  Methods) 
performed over the angled trajectories (that is, excluding targets 1N, 2N and 3N) revealed a good correlation 
between the MRH and the Maximum Curvature (MC) (beta = 25.3, corr = 0.79,  see Fig. 7F1).

Condition NF: In condition NF, the anticipation behavior could also be clearly observed. The NF profiles 
displayed similar shapes as the VF profiles, but with a smaller magnitude (Fig. 7B1, 7B2, 7B3, magenta 
lines).

Quantitatively, the average MRHs ranged between 10.0° (target 3N) and 61.9° (target 5S) in this condition. 
The MRH values were significantly smaller than in condition VF. However, similarly to condition VF, the 
more curved the trajectories, the larger the MRH (Fig. 7D, magenta bars). The linear regression analysis 
performed over the angled trajectories confirmed this observation (beta = 18.0, r2 = 0.61,  see Fig. 7F2). Note 
that   betaNF  <   betaVF  because   the   MRHs   were   smaller   in   NF   than   in   VF   while   the   curvatures   were 
approximately the same in the two conditions due to the similarity of the paths (see above).

Finally,  we  noted   that   these  anticipation  behavior  were   stereotyped  across   subjects   and   repetitions:   the 
average Maximum RH Deviation (MRHD) across targets was 14.1° for condition VF and 15.1° for condition 
NF (Fig. 7C).

Head anticipatory behavior in condition NB

Note that, since when walking backward the “natural” angle between the head direction and the heading is 
180°   (see Methods),  anticipation behavior  in backward conditions are defined by the formula:  the head 
direction   at   time  t  is   reached  by   the  opposite  of   the  heading   at   time  t  + Delta  t  where  Delta  t  >  0. 
Geometrically, this means that the head is oriented towards the exterior of the curve (see Fig. 7A and also 
Grasso et al 1998c). Numerically, this means RH < 180° for targets where the subject had to steer towards 
the right (targets 4E and 5S) and RH > 180°  for targets where the subject had to steer towards the left 
(targets 5W).

Given these clarifications, we observed a clear anticipation behavior in condition NB (Fig. 7B1, 7B2, 7B3, 
cyan lines). The magnitude of the anticipation was smaller than in conditions VF and NF: the average MRHs 
ranged between 10.8° (target 1N) and 51.9° (target 4W). The dependence of the degree of anticipation on 
trajectory curvature could also be observed (Fig. 7D, cyan bars). The linear regression analysis performed 
over the angled trajectories confirmed this observation (beta = 12.4, r2 = 0.43,  see Fig. 7F3). Here, we also 
noted that betaNB < betaNF < betaVF for the same reason as above.

Head/trunk coordination for anticipation

The   orientation   of   the   head   with   respect   to   the   trajectory   is   achieved   through   the   combination   of 
trunk/heading and head/trunk rotations. Fig. 8A1, 8A2, 8A3 show the Relative Trunk angle (RT) profiles 
(angle between the trunk direction and the heading). The anticipation behavior could be clearly observed in 
the three conditions. Again, the magnitude of the anticipation was the largest in condition VF, followed by 
condition NF and then NB. We also noted that the magnitude of anticipation was smaller for the trunk than 
for the head. Indeed the average MRTs were significantly smaller than the MRHs.

Fig. 8B1, 8B2, 8B3 show the Head/Trunk angle (HT) profiles. Again, this angle was larger in VF than in NF 
than in NB. Globally, we observed that MHT < MRT < MRH.

Regarding the timing of the anticipation, we observed that the maximum of the anticipation occurred earlier 
for HT than for RT (Fig. 8E shows the time when RT reached its maximum and Fig. 8F shows the time when 
HT reached its maximum). Thus, in the first part of the curve (0.3 ≤ t ≤ 0.5), the head anticipation was 
achieved mainly by turning the head with respect to the trunk, and in the second part (0.5 ≤ t ≤ 0.8) head 
anticipation was achieved mainly by turning the trunk with respect to the heading (Fig. 8C1, 8C2, 8C3). In 
this second part (figures 8B1, 8B2 and 8B3), the head does practically not move with respect to the trunk 

12



(HT is close to 0).

Regarding now the  distribution  of head anticipation between RT and HT, we observed graphically in Fig. 
8C1, 8C2, 8C3 that overall RT contributed more than HT. This was confirmed by comparing the average 
value of RT and of HT for  0.3 ≤ t ≤ 1 : the contribution of RT to head anticipation was ~ 65% while that of 
HT was ~ 35% in all targets and conditions (Fig. 8D).

It was remarkable that all the above observations on the head/trunk coordination (timing and distribution) 
applied for the three conditions VF, NF and NB, with only minor differences.
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Discussion

In this study, we experimentally examined the properties of locomotor trajectories performed under different 
visual (walking with or without vision) or motor (walking forward or backward) conditions. The results are 
summarized in Table 1.

Vision independence of the average behavior

The   ability   of   humans   to   perform   basic   locomotor   tasks   in   absence   of   vision   has   been   abundantly 
documented in the literature. Concerning the processing of  linear  distance, Thomson (1983) showed that, 
when subjects are asked to walk blindfolded towards previously seen targets placed between 3m and 21m 
ahead, the constant error (corresponding to our CEP(1), see Methods) was almost 0 for each distance. This 
result  was   confirmed   in  many   subsequent   studies   (see  Loomis   et   al   1992   for   a   review).  Glasauer   and 
colleagues (2002) showed that subjects could reproduce a previously observed triangular path (a isosceles 
right triangle with two 3m segments), indicating their ability to also process angular displacements. Finally, 
the ability to monitor  continuous  changes in the heading was also demonstrated by Takei and colleagues 
(1997) for circular paths reproduced without vision.

Here, we demonstrated that subjects accomplished with reasonable success the task of walking blindfolded 
towards a distant target specified in both position and orientation. They were thus able to combine and utilize 
the basic abilities mentionned above in a complex task where the paths are not predefined. 

We showed that the average trajectories in the Vi and Bl conditions were very similar. This similarity of the 
average behavior possibly reflects  a common strategy governing the formation of trajectories  in the  two 
conditions. In other words, in the Bl condition, subjects try to follow the same strategy as in the Vi condition, 
resulting in similar average trajectories. However, due to the lack of visual feedback, this strategy could not 
be accomplished perfectly in each trial, resulting in a large trajectory variability. Here, “strategy” should be 
understood   in   the   broad   sense,   and   should   not   be   reduced   for   instance   to   a   precomputed   motor   plan 
(Thomson 1983) or a “desired trajectory”. A “strategy” in our sense could for example consist of maximizing 
the smoothness of the trajectory, which was indeed the view taken in the modelling part of the present article.

Together with the motorindependence of the average trajectory discussed above, the results of this section 
strongly suggest  that  locomotor trajectories are generated at a cognitive level,   independently of both  the 
detailed motor and sensory implementations. In the long term, we believe that further studies combining the 
examination of motor and sensory processes with navigational abilities will bring new knowledge about the 
pathology of locomotion and its rehabilitation.

Motor independence of locomotor trajectory formation

As discussed in (Grasso et al 1998b), the anatomy of the lower body is highly asymmetrical about the frontal 
plane,   both   in   terms   of   the   bone   and   the   muscle   structures.   Thus,   locomotor   movements   in   opposite 
directions (Fw and Bw) are produced by very different muscular activation patterns. However, despite these 
differences, the trajectories of the leg segments were found to be surprisingly similar (up to time reversal) in 
Fw and Bw walking (Thorstensson 1986; Grasso et al 1998b).

During   goaloriented   locomotion   in   free   space   (as   opposed   to   treadmill   walking),   further   important 
differences between Fw and Bw walking can be noticed regarding the coordination of upperbody segments. 
We focus here on the movements of the head, which is critical for locomotion since the head contains both 
the visual and the vestibular organs. In forward locomotion, the movements of the head display a number of 
characteristic and welldocumented features,  such as vertical  and horizontal  stability (Pozzo et al  1990), 
anticipation of the future direction of movement by the head (Grasso et al 1996). In backward locomotion, we 
observed a severe reorganization in the control of the headneck system: subjects turned their head backwards 
with   respect   to   the   heading   (in   an   anticipatory   synergy   and   to   visualize   the   target   and   monitor   their 
trajectory). Such a reorganization also deeply influenced the structure of the sensory inputs: for instance, the 
limited range of yaw movements induces a shift between the visual direction and the heading, which in turn 
affects  both  the  incoming optic flow and the perceived direction of  the  target  with respect   to  the  body 
(Rushton et al 1998; Warren et al 2001). 
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Despite these important differences, we observed that, on average, trajectories in the Fw and Bw conditions 
were very similar.  In some sense,  these results can be viewed as generalizations of  (Thorstensson 1986; 
Grasso et al 1998b) to the scale of wholebody trajectories. They also suggest, along with our previous results 
concerning the foot placement (Hicheur et al 2007; see also Introduction), that the CNS plans and controls 
goaloriented locomotion at the level of whole body trajectories in space, and this is done, to some extent, 
independently of  the detailed particular  motor  implementation of  the steering behavior.  Then, a detailed 
motor   strategy   (in   terms   of   foot   placements,   muscular   activations,   intersegmental   coordination,...)   is 
produced to actually  implement  these  trajectories.  We would  like  to emphasize here   that  assuming such 
central planning and control of trajectories is not equivalent to the “desired trajectory” hypothesis: this point 
will be discussed later.

We noted however some limitations to our experimental findings. For targets 4W and 5W which impose 
inflection  points   in   the   trajectories,   the  differences  between  the  average   trajectories   in   the  Fw and Bw 
conditions were higher than for the other targets (see Results). Since the existence of inflection points may 
dramatically   increase  the complexity  of   the   task,  biomechanical  differences  may play  a  greater   role   in 
shaping the trajectories. In the same vein, we noted that, in highly constrained tasks (such as avoidance tasks: 
Patla et al 1999b), the foot placement may become stereotyped and precisely monitored by the CNS, which 
contrasts   with   the   highly   variable   foot   placement   patterns   observed   in   freeenvironment   experiments 
(Hicheur  et  al  2007).  Finally,  while   the   shapes  of   the  variability  profiles  were  very  similar   in   the   two 
conditions, the magnitude of the variability was higher in the Bw condition. This may be related to the fact 
that Bw walking is less natural, more difficult, hence more variable than Fw walking.
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Tables

Table 1

Wholebody 
trajectories

Steering behaviour

Ave traj Var prof Ave prof Var prof Timing Distrib 
RT/HT

Anticip / 
Curv

Effect of 
vision

0 ++ x x 0 0 x

Effect of 
gait dir

x 0 x
(NF/NB)
++
(VF/VB)

x
(NF/NB)
++
(VF/VB)

0 
(NF/NB)
n.a.
(VF/VB)

0 
(NF/NB)
n.a.
(VF/VB)

x
(NF/NB)
n.a.
(VF/VB)

Tables' legends

Table 1

Summary of the results. 0 : no or practically no effect, x :  small effect, ++ : large effect, n.a. : not available.
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Figures' legends

Figure 1

Comparison of locomotor trajectories in the Visual Forward (VF: red) and Nonvisual Forward (NF: magenta) 
conditions for target 4S (see Protocol). (A) Geometric paths of the average trajectories and variance ellipses 
(see Methods). (B) Average velocity profiles and the corresponding variabilities. (C) Variability profiles.

Figure 2

(A) Experimental protocol: subjects had to start from a fixed position in the laboratory and walk towards a 
distant arrow placed on the ground. Subjects had to enter the arrow by the shaft, and stop above the arrow 
head. (B) Spatial disposition of the 19 targets: each target was referred to by a number (17) indicating the 
position and by a letter (N (north), S (south), E (east), W (west)) indicating the orientation. (C) Instantaneous 
trajectory deviation (TD(t)) and instantaneous velocity deviation (VD(t)),  which measure respectively the 
variability of actual trajectories around the average trajectory and the variability of actual velocity profiles 
around the average velocity profile. (D) Definition of the head and trunk angles.

Figure 3

Comparison of locomotor trajectories in the Visual Backward (VB: green) and Nonvisual Backward (NB: 
cyan) conditions. (A) Comparisons for target 4E. A1: geometric paths of the average trajectories. We also 
plotted the variance ellipses around the average trajectory at every time instant (see Methods) in light green 
and light cyan. A2: average velocity profiles. The velocity profiles were normalized so that their average 
values over the movement duration equals 1 (see Methods). Standard deviations around the average velocity 
profiles are in light green and light cyan. A3: trajectory variability profiles (TD(t)). (B) Same as in A, but for 
target 5W. (C) Same as in A, but for target 5S. (D) Maximal Trajectory Deviation/Separation (MTD/MTS) in 
meters: MTD in condition VB (green bars), MTD in condition NB (cyan bars), MTS between the average 
trajectory of VB and NB (grey bars).

Figure 4

Comparison of locomotor trajectories in the Visual Forward (VF: red) and Visual Backward (VB: green) 
conditions. For details, see legend of Fig. 3.

Figure 5

Comparison of locomotor trajectories in the Nonvisual Forward (NF: magenta) and Nonvisual Backward 
(NB: cyan) conditions. For details, see legend of Fig. 3.

Figure 6

Absolute Head (AH) angles in the four tested conditions (VF: red, NF: magenta, VB: green, NB: cyan). (A) 
Average AH profiles. A1: target 4E, A2: target 5W, A3: target 5S. Left scale for the forward conditions (VF, 
NF) and right scale for the backward conditions (VB, NB). (B) AH variability profiles. (C) Variability of the 
AH profiles: Maximal Absolute Head angle Deviation (MAHD) in degrees.

Figure 7

Head anticipatory behavior. (A) Anticipatory behavior in forward and in backward locomotion. (B) Average 
RH profiles (plain lines)  ±  SD (dashed lines) for conditions VF (red), NF (magenta) and NB (cyan). B1: 
target 4E, B2: target 5W, B3: target 5S. (C) Variability of the RH profiles: Maximal Relative Head angles 
Deviation (MRHD). (D) Degree of head anticipation: Maximal Relative Head angles (MRH) averaged across 
subjects and repetitions (and the corresponding SD bars). (E) Timing of head anticipation: time when MRH 
was attained, averaged across subjects and repetitions.  (F) Regression analysis of the dependence between 
path curvature and head anticipation. We tested the model Maximum Relative Head angle = beta Maximum 
Curvature for condition VF (F1), NF (F2) and NB (F3).
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Figure 8

Head/Trunk coordination for anticipation in conditions VF (red), NF (magenta) and NB (cyan). (A) Average 
Relative Trunk angle (RT) profiles (plain lines) ± SD (dashed lines). A1: target 4E, A2: target 5W, A3: target 
5S.  (B)  Average Head/Trunk angle (HT) profiles (plain  lines)  ±  SD (dashed lines).   (C)  Contribution of 
Relative Trunk vs contribution of Head/Trunk to head anticipation in time: a value of 100% means that only 
RH contributes while a value of 0% means that only Head/Trunk contributes. (D) Contribution of Relative 
Trunk   vs   contribution   of   Head/Trunk   to   head   anticipation   over   the   whole   trajectory.   (E)   Time   when 
Maximum RT was attained, averaged across subjects and repetitions. (F) Time when Maximum HT was 
attained, averaged across subjects and repetitions.
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a Contracting Basal Ganglia Model for

Action Selection
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a b s t r a c t

Action selection, the problem of choosing what to do next, is central to any autonomous agent
architecture. We use here a multi-disciplinary approach at the convergence of neuroscience, dynamical
system theory and autonomous robotics, in order to propose an efficient action selection mechanism
based on a new model of the basal ganglia. We first describe new developments of contraction theory
regarding locally projected dynamical systems.We exploit these results to design a stable computational
model of the cortico-baso-thalamo-cortical loops. Based on recent anatomical data, we include usually
neglected neural projections, which participate in performing accurate selection. Finally, the efficiency
of this model as an autonomous robot action selectionmechanism is assessed in a standard survival task.
The model exhibits valuable dithering avoidance and energy-saving properties, when compared with a
simple if-then-else decision rule.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Action selection is the problem of motor resource allocation
an autonomous agent is faced with, when attempting to achieve
its long-term objectives. These may vary from survival and re-
production to delivering letters to researchers’ offices, depend-
ing on the nature of the considered agent (animal, robot, etc.).
Action selection is a topic of interest in various disciplines, in-
cluding ethology, artificial intelligence, psychology, neuroscience,
autonomous robotics, etc. We address here the question of action
selection for an autonomous robot, using a computational model
of brain regions involved in action selection, namely the cortico-
baso-thalamo-cortical loops. In order to avoid unwanted dynam-
ical behaviors resulting from a highly recurrent network, we use
contraction analysis (Lohmiller & Slotine, 1998) to obtain a rig-
orous proof of its stability. The efficiency of this action selection
mechanism (ASM) is assessed using a standard minimal survival
task in a robotic simulation.

The basal ganglia are a set of interconnected subcortical nuclei
common to all vertebrates and involved in numerous processes,
frommotor functions to cognitive ones (Middleton & Strick, 1994;
Mink, 1996). Their role is interpreted as a generic selection circuit,
and they have been proposed to form the neural substrate of
action selection (Krotopov & Etlinger, 1999;Mink, 1996; Redgrave,

∗ Corresponding author. Tel.: +33 1 44 27 13 91; fax: +33 1 44 27 13 82.
E-mail address: benoit.girard@college-de-france.fr (B. Girard).

Prescott, & Gurney, 1999). The basal ganglia are included in
cortico-baso-thalamo-cortical loops (Fig. 1), five main loops have
been identified in primates (Alexander, Crutcher, & DeLong, 1990;
Alexander, DeLong, & Strick, 1986; Kimura & Graybiel, 1995): one
motor, one oculomotor, two prefrontal and one limbic loop.Within
each of these loops, the basal ganglia circuitry is organized in
interacting channels, amongwhich selection occurs. Depending on
the considered loop, this selection may concern, for example, the
target of an upcoming saccadic movement, the target of a reaching
movement or the piece of information to be stored in working
memory. The output nuclei of the basal ganglia are inhibitory and
tonically active, and thus maintain their targets under sustained
inhibition. Selection occurs via disinhibition (Chevalier & Deniau,
1990): the removal of the inhibition exerted by one channel on
its specific target circuit allows the activation of that circuit.
When considering action selection, the basal ganglia channels
are thought to be associated to competing action primitives.
Given sensory and motivational inputs, the basal ganglia are
thus supposed to arbitrate among these actions and to allow the
activation of the winner by disinhibiting the corresponding motor
circuits.

The considered network contains a large number of closed
loops, from the large cortico-baso-thalamo-cortical loop, to small
loops formed by the interconnections between nuclei within
the basal ganglia and between the thalamus and the cortex.
A system with such a structure may exhibit varied dynamical
behaviors, some of which should be avoided by an ASM, like
reaching a standstill state which does not depend anymore on the

0893-6080/$ – see front matter© 2008 Elsevier Ltd. All rights reserved.
doi:10.1016/j.neunet.2008.03.009
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Fig. 1. Cortico-baso-thalamo-cortical loops. The basal ganglia receive inputs from
the whole cortex, but establish loops with the frontal areas only. Shaded arrows:
inhibitory projections.

external input. This motivates the use of a theoretical framework
to study the dynamics of basal ganglia models. We propose to
use contraction analysis (Lohmiller & Slotine, 1998) in order to
guide the design of a new model of the basal ganglia whose
stability can be formally established. Contraction analysis is a
theoretical tool used to study the dynamic behavior of nonlinear
systems. Contraction properties are preserved through a number
of particular combinations, which is useful for a modular design of
models.

Numerous computational models of the BG have been pro-
posed in order to investigate the details of the operation of the
basal ganglia disinhibition process (seeGillies &Arbruthnott, 2000;
Gurney, Prescott, Wickens, & Redgrave, 2004, for recent reviews).
Among these, the model proposed by Gurney, Prescott, and Red-
grave (2001a, 2001b) (henceforth the GPR model) has been suc-
cessfully tested as an action selection mechanism for autonomous
agents (Girard, Cuzin, Guillot, Gurney, & Prescott, 2003; Girard, Fil-
liat, Meyer, Berthoz, & Guillot, 2005; Montes-Gonzalez, Prescott,
Gurney, Humphries, & Redgrave, 2000; Prescott,Montes-Gonzalez,
Gurney, Humphries, & Redgrave, 2006). In particular, it was shown
to be able to solve a minimal survival task, and, compared with
a simpler winner-takes-all mechanism, displayed dithering avoid-
ance and energy-saving capabilities.

We present here an action selection mechanism based on a
contracting computational model of the basal ganglia (or CBG). In
order to adapt the contraction theory to the analysis of rate-coding
artificial neural networks, we first extend it to locally projected
dynamical systems (Section 2). Using the resulting neuron model
and contraction constraints on the model’s parameters, we build
a computational model of the basal ganglia including usually
neglected neural connections (Section 3). We then check the
selection properties of the disembodied model and compare them
to those of the GPR, so as to emphasize the consequences of using
contraction analysis (Section 4). We finally test its efficiency in a
survival task similar to the one used to evaluate the GPR (Girard
et al., 2003), and emphasize its dithering avoidance and energy-
saving properties by comparing it to a simple if-then-else decision
rule (Section 5).

Preliminary versions of the basal ganglia computational model
were presented in Girard, Tabareau, Berthoz, and Slotine (2006)
and Girard, Tabareau, Slotine, and Berthoz (2005).

2. Nonlinear contraction analysis for rate-coding neural net-
works

Basically, a nonlinear time-varying dynamic system is said to
be contracting if initial conditions or temporary disturbances are

forgotten exponentially fast, that is, if any perturbed trajectory
returns to its nominal behavior with an exponential convergence
rate. Contraction is an extension of the well-known stability
analysis for linear systems. It has the desirable feature of
being preserved through hierarchical and particular feedback
combinations. Thus, aswewill see below, contraction analysis is an
appropriate tool to study stability properties of rate-coding neural
networks.

In addition, when a system is contracting, it is sufficient to
find a particular bounded trajectory to be sure that the system
will eventually tend to this trajectory. Thus contraction theory is
a convenient way to analyze the dynamic behavior of a system
without linearized approximations.

2.1. Contraction theory

We summarize the differential formulation of contraction
analysis presented in Lohmiller and Slotine (1998). Contraction
analysis is a way to prove the exponential stability of a nonlinear
system by studying the properties of its Jacobian. Consider an
n-dimensional time-varying system of the form:

ẋ(t) = f(x(t), t) (1)

where x ∈ Rn and t ∈ R+ and f is a n × 1 nonlinear vector
function which is assumed in the remainder of this paper to be
real and smooth, in the sense that all required derivatives exist and
are continuous. This equation may also represent the closed-loop
dynamics of a neural networkmodel of a brain structure.We recall
below the main result of contraction analysis (see Lohmiller and
Slotine (1998), for a proof and more details).

Theorem 1. Consider the continuous-time system (1). If there exists
a uniformly positive definite metric

M(x, t) = 2(x, t)T2(x, t)

such that the generalized Jacobian

F = (2̇ + 2J)2−1

is uniformly negative definite, then all system trajectories converge
exponentially to a single trajectory with convergence rate |λmax|,
where λmax is the largest eigenvalue of the symmetric part of F.

The symmetric part of a matrix A is As = 1/2(A+ AT). A matrix
A(x, t) is uniformly positive definite if there exists β > 0 such that

∀x, t λmin(A(x, t)) ≥ β.

2.2. Neural networks and locally projected dynamical systems

Networks of leaky integrators are widely used to model the
behavior of neuronal assemblies (Dayan & Abbott, 2001). A leaky-
integrator network is usually described by the following set of
equations

τiẋi = −xi(t) +
∑
j6=i

Kjixj(t) + I(t)

where x(t) is the synaptic current of a neuron, τi its time constant,
Kji the synaptic projectionweight from neuron j to neuron i and I(t)
the input coming from an external source. Next, x(t) is converted
into a non-negative firing rate y(t) using a transfer function, for
instance

y(t) = max(x(t), 0) = [x(t)]+.

Another way to enforce non-negativity of the firing rate is to
use through locally projected dynamical systems (lPDS in short).
These systems were introduced in Dupuis and Nagurney (1993)
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and further analyzed in Zhang and Nagurney (1995). Related ideas
can be found in the standard parameter projection method in
adaptive control (Ioannou & Sun, 1996; Slotine & Coetsee, 1986).
A lPDS is given by

ẋ = 5�(x, f(x, t)) (2)

where� is a convex subset of the state space and5� is the vector-
projection operator on � given by

5�(x, v) = lim
h→0+

P�(x + hv) − x
h

.

In the above equation,P� denotes the point-projection operator on
the convex � defined as

P�(x) = argmin
y∈�

‖x − y‖.

Intuitively, if x is in the interior of � then 5�(x, v) = v. If x is
on the boundary of �, then 5�(x, v) is the maximal component of
v that allows the system to remainwithin�. In particular, it is easy
to see that any trajectory starting in � remains in �.

Note that Eq. (2) does not define a classical ordinary differential
equation since its right-hand side can be discontinuous due to
the projection operator. However, under some conditions on f
and � (similar to the Cauchy–Lipschitz conditions for classical
ordinary differential equations, see Dupuis and Nagurney (1993)
and Filippov (1988) for more details), existence, uniqueness and
some qualitative properties can be established for the solutions
of (2). For our purpose, we recall here that any solution x of (2)
is continuous and right differentiable for all t. In the remainder of
this article, wemake the additional assumption that the set of time
instants when x(t) is not differentiable has measure zero.

Within the above framework, the dynamics of a neural network
can now be given in the matrix form as

ẋ = 5Hn(x,Wx + I(t)) (3)

where x(t) = (x1(t), . . . , xn(t))T is the states of the neurons, W is
the n × n matrix whose diagonal elements represent the leaking
rate of the neurons and whose non-diagonal elements represent
the synaptic projection weight, I(t) is the vector of external inputs.
Finally, Hn is a regular n-cube defined as follows

Definition 1. A regular n-cube Hn is a subset of Rn defined by

Hn = {(x1, . . . , xn)
T

∈ Rn
: ∀i, mi ≤ xi ≤ Mi}

where m1, . . . ,mn,M1, . . . ,Mn ∈ R.

Intuitively, a regular n-cube is an n-cube whose edges are parallel
to the axes.

In practice, networks of leaky integrators described by lPDS
as above and their classical counterparts with transfer functions
show very similar behavior. However, the stability properties of
lPDS networks can be rigorously established through contraction
theory (see the next section), which makes them interesting from
a theoretical viewpoint.

2.3. Contraction analysis of locally projected dynamical system on
regular n-cubes

Contraction analysis for systems subject to convex constraints
has already been discussed in Lohmiller and Slotine (2000).
However, in that work, the projection applied to constrain the
system in the convex region depends on the metric which makes
the original system contracting. Thus, we cannot use this result
here since our projection operator must not depend on the neural
network

Since the contraction condition is local, a lPDS can only be
contracting if the original, un-projected, system is contracting

within �. The converse implication is not true in general, because
the projection operator can deeply modify the system’s behavior
along the boundary of �. We now introduce some definitions
in order to be able to state this converse implication in some
particular cases.

Definition 2. Let x ∈ δ�where δ� denotes the boundary of�. The
set of inward normals to � at x is defined as

N�(x) = {n : ∀y ∈ �,nT(x − y) ≤ 0}.

If x ∈ � − δ� then we set N�(x) = {0}.

Definition 3. AmetricM is said to be compatiblewith a convex set
� if there exists a coordinate transform2 such that2T2 = M and

∀x ∈ δ�,∀n ∈ N�(x), 2n ∈ N2�(2x).

In this case, we say that2 is a square root ofMwhich is compatible
with �.

We can give a simple sufficient condition for a metric to be
compatible with a regular n-cube.

Proposition 1. Any diagonal positive definite metricM is compatible
with any regular n-cube Hn.

Proof. Let x = (x1, . . . , xn)T ∈ δHn. An inward normal n = (n1,
. . . , nn)

T to Hn at x is characterized by
ni ≥ 0 if xi = mi

ni ≤ 0 if xi = Mi

ni = 0 if mi < xi < Mi.

Since M is diagonal and positive definite, one has M =

diag(d21, . . . , d2n) with di > 0. Consider the coordinate transform
2 = diag(d1, . . . , dn). Clearly, 2T2 = M and 2Hn is a regular
n-cube with minimal values d1m1, . . . , dnmn and maximal values
d1M1, . . . , dnMn. It follows from the characterization above that
2n = (d1n1, . . . , dnnn)

T
∈ N2Hn(2x). �

We also need another elementary result.

Lemma 1. Let x ∈ � and v ∈ Rn. There exists n(x, v) ∈ N�(x) such
that

5�(x, v) = v + n(x, v).

Proof. Let y ∈ �.We need to show that Ay = (5�(x, v)−v)T(x−y)
≤ 0. By the definition of 5�, one has

Ay = lim
h→0+

1
h
(P�(x + hv) − (x + hv))T(x − y).

Next, introduce the terms P�(x + hv) and hv into (x − y)

Ay = lim
h→0+

1
h
[(P�(x + hv) − (x + hv))T(P�(x + hv) − y)

+ (P�(x + hv) − (x + hv))T(x + hv − P�(x + hv))
+ (P�(x + hv) − (x + hv))T(−hv)].

The first term in the above equation is non-positive by the property
of the point-projection operator. The second term is the negative
of a distance and thus is also non-positive. As for the third term,
observe that

lim
h→0+

(P�(x + hv) − (x + hv))Tv = (P�(x) − x)Tv = 0

since x ∈ �. �

We can now state the following theorem
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Theorem 2. Let ẋ = f(x, t) be a dynamical system which is
contracting in a constant metric M compatible with a convex set �.
Then the lPDS ẋ = 5�(x, f(x, t)) is also contracting in the same
metric and with the same contraction rate.

Proof. Let 2 be a square root of M compatible with �. Consider
z = 2x. By Lemma 1, the system z is described by

ż = 25�(x, f(x)) = F(z) + 2n(x, f(x)) (4)

where F(z) = 2f(2−1z).
Consider two particular trajectories of (4) z1 and z2. Denote by

∆ the squared distance between z1 and z2
∆(t) = ‖z1(t) − z2(t)‖2

= (z1(t) − z2(t))T(z1(t) − z2(t)).

When ∆ is differentiable, we have

d
dt

∆ = 2(z1 − z2)T(ż1 − ż2)

= 2(z1 − z2)T(F(z1) + 2n(x1, f(x1)) − (F(z2)
+ 2n(x2, f(x2)))).

Since the metric is compatible with �, 2n(xi, f(xi)) ∈ N2�(zi)
for i = 1, 2. Next, by the definition of inward normals, we have
(z1 − z2)T2n(x1, f(x1)) ≤ 0 and −(z1 − z2)T2n(x2, f(x2)) ≤ 0,
from which we deduce
d
dt

∆ ≤ 2(z1 − z2)T(F(z1) − F(z2))

≤ −2λ∆(t)

where λ > 0 is the contraction rate of f in the metricM.
Since the set of time instantswhen∆(t) is not differentiable has

measure zero (see Section 2.2), one has

∀t ≥ 0, ∆(t) =

∫ t

0

( d
dt

∆

)
dt ≤ −2λ

∫ t

0
∆(s)ds

which yields by Grönwall’s lemma

∀t ≥ 0, ∆(t) ≤ ∆(0)e−2λt

i.e.

∀t ≥ 0, ‖z1(t) − z2(t)‖ ≤ ‖z1(0) − z2(0)‖e−λt. �

2.4. Combination of contracting systems

One of our motivations for using contraction theory is that
contraction properties are preserved under suitable combinations
(Lohmiller & Slotine, 1998). This allows both stable aggregation of
contracting systems, and variation or optimization of individual
subsystems while preserving overall functionality (Slotine &
Lohmiller, 2001). We present here three standard combinations
of contracting systems which preserve both contraction of the
systemand diagonality of themetric. Then, constructing our neural
network as a lPDS using only those three combinations will give
rise to a contracting system in a diagonal metric.

2.4.1. Negative feedback combination
Consider two coupled systems

ẋ1 = f1(x1, x2, t)

ẋ2 = f2(x1, x2, t).

Assume that system i (i = 1, 2) is contracting with respect toMi =

2T
i 2i, with rate λi. Assume furthermore that the two systems are

connected by negative feedback (Tabareau & Slotine, 2006). More
precisely, the Jacobian matrices of the couplings verify

21J122−1
2 = −k22J>212

−1
1

with k a positive constant. Hence, the Jacobian matrix of the
unperturbed global system is given by

J =

(
J1 −k2−1

1 22J>212
−1
1 22

J21 J2

)
.

Consider the coordinate transform

2 =

(
21 0
0

√
k22

)

associatedwith themetricM = 2T2 > 0. After some calculations,
one has

(
2J2−1

)
s

=

(21J12−1
1

)
s

0
0

(
22J22−1

2

)
s


≤ max(−λ1,−λ2)I. (5)

The augmented system is thus contracting with respect to the
metricM, with rate min(λ1,λ2).

2.4.2. Hierarchical combination
We first recall a standard result in matrix analysis (Horn &

Johnson, 1985). Let A be symmetric matrix in the form

A =

(
A1 AT

21
A21 A2

)
.

Assume that A1 and A2 are positive definite. Then A is positive
definite if

σ2(A21) < λmin(A1)λmin(A2)

where σ(A21) denotes the largest singular value of A21. In this case,
the smallest eigenvalue of A satisfies

λmin(A) ≥
λmin(A1) + λmin(A2)

2

−

√(
λmin(A1) − λmin(A2)

2

)2

+ σ2(A21).

Consider now the same set-up as in Section 2.4.1, except that the
connection is now hierarchical and upper bounded. More precisely,
the Jacobians of the couplings verify

J12 = 0, σ2(22J212−1
1 ) ≤ K.

Hence, the Jacobian matrix of the augmented system is given by

J =

(
J1 0
J21 J2

)
.

Consider the coordinate transform

2ε =

(
21 0
0 ε22

)
associated with the metric Mε = 2T

ε2ε > 0. After some
calculations, one has

(
2J2−1

)
s
=


(
21J12−1

1

)
s

1
2
ε(22J212−1

1 )T

1
2
ε22J212−1

1

(
22J22−1

2

)
s

 .

Set now ε =

√
2λ1λ2

K
. The augmented system is then contracting

with respect to the metricMε, with rate λ verifying

λ ≥
1
2

(
λ1 + λ2 −

√
λ2
1 + λ2

2

)
.
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Fig. 2. Basal ganglia model. Nuclei are represented by boxes, each circle in these nuclei represents an artificial rate-coding neuron. In this diagram, three channels are
competing for selection, represented by the three neurons in each nucleus. The second channel is represented by colored shading. For clarity, the projections from the
second channel neurons only are represented, they are identical for the other channels. White arrowheads represent excitations and black arrowheads, inhibitions. D1 and
D2: neurons of the striatum with two respective types of dopamine receptors; STN: subthalamic nucleus; GPe: external segment of the globus pallidus; GPi/SNr: internal
segment of the globus pallidus and substantia nigra pars reticulata.

2.4.3. Small gains
In this section, we require no specific assumption on the form

of the couplings

J =

(
J1 J12
J21 J2

)
.

As for negative feedback, consider the coordinate transform

2k =

(
21 0
0

√
k22

)
k > 0

associated with the metric Mk = 2T
k2k > 0. After some

calculations, one has

(
2kJ2−1

k

)
s

=

(21J12−1
1

)
s

AT
k

Ak

(
22J22−1

2

)
s


where Ak =

1
2

(
√
k22J212−1

1 +
1

√
k

(
21J122−1

2

)T)
. Following the

result stated at the beginning of Section 2.4.2, if

min
k

σ2(Ak) < λ1λ2

then the augmented system is contracting with respect to the
metricMk for some k, with rate λ verifying

λ ≥
λ1 + λ2

2
−

√(
λ1 − λ2

2

)2

+ min
k

σ2(Ak).

3. Model description

Rather than using standard leaky-integrator rate-coding neu-
rons, we use the very similar local projected dynamical system
model defined by Eq. (3), where each component of the state vector
x is an artificial rate-coding neuron representing the discharge rate
of populations of real neurons. Each competing BG channel in each
nucleus is represented by one such neuron, and the corresponding
thalamic nucleus and cortical areas are also subdivided into iden-
tical channels (Fig. 2). The convergence of cortical sensory inputs
on the striatum channels is encoded, for simplicity, by a vector of

saliences (one salience per channel). Each salience represents the
propensity of its corresponding channel to be selected. Each be-
havior in competition is associated to a specific channel and can
be executed if and only if its level of inhibition decreases below a
the inhibition level at rest yGPiRest (ie. the SNr/GPi output when the
salience vector is null).

The main difference of our architecture with the recent GPR
proposal (Gurney et al., 2001a) is the nuclei targeted by the
external part of the globus pallidus (GPe) and the nature of these
projections. In our model, the GPe projects to the subthalamic
nucleus (STN), the internal part of the globus pallidus (GPi) and the
substantia nigra pars reticulata (SNr), as well as to the striatum,
as documented in Bevan, Booth, Eaton, and Bolam (1998), Kita,
Tokuno, and Nambu (1999) and Staines, Atmadja, and Fibiger
(1981). Moreover, the striatal terminals target the dendritic trees,
while pallidal, nigral and subthalamic terminals form perineuronal
nets around the soma of the targeted neurons (Sato, Lavallee,
Lévesque, & Parent, 2000). This specific organization allows GPe
neurons to influence large sets of neurons in GPi, SNr and
STN (Parent et al., 2000), thus the sum of the activity of all
GPe channels influences the activity of STN and GPi/SNr neurons
(Eqs. (9) and (11)), while there is a simple channel-to-channel
projection to the striatum Eqs. (6) and (7).

The striatum is one of the two input nuclei of the BG. It
is mainly composed of GABAergic (inhibitory) medium spiny
neurons (MSN). As in the GPR model, we distinguish among them,
those with D1 and D2 dopamine receptors and modulate the
input generated in the dendritic tree by the dopamine level γ,
which here encompasses salience, frontal cortex feedback and GPe
projections.

Using the formulation of Eq. (3), the ith neurons (i ∈ [1,N],
with N the number of channels) of the D1 and D2 subparts of the
striatum are defined as follows

(Wx + I(t))D1i

=
1
τ

(
(1 + γ)(wD1

FC x
FC
i − wD1

GPex
GPe
i + wD1

S Si(t)) − wD1
FS x

FS
+ ID1

)
(6)

(Wx + I(t))D2i

=
1
τ

(
(1 − γ)(wD2

FC x
FC
i − wD2

GPex
GPe
i + wD2

S Si(t)) − wD2
FS x

FS
+ ID2

)
(7)
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Table 1
Parameters of the simulations

N 6 τ 40 ms τSTN 5 ms τFS 5 ms τFC 80 ms

τTH 5 ms τTRN 5 ms γ 0.2 wD2
GPe 1 wGPe

D2 0.4

wD1
GPe 1 wGPe

D1 0.4 wFS
GPe 0.05 wD1

FS 0.5 wD2
FS 0.5

wGPe
STN 0.7 wSTN

GPe 0.45 wGPi
GPe 0.08 wGPi

STN 0.7 wGPi
D1 0.4

wTH
TRN 0.35 wTRN

TH 0.35 wTH
FC 0.6 wFC

TH 0.6 wTRN
FC 0.35

wTH
GPi 0.18 wSTN

FC 0.58 wD1
FC 0.1 wD2

FC 0.1 wFS
FC 0.01

ID1 −0.1 ID2 −0.1 ISTN 0.5 IGPi 0.1 IGPe 0.1

where S(t) is the salience input vector, and where the negative
constant inputs ID1 and ID2, which keep the neurons silent when
the inputs are not strong enough, model the up-state/down-state
property of the MSNs.

The striatum also contains a small proportion of phenotypically
diverse interneurons (Tepper & Bolam, 2004). We include here the
fast spiking GABAergic interneurons (FS), that we model roughly
as a single population exerting feedforward inhibition on the
MSN (Tepper, Koós, & Wilson, 2004), and modulated by GPe
feedback (Bevan et al., 1998)

(Wx + I(t))FS =
1
τFS

N∑
j=1

(
wFS

FCx
FC
j − wFS

GPex
GPe
j + wFS

S Sj(t)
)
. (8)

The subthalamic nucleus (STN) is the second input of the basal
ganglia and also receives diffuse projections from the GPe, as
explained above. Its glutamatergic neurons have an excitatory
effect and project to the GPe and GPi. The resulting input of the
STN neuron is given by

(Wx + I(t))STNi =
1

τSTN

(
wSTN

FC xFCi − wSTN
GPe

N∑
j=1

xGPej + ISTN

)
(9)

where the constant positive input ISTN models the tonic activity of
the STN.

The GPe is an inhibitory nucleus, it receives channel-to-channel
afferents from the whole striatum (Wu, Richard, & Parent, 2000),
and a diffuse excitation from the STN

(Wx + I(t))GPei

=
1
τ

(
−wGPe

D1 xD1i − wGPe
D2 xD2i + wGPe

STN

N∑
j=1

xSTNj + IGPe

)
(10)

where the constant positive input IGPe models the tonic activity of
the GPe.

The GPi and SNr are the inhibitory output nuclei of the BG,
which keep their targets under inhibition unless a channel is
selected. They receive channel-to-channel projections from the D1
striatum and diffuse projections from the STN and the GPe

(Wx + I(t))GPii =
1
τ

(
−wGPi

D1 x
D1
i + wGPi

STN

N∑
j=1

xSTNi

−wGPi
GPe

N∑
j=1

xGPej + IGPi

)
(11)

where the constant positive input IGPi models the tonic activity of
the GPi/SNr.

Finally, the thalamus (TH) forms an excitatory loop with the
frontal cortex (FC), these two modules representing different
thalamus nuclei and cortical areas, depending on the cortico-
baso-thalamo-cortical loop considered. The thalamus is moreover
under a global regulatory inhibition of the thalamic reticular

nucleus (TRN, represented by a single population of neurons) and
a channel-specific selective inhibition from the basal ganglia

(Wx + I(t))THi =
1

τTH

(
wTH

FC x
FC
i − wTH

TRNx
TRN

− wTH
GPix

GPi
i

)
(12)

(Wx + I(t))FCi =
1
τFC

(
wFC

S Si + wFC
THx

TH
i

)
(13)

(Wx + I(t))TRN =
1

τTRN

(∑
i

wTRN
FC xFCi + wTRN

TH xTHi

)
. (14)

This model keeps the basic off-center on-surround selecting struc-
ture, duplicated in the D1-STN-GPi/SNr and D2-STN-GPe subcir-
cuits, of the GPR. However, the channel-specific feedback from the
GPe to the Striatum helps in sharpening the selection by favoring
the channel with the highest salience in D1 and D2. Moreover, the
global GPe inhibition on the GPi/SNr synergetically interacts with
the STN excitation in order to limit the amplitude of variation of
the inhibition of the unselected channels. The inhibitory projec-
tions of the BG onto the thalamo-cortical excitatory loop limits the
amplification of the unselected channels and thus favors a selective
amplification of the winning channels. In such an architecture, the
frontal cortex preserves the information from all channels but am-
plifies selectively the winning channel, in a sort of attention “spot-
light” process, while the subcortical target circuits of the BG are
under very selective inhibition, ensuring that motor commands do
not interfere.

4. Disembodied model results

We first analyze the contraction of the contracting basal ganglia
model (CBG) and its selection properties in simple disembodied
tests before evaluating it as an ASM in a simulated robot.

Similarly to the simulations made by Gurney et al. (2001b),
we used a 6-channel model. The parameters of the model were
hand-tuned in order to obtain a selective system and respecting
the local contraction constraints defined below, their values are
summarized in Table 1. The simulation was programmed in C++,
using the simple Euler approximation for integration, with a time
step of 1 ms.

4.1. Contraction analysis of the model

According to the theory developed in Section 2.3, our model
is contracting if the non-projected dynamics (which are linear)
are contracting in a diagonal metric. To find this metric, we will
use the three combinations presented in Section 2.4 that preserve
diagonality.

Remark that each separated nucleus is trivially contracting in
the identity metric because there is no lateral connection. The
contracting rate of each nucleus is 1

τ
, where τ is the common time

constant of the N neurons of the nucleus. Thus, the metric MBG of
the basal ganglia is constituted of the blocks κGPeI, κSTNI, κD1I, κD2I,
κFS1 and κGPiI. Similarly, the thalamic metric MTH is constituted of
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the blocks κFCI, κTH1 and κTRNI. The resulting metric for the whole
systemMCBG combinesMBG andMTH in the following way

MCBG =

(
MBG 0
0 αMTH

)
.

4.1.1. Analysis of the basal ganglia
• κGPe = 1.

We can set κGPe to any value as there is no combination at
this stage. The current contracting rate is 1

τ
.

• κSTN = wGPe
STN/wSTN

GPe .
We use negative feedback. The contracting rate remains

unchanged

•

{
κD1 = wGPe

D1 /((1 + γ)wD1
GPe)

κD2 = wGPe
D2 /((1 − γ)wD2

GPe).

We use small gains to show that the system constituted by
the STN, GPe, striatum D1 and D2 is contracting when(
(1 + γ)wGPe

D1 wD1
GPe

)2
+

(
(1 − γ)wGPe

D2 wD2
GPe

)2
< 1 (15)

with a contracting rate
1
τ

(
1 −

√
((1 + γ)wGPe

D1 wD1
GPe)

2 + ((1 − γ)wGPe
D2 wD2

GPe)
2
)

.

• κFS = wD1
FS /wFS

GPe.
Again by use of small gains.

• κGPi = 1/(τσ(G))2

where σ(G) is the largest singular value of thematrix of projections
on GPi and τ is the slowest time constant of neurons in the basal
ganglia. This constant is set by using hierarchical combination.

Thus we can guarantee the contraction of the basal ganglia as
soon as condition (15) is satisfied.

4.1.2. Analysis of the thalamus
• κTH = 1.

We can set κTH to any value as there is no combination at this
stage. The current contracting rate is 1

τTH
.

• κGPe = wTH
TRN/w

TRN
TH .

We use negative feedback. The contracting rate remains
unchanged

• κFC =

√
wTH

FC
2
+ NwTRN

FC
2
/wFC

TH.
We use small gains to show that the thalamo-cortical

module is contracting when

wFC
TH

(
wTH

FC +

√
wTH

FC
2
+ NwTRN

FC
2
)

< 1. (16)

Remark that this condition depends on N. This would not have
been the case if we had modeled the TRN by N channels instead
of 1.

Thus we can guarantee the contraction of the thalamus as soon
as condition (16) is satisfied.

It remains to examine the large loop between the thalamus and
the basal ganglia involving projections of the GPi and the FC. Again,
we use small gains to set α.

α =

√√√√τFCtxκGPi (w
STN
FC

2
+ wD1

FC
2
+ wD2

FC
2
+ nwFS

FC
2
)

τTHκFC wTH
GPi

2 .

Proposition 2. Let MCBG = 2T
CBG2CBG be the diagonal metric

defined above. By Theorem 2, if the generalized Jacobian 2CBGW2−1
CBG

is negative definite, the dynamical system ẋ = 5Hn(x,Wx +

I(t)) describing the cortico-baso-thalamo-cortical loop model is
contracting with a rate |λmax|, where λmax is the largest eigenvalue
of 2CBGW2−1

CBG.

Table 2
Value of the constants defining the metric MCBG for the set of parameters of our
simulation

κGPe κSTN κD1 κD2 κFS κGPi κTH κTRN κFCtx α

1 0.441 0.577 0.707 1 0.104 1 1 5.282 0.253

At this stage, we have provided an algebraic definition of
the metric MCBG. Unfortunately, the complexity of the induced
generalized Jacobian prevents us from giving a global algebraic
condition on the projection weights for the generalized Jacobian
to be negative definite. This is not of major incidence as we
can compute numerically, for any instance of the weights, the
eigenvalues of the symmetric part of the generalized Jacobian and
check that they are all negative.

Table 2 gives the numerical value of the constants defining
the metric MCBG for the set of parameters of our simulation (see
Table 1). Using the free software Octave, we compute in that case
the eigenvalues of the generalized Jacobian and obtain that our
model is contracting with contracting rate of 2.20.

Notice that computing themaximum real part of the eigenvalue
of the non-projected dynamics (which are linear) gives an upper
bound of the contracting rate. For the set of parameters of our
simulation, this upper bound is 2.59. It is remarkable that being
forced to use diagonal metrics in our proof (which discards a huge
set of metrics) has not decreased much the contracting rate.

4.2. Basic selection test

We first reproduced the selection test of Gurney et al. (2001b)
with our model and with the GPR model version presented in
Prescott et al. (2006). In this test, a specific sequence of five
different salience vectors (represented by the dashed lines in Fig. 3)
is submitted to a 6-channel version of the BG model, in order
to show the basic selection properties of the system. Here, we
submitted each vector to the system during 2 s before switching
to the next one in the sequence.

During the CBG simulation (Fig. 3, top row), with the first vector
of null saliences, the system stabilizes in a state where all channels
are equally inhibited (xGPii = 0.095). Then, the first channel receives
a 0.4 input salience which results in a clear disinhibition of this
channel (xGPi1 = 0.014) and increased inhibition of the others.
When the second channel salience is set to 0.6, it becomes perfectly
selected (xGPi2 = 0) while the first one is rapidly inhibited to a level
identical to the one of the four last channels. During the fourth step,
the salience of the first channel is increased to 0.6, channels 1 and 2
are therefore simultaneously selected (xGPi1 = xGPi2 = 0.03). Finally,
during the last step of the test, channel 1 has its salience reduced
to 0.4, and it is then rapidly inhibited, while channel 2 returns to
perfect selection (xGPi2 = 0). The CBG thus passes this test in a
satisfactory manner: the channels with the highest saliences are
always selected while the others are inhibited.

The GPR simulation (Fig. 3, bottom row) is qualitatively
quite similar, excepted during the fourth step of the sequence
(emphasized with an asterisk): while the salience of channel 1
increases from 0.4 up to 0.6 (the same salience as that of channel
2), channel 2 remains selected and channel 1 is fully inhibited
(its level of inhibition is higher than the inhibition at rest). The
inputs in channels 1 and 2 being exactly the same, this difference
in their selection state is clearly caused by the initial conditions of
the system (i.e. the fact that channel 2 was selected before). This
example of a dependence on the initial conditions clearly shows
that the GPR model is not contracting.

Indeed, as we have seen in Section 2.3, a rate-coding neural
network is contracting only if its non-projected dynamics are
contracting in a diagonal metric. But a linear system is stable if and
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Fig. 3. Variation of the GPi/SNr inhibitory output during the Gurney et al. (2001b) test applied to (top) the CBG and (bottom) the GPR. Dashed lines represent the input
salience of the channel and solid lines represent the output of the channel. Note that during the fourth step (6 s < t < 8 s), channels 1 and 2 are selected by the CBG, while
the GPR selects channel 2 only (asterisk).

Fig. 4. Efficiency (top) and distortion (bottom) in the winning channel for a systematic salience-space search for the CBG (left) and the GPR (right). Top: black to white
gradient represents increasing efficiency (from 0 to 1); bottom: black to white gradient represents decreasing distortion (from 1 to 0), maximal distortion corresponding to
simultaneous selection of both channels is thus in black. White line: limit beyond which no selection occurs; dashed black line: diagonal representing equal saliences. For
the GPR efficiency (top right), note the hysteresis area between the dashed and the full black lines. See the text for further explanations.
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only if all its eigenvalues have a negative real part. Computing the
eigenvalues of the linear part of the GPR reveals that N−1 of them
have a positive real part (namely 10.387). We can thus conclude
that the GPR is not contracting.

4.3. Systematic salience search test

This first result is however not surprising, as revealed by the
systematic salience search experiment performed in Prescott et al.
(2006), and that we also reproduced with both the GPR and the
CBG. In this experiment, the first two channels of the ASM are put
in competition in the following manner: the first channel salience
is increased from 0 to 1 in steps of 0.01, and for each of these steps,
the salience of the second channel is also gradually increased from
0 to 1 in steps of 0.01. The system is run to convergence between all
step increases. The internal state of the model is not reset between
each channel 2 salience increase, but only for channel 1 steps. This
means that the test evaluates the selection response of the system
with one channel salience fixed while the other one gradually
increases.

In order to evaluate the response of the ASM to this experiment,
four numerical values are computed. First, the efficiencies of the
selection of channels 1 and 2, equivalent to the percentage of
disinhibition, are computed as follows:

ei = [1 − yGPii /yGPiRest]+ (17)

with i the index of the channel, yGPii the output of the ith GPi neuron
and yGPiRest the output inhibition of all channels when all saliences
are null. The absolute efficiency of the selection is defined as the
efficiency of the winning channel:

ew = max
i

ei. (18)

Finally, the distortion of the selection, which is null when only
the winning channel is disinhibited and increasing with the
disinhibition of its competitors, is defined by:

dw = 2

∑
i
ei − ew∑
i
ei

. (19)

The results of the experiment are summarized by the ew and
dw graphs (Fig. 4), where the value of each of these variables is
represented with regard to the corresponding channel 1 (abscissa)
and channel 2 (ordinate) saliences. First observe that the GPR
results we obtain with 6 channels are very similar to those
presented in Prescott et al. (2006) for a 5-channel GPR. Concerning
ew (top row), whereas, for the CBG, the selection switches from
channel 1 to channel 2 as soon as the salience of channel 2 is larger
than the salience of channel 1 (when it crosses the diagonal in
dashed black), for the GPR, this switch is delayed until much higher
values are reached (when it crosses the black line). As previously
noted, this hysteresis effect is a direct consequence of the non-
contraction of the GPR.

Note thatwhen high saliences are in competition, the GPR tends
to partially select both channels (ew < 1 and dw > 0),while theCBG
fully disinhibits both channels (ew = 1 and dw close to 1). Which
behavior is preferable for an ASM is not decided.

Is the GPR’s strong dependence on initial conditions a good
feature for an ASM? Prescott et al. (2006) argue that it allows
behavioral persistence, and that in their experiment, the robot
takes advantage of it to avoid dithering between actions. We
do not claim that there is a definitive answer to the question.
Nevertheless, in the next section, we describe the evaluation
of the CBG in a minimal survival task in which the robot also
avoids dithering, despite its contracting ASM. This shows that this
dependence on initial conditions is not necessary from the point of
view of dithering avoidance.

Fig. 5. Experimental set-up. Blue square: Potential Energy resource; red square:
Energy resource. The light gray surfaces represent the field of view of the sonars,
and the darker one the field of view of the camera. The corresponding camera image
is represented at the bottom.

5. Minimal survival task

5.1. Materials and methods

The suitability of the model for action selection in an
autonomous robot has been tested in simulation with the same
minimal survival task previously used to evaluate the GPR
model (Girard et al., 2003). In order to emphasize its properties,
and in particular those resulting from the selective feedback loop,
its performance was compared to a simple if-then-else decision
rule (ITE, fully described in Appendix A).

In such a task, the robot has to go back and forth between
locations containing two different kind of resources, in order to
keep its energy level above 0. The robot has two internal variables,
namely Energy and Potential Energy, taking values between 0 and
1, and an artificial metabolism, which couples them as follows:

• The Energy (E) is continuously decreasing, with a constant
consumption rate (0.01 Energy unit per second). When it
reaches 0, the robot has run out of energy and the ongoing
trial is interrupted. To prevent this, the robot has to regularly
acquire Energy by activating the ReloadOnE action on an Energy
resource. Note that ReloadOnE only transforms Potential Energy
into Energy (0.2 units of Ep are transformed into 0.2 units of E
each second), thus Potential Energy has to be also reloaded.

• The Potential Energy (Ep) is a sort of Energy storage, it can be
acquired by activating the ReloadOnEp action on a Potential
Energy resource, and is consumed in the transformation process
only.

In this version of the task, the experiments are run in simulation
using the Player/Stage robot interface and robot simulator (Gerkey,
Vaughan, & Howard, 2003). The simulated robot is a 40 × 50 cm
wheeled robotwith differential steering, similar to theActiv-Media
Pioneer 2DX (Fig. 5), equipped with a ring of 16 sonars and a
camera. The sonar sensors have a maximum range of 5 m and
a view angle of 15◦, the camera has a resolution of 200 × 40
pixels and a view angle of 60◦ and uses a color-blob-finding vision
device to track the position of red and blue objects. The experiment
takes place in a 10 × 10 m arena, containing one Energy and one
Potential Energy resource (Fig. 5). These resources are represented
by colored 50 × 50 cm objects (respectively red and blue), and
do not constitute obstacles (as if they were suspended above the
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arena). They are randomly positioned in the arena for each trial,
with the constraint that their center is at least 1 m away from the
walls.

The robot has to select from among seven possible actions:

• ReloadOnE (ROE) and ReloadOnEp (ROEp) affect the robot’s
survival as previously described. These actions are effective
if the robot is facing the corresponding resource and is close
enough (45◦ of the camera field of view is occupied by the
resource).

• Wander (W) activates random accelerations, decelerations and
turning movements.

• Rest (R) stops the robot, which is a disadvantage as the robot
has to continuously explore the arena to find resources, but
Rest also halves the rate of Energy consumption (0.005 unit per
s), which promotes long survival. Consequently, it should be
activatedwhen there is no risk (i.e. when both internal variables
reach high levels) in order to minimize the Potential Energy
extracted from the environment to survive.

• AvoidObstacle (AO) uses data from the 6 front sonars and the 2
central rear sonars in order to avoid collisions with walls.

• ApproachE (AE) and ApproachEp (AEp) use the color-blob-
finder in order to orient and displace the robot towards the
corresponding resource if it is visible.

The action selection mechanisms base their decisions on the
following variables:

• E, Ep,(1− E) and (1− Ep), which provide the amount (or lack of)
Energy and Potential Energy,

• seeEBlob and seeEpBlob, which are set to 1 if a red (resp. blue)
object is in the camera input, and to 0 otherwise,

• onEBlob and onEpBlob, which are set to 1 if a red (resp. blue)
object is larger than 150 pixels (i.e. close enough to allow the
use of the corresponding resource), and to 0 otherwise,

• SFR and SFL are the values of the front-right and front-left sonar
sensors, measured in meters, taking values between 0 and 5.

For the CBG, the detailed salience computation using these
variables is given in Appendix B.

The action selection mechanisms receive new sensory data
every 100 ms, and must then provide an action selection for the
next 100 ms. Concerning the ITE, it is simply done by executing
the decision rule once with the latest data. Concerning the CBG,
the selection is made using the output inhibition resulting from
the computation of 100 simulation steps of 1ms, using the latest
sensory data. A given action is then considered selected if the
inhibition of the corresponding channel is below the inhibition at
rest yGPiRest (as defined previously). In the case of multiple channel
disinhibition, the following action combination rules have been
defined:

• Rest is effective if and only if it is the only disinhibited action,
• ReloadOnE and ReloadOnEp are effective if and only if the robot

does not move,
• The other movement-generating actions can be co-activated.

In that case, the efficiency of selection (as defined by Eq. (17))
is used to weight the contributions of each action to the final
motor command.

The comparison between the CBG and the ITE ismade according
to the following protocol: 20 random resource positions are drawn
and, for each model, 20 trials are run using the same set of
positions. The robot begins the experiment with a full battery
(E = 1) and no Potential Energy storage (Ep = 0), this allows
a maximal survival duration of 1 min 40 s if no reloading action
occurs. Unless the robot runs out of energy (E = 0), the trial is
stopped after 15 min.

Fig. 6. Typical dithering of the ITE between the ReloadOnEnergy and Wander
actions. Top: levels of Energy (dashed line) and Potential Energy (full line); bottom:
selected action. Note how during the dithering period, more than 0.3 units of Ep are
wasted in about 7 s, while they should have allowed 30 s of survival.

5.2. Results

The first result is that the CBGand the ITE algorithmhave similar
survival performance. They are both able to survive the trial in a
majority of cases, but can be subject to premature Energy shortage.
This is expected, because their ability to find resources is limited
by the camera range and field of view, as well as by the random
exploration action. The average survival duration is 687 s (σ =

244) for the CBG and 737 s (σ = 218) for the ITE, and the two-tailed
Kolmogorov–Smirnov test confirms that the two sets of survival
durations are not drawn from significantly different distributions
(DKS = 0.2, p = 0.771). From an action selection point of view,
the comparison of the two mechanisms is thus fair: despite the
fact that theywere tuned independently, they both achieve similar
survival performance.

Nevertheless, a clear behavioral difference between the two
mechanisms was observed, which has significant repercussions on
their ability to store Potential Energy and on the Potential Energy
extracted from the environment. Indeed, while the CBGmay use its
feedback loops in order to persist in action execution, the ITE was
deliberately deprived of any memory. This was done in order to
investigate the effects of this persistence property. The ITE exhibits
behavioral dithering in a critical and frequent situation: when
the robot fully reloads its Energy, it activates the Wander action,
but after 100 ms of Wander execution, some Energy has been
consumed and the robot has not moved much. In most cases, it is
still on the Energy resource, and if it still has spare Ep, ReloadOnE
is activated again. This repeats until there is no Ep left or until, in
a sequence of small movements, the robot has left the resource
(see Fig. 6). This dithering generates a strong energy dissipation:
100 ms of Wander consumes 0.001 units of Energy, and during the
following 100ms, ReloadOnEnergy consumes 0.02 units of Ep while
E, being bounded by 1, increases by 0.001 only.
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Fig. 7. Hysteresis in the variation of the salience of ReloadOnEnergy for the CBG.
Black dashed line: variation of SROE with regard to (Ep × (1 − E)), with onEBlob = 1
and without the persistence term (raw SROE); blue line: variation of SROE; shaded
area: SROE increase resulting from the frontal cortex feedback; black line: salience
of Wander (SW ). Explanations are given in the text.

On the contrary, in the same situation, the CBG takes advantage
of a hysteresis effect caused by the positive feedback from the
frontal cortex to the basal ganglia to avoid dithering.

Indeed, the salience of ROE is defined by: SROE = 950 × f (4 ×

onEBlob × Ep × (1 − E)) + 0.6 × xFCROE (where f is a sigmoid transfer
function, see Appendix B). Consequently, when the robot has a lack
of Energy and reaches an Energy resource, onEBlob jumps from 0 to
1 and SROE also jumps from 0 (Fig. 7, point A) to a level depending
on the current E and Ep internal states (Fig. 7, point B) situated
on the raw SROE curve (Fig. 7, dashed line). In the case depicted in
Fig. 7, SROE is then much higher than SW , and ROE is thus selected.
As a consequence, the corresponding thalamo-cortical channel is
disinhibited, leading to an amplification of the salience, fed back to
the basal ganglia thanks to the cortical output xFCROE (this bonus is
represented by the shaded area over the raw SROE curve on Fig. 7).

While the robot reloads, SROE decreases with (Ep × (1 − E)), but
because of the xFCROE salience bonus, it follows the blue trajectory
down to point C, where Wander is selected again. The deselection
of ROE shuts off the xFCROE signal, causing an immediate decrease to
point D. As soon as the robot activatesWander, Energy is consumed
and SROE increases again, along the raw SROE curve. However, at
point D, SROE < SW , and as long as the robot manages to leave the
resource before SROE exceeds SW (points E and F, when the OnEBlob
variable jumps from 1 to 0), no dithering occurs.

This observation is not trivial, as it has a direct consequence
on the global Ep storage of the ITE: both CBG and ITE keep high
levels of Ep (between 0.9 and 1) more than 50% of the time
(Fig. 8, right), but for the rest of the time, the ITE level is very
low (0–0.1) much more often (almost 20% of the time) than the
CBG. Moreover, the CBG activates the Rest action often enough to
extract, on average, less Potential Energy from the environment
(0.93 × 10−2Ep s−1,σ = 0.30 × 10−3) than the basic rate (1 ×

10−2Ep s−1). On the contrary, the dissipation of energy caused by
the dithering of the ITE generates a much higher Potential Energy
extraction rate (1.17 × 10−2Ep s−1,σ = 1.17 × 10−3). The two-
tailed Kolmogorov–Smirnov test reveals that the Ep consumption
rates measured for the CBG and the ITE (Fig. 9) are drawn from
different distributions (DKS = 0.95, p < 0.001). The ITE dithering
thus generates so much dissipation that it has to extract extra
Potential Energy from the environment, despite its use of the Sleep
action to lower its consumption, while the CBG exploits asmuch as
possible this possibility to limit Potential Energy extraction.

6. Discussion

We proposed a new action selection mechanism for an
autonomous robot, using amulti-disciplinary approach combining
computational neuroscience and dynamic system theory. This
study proved fruitful in the three considered domains:

• We proposed an extension of the contraction theory to locally
projected dynamical systems, whichwas necessary to study the
stability of rate-coding neural networks.

Fig. 8. Histograms of Energy (left) and Potential Energy (right) for the CBG (top) and the ITE (bottom), cumulated over all trials.
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Fig. 9. Potential Energy consumption rate. These histograms represent the average
Ep consumption rate computed for each trial. Top: BG model; bottom: ITE;
the dashed line shows the Energy consumption rate of all actions except Rest
(0.001 E/s).

• As a consequence, we proposed amodified rate-coding artificial
neuron model.

• Using these results, we designed a stable model of the cortico-
baso-thalamo-cortical loops (CBG) using previously neglected
anatomical data.

• After having tested this model offline, we integrated it in a
simulated robot confronted to a standard survival task to assess
its efficiency as an action selection mechanism.

6.1. Dynamic systems

In this paper, we have investigated the stability properties
of locally projected dynamical systems (lPDS) using nonlinear
contraction theory. In particular, we have given a sufficient
condition for a general non-autonomous (i.e. with time-varying
inputs) lPDS to be globally exponentially stable. By contrast, Zhang
and Nagurney (1995) only studied the stability of a fixed
equilibrium point in autonomous lPDS. Thus, the novelty of our
theoretical result should be noticed.

Locally projected dynamical systems have attracted great
interest since they were introduced in 1993 by Dupuis and
Nagurney. Indeed, this theory is central to the study of oligopolistic
markets, traffic networks, commodity production, etc (Dupuis
& Nagurney, 1993). As we demonstrated in this article, this

theory has also proved to be a valuable tool for establishing
rigorous stability properties of neural networks. In this respect,
further development of the theory as well as its application to
numerous problems in theoretical neuroscience may represent
exciting subjects of research.

6.2. Neuroscience

The CBG shares a number of similarities with the previously
proposed GPR model (Gurney et al., 2001b), as its selection ability
relies on two off-center on-surround subcircuits. However, it
includes neglected connections from the GPe to the Striatum,
which provide additional selectivity. It also considers the possible
role of global projections of the GPe to the STN, GPi and SNr as a
regulation of the activity in the whole basal ganglia.

We omitted two types of documented connections in the
current CBG model. First, the STN projects not only to the GPe, GPi
and SNr but also to the striatum (Parent et al., 2000). Intriguingly,
the population of STN neurons projecting to the striatum does
not project to the other targets, while the other STN neurons
project to at least two of the other target nuclei (GPe, GPi or
SNr). We could not decipher the role of this striatum-projecting
population and did not include it in the current model. Its unique
targeting specificity suggests it could be functionally distinct from
the other STN neurons. To our knowledge, no modeling study
has yet proposed a functional interpretation of this connection,
a question that should be explored in future works. The other
missing connections concern the fact that lateral inhibitions exist
in GPe and SNr (Deniau, Kitai, Donoghue, & Grofova, 1982;
Juraska, Wilson, & Groves, 1977; Park, Falls, & Kitai, 1982). These
additional projections were added to a version of the GPR (Gurney,
Humphries, Wood, Prescott, & Redgrave, 2004) and seemed to
enhance its selectivity. We might add these connections and
proceed to a similar test with the CBG.

The GPe to striatum connections have the previously evoked
functional advantage of enhancing the quality of the selection,
by silencing the unselected striatal neurons. Interestingly, the
striatum is known for being a relatively silent nucleus (DeLong
et al., 1984), a property supposed to be induced by the specific
up/down state behavior of the striatal neurons.When using simple
neuron models, like leaky integrators, it is usually difficult to
reproduce thiswith a threshold in the transfer function only:when
many channels have a strong salience input, all the corresponding
striatal neurons tend to be activated. Our model suggests that
in such a case, the GPe-striatum projections may contribute to
silencing the striatum.

The proposed model includes the modulatory role of the
dopamine (DA) in the BG selection process only, which corre-
sponds to the tonic level of dopaminergic input from the ven-
tral tegmental area and the substantia nigra pars compacta (VTA
and SNc). The effects of the variation of this tonic DA level on the
selection abilities of the BG has been examined in detail for the
GPR (Gurney et al., 2001b), and compared with the symptoms of
Parkinson’s disease.

The role of the phasic dopamine activity in reinforcement
learning, through the adaptation of the cortico-striatal synapses,
is beyond the scope of our study. Nevertheless, such an extension
of the CBG could allow the online adaptation of the saliences,
which are here hand-tuned. The existing models of reinforcement
learning in the BG are based on the temporal difference (TD)
learning algorithm (Houk, Adams, & Barto, 1995; Joel, Niv, &
Ruppin, 2002). These TD models are composed of two cooperating
circuits: a Critic dedicated to learning to predict future reward
given the current state, and an Actor, using the Critic’s predictions
to choose the most appropriate action. Our model can then be
considered as an Actor circuit, more anatomically detailed than
those usually used (simple winner-takes-all, without persistence
properties). The first attempts at using detailed Actor models



640 B. Girard et al. / Neural Networks 21 (2008) 628–641

in TD architectures for tasks requiring a single motivation have
been conducted (Frank, Santamaria, O’Reilly, & Willcutt, 2007;
Khamassi, Girard, Berthoz, & Guillot, 2004; Khamassi, Lachèze,
Girard, Berthoz, & Guillot, 2005). Note however that the use
of the current TD-learning models would not necessarily be
straightforward in our case: we had to use relatively complex
salience computations (see Appendix B), in order to solve our
relatively simple task. This is caused by its multi-motivational
nature, quite common in action selection problems, but which has
been given only little attention in RL-related works (Dayan, 2001;
Konidaris & Barto, 2006).

6.3. Autonomous robotics

While early action selection mechanisms were based on a
purely engineering approach (Pirjanian, 1999), progress in the un-
derstanding of the physiology of the brain regions involved in ac-
tion selection now allows the investigation of biomimetic action
selectionmechanisms. Indeed, basal ganglia models – variations of
the GPR – and reticular formation models have already been used
as action selection mechanisms for autonomous robots (Girard
et al., 2003, 2005; Humphries, Gurney, & Prescott, 2005; Montes-
Gonzalez et al., 2000; Prescott et al., 2006).

We showed here that the CBG may exploit its cortical feedback
to exhibit behavioral persistence and thus dithering avoidance, one
of the fundamental properties of efficient ASMs (Tyrrell, 1993). In
our experiment, this promotes energy storage and reduces energy
consumption. These properties, which clearly provide a survival
advantage, were also highlighted for the GPR when tested in a
similar experiment (Girard et al., 2003). Thus, comparing the GPR
and the CBG in exactly the same task could reveal some subtle
differences whichwere not identified yet. Moreover, in the current
version of the CBG, these cortico-striatal feedback connections
are strictly channel to channel, the possible sequence generation
effects that could result from cross channel connections probably
deserves additional attention.

The contraction property of the CBG also provides a funda-
mental advantage for an autonomous robot. It provides a theoret-
ical certainty regarding its stability of operation, whatever the se-
quences of input might be. For an autonomous agent confronted
with a uncontrolled environment, where all possible sequences of
inputs may happen, it seems to be essential. Of course, contraction
analysis does not say anything about the pertinence of the resulting
stable behavior, hence leading the necessity of verifying the CBG
selection properties. However, the fact that stability issues have
already been evoked for previous GPR versions (Girard et al., 2005;
Prescott et al., 2006) confirms that such a rigorous proof is useful.
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Appendix A. If-Then-Else decision rule

The If-Then-Else decision tree is the following:
if Ep < 1 and onEpBlob = true then

ReloadOnEp
else if E < 1 and Ep > 0 and onEBlob = true then

ReloadOnE
else if E < 0.8 and Ep > 0 and seeEBlob = true then

ApproachE
else if Ep < 0.8 and seeEpBlob = true then

ApproachEp
else if E > 0.7 and Ep > 0.7 then

Rest
else if SFL < 1 or SFR < 1 or (SFL < 1.5 and SFR < 1.5) then

AvoidObstacle
else

Wander
end if

Appendix B. Robot CBG saliences

Using the sigmoid transfer function

f (x) =
2

1 + e−4x − 1

the saliences of each action (including the frontal cortex feedback)
are:

SROE = 950 × f (4 × onEBlob × Ep × (1 − E)) + 0.6 × xFCROE
SROEp = 750 × f (4 × onEpBlob × (1 − Ep)) + 0.2 × xFCROEp
SW = 380
SSl = 550 × f (2 × max(Ep × E − 0.5, 0))
SAO = 950 × f (2 × (max(1.5 − SFL, 0)

+ max(1.5 − SFR, 0))) + 0.2 × xFCAO

SAE = 750 × f (seeEBlob × Ep × (1 − E)

× (1 − onEBlob)) + 0.2 × xFCAE

SAEp = 750 × f (seeEpBlob × (1 − Ep)

× (1 − onEpBlob)) + 0.2 × xFCAEp .
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A Contraction Theory Approach to
Stochastic Incremental Stability

Quang-Cuong Pham, Nicolas Tabareau, and Jean-Jacques Slotine

Abstract—We investigate the incremental stability properties of Itô sto-
chastic dynamical systems. Specifically, we derive a stochastic version of
nonlinear contraction theory that provides a bound on the mean square dis-
tance between any two trajectories of a stochastically contracting system.
This bound can be expressed as a function of the noise intensity and the
contraction rate of the noise-free system. We illustrate these results in the
contexts of nonlinear observers design and stochastic synchronization.

Index Terms—Incremental stability, nonlinear contraction theory, sto-
chastic stability.

I. INTRODUCTION

Nonlinear stability properties are often considered with respect to an
equilibrium point or to a nominal system trajectory (see e.g. [1]). By
contrast, incremental stability is concerned with the behavior of system
trajectories with respect to each other. From the triangle inequality,
global exponential incremental stability (any two trajectories tend to
each other exponentially) is a stronger property than global exponential
convergence to a single trajectory.

Historically, work on deterministic incremental stability can be
traced back to the 1950’s [2]–[4] (see e.g. [5], [6] for a more extensive
list and historical discussion of related references). More recently,
and largely independently of these earlier studies, a number of works
have put incremental stability on a broader theoretical basis and
have clarified the relations with more traditional stability approaches
[7]–[10]. Furthermore, it has been shown that incremental stability is
especially relevant in the study of such problems as observer design
or synchronization analysis.

While the above references are mostly concerned with deterministic
stability notions, stability theory has also been extended to stochastic
dynamical systems, see for instance [11], [12]. This includes important
recent developments in Lyapunov-like approaches [13], [14], as well
as applications to standard problems in systems and control [15]–[17].
However, stochastic versions of incremental stability have not yet been
systematically investigated.

The goal of this technical note is to extend some concepts and results
in incremental stability to stochastic dynamical systems. More specifi-
cally, we derive a stochastic version of contraction analysis in the spe-
cialized context of state-independent metrics.

We prove in Section II that the mean square distance between any
two trajectories of a stochastically contracting system is upper-bounded
by a constant after exponential transients. In contrast with previous
works on incremental stochastic stability [18], we consider the case
when the two trajectories are affected by distinct and independent
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noises, as detailed in Section II-B. This specificity enables our theory
to have a number of new and practically important applications.
However, the fact that the noise does not vanish as two trajectories
get very close to each other will prevent us from obtaining asymptotic
almost-sure stability results (see Section III-B). In Section III-D, we
show that results on combinations of deterministic contracting systems
have simple analogues in the stochastic case. Finally, as illustrations
of our results, we study in Section IV the convergence of contracting
observers with noisy measurements, and the synchronization of noisy
FitzHugh-Nagumo oscillators.

II. STOCHASTIC CONTRACTION THEOREM

A. Background: Nonlinear Contraction Theory

Nonlinear contraction theory [8] provides a set of tools to analyze the
incremental exponential stability of nonlinear systems, and has been
applied notably to observer design [19], [20], synchronization analysis
[21], [22] and systems neuroscience modelling [23]. Nonlinear con-
tracting systems enjoy desirable aggregation properties, in that con-
traction is preserved under many types of system combinations given
suitable simple conditions [8].

While we shall derive global properties of nonlinear systems, many
of our results can be expressed in terms of eigenvalues of symmetric
matrices [24]. Given a square matrix�, the symmetric part of� is de-
noted by ��. The smallest and largest eigenvalues of �� are denoted
by ������� and �������. Given these notations, a matrix � is pos-
itive definite (denoted � � �) if ������� � �. Finally, a time- and
state-dependent matrix ���� �� is uniformly positive definite if

�� � � ��� � ���� ����� ��� � ��

The basic theorem of contraction analysis, derived in [8], can be
stated as follows

Theorem 1 (Deterministic Contraction): Consider, in �, the deter-
ministic system

�� � ���� �� (1)

where � is a smooth nonlinear function satifying standard conditions for
the global existence and uniqueness of solutions (for instance: for all
� � �����, there are constants � and 	 such that �� � ��� � �� �� �
� � ����� ��� � � 	 	��� [4]).
Denote the Jacobian matrix of � with respect to its first variable by


��
�. If there exists a square matrix 


��� �� such that ��� � 


�




is uniformly positive definite and � � � �


 	


�
��
���


�� is uni-
formly negative definite, then all system trajectories converge exponen-
tially to a single trajectory, with convergence rate ��

��� ��������� �
� � �. The system is said to be contracting,� is called its generalized
Jacobian, ��� its contraction metric and � its contraction rate.

B. Settings

Consider a noisy system described by an Itô stochastic differential
equation

�� � ���� ����	 ��� ���� �

���� � �
(2)

where � is a �	 � 
 � function,  is a �	 � 
 �� matrix-
valued function, � � is a standard �-dimensional Wiener process and �
is a random variable independent of the noise � �. To ensure existence
and uniqueness of solutions to (2), we assume that for all � � �����
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(Lipschitz condition) there exists a constant �� � � such that �� �
��� � �� ���� � �

����� ��� ���� ���� ����� ��� ���� ��� � ����� ���

(restriction on growth) there exists a constant �� � � such that
�� � ��� � �� �� � �

����� ���� � ����� ���� � �� � � ���� �

Under these conditions, one can show ([25, p. 105]) that equation (2)
has on ����� a unique �-valued solution ����, which is continuous
with probability one.

In order to investigate the incremental stability properties of
system (2), consider now two system trajectories ���� and ����.
Our goal will consist of studying the trajectories ���� and ���� with
respect to each other. For this, we consider the augmented system
���� � ������������ , which follows the equation:

�� �
���� ��

���� ��
���

���� �� �

� ���� ��

�	 �

�

�	 �

�

�
�

� ��� �����
�

� ��� ���	 ��

���� � ����������� � �
�� 
��

� (3)

Important remark As stated in the introduction, the systems � and
� are driven by distinct and independent Wiener processes 	 �

� and
	 �

� . This makes our approach considerably different from [18], where
the authors studied two trajectories driven by the same Wiener process.

Our approach enables us to study the stability of the system with re-
spect to differences in initial conditions and to random perturbations:
indeed, two trajectories of any real-life system are typically affected
by distinct realizations of the noise. In the deterministic domain, incre-
mental stability with respect to different initial conditions and different
deterministic inputs (incremental Input-to-State Stability or �	

) has
been studied in [9], [10], [26]. Besides, it should be noted that our ap-
proach leads very naturally to nice results on the comparison of noisy
and noise-free trajectories (cf. Section III-C), which are particularly
useful in applications (cf. Section IV).

However, because of the very fact that the two trajectories are driven
by distinct Wiener processes, one cannot expect the influence of the
noise to vanish when the two trajectories get very close to each other.
This constrasts with [18], and more generally, with standard stochastic
stability approaches, where the noise is assumed to vanish near the
origin. The consequences of this will be discussed in detail in Sec-
tion III-B.

C. Statement and Proof of the Theorem

We first recall a Gronwall-type lemma
Lemma 1: Let � � ����� � be a continuous function,  a real

number and � a strictly positive real number. Assume that

��� � � � � � � ����� ���� �

�

�

������ � ��� (4)

Then

�� 	 � ���� �


�
� �����



�

�

�
��� (5)

where �
�� � ����� 
�.
Proof: See [27]

We now introduce two hypotheses
(H1) There exists a state-independent, uniformly positive definite
metric ������ � �������������, with the lower-bound � � � (i.e.

��� � ��������� 	 �����) and � is contracting in that metric,
with contraction rate �, i.e. uniformly

����
�

��
������ �������

��

��
�������� � ��

or equivalently, uniformly

����
��

��
�

��

��

�

���� �
�

��
���� � ��������

(H2) ������� ������������� ��� is uniformly upper-bounded by a
constant 

Definition 1: A system that verifies (H1) and (H2) is said to be
stochastically contracting in the metric ������, with rate � and bound
 .

Consider the Lyapunov-like function � ��� �� � ���������������
��. Using (H1) and (H2), we derive below an inequality on �� ��� ��
where� denotes the differential generator of the Itô process ���� ([11],
p. 15).

Lemma 2: Under (H1) and (H2), one has

��� � �� ��� �� � ���� ��� �� � �� (6)

Proof: Let us compute first ��

�� ��� �� �
��

��
�
��

��

�

� ��� �� �
�

�
��

�

� ��� ���
���

���
�

� ��� ��

� ��� ���
�

��
���� ��� ��

� ���� ������� ����� ��� ���� ���

� �� ���� ����������� ��

� �� ���� ����������� �� �

Fix � � �, then, according to [28], there exists � � ����� such that

��� ���
�

��
���� ��� ��

� ���� ������� ������ �����

� ��� ���
�

��
���� �����

��

��
��� ��

�
��

��
��� ������� ��� ��

� ������ ���������� �� � ���� ��� (7)

where the inequality is obtained by using (H1).
Finally, combining (7) with (H2) allows to obtain the desired result

We can now state the stochastic contraction theorem
Theorem 2 (Stochastic Contraction): Assume that system (2) veri-

fies (H1) and (H2). Let ���� and ���� be two trajectories whose initial
conditions are independent of the noise and given by a probability dis-
tribution ��
�� 
��. Then

�� 	 � ������ ������ ���� ������ �����

�


�
� �

���� ��� � ���
�
������� � ����



�

�

� ���������� (8)

In particular, �� 	 �

������ ������

�
�

�



�
� �
� � 
��

�
�����
� � 
�� �

����
� (9)
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Proof: Let �� � ������� �
��. By Dynkin’s formula ([11, p.

10])

� � ������ ��� � ���� �� � �

�

�

�� ������ �����

Thus one has ��� � � � � � � � �
� � ������ ��� � � ������ ��

� �

�

�

�� ������ ����

� �

�

�

���	� ������ �� � �
��� (10)

�

�

�

���	 � � ������ �� � �
��� (11)

where inequality (10) is obtained by using lemma 2 and equality (11)
by using Fubini’s theorem (since � �� � � ������ �� is continuous
on ��� ��, one has �

�
	 � �	 � � ������ �� � �
	�� ��).

Denote by ���� the deterministic quantity � � ������. As remarked
above, ���� is a continuous function of �. It then satisfies the conditions
of the Gronwall-type lemma 1, and as a consequence

�� 
 � � � ������ �� �



	
� � ���� ���




	

�

�����

which leads to (8) by integrating with respect to �������. Next, (9)
follows from (8) by observing that

��� � ���
�
������� � ����




	

�

��������

� ��� � ���
�
������� � �����������

� ��� � ���
�
������� � ���

and
������ ������ �

	

�
������ ������ ���� ������ ����� �

III. REMARKS

A. “Optimality” of the Mean Square Bound

Consider the following linear dynamical system, known as the Orn-
stein-Uhlenbeck (colored noise) process

�� � �	���� ���� (12)

Clearly, the noise-free system is contracting with rate 	 and the trace
of the noise matrix is upper-bounded by ��. Let ���� and ���� be two
system trajectories starting respectively at �� and �� (deterministic ini-
tial conditions). Then by theorem 2, we have

��
� ������������ �
��

	
� ��� � ���

� �
��

	

�

������

(13)
Let us assess the quality of this bound by solving directly (12). The

solution of (12) is ([25, p. 134])

���� � ���
��� � �

�

�

��������� ���� (14)

Compute next the mean square distance between the two trajectories
���� and ����

������ ������ ���� � ���
������

� ��
�

�

�������������

�

� ��
�

�

�������������

�

���� � ���
������ �

��

	
�	� ������

�
��

	
� ��� � ���

� �
��

	

�

������

The last inequality is in fact an equality when �������
� 
 ����	�.

Thus, this calculation shows that the upper-bound (13) given by the-
orem 2 is optimal, in the sense that it can be attained.

B. No Asymptotic Almost-Sure Stability

From the explicit form (14) of the solutions, one can deduce that
the distributions of ���� and ���� converge to the normal distribution
� ��� �����	�� ([25, p. 135]). Since ���� and ���� are independent,
the distribution of the difference ���� � ���� will then converge to
� ��� ����	��. The last observation shows that one cannot—in gen-
eral—obtain almost-sure stability results.

Indeed, the main difference with the approaches in [16]–[18] lies in
the term �
. This extra term comes from the fact that the influence
of the noise does not vanish when two trajectories get very close to
each other (cf. Section II-B). It prevents �� ������ from being always
non-positive, and as a result, � ������ is not always non-increasing.
Thus, � ������ is not—in general—a supermartingale, and one cannot
then use the supermartingale inequality (or its variations) to obtain
asymptotic almost-sure bounds, as in ([11, pp. 47–48]) or in [16]–[18].

However, if one is interested in finite time bounds then the super-
martingale inequality is still applicable, see ([11, p. 86]) for details.

C. Noisy and Noise-Free Trajectories

Consider the following augmented system:

�� �
���� ��

���� ��
���

� �

� ���� ��

�� �
�

�� �
�

�
�

� ��� �����
�

���� ������� (15)

This equation is the same as (3) except that the �-system is not per-
turbed by noise. Thus � ��� � �� � ��� represents the distance be-
tween a noise-free trajectory and a noisy one. All the calculations are
the same as in Section III-C, with 
 being replaced by 
��. One can
then derive the following corollary (for simplicity, we consider the case
of identity metric; the general case can be easily adapted)

Corollary 1: Assume that system (2) verifies (H1) and (H2) with
��� � �. Let ���� be a noise-free trajectory starting at �� and ���� a
noisy trajectory whose initial condition is independent of the noise and
given by a probability distribution ����. Then �� 
 �

������ ������ �



�	
� ��� � ���

� ������ (16)

Remarks:
• One can note here that the derivation of corollary 1 is only per-

mitted by our initial choice of considering distinct driving Wiener
process for the �- and �-systems (cf. Section II-B).
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• Corollary 1 provides a robustness result for contracting systems,
in the sense that any contracting system is automatically protected
against noise, as quantified by (16). This robustness could be re-
lated to the exponential nature of contraction stability.

D. Combination Properties

Stochastic contraction inherits naturally from deterministic contrac-
tion [8] its convenient combination properties. Because contraction is a
state-space concept, such properties can be expressed in more general
forms than input-output analogues such as passivity-based combina-
tions [29].

It should be noted that, in the deterministic domain, combination
properties have been obtained for ���� systems [10], [26] (for the def-
inition of ����, see Section II-B).

Consider two connected systems

��� � ��������� ����� ������ �����

��� � ������ ��� ����� ������ �����

where system � (� � �� �) is stochastically contracting with respect to
��� � � 			�

� 			�, with rate 	� and bound 
� (here, ��� � and 			� are set
to be constant matrices for simplicity; the case of time-varying metrics
can be easily adapted).

Assume that these systems are connected by negative feed-
back [30], i.e. the Jacobian of their coupling matrices verify
			����			

��

�
� ��			��

�
��			

��

�
, with � a positive constant. The

Jacobian matrix of the augmented noise-free system is given then by

� �
�� ��			��

�
			��

�
��			

��

�
			�

��� ��
�

Consider the coordinate transform			 �
			� �

�
�
�			�

associated

with the metric ��� � 			�			  �. After some calculations, one has

�			�			���� �
			���			

��

� �
�

� 			���			
��

� �

� 
����	���	��� �����
��� (17)

The augmented system is thus stochastically contracting in the
metric ��� , with rate 
���	�� 	�� and bound 
� � �
�.

Similarly, one can show that (with ������� denoting the largest sin-
gular value of �)

• Hierarchical combination: If ��� � � and
������			����			

��

�
� � � , then the augmented system

is stochastically contracting in the metric ��� �, with rate
������	� � 	� � 	�

�
� 	�

�
�� and bound 
� � ��
�	�	����,

where � � �	�	��� .
• Small gains: Define �� � ������

�
�			����			

��

�
�

���
�
���			����			

��

�
�� �. If there exists �  � such that

��������� � 	�	� then the augmented system is stochastically
contracting in the metric ���� , with bound 
� � �
� and rate 	
verifying

	 � 	� � 	�
�

� 	� � 	�
�

�

� ���������� (18)

Taken together, the combination properties presented above allow
one to build by recursion stochastically contracting systems of arbitrary
size.

IV. SOME EXAMPLES

A. Effect of Measurement Noise on Contracting Observers

Consider a nonlinear dynamical system

�� � ���� ��� (19)

If a measurement � � ���� is available, then it may be possible to
choose an output injection matrix 	��� such that the dynamics

��� � ����� �� �	������ � �� (20)

is contracting, with �� � �����. Since the actual state � is a particular
solution of (20), any solution �� of (20) will then converge towards �
exponentially.

Assume now that the measurements are corrupted by additive “white
noise”. In the case of linear measurement, the measurement equation
becomes � � 
���� � �������� where ���� is a multidimensional
“white noise” and ���� is the matrix of measurement noise intensities.

The observer equation is now given by the following Itô stochastic
differential equation (using the formal rule �� � ���)

��� � ������ �� �	��� �
�����
������� ���	���������� (21)

Next, remark that the solution � of system (19) is a also a solution
of the noise-free version of system (21). By corollary 1, one then has,
for any solution �� of system (21)

�� � � ������� ������ � 


�	
� ���� � ��������� (22)

where

	 � ���
���

	���
�� ��� ��

��
�	���
���


 � ��
���

�� �����	����	������� �

Remark: The choice of the injection gain 	��� is governed by a
trade-off between convergence speed �	� and noise sensitivity �
�	�
as quantified by (22). More generally, the explicit computation of the
bound on the expected quadratic estimation error given by (22) may
open the possibility of measurement selection in a way similar to the
linear case. If several possible measurements or sets of measurements
can be performed, one may try at each instant (or at each step, in a
discrete version) to select the most relevant, i.e., the measurement or
set of measurements which will best contribute to improving the state
estimate. Similarly to the Kalman filters used in [31] for linear systems,
this can be achieved by computing, along with the state estimate itself,
the corresponding bounds on the expected quadratic estimation error,
and then selecting accordingly the measurement which will minimize
it.

B. Synchronization of Noisy Fitzhugh-Nagumo Oscillators

We analyze in this section the synchronization of two noisy
FitzHugh-Nagumo oscillators (see [21] for the references). The inter-
ested reader is referred to [32] for a more complete study.

The dynamics of two diffusively-coupled noisy FitzHugh–Nagumo
oscillators is given by

��� � � �� � �� � �

�
��� � �� � ���� � ��� ��� ����

��� � � �

	
��� � �� ������
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Fig. 1. Synchronization of two noisy FitzHugh–Nagumo oscillators. Left plot:
membrane potentials of two coupled noisy FN oscillators. Right plot: absolute
difference between the two membrane potentials.

where � � �,2. Let � � ���� ��� ��� ���
� and

� � ��
�
�

� � �� �

� � � �� . The Jacobian matrix of the

projected noise-free system is then given by

�� ��� �� �
�

� � �

���� ����

Thus, if the coupling strength verifies � 	 � then the projected
system will be stochastically contracting in the diagonal metric 


 �
��	
��� �� with rate �������� ���� and bound ��. Hence, the average
absolute difference between the two membrane potentials �������will
be upper-bounded by �� ������ ������� � �� ���� after exponen-
tial transients (see Fig. 1 for a numerical simulation).
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Wavelet Amendment of Polynomial Models
in Hammerstein Systems Identification
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Ryszard Klempous

Abstract—A new wavelet algorithm for on-line improvement of an
existing polynomial model of nonlinearity in a Hammerstein system is
proposed and its properties are examined. The algorithm employs wavelet
bases on interval. Convergence of the resulting assembly, comprising the
parametric polynomial model and a nonparametric wavelet add-on, to
the system nonlinearity is shown. Rates of convergence for uniformly
smooth and piecewise smooth nonlinearities with discontinuities are both
established.

Index Terms—Hammerstein system, nonlinear system identification,
order statistics, polynomial models, semiparametric approach, wavelet
bypass, wavelet regression estimate.

I. INTRODUCTION

M ANY existing models of nonlinear dynamic systems derived
from a block-oriented methodology (where models are com-

posed of interconnected static nonlinear and linear dynamic blocks; cf.
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Analysis of Discrete and Hybrid Stochastic Systems
by Nonlinear Contraction Theory
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Abstract—We investigate the stability properties of discrete
and hybrid stochastic nonlinear dynamical systems. More pre-
cisely, we extend the stochastic contraction theorems (which were
formulated for continuous systems) to the case of discrete and
hybrid resetting systems. In particular, we show that the mean
square distance between any two trajectories of a discrete (or
hybrid resetting) contracting stochastic system is upper-bounded
by a constant after exponential transients. Using these results, we
study the synchronization of noisy nonlinear oscillators coupled
by discrete noisy interactions.

Index Terms—Discrete systems, hybrid resetting, stochastic
systems, nonlinear contraction theory, incremental stability, os-
cillator synchronization

I. INTRODUCTION

Contraction theory is a set of relatively recent tools that
provide a systematic approach to the stability analysis of a
large class of nonlinear dynamical systems [1], [2], [3], [4]. A
nonlinear nonautonomous system ẋ = f(x, t) is contracting if
the symmetric part of the Jacobian matrix of f is uniformly
negative definite in some metric. Using elementary fluid dy-
namics techniques, it can be shown that contracting systems
are incrementally stable, that is, any two system trajectories
exponentially converge to each other [1].

From a practical viewpoint, contraction theory has been
successfully applied to a number of important problems, such
as mechanical observers and controllers design [5], chemical
processes control [6], synchronization analysis [2], [7] or
biological systems modelling [8].

Recently, contraction analysis has been extended to the case
of stochastic dynamical systems governed by Itô differential
equations [4]. In parallel, hybrid versions of contraction theory
have also been developped [3]. A hybrid system is charac-
terized by a continuous evolution of the system’s state, and
intermittent discrete transitions. Such systems are pervasive
in both artificial (e.g. analog physical processes controlled
by digital devices) and natural (e.g. spiking neurons with
subthreshold dynamics) environments.

The present paper benefits from these recent developments
to provide an exponential stability result for discrete and hybrid
systems governed by stochastic difference and differential
equations. More precisely, we prove in section II and III that
the mean square distance between any two trajectories of a
discrete (respectively hybrid resetting) stochastic contracting
system is upper-bounded by a constant after exponential tran-

sients. This bound can be expressed as function of the noise
intensities and the contraction rates of the noise-free systems.
In section IV, we briefly discuss a number of theoretical
issues regarding our analysis. Finally, in section V, we study,
using the previously developped tools, the synchronization of
noisy nonlinear oscillators which interact by discrete noisy
couplings.

Notations The symmetric part of a matrix A is defined
as As = 1

2

(
A + AT

)
. For a symmetric matrix A, λmin(A)

and λmax(A) denote respectively the smallest and the largest
eigenvalue of A. A set of symmetric matrices (Ai)i∈I is
uniformly positive definite if ∃α > 0, ∀i ∈ I, λmin(Ai) ≥ α.
Finally, for a stochastic process s(t), we note Ex(·) the
conditional expection E( · | s(0) = x).

II. DISCRETE SYSTEMS

We first prove a lemma that makes explicit the initial
“discrete contraction” proof (see section 5 of [1]). Note that a
similar proof for continuous systems can be found in [9].

Lemma 1 (and definition): Consider two metrics Mi =
ΘT

i Θi defined over Rni (i = 1, 2) and a smooth function
f : Rn1 → Rn2 . The generalized Jacobian of f in the metrics
(M1,M2) is defined by

F = Θ2
∂f
∂x

Θ−1
1

Assume now that f is contracting in the metrics (M1,M2)
with rate β (0 < β < 1), i.e.

∀x ∈ Rn1 λmax(F(x)T F(x)) ≤ β

Then for all u,v ∈ Rn, one has

dM2(f(u), f(v))2 ≤ βdM1(u,v)2

where dM denotes the distance associated with the metric M
(the distance between two points is defined by the infimum of
the lengths in the metric M of all continuously differentiable
curves connecting these points).

Proof Consider a C1 curve γ : [0, 1] → Rn1 that connects
u and v (i.e. γ(0) = u and γ(1) = v). The M1-length of such
a curve is given by

LM1(γ) =
∫ 1

0

√(
∂γ

∂u
(u)
)T

M1

(
∂γ

∂u
(u)
)

du
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Since f is a smooth function, f(γ) is also a C1 curve, with

LM2(f(γ)) =
∫ 1

0

√(
∂f(γ)
∂u

(u)
)T

M2

(
∂f(γ)
∂u

(u)
)

du

The chain rule next implies that

∂f(γ)
∂u

(u) =
∂f
∂x

∂γ

∂u
(u)

which leads to

LM2(f(γ)) =
∫ 1

0

√(
∂γ
∂u

T ∂f
∂x

T
ΘT

2 Θ2
∂f
∂x

∂γ
∂u

)
du

=
∫ 1

0

√(
∂γ
∂u

T
ΘT

1

)
FT F

(
Θ1

∂γ
∂u

)
du

≤ ∫ 1

0

√
β
(

∂γ
∂u

T
ΘT

1 Θ1
∂γ
∂u

)
du

=
√

βLM1(γ)

(1)

Choose now a sequence of curves (γn)n∈N such that
limn→∞ LM1(γn) = dM1(u, v). From (1), one has ∀n ∈
N, LM2(f(γn)) ≤ √

βLM1(γn). By definition of distance, one
then has ∀n ∈ N, dM2(f(u), f(v)) ≤ √

βLM1(γn). Finally,
by letting n go to infinity in the last inequality, one obtains
the desired result. �

Theorem 1 (Discrete stochastic contraction): Consider the
stochastic difference equation{

ak+1 = f(ak, k) + σ(ak, k)wk+1

a0 = ξ
(2)

where f is a Rn × N → Rn function, σ is a Rn × N → Rnd

matrix-valued function, {wk, k = 1, 2, . . .} is a sequence
of independent d-dimensional Gaussian noise vectors, with
wk ∼ N (0,Qk) and ξ is a n-dimensional random variable
independent of the wk.

Assume that the system verifies the following two hypothe-
ses

(H1) the dynamics f(a, k) is contracting in the metrics
(Mk,Mk+1), with contraction rate β (0 < β < 1),
and the metrics (Mk)k∈N are uniformly positive
definite.

(H2) the impact of noise is uniformly upper-bounded by a
constant

√
C in the metrics Mk

∀a, k dMk
(f(a, k), f(a, k) + σ(a, k)wk) ≤

√
C

Let ak and bk be two trajectories whose initial conditions
are given by a probability distribution p(ξ, ξ′). Then for all
k ≥ 0

E (dMk
(ak,bk)) ≤ 2

√
C

1−√β
+

√
β

k
∫ [

dM0(a,b)− 2
√

C

1−√β

]+

dp(a,b) (3)

where [·]+ = max(0, ·).

This implies in particular that for all k ≥ 0

E (dMk
(ak,bk)) ≤ 2

√
C

1−√β
+
√

β
k
E (dM0(ξ, ξ

′)) (4)

Proof Let x = (a,b)T ∈ R2n. We have by the triangle in-
equality (to avoid long formulas, we drop the second argument
of f and σ in the following calculations)

dMk+1(ak+1,bk+1) ≤ dMk+1(f(ak), f(bk))
+ dMk+1(f(ak), f(ak) + σ(ak)wk+1)
+ dMk+1(f(bk), f(bk) + σ(bk)w′

k+1)

Let us examine the conditional expectations of the three
terms of the right hand side

• From (H1) and lemma 1 one has

Ex(dMk+1(f(ak), f(bk))) ≤
√

βEx(dMk
(ak,bk))

• Next, from (H2)

Ex(dMk+1(f(ak), f(ak) + σ(ak)wk+1)) ≤
√

C

and similarly for dMk+1(f(bk), f(bk) + σ(bk)w′
k+1).

If we now set uk = Ex(dMk
(ak,bk)) then the above

implies
uk+1 ≤

√
βuk + 2

√
C (5)

Define next vk = uk − 2
√

C/(1−√β). Then replacing uk

by vk + 2
√

C/(1−√β) in (5) yields

vk+1 ≤
√

βvk

This implies that ∀k ≥ 0, vk ≤ v0

√
β

k ≤ [v0]+
√

β
k
.

Replacing vk by its expression in terms of uk then yields

∀k ≥ 0 uk ≤ 2
√

C

1−√β
+
√

β
k

[
u0 − 2

√
C

1−√β

]+

which is the desired result.
Next, integrating the last inequality with respect to x leads

to (3). Finally, (4) follows from (3) by remarking that∫ [
dM0(a,b)−

√
C

1−√β

]+

dp(a,b) ≤∫
dM0(a,b)dp(a,b) = E (dM0(ξ, ξ

′)) �

Remark In the particular context of state-independent met-
rics, hypothesis (H2) is equivalent to the following simpler
condition

∀a, k tr
(
σ(a, k)T Mk+1σ(a, k)Qk

) ≤ C

Also, for state-independent metrics, one has

dMk
(ak,bk)2 = (ak − bk)T Mk(ak − bk) = ‖ak − bk‖2Mk

which leads to the following stronger result instead of (4)

E
(‖ak − bk‖2Mk

) ≤ 2C

1− β
+ βkE

(‖ξ − ξ′‖2M0

)
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III. HYBRID SYSTEMS

We have derived above the discrete stochastic contraction
theorem for time- and state-dependent metrics, contrary to
the context of continuous systems, where the state-dependent-
metrics version of the contraction theorem is still unproved [4].
We now address the case of hybrid systems, but due to the
present limitations of continuous stochastic contraction, only
state-independent metrics will be considered.

For clarity, we assume in this paper constant dwell-times,
although more elaborate conditions regarding dwell-times can
be adapted from [3].

Consider the hybrid resetting stochastic dynamical system⎧⎨⎩ ∀k ≥ 1 a(kτ+) = fd(a(kτ−), k) + σd(a(kτ−), k)wk

∀k ≥ 0 ∀t ∈]kτ, (k + 1)τ [ da = fc(a, t)dt + σc(a, t)dW
a(0+) = ξ

(6)
where fd, σd, fc, σc are four functions of appropriate di-
mensions and ξ is a random variable independent of the wk

and of the process W . Furthermore, fc and σc verify suitable
conditions for the existence and uniqueness of the solutions of
the continuous parts (cf e.g. [4]).

All the contraction properties below will be stated with
respect to a uniformly positive definite time-varying metric
M(t) = Θ(t)T Θ(t). Furthermore, it will be assumed that for
all k ≥ 0, M is continuously differentiable in ]kτ, (k + 1)τ [.
Finally, M(kτ−) and M(kτ+) will respectively denote the left
and right limits of M(t) at t = kτ (and similarly for Θ).

A. The discrete and continuous parts are both contracting

Theorem 2 (Hybrid stochastic contraction, case λ > 0):
Assume the following conditions

(i) For all k, the discrete part is stochastically contract-
ing at kτ with rate β < 1 and bound Cd, i.e.

∀a ∈ Rn λmax

(
F(kτ)T F(kτ)

) ≤ β

where F(kτ) = Θ(kτ+)∂fd
∂a (a, k)Θ(kτ−), and

∀a ∈ Rn tr
(
σd(a, k)T M(kτ+)σd(a, k)Qk

) ≤ Cd

(ii) For all k, the continuous part is stochastically con-
tracting in ]kτ, (k + 1)τ [ with rate λ > 0 and bound
Cc, i.e. ∀a ∈ Rn, ∀t ∈]kτ, (k + 1)τ [,

λmax

((
d

dt
Θ(t) + Θ(t)

∂f
∂a

)
Θ−1(t)

)
s

≤ −λ

(7)
tr
(
σc(a, t)T M(t)σc(a, t)

) ≤ Cc

Let a(t) and b(t) be two trajectories whose initial condi-
tions are given by a probability distribution p(ξ, ξ′). Then for
all t ≥ 0

E
(
‖a(t)− b(t)‖2M(t)

)
≤

C1 + E
(
‖ξ − ξ′‖2M(0)

)
β�t/τ�e−2λt

where C1 = 2λCd+(1−β)(1+β−r1)Cc

λ(1−β)(1−r1)
and r1 = βe−2λτ .

Proof For all t ≥ 0, let u(t) = E
(
‖a(t)− b(t)‖2M(t)

)
and

let us study the evolution of u(t) between kτ+ and (k+1)τ+.
Condition (ii) and theorem 2 of [4] yield

u((k + 1)τ−) ≤ Cc

λ + u(kτ+)e−2λτ (8)

Next, condition (i) and theorem 1 above yield

u((k + 1)τ+) ≤ 2Cd

1−β + βu((k + 1)τ−) (9)

Substituting (8) into (9) leads to

u((k + 1)τ+) ≤ 2Cd

1−β + β
(

Cc

λ + βu(kτ+)e−2λτ
)

= 2Cd

1−β + βCc

λ + βe−2λτu(kτ+)

Define D1 = 2Cd

1−β + βCc

λ and vk = u(kτ+)−D1/(1− r1).
Then, similarly to the proof of theorem 1, we have vk+1 ≤
r1vk, and then vk ≤ rk

1 [v0]+, which implies

u(kτ+) ≤ D1

1− r1
+
[
u(0+)− D1

1− r1

]+
rk
1

≤ D1

1− r1
+ u(0+)rk

1

Now, for any t ≥ 0, choose k = �t/τ. Then

u(t) ≤ Cc

λ
+ u(kτ+)e−2λ(t−kτ)

≤ Cc

λ
+

D1e
−2λ(t−kτ)

1− r1
+ u(0+)βke−2λt

≤ Cc

λ
+

D1

1− r1
+ u(0+)βke−2λt

which leads to the desired result after some algebraic manip-
ulations. �

B. Only the discrete part is contracting

Let us examine now the more interesting case when the
continuous part is not contracting, more precisely when λ ≤ 0
in (7). For this, we shall need to revisit the proof of theorem 2
in [4].

Theorem 3 (Case λ = 0): Assume all the hypotheses of
theorem 2 except that λ = 0 in (7). Then for all t ≥ 0

E
(
‖a(t)− b(t)‖2M(t)

)
≤

C2 + E
(
‖ξ − ξ′‖2M(0)

)
β�t/τ�

where C2 = 2Cd+2β(1−β)Ccτ
(1−β)2 .

Proof As in the proof of theorem 2 in [4], let

V (x, t) = V ((a,b)T , t) = (a− b)T M(t)(a− b)

Lemma 1 of [4] is unchanged, yielding (see [4] for more
details)

∀t ∈]kτ, (k + 1)τ [ ÃV (x(t), t) ≤ 2Cc

where Ã is the infinitesimal operator associated with the
process x(t) (see section 2.1.2 of [4] or p. 15 of [10] for
more details).
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By Dynkin’s formula [10], one then obtains for all x ∈ R2n

ExV (x(t), t)− V (x, kτ+) = Ex

∫ t

kτ
ÃV (x(s), s)ds

≤ Ex

∫ t

kτ
2Ccds

= 2Cc(t− kτ)

Integrating the above inequality with respect to x then yields

∀t ∈]kτ, (k + 1)τ [ u(t) ≤ 2Cc(t− kτ) + u(kτ+)

In particular, (8) becomes

u((k + 1)τ−) ≤ 2Ccτ + u(kτ+)

which leads to, after substitution into (9),

u((k + 1)τ+) ≤ 2Cd

1− β
+ 2βCcτ + βu(kτ+)

This finally implies

u(kτ+) ≤
2Cd

1−β + 2βCcτ

1− β
+ u(0+)βk

The remainder of the proof can be adapted from that of
theorem 2. �

Theorem 4 (Case λ < 0): Assume all the hypotheses of
theorem 2 except that λ < 0 in (7). Let k = �t/τ. There
are two cases:

• If β < e−2|λ|τ , then let r2 = βe2|λ|τ < 1. For all t ≥ 0

E
(
‖a(t)− b(t)‖2M(t)

)
≤

C3 + E
(
‖ξ − ξ′‖2M(0)

)
e2|λ|τrk

2

where C3 = 2|λ|Cd+(1−β)(1+β−r2)e
2|λ|τ Cc

|λ|(1−β)(1−r2)
.

• If β ≥ e−2|λ|τ , then there is – in general – no finite bound
on E

(
‖a(t)− b(t)‖2M(t)

)
as t → +∞.

Proof One has now for all t ∈]kτ, (k + 1)τ [,

ÃV (x(t), t) ≤ 2|λ|V (x(t), t) + 2Cc

with |λ| > 0. By Dynkin’s formula, one has, for all x ∈ R2n

ExV (x(t), t)−V (x, kτ+) ≤ Ex

∫ t

kτ

(2|λ|V (x(s), s)+2Cc)ds

Let now g(t) = ExV (x(t), t). The above equation then yields

g(t) = V (x, kτ+) + 2Cc(t− kτ) + 2|λ|
∫ t

kτ

g(s)ds

Applying the classical Gronwall’s lemma [11] to g(t) leads
to

g(t) ≤ V (x, kτ+) + 2Cc(t− kτ)+
2|λ| ∫ t

kτ
(V (x, kτ+) + 2Ccs) exp

(∫ t

s
2|λ|du

)
ds

= Cc

|λ|
(
e2|λ|(t−kτ) − 1

)
+ V (x, kτ+)e2|λ|(t−kτ)

Integrating the above inequality with respect to x then yields
∀t ∈]kτ, (k + 1)τ [,

u(t) ≤ Cc

|λ|
(
e2|λ|(t−kτ) − 1

)
+ u(kτ+)e2|λ|(t−kτ)

which implies

u((k + 1)τ+) ≤ D2 + βe2|λ|τu(kτ+) (10)

where D2 = 2Cd

1−β + βCc

|λ|
(
e2|λ|τ − 1

)
.

There are three cases:
• If β < e−2|λ|τ , then r2 = βe2|λ|τ < 1. By the same

reasoning as in theorem 1, one obtains

u(kτ+) ≤ D2

1− r2
+ u(0+)rk

2

The remainder of the proof can be adapted from that of
theorem 2

• If β = e−2|λ|τ , then (10) reads

u((k + 1)τ+) ≤ D2 + u(kτ+)

which implies ∀k ≥ 0, u(kτ+) ≤ kD2 + u(0+). From
this, it is clear that there is – in general – no finite bound
for u(kτ+).

• If β > e−2|λ|τ , then r2 = βe2|λ|τ > 1. By the same
reasoning as in theorem 1, one obtains

u(kτ+) ≤
(

u(0+) +
D2

r2 − 1

)
rk
2 −

D2

r2 − 1

Since r2 > 1 in this case, it is clear that there is – in
general – no finite bound for u(kτ+). �

Remarks Theorems 3 and 4 show that it is possible to
stabilize an unstable system by discrete resettings. If the
continuous system is indifferent (λ = 0), then any sequence
of uniformly contracting resettings is stabilizing. However, it
should be noted that the asymptotic bound C2 → ∞ when
β → 1. In contrast, if the continuous system is strictly unstable
(λ < 0), then specific contraction rates (depending on the
dwell-time and the “expansion” rate of the continuous system)
of the resettings are required. Finally, note that in both cases,
the asymptotic bounds C2 and C3 are increasing functions of
the dwell-time τ .

IV. COMMENTS

A. Modelling issue: distinct driving noise

In the same spirit as [4], and contrary to previous works on
the stability of stochastic systems (see the references in [4]),
the a and b systems considered in sections II and III are driven
by distinct and independent noise processes. This approach
enables us to study the stability of the system with respect to
variations in initial conditions and to random perturbations:
indeed, two trajectories of any real-life system are typically
affected by distinct realizations of the noise. In addition, this
approach leads very naturally to nice results regarding the
comparison of noisy and noise-free trajectories (see section
IV-B), which are particularly useful in applications (see e.g.
section V).

However, because of the very fact that the two trajectories
are driven by distinct noise processes, we cannot expect the
influence of noise to vanish when the two trajectories get very
close to each other. As a consequence, the asymptotic bounds
2C/(1− β) (for discrete systems) and C1, C2, C3 (for hybrid
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systems) are strictly positive. These bounds are nevertheless
optimal, in the sense that they can be attained (adapt the
Ornstein-Uhlenbeck example in section 2.3.1 of [4]).

B. Noisy and noise-free trajectories

Instead of considering two noisy trajectories a and b as in
theorem 1, we assume now that a is noisy, while b is noise-
free. More precisely, for all k ∈ N

ak+1 = f(ak, k) + σ(ak, k)wk+1

bk+1 = f(bk, k)

To show the exponential convergence of a and b to each
other, one can follow the same reasoning as in the proof of
theorem 1, with C being replaced by C/2. This leads to the
following result

Corollary 1: Assume all the hypothesis of theorem 1 and
consider a noise-free trajectory bk and a noisy trajectory ak

whose initial conditions are given by a probability distribution
p(a0). Then, for all k ∈ N

E
(‖ak − bk‖2Mk

) ≤ C

1− β
+

βk

∫ [
‖a− b0‖2M0

− C

1− β

]+
dp(a) (11)

Remarks

• The above derivation of corollary 1 is only permitted by
our choice of considering distinct driving noise processes
for systems a and b (see section IV-A).

• Based on theorems 2, 3 and 4, similar corollaries can be
obtained for hybrid systems.

• These corollaries provide a robustness result for con-
tracting discrete and hybrid systems, in the sense that
any contracting system is automatically protected against
noise, as quantified by (11). This robustness could be
related to the exponential nature of contraction stability.

V. APPLICATION: OSCILLATOR SYNCHRONIZATION BY

DISCRETE COUPLINGS

Using the above developped tools, we study in this section
the synchronization of nonlinear oscillators in presence of
random perturbations. The novelty here is that the interactions
between the oscillators occur at discrete time instants, contrary
to many previous works devoted to synchronization in the
state-space1 (see [7] and references therein).

Specifically, consider the Central Pattern Generator (CPG)
delivering 2π/3-phase-locked signals of section 5.3 in [7]. This
CPG consists of a network of three Andronov-Hopf oscillators
xi = (xi, yi)T , i = 1, 2, 3. We construct below a discrete-
couplings version of this CPG.

1Discrete couplings are more frequent in the literature devoted to phase
oscillators synchronization, where phase reduction techniques are used (see
e.g. [12]). However, contrary to our approach, these techniques are only
applicable in the case of weak coupling strenghs and small noise intensities.

At instants t = kτ, k ∈ N, the three oscillators are coupled
in the following way (assuming noisy measurements)

xi(kτ+) = xi(kτ−)
+ γ

(
R
(
xi+1(kτ−) + σd√

2
wk

)
− xi(kτ−)

)
with x4 ≡ x1 and

R =

(
− 1

2 −
√

3
2√

3
2 − 1

2

)
Between two interaction instants, the oscillators follow the

uncoupled, noisy, dynamics

dxi = f(xi)dt +
σc√
2
dW

where

f(xi) = f
(

xi

yi

)
=
(

xi − yi − x3
i − xiy

2
i

xi + yi − y3
i − yix

2
i

)
We apply now the projection technique developped in [7],

[4]. We recommend the reader to refer to these papers for more
details about the following calculations.

Consider first the (linear) subspace M of the global state
space (the global state is defined by �x = (x1,x2,x3)T ) where
the oscillators are 2π/3-phase-locked

M =
{(

R2(x),R(x),x
)T

: x ∈ R2
}

Let V and U be two orthonormal projections on M⊥ and
M respectively and consider �y = V�x. Since the mapping
is linear, using Itô differentiation rule yields the following
dynamics for �y

∀k ∈ N �y(kτ+) = gd(
�y(kτ−)) + γ

σd√
2
wk (12)

∀t ∈]kτ, (k + 1)τ [ d
�y = gc(

�y)dt +
σc√
2
dW (13)

with

gd(
�y) = VL�x = VL(VT �y + UT U�x) = VLVT �y

gc(
�y) = V

�

f(VT �y + UT U�x)

where

L =

⎛⎝ (1− γ)I2 γR 0
0 (1− γ)I2 γR

γR 0 (1− γ)I2

⎞⎠
�

f(�x) = (f(x1), f(x2), f(x3))T

Remark that gd(0) = 0 and gc(0) = 0 (the last equality
holds because of the symmetry of f : ∀x, f(Rx) = R(f(x))).
Thus, 0 is a particular solution to the noise-free version of the
hybrid stochastic system (12,13).

Let us now examine the contraction properties of equations
(12) and (13).

We have first

∂gd

∂
�y

T ∂gd

∂
�y

= VLT VT VLVT = (3γ2 − 3γ + 1)I4
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so that λmax

(
∂gd

∂
�
y

T ∂gd

∂
�
y

)
= 3γ2−3γ+1 < 1 (for 0 < γ < 1).

Second,

∂gc

∂
�y

= V
∂

�

f
∂

�x
VT = V

⎛⎝ ∂f
∂x (x1) 0 0

0 ∂f
∂x (x2) 0

0 0 ∂f
∂x (x3)

⎞⎠VT

Now observe that λmax

(
∂f
∂x

)
s

= 1−x2− y2 ≤ 1. Since V

is an orthonormal projection, one then has λmax

(
∂gc

∂
�
y

)
s
≤ 1.

Therefore, if

3γ2 − 3γ + 1 < e−2τ (14)

then theorem 4 together with the corollaries of section IV-B
imply that, after exponential transients,

E
(‖�y‖2) ≤ 2γ2σ2

d + (1− β)(1 + β − βe2τ )e2τσ2
c

2(1− β)(1− βe2τ )

where β = 3γ2 − 3γ + 1.
To conclude, observe that

‖�y‖2 = ‖V�x‖2 =
1
3

3∑
i=1

‖Rxi+1 − xi‖2

Define the phase-locking quality δ by

δ =
3∑

i=1

‖Rxi+1 − xi‖2

then one finally obtains

E(δ) ≤ 6γ2σ2
d + 3(1− β)(1 + β − βe2τ )e2τσ2

c

2(1− β)(1− βe2τ )
(15)

after exponential transients.
A numerical simulation is provided in Fig. 1.
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