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Why stochastic contraction?

Nice features of deterministic contraction theory:

Powerful stability analysis tool for nonlinear systems
Combination properties (modularity and stability)

o
o
@ Hybrid, switching systems
o

(Concurrent) synchronization in large-scale systems
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Why stochastic contraction?

Goal: extend contraction theory to the stochastic case

@ Analyze real-life systems, which are typically subject to random
perturbations

@ Benefit from the nice features of contraction theory
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Modelling the random perturbations

In physics, engineering, neuroscience, finance,...random perturbations are
traditionnally modelled with |t6 stochastic differential equations (SDE)

dx = f(x, t)dt + o(x, t)dW
o f is the dynamics of the noise-free version of the system

@ o is the noise variance matrix (noise intensity)
e W is a Wiener process (dW/dt = “white noise”)
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Some notions of stochastic modelling : Random walk and

Wiener process

e Random walk (discrete-time): x¢1ar = X¢ + AL
where (&;)ten are Gaussian and mutually independent

o If one is interested in very rapidly varying perturbations, At has to be
very small

@ Wiener process (or Brownian motion) (continuous-time): limit of the
random walk when At — 0
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Some notions of stochastic modelling : Wiener process and

“white noise”

@ Problem: a Wiener process is not differentiable (why?), thus it is not
the solution of any ordinary differential equation

o Define formally & (“white noise”) = “derivative” of the Wiener
process

o Formally: W(t) — W(0) = [; &dt or dW/dt = & or dW = &.dt
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Some notions of stochastic modelling : 16 SDE

@ Stochastic differential equation :
dx/dt = f(x, t) + o(x, t)&
or by mutiplying by dt :
dx = f(x, t)dt + o(x, t)dW

@ The last equation was made rigourous by K. [t6 in 1951
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The stochastic contraction theorem

o If the noise-free system is contracting

Amax(Js) S _)\
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The stochastic contraction theorem

o If the noise-free system is contracting
Amax(Js) S _)\
@ and the noise variance is upper-bounded

tr (U(x, £)To(x, t)) <C
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The stochastic contraction theorem

o If the noise-free system is contracting
Amax(Js) < =X
@ and the noise variance is upper-bounded
tr (U(x, £)To(x, t)) <C

Then after exponential transients, the mean square distance between any
two trajectories is upper-bounded by C/\

.
v20 E(Ja(t) - b)) < 5 + [lao - bolf - 5| e
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Practical meaning

After exponential transients, we have

E(Ja(e) ~ b(o)) < |/ S
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Vocabulary and remarks

o We say that a system that verifies the conditions of the stochastic

contraction theorem is stochastically contracting with rate A and
bound C

@ Discrete and continuous-discrete versions of the theorem are available

@ The theorem can be easily generalized to time-varying metrics
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“Optimality” of the theorem

@ The mean square bound in the theorem is optimal (consider an
Ornstein-Uhlenbeck process dx = —Axdt + odW where the bound is
attained)

@ In general, one cannot obtain asymptotic almost-sure stability
(consider again the Ornstein-Uhlenbeck process)
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Noisy and noise-free trajectories

The theorem can be used to compare noisy and noise-free versions of a
(stochastically) contracting system

da = f(a,t)dt + o(a, t)dW
db = f(b, t)dt

|[ear

bo !
@ Any contracting system is automatically protected against white noise

(robustness) N
o Very useful in applications (see later) BACS-
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Combinations of stochastically contracting systems

Combinations results in deterministic contraction can be adapted very
naturally for stochastic contraction

Parallel combinations

Hierarchical combinations

Negative feedback combinations

Small gains
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Example: Negative feedback combination

@ Two systems coupled by negative feedback gain k

J_ ( i~k )
Ja b
@ System 1 stochastically contracting with rate A; and bound G

@ System 2 stochastically contracting with rate Ay and bound G,

@ Then the coupled system is stochastically contracting with rate
min(A1, A2) and bound G + kG,
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Application: contracting observers and noisy measurements

o Consider the system x = f(x, t) with the measurements y = H(t)x
o Typically dim(y) < dim(x)
o Recall the deterministic contracting observer
x=f(% 1)+ K(t)(§ - y)
ie. &=f(& t)+ K(t)(H(t)x — H(t)x)
o If K is chosen such that (af(x L. (t)H(t)) is negative definite,
then the observer system is contracting

@ Since actual state of the system x is a particular solution of the
observer system, the state of the observer X will exponentially

converge to x
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Application: contracting observers and noisy measurements

@ Now, the measurements are corrupted by “white noise”
y = H(t)x + 2(1)¢(t)
@ Using the formal rule £(t)dt = dW, the observer equation becomes
dx = (f(x,t) + K(t)(H(t)x — H(t)X))dt + K(t)X(t)dW

@ Using the same K as earlier, the system is stochastically contracting
with rate A and bound C where

Amax (% - K(t)H(t))‘

C =suptr(X(t) K(t) K(t)Z(t))
t>0

A =inf
x,t

o After exponential transients, [|X — x| < /C/2A BACS
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Application: stochastic synchronization

See next talk by Nicolas
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Current directions of research

o Extension to space-dependent metrics

@ Stochastic contraction analysis of Kalman filters (which are a
Bayesian filters) and other Bayesian algorithms
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Thank you for your attention!
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