A study of human locomotor trajectories

Phạm Quang Cường

December 11, 2009

Thèse réalisée sous la direction de P^r Alain Berthoz, au Laboratoire de Physiologie de la Perception et de l'Action Collège de France, Paris, France

Outline

Theoretical context

Experimental and modeling results

Stereotypy of locomotor trajectories

Deterministic optimal control model

Control of locomotor trajectories

Stochastic optimal control models

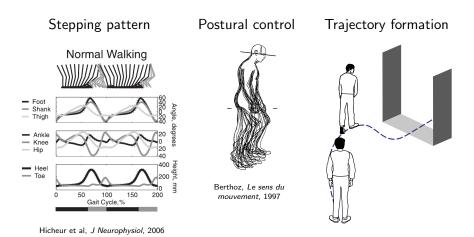
Conclusions

Outline

Theoretical context

Experimental and modeling results

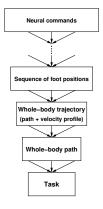
Stereotypy of locomotor trajectories

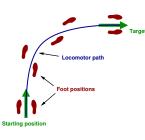

Deterministic optimal control model

Control of locomotor trajectories

Stochastic optimal control models

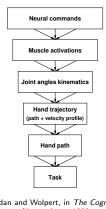
Conclusion


Locomotion: mutiple levels of description



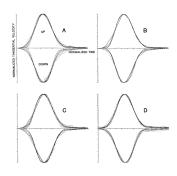
We focus here on the formation of whole-body trajectories in space

The redundancy problem


Redundancy in the formation of locomotor trajectories


Redundancy in the control of arm movements

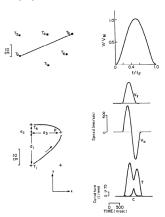
Jordan and Wolpert, in *The Cognitive* Neuroscience, 1999


Spatial control of arm movements

Straight hand paths

Morasso, Exp Brain Res, 1981

Bell-shaped velocity profiles



Atkeson and Hollerbach, J Neurosci, 1985

- Stereotypy observed only for hand trajectories in Cartesian coordinates
- Control in terms of Cartesian coordinates of the hand, not in terms of e.g. joint angles or muscle activity

Optimal control of arm movements

- ▶ Humans may select the hand trajectories that minimize a certain cost
- ▶ One popular model is the minimum jerk model developped by Flash and Hogan

$$\min_{x,y} \int_0^1 \left(\left(\frac{\mathrm{d}^3 x}{\mathrm{d} t^3} \right)^2 + \left(\frac{\mathrm{d}^3 y}{\mathrm{d} t^3} \right)^2 \right) \mathrm{d} t$$

Typical features:

- ► Straight, smooth, hand paths
- ► Bell-shaped velocity profiles
- Inverse relationship between velocity and curvature (via-points)

Our approach

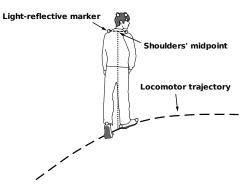
- ► Take inspiration from the litterature on arm movements control (the "principle of motor equivalence", see Bernstein, The co-ordination and regulation of movement, 1967 and Berthoz, Le sens du mouvement, 1997)
 - ► Formation of locomotor trajectories (Vieilledent et al, *Neurosci Lett*, 2001; Hicheur et al, *Exp Brain Res*, 2005)
 - Optimal control principles
- ► Integrative view
- Combination of experimental and modeling studies

Stereotypy of locomotor trajectories Deterministic optimal control mode Control of locomotor trajectories Stochastic optimal control models

Outline

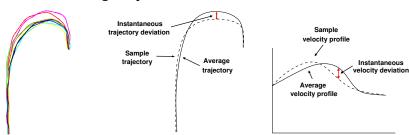
Theoretical context

Experimental and modeling results


Stereotypy of locomotor trajectories Deterministic optimal control model Control of locomotor trajectories Stochastic optimal control models

Conclusions

General experimental methods


- ▶ Motion capture system: infrared cameras + light reflective markers
- ▶ Body position defined by shoulders' midpoint

Average trajectories and variabilities

- ▶ Time rescaling so that $t_0 = 0$ and $t_1 = 1$
- Definition of average trajectories and variabilities

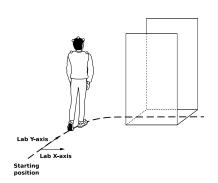
Stereotypy of locomotor trajectories Deterministic optimal control model Control of locomotor trajectories Stochastic optimal control models

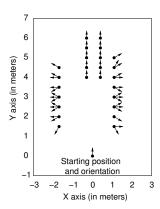
Outline

Theoretical context

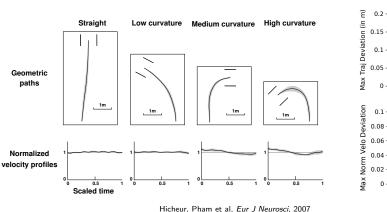
Experimental and modeling results Stereotypy of locomotor trajectories

Deterministic optimal control model Control of locomotor trajectories Stochastic optimal control models

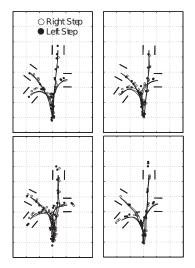

Conclusions

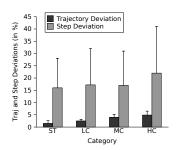

Experiment 1: stereotypy of locomotor trajectories

- Reminder: control of arm movements in terms of Cartesian coordinates of the hand
- ▶ What is planned and controlled in goal-oriented locomotion?
 - Step-level: plan and execute sequences of precise foot positions (FP), resulting in a whole-body trajectory
 - ► Trajectory-level: plan a whole-body trajectory (in Cartesian space) and implement it by appropriate sequences of foot positions
- Variability of the sequences of FP versus variability of whole-body trajectories


Experiment 1: methods

- ► Protocol: walking towards and through a distant doorway (Arechavaleta et al, 2006)
- Constraints on Initial and final positions and walking directions
- ▶ 40 targets (a target = position × orientation)
- ▶ 6 subjects \times 40 targets \times 3 repetitions = 720 trajectories


Experiment 1: results (trajectory stereotypy)


MC LC . HC Categories LC MC ST Categories

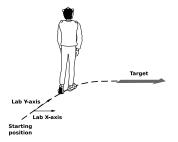
Even for HC, maximum variability was ≤ 17cm

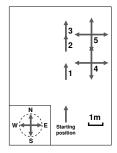
Experiment 1: results (foot positions variability)

Hicheur. Pham et al. Eur J Neurosci. 2007

- variability of the sequences of FP (≥20% of step length)
- variability of whole-body trajectories (≤5% of trajectory length)

Experiment 1: conclusions

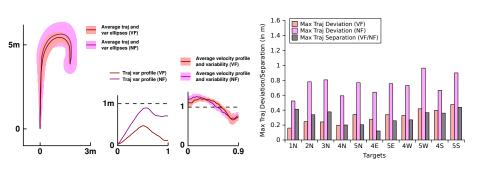

- ► Goal-oriented locomotion is not planned and controlled as a sequence of precise "foot pointings"
- Rather, it is likely planned and controlled at the level of whole-body trajectories
- ▶ This is reminiscent of the concept of spatial control of hand movements (Morasso, *Exp Brain Res*, 1981)


Experiment 2: influence of vision and of gait direction

- ► How whole-body trajectories are affected by changes in motor and sensory conditions?
- ► We varied the motor (walking forward or backward) and sensory (walking with or without vision) conditions

Experiment 2: methods

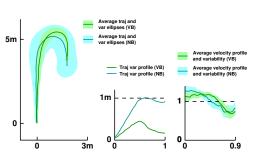
- ▶ Protocol: same as in Exp 1 with the door replaced by an arrow
- 4 conditions:
 - Visual Forward (VF)
 - Nonvisual Forward (NF)
 - ► Visual Backward (VB)
 - Nonvisual Backward (NB)
- ▶ 14 subjects × 4 conditions × 11 targets × 3 repetitions

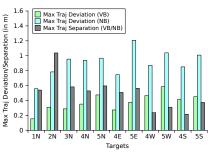


Experiment 2: results (effect of vision I)

Visual Forward (VF) vs Nonvisual Forward (NF)

- ► Small differences in average trajectories (MTS=30cm on average)
- ► Large differences in variability profiles (31cm for VF vs 74cm for NF)

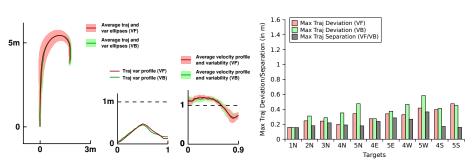



Pham and Hicheur, J Neurophysiol, 2009

Experiment 2: results (effect of vision II)

Visual Backward (VB) vs Nonvisual Backward (NB) Same observations as in the comparison VF/NF:

- ► Relatively small differences in average trajectories (50cm)
- ► Large differences in variability profiles (38cm for VB vs 90cm for NB)

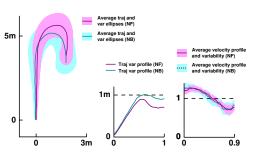


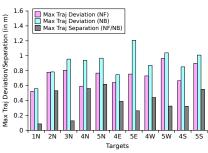
Pham et al, in preparation

Experiment 2: results (effect of gait direction I)

Visual Forward (VF) vs Visual Backward (VB)

- ► Small differences in average trajectories (22cm)
- ► Small differences in variability profiles (31cm vs 38cm)

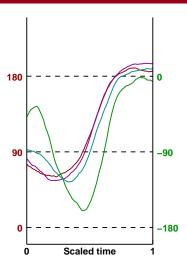



Pham et al, in preparation

Experiment 2: results (effect of gait direction II)

Nonvisual Forward (NF) vs Nonvisual Backward (NB) Same observations as in the comparison VF/VB:

- ► Relatively small differences in average trajectories (38cm)
- ► Small differences in variability profiles (74cm vs 90cm)


Pham et al, in preparation

Experiment 2: conclusions

- ► Average trajectories: similar across visual and gait direction conditions
 - ⇒ trajectories are planned and controlled, to some extent, independently of **sensory** and **motor** conditions
- ► Gait direction does not affect the variability profiles
- Vision does affect the variability profiles
 - ⇒ Same open-loop processes governing visual and nonvisual locomotion
 - ⇒ Existence of vision-dependent feedback processes

Experiment 2: head/trunk coordination

We also studied the head/trunk coordination during steering, in the four conditions **VF**, **VB**, **NF**, **NB** (not shown here, can be discussed later)

Pham et al, in preparation

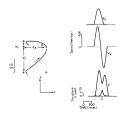
Stereotypy of locomotor trajectories **Deterministic optimal control model** Control of locomotor trajectories Stochastic optimal control models

Outline

Theoretical context

Experimental and modeling results

Stereotypy of locomotor trajectories


Deterministic optimal control model

Control of locomotor trajectories Stochastic optimal control model

Conclusions

Context

▶ Reminder: minimum jerk model for hand trajectories

- ► Common features of hand and locomotor trajectories:
 - smoothness
 - straightness for locomotor "reaching"
 - ▶ inverse relationship between velocity and curvature
- ► Can the minimum jerk model also simulate locomotor trajectories?

Minimum Square Derivative models

Minimize

$$\min_{x,y} \int_0^1 \left(\frac{d^n x}{dt^n}\right)^2 + \left(\frac{d^n t}{dt^n}\right)^2 dt$$

for n = 1, 2, 3, 4 (min velocity, min acceleration, min jerk, mini snap)

subject to the constraints (initial and final conditions)

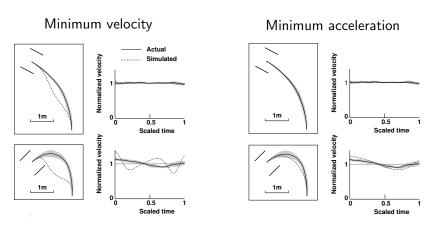
$$x(0) = x_0, \quad x(1) = x_1$$

$$y(0) = y_0, \quad y(1) = y_1$$

$$\dot{x}(0) = v_0^x, \quad \dot{y}(0) = v_0^y$$

$$\dot{x}(1) = v_1^x, \quad \dot{y}(1) = v_1^y$$

$$\ddot{x}(0) = a_0^x, \quad \ddot{y}(0) = a_0^y$$

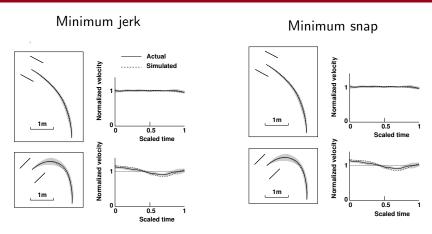

$$\ddot{x}(1) = a_1^x, \quad \ddot{y}(1) = a_1^y$$

where the $x_0, x_1, y_0, v_0^x, \dots$ are extracted from the experimental data

For n = 3 (min jerk), the optimal trajectory is made of 5th-order polynomials

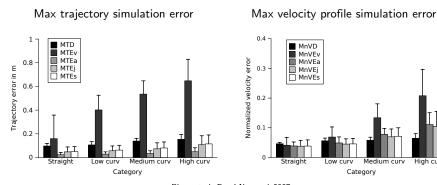
$$x(t) = c_5 x^5 + c_4 x^4 + c_3 x^3 + c_2 x^2 + c_1 x + c_0$$

$$y(t) = d_5 y^5 + d_4 y^4 + d_3 y^3 + d_2 y^2 + d_1 y + d_0$$


Results: minimum velocity and minimum acceleration

Pham et al, Eur J Neurosci, 2007

⇒ These models cannot simulate trajectories with large curvature


Results: minimum jerk and minimum snap

Pham et al, Eur J Neurosci, 2007

 \Rightarrow Good simulations for all categories: the simulated trajectory always lie within the variance ellipses

Results: quantitative comparisons

Pham et al, Eur J Neurosci, 2007

- MTS \leq 13cm for min jerk and min snap, that is \leq 4% of trajectory length
- This is also smaller than the experimental variability (5%)

High curv

Conclusions

- ► The minimum jerk model (and also the minimum snap model) can accurately predict the average locomotor trajectories
- ► The formation of hand and locomotor trajectories thus may obey the same organizing principles
- ▶ This strengthens the "motor equivalence principle" hypothesis: "at the higher levels of the motor system, there may exist kinematic representations of movements that are independent of the nature of the actual effector" (Bernstein, The co-ordination and regulation of movement, 1967)

Stereotypy of locomotor trajectorie Deterministic optimal control mode Control of locomotor trajectories Stochastic optimal control models

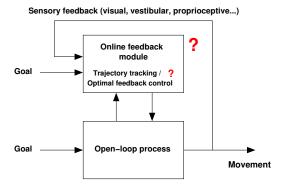
Outline

Theoretical context

Experimental and modeling results

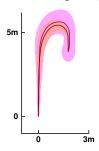
Stereotypy of locomotor trajectories
Deterministic optimal control model

Control of locomotor trajectories


Stochastic optimal control models

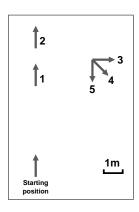
Conclusions

Main assumption

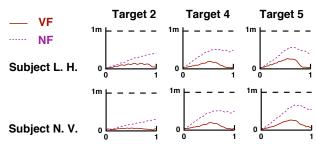

Two main issues (indicated by the question marks in the classical diagram)

- Existence of online feedback control in visual and nonvisual locomotion?
- Nature of the online feedback control?

Experiment 3: influence of vision on the variability profiles

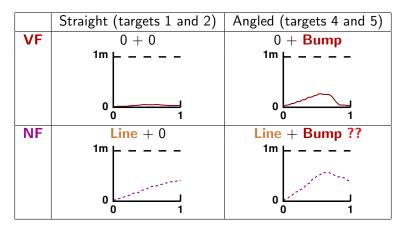

▶ Reminder: vision does not affect average trajectories

- ► How vision affects the variability profiles?
- ► Variability profiles in conditions **VF** vs **NF**

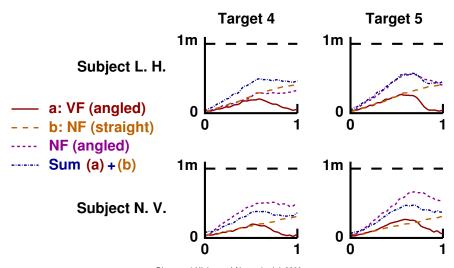

Experiment 3: methods

- ► Same protocol as in Exp 2
- ▶ 5 subjects × 2 conditions (VF/NF) × 5 targets × 8 repetitions
- ► Straight targets: 1, 2; Angled targets: 3, 4, 5
- ► Intra-subject analysis

Experiment 3: results


Variability profiles in conditions **VF** and **NF**

Pham and Hicheur, J Neurophysiol, 2009

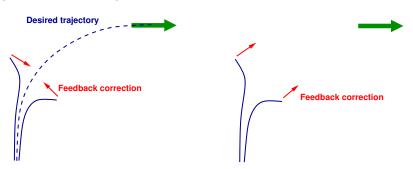

- Larger variability in NF than in VF
- ► VF: zero variability in straight targets, bump-shape in angled targets
- ▶ NF: linearly increasing in straight targets, non-monotonic in angled targets

Experiment 3: two-sources hypothesis

- Bump: motor-complexity-dependent, vision-independent
- ► Line: motor-complexity-independent, vision-dependent

Experiment 3: two-sources hypothesis, verification

Experiment 3: conclusions


- ► Non-monotonic profiles ⇒ existence of online feedback control
- ► Two-sources hypothesis ⇒ the control mechanism in condition **NF** can be decomposed into:
 - a vision-independent component (bump)
 - ► a vision-dependent component (line)
- Bump-shape profile: interplay between execution noise and feedback control

Experiments 4 and 5

- What determines the amplitude of the variability in condition VF?
- Experiment 4: influence of the kinematic and geometric parameters of the trajectories on the variability (not shown here, can be discussed later)
- What is the nature of the online feedback?
 - "Desired-trajectory" tracking
 - optimal feedback control (see Todorov and Jordan, Nat Neurosci, 2002)
- Experiment 5 (not shown here, can be discussed later)

"Desired-trajectory" versus optimal feedback control

- "Desired-trajectory" tracking operates in two steps
 - 1. Compute an optimal trajectory according to some cost
 - 2. Track this trajectory (correct any perturbations back to the desired trajectory)
- Optimal feedback control: no intermediate representation, optimally correct perturbations with respect to the task

Stereotypy of locomotor trajectorie Deterministic optimal control mode Control of locomotor trajectories Stochastic optimal control models

Outline

Theoretical context

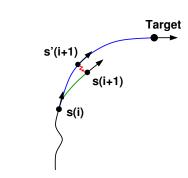
Experimental and modeling results

Stereotypy of locomotor trajectories Deterministic optimal control model Control of locomotor trajectories

Stochastic optimal control models

Conclusions

Context

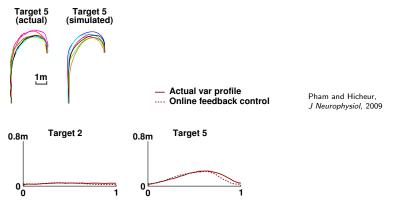

- ► Deterministic models cannot explain variability profiles
- ► Here: stochastic models, more precisely some simplified optimal feedback control models (Hoff and Arbib, J Mot Behav, 1993; Todorov and Jordan, Nat Neurosci, 2002)
- ► Clarify the relationship between the control mechanisms in visual and nonvisual locomotion

Visual condition: description of the model

Basic idea of optimal feedback control:

"goal-directed corrections"

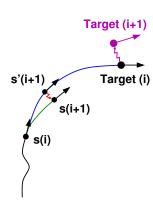
- Discretize the movement into n steps
- 2. At step *i*, compute first a minimimum jerk trajectory
- 3. Add some "signal-dependent" random perturbations to the provisional state s'(i+1)
- 4. Smoothly interpolate a new trajectory between the previous state s(i) and the new perturbed state s(i+1)



Initially planned trajectory

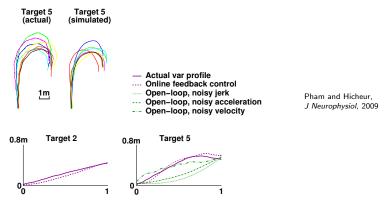
Random perturbation

Re-planned trajectory


Visual condition: results

- ⇒ This model can simulate both the trajectories and the variability profiles:
 - ▶ almost zero in "straight" targets
 - bump-shaped in "angled" targets

Nonvisual condition: online feedback model


- "Two-sources" hypothesis
- ► The first component can be simulated by the same algorithm as in condition VI
- ► The second component is related to state estimation and can be rendered by perturbing the target (can be discussed later)

Initially planned trajectory

Random perturbation
Re-planned trajectory

Nonvisual condition: results

- ⇒ This model can simulate the variability profiles:
 - ▶ linearly increasing in "straight" targets
 - ▶ non-monotonic in "angled" targets

Open-loop models cannot reproduce the non-monotonic behavior

Stochastic models: conclusions

- ► Existence of online feedback control in **nonvisual locomotion** confirmed
- Two-sources hypothesis confirmed
- ► In particular: visual and nonvisual locomotion not only share the same open-loop processes but also the same feedback processes
- ► In nonvisual locomotion, same control mechanisms as in visual, but with respect to a corrupted target position

Outline

Theoretical context

Experimental and modeling results

Stereotypy of locomotor trajectories

Deterministic optimal control mode

Control of locomotor trajectories

Stochastic optimal control models

Conclusions

Summary of the results

- ► Locomotor trajectories are stereotyped. Goal-oriented locomotion is likely planned and controlled at the level of whole-body trajectories in space
- ► Locomotor trajectories are planned and controlled at a high cognitive level and, to some extent, independently of the sensory and motor conditions of locomotion
- ► Similar principles seem to underlie the formation of locomotor and hand trajectories
- ► A combination of optimal open-loop and feedback processes governs the formation of locomotor trajectories. The open-loop process is likely based on minimum jerk principle, the feedback process on optimal feedback control

Perspectives

- ► Developmental and clinical aspects: how the previous properties are acquired in children and how are they affected by motor and cognitive deficits (joint work with D^r Belmonti)
- ► Locomotion and navigation in animals: availability of electrophysiological data (rats) or of transgenic subjects with specific spatial cognition deficits (mice)
- ► Humanoid robotics: how our understanding of human locomotion can help building more efficient walking and navigating robots?

Remerciements

Je souhaiterais remercier

- ▶ MM. Alain Berthoz et Halim Hicheur
- ► MM. les membres du jury
- ▶ l'ensemble des collègues du LPPA et d'ailleurs
- ▶ l'ensemble du personnel du LPPA
- ma famille et mes amis