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Locomotion: mutiple levels of description

Stepping pattern

Hicheur et al, J Neurophysiol, 2006

Postural control

Berthoz, Le sens du
mouvement, 1997

Trajectory formation

We focus here on the formation of whole-body trajectories in space
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The redundancy problem

Redundancy in the formation of
locomotor trajectories

Sequence of foot positions

(path + velocity profile)

Whole−body path

Task

Whole−body trajectory

Neural commands

Locomotor path

Foot positions

Starting position

Target

Hand path

Joint angle

Target

Starting position

Redundancy in the control of
arm movements

Task

Hand trajectory

(path + velocity profile)

Muscle activations

Hand path

Neural commands

Joint angles kinematics

Jordan and Wolpert, in The Cognitive
Neuroscience, 1999
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Spatial control of arm movements

Straight hand paths

Morasso, Exp Brain Res, 1981

Bell-shaped velocity profiles

Atkeson and Hollerbach, J Neurosci, 1985

I Stereotypy observed only for hand trajectories in Cartesian coordinates

I Control in terms of Cartesian coordinates of the hand, not in terms of e.g. joint
angles or muscle activity
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Optimal control of arm movements

I Humans may select the hand trajectories that minimize a certain cost

I One popular model is the minimum jerk model developped by Flash and Hogan

Flash and Hogan, J Neurosci, 1985

min
x,y

Z 1

0

 „
d3x

dt3

«2

+

„
d3y

dt3

«2
!

dt

Typical features:

I Straight, smooth, hand paths

I Bell-shaped velocity profiles

I Inverse relationship between
velocity and curvature (via-points)

5 / 45



Theoretical context
Experimental and modeling results

Conclusions

Our approach

I Take inspiration from the litterature on arm movements control (the
“principle of motor equivalence”, see Bernstein, The co-ordination and regulation of

movement, 1967 and Berthoz, Le sens du mouvement, 1997)

I Formation of locomotor trajectories (Vieilledent et al, Neurosci Lett,
2001; Hicheur et al, Exp Brain Res, 2005)

I Optimal control principles

I Integrative view

I Combination of experimental and modeling studies
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General experimental methods

I Motion capture system: infrared cameras + light reflective markers

I Body position defined by shoulders’ midpoint

Light-reflective marker

Shoulders' midpoint

Locomotor trajectory
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Average trajectories and variabilities

I Time rescaling so that t0 = 0 and t1 = 1

I Definition of average trajectories and variabilities

trajectory deviation

Instantaneous

trajectory

Sample

trajectory

Average

velocity deviation
Instantaneous

velocity profile

Average

Sample

velocity profile
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Experiment 1: stereotypy of locomotor trajectories

I Reminder: control of arm movements in terms of Cartesian coordinates
of the hand

I What is planned and controlled in goal-oriented locomotion?
I Step-level: plan and execute sequences of precise foot positions (FP),

resulting in a whole-body trajectory
I Trajectory-level: plan a whole-body trajectory (in Cartesian space) and

implement it by appropriate sequences of foot positions

I Variability of the sequences of FP versus variability of whole-body
trajectories

9 / 45



Theoretical context
Experimental and modeling results

Conclusions

Stereotypy of locomotor trajectories
Deterministic optimal control model
Control of locomotor trajectories
Stochastic optimal control models

Experiment 1: methods

I Protocol: walking towards and through a distant doorway (Arechavaleta et al, 2006)

I Constraints on Initial and final positions and walking directions

I 40 targets (a target = position × orientation)

I 6 subjects × 40 targets × 3 repetitions = 720 trajectories
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Experiment 1: results (trajectory stereotypy)
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Even for HC, maximum variability was ≤ 17cm
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Experiment 1: results (foot positions variability)
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I variability of the sequences of FP
(≥20% of step length)

I variability of whole-body
trajectories (≤5% of trajectory
length)
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Experiment 1: conclusions

I Goal-oriented locomotion is not planned and controlled as a sequence of
precise “foot pointings”

I Rather, it is likely planned and controlled at the level of whole-body
trajectories

I This is reminiscent of the concept of spatial control of hand movements
(Morasso, Exp Brain Res, 1981)
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Experiment 2: influence of vision and of gait direction

I How whole-body trajectories are affected by changes in motor and
sensory conditions?

I We varied the motor (walking forward or backward) and sensory
(walking with or without vision) conditions
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Experiment 2: methods

I Protocol: same as in Exp 1 with the door replaced by an arrow
I 4 conditions:

I Visual Forward (VF)
I Nonvisual Forward (NF)
I Visual Backward (VB)
I Nonvisual Backward (NB)

I 14 subjects × 4 conditions × 11 targets × 3 repetitions
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Experiment 2: results (effect of vision I)

Visual Forward (VF) vs Nonvisual Forward (NF)

I Small differences in average trajectories (MTS=30cm on average)

I Large differences in variability profiles (31cm for VF vs 74cm for NF)
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Experiment 2: results (effect of vision II)

Visual Backward (VB) vs Nonvisual Backward (NB)
Same observations as in the comparison VF/NF:

I Relatively small differences in average trajectories (50cm)

I Large differences in variability profiles (38cm for VB vs 90cm for NB)
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Experiment 2: results (effect of gait direction I)

Visual Forward (VF) vs Visual Backward (VB)

I Small differences in average trajectories (22cm)

I Small differences in variability profiles (31cm vs 38cm)
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Experiment 2: results (effect of gait direction II)

Nonvisual Forward (NF) vs Nonvisual Backward (NB)
Same observations as in the comparison VF/VB:

I Relatively small differences in average trajectories (38cm)

I Small differences in variability profiles (74cm vs 90cm)
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Experiment 2: conclusions

I Average trajectories: similar across visual and gait direction conditions
⇒ trajectories are planned and controlled, to some extent,
independently of sensory and motor conditions

I Gait direction does not affect the variability profiles

I Vision does affect the variability profiles
⇒ Same open-loop processes governing visual and nonvisual
locomotion
⇒ Existence of vision-dependent feedback processes
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Experiment 2: head/trunk coordination

We also studied the head/trunk co-
ordination during steering, in the
four conditions VF, VB, NF, NB
(not shown here, can be discussed
later)
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Pham et al, in preparation
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Context

I Reminder: minimum jerk model for hand trajectories

I Common features of hand and locomotor trajectories:
I smoothness
I straightness for locomotor “reaching”
I inverse relationship between velocity and curvature

I Can the minimum jerk model also simulate locomotor trajectories?

22 / 45



Theoretical context
Experimental and modeling results

Conclusions

Stereotypy of locomotor trajectories
Deterministic optimal control model
Control of locomotor trajectories
Stochastic optimal control models

Minimum Square Derivative models

I Minimize

min
x,y

Z 1

0

„
dnx

dtn

«2

+

„
dnt

dtn

«2

dt

for n = 1, 2, 3, 4 (min velocity, min acceleration, min jerk, mini snap)

I subject to the constraints (initial and final conditions)

x(0) = x0, x(1) = x1

y(0) = y0, y(1) = y1

ẋ(0) = v x
0 , ẏ(0) = v y

0

ẋ(1) = v x
1 , ẏ(1) = v y

1

ẍ(0) = ax
0 , ÿ(0) = ay

0

ẍ(1) = ax
1 , ÿ(1) = ay

1

where the x0, x1, y0, v x
0 ,. . . are extracted from the experimental data

I For n = 3 (min jerk), the optimal trajectory is made of 5th-order polynomials

x(t) = c5x
5 + c4x

4 + c3x
3 + c2x

2 + c1x + c0

y(t) = d5y
5 + d4y

4 + d3y
3 + d2y

2 + d1y + d0
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Results: minimum velocity and minimum acceleration
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⇒ These models cannot simulate trajectories with large curvature
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Results: minimum jerk and minimum snap

Minimum jerk
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⇒ Good simulations for all categories: the simulated trajectory always lie
within the variance ellipses 25 / 45
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Results: quantitative comparisons

Max trajectory simulation error
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I MTS ≤13cm for min jerk and min snap, that is ≤4% of trajectory length

I This is also smaller than the experimental variability (5%)
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Conclusions

I The minimum jerk model (and also the minimum snap model) can
accurately predict the average locomotor trajectories

I The formation of hand and locomotor trajectories thus may obey the
same organizing principles

I This strengthens the “motor equivalence principle” hypothesis: “at the
higher levels of the motor system, there may exist kinematic
representations of movements that are independent of the nature of the
actual effector” (Bernstein, The co-ordination and regulation of
movement, 1967)
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Main assumption

Two main issues (indicated by the question marks in the classical diagram)

I Existence of online feedback control in visual and nonvisual
locomotion?

I Nature of the online feedback control?

Goal

Goal

?

Open−loop process

Online feedback

Optimal feedback control

Trajectory tracking / ?

module

Sensory feedback (visual, vestibular, proprioceptive...)

Movement
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Experiment 3: influence of vision on the variability profiles

I Reminder: vision does not affect average trajectories

5m

0

0 3m

I How vision affects the variability profiles?

I Variability profiles in conditions VF vs NF
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Experiment 3: methods

I Same protocol as in Exp 2

I 5 subjects × 2 conditions
(VF/NF) × 5 targets × 8
repetitions

I Straight targets: 1, 2 ; Angled
targets: 3, 4 , 5

I Intra-subject analysis 1m
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2

5
4

3

Starting
position
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Experiment 3: results

Variability profiles in conditions VF and NF
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Pham and Hicheur, J Neurophysiol, 2009

I Larger variability in NF than in VF

I VF: zero variability in straight targets, bump-shape in angled targets

I NF: linearly increasing in straight targets, non-monotonic in angled targets
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Experiment 3: two-sources hypothesis

Straight (targets 1 and 2) Angled (targets 4 and 5)

VF 0 + 0 0 + Bump
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0
0 1
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0
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NF Line + 0 Line + Bump ??
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0
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0
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I Bump: motor-complexity-dependent, vision-independent
I Line: motor-complexity-independent, vision-dependent
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Experiment 3: two-sources hypothesis, verification
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Experiment 3: conclusions

I Non-monotonic profiles ⇒ existence of online feedback control
I Two-sources hypothesis ⇒ the control mechanism in condition NF can

be decomposed into:
I a vision-independent component (bump)
I a vision-dependent component (line)

I Bump-shape profile: interplay between execution noise and feedback
control
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Experiments 4 and 5

I What determines the amplitude of the variability in condition VF?

I Experiment 4: influence of the kinematic and geometric parameters of
the trajectories on the variability (not shown here, can be discussed
later)

I What is the nature of the online feedback?
I “Desired-trajectory” tracking
I optimal feedback control (see Todorov and Jordan, Nat Neurosci, 2002)

I Experiment 5 (not shown here, can be discussed later)
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“Desired-trajectory” versus optimal feedback control

I “Desired-trajectory” tracking operates in two steps

1. Compute an optimal trajectory according to some cost
2. Track this trajectory (correct any perturbations back to the desired

trajectory)
I Optimal feedback control: no intermediate representation, optimally correct

perturbations with respect to the task

Desired trajectory

Feedback correction
Feedback correction
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Context

I Deterministic models cannot explain variability profiles

I Here: stochastic models, more precisely some simplified optimal
feedback control models (Hoff and Arbib, J Mot Behav, 1993; Todorov
and Jordan, Nat Neurosci, 2002)

I Clarify the relationship between the control mechanisms in visual and
nonvisual locomotion
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Visual condition: description of the model

Basic idea of optimal feedback control:
“goal-directed corrections”

1. Discretize the movement into n
steps

2. At step i , compute first a
minimimum jerk trajectory

3. Add some “signal-dependent”
random perturbations to the
provisional state s ′(i + 1)

4. Smoothly interpolate a new
trajectory between the previous
state s(i) and the new perturbed
state s(i + 1)

s(i)

s(i+1)

s’(i+1)

Initially planned trajectory

Target

Re−planned trajectory

Random perturbation
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Visual condition: results

1m

0.8m0.8m

0
0 1

0
0 1

Target 2

Online feedback control
Actual var profile

(actual)
Target 5 Target 5

(simulated)

Target 5

Pham and Hicheur,
J Neurophysiol, 2009

⇒ This model can simulate both the trajectories and the variability profiles:
I almost zero in “straight” targets
I bump-shaped in “angled” targets
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Nonvisual condition: online feedback model

I “Two-sources” hypothesis

I The first component can be
simulated by the same algorithm
as in condition VI

I The second component is related
to state estimation and can be
rendered by perturbing the
target (can be discussed later)

Initially planned trajectory

Re−planned trajectory

Random perturbation

s(i)

s(i+1)

Target (i)s’(i+1)

Target (i+1)
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Nonvisual condition: results

1m

0.8m0.8m

0
0

1
0

0 1

Target 2 Target 5

Open−loop, noisy acceleration
Open−loop, noisy jerk
Online feedback control
Actual var profile

Open−loop, noisy velocity

Target 5
(actual)

Target 5
(simulated)

Pham and Hicheur,
J Neurophysiol, 2009

⇒ This model can simulate the variability profiles:

I linearly increasing in “straight” targets

I non-monotonic in “angled” targets

Open-loop models cannot reproduce the non-monotonic behavior
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Stochastic models: conclusions

I Existence of online feedback control in nonvisual locomotion confirmed

I Two-sources hypothesis confirmed

I In particular: visual and nonvisual locomotion not only share the same
open-loop processes but also the same feedback processes

I In nonvisual locomotion, same control mechanisms as in visual, but with
respect to a corrupted target position
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Summary of the results

I Locomotor trajectories are stereotyped. Goal-oriented locomotion is
likely planned and controlled at the level of whole-body trajectories in
space

I Locomotor trajectories are planned and controlled at a high cognitive
level and, to some extent, independently of the sensory and motor
conditions of locomotion

I Similar principles seem to underlie the formation of locomotor and hand
trajectories

I A combination of optimal open-loop and feedback processes governs the
formation of locomotor trajectories. The open-loop process is likely
based on minimum jerk principle, the feedback process on optimal
feedback control
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Perspectives

I Developmental and clinical aspects: how the previous properties are
acquired in children and how are they affected by motor and cognitive
deficits (joint work with Dr Belmonti)

I Locomotion and navigation in animals: availability of
electrophysiological data (rats) or of transgenic subjects with specific
spatial cognition deficits (mice)

I Humanoid robotics: how our understanding of human locomotion can
help building more efficient walking and navigating robots?
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