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Why stochastic contraction?

Nice features of deterministic contraction theory:

Powerful stability analysis tool for nonlinear systems

Combination properties (modularity and stability)

Hybrid, switching systems

(Concurrent) synchronization in large-scale systems
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Why stochastic contraction?

Goal: extend contraction theory to the stochastic case

Analyze real-life systems, which are typically subject to random
perturbations

Benefit from the nice features of contraction theory
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Modelling the random perturbations

In physics, engineering, neuroscience, finance,. . . random perturbations are
traditionnally modelled with Itô stochastic differential equations (SDE)

dx = f(x, t)dt + σ(x, t)dW

f is the dynamics of the noise-free version of the system

σ is the noise variance matrix (noise intensity)

W is a Wiener process (dW /dt = “white noise”)
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Some notions of stochastic modelling : Random walk and
Wiener process

Random walk (discrete-time): xt+∆t = xt + ξt∆t
where (ξt)t∈N are Gaussian and mutually independent

If one is interested in very rapidly varying perturbations, ∆t has to be
very small

Wiener process (or Brownian motion) (continuous-time): limit of the
random walk when ∆t → 0
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Some notions of stochastic modelling : Wiener process and
“white noise”

Problem: a Wiener process is not differentiable (why?), thus it is not
the solution of any ordinary differential equation

Define formally ξt (“white noise”) = “derivative” of the Wiener
process

Formally: W (t)−W (0) =
∫ t

0 ξtdt or dW /dt = ξt or dW = ξtdt
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Some notions of stochastic modelling : Iô SDE

Stochastic differential equation :

dx/dt = f(x, t) + σ(x, t)ξt

or by mutiplying by dt :

dx = f(x, t)dt + σ(x, t)dW

The last equation was made rigourous by K. Itô in 1951
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The stochastic contraction theorem

If the noise-free system is contracting

λmax(Js) ≤ −λ

and the noise variance is upper-bounded

tr
(
σ(x, t)Tσ(x, t)

)
≤ C

Then after exponential transients, the mean square distance between any
two trajectories is upper-bounded by C/λ

∀t ≥ 0 E
“
‖a(t)− b(t)‖2

”
≤ C

λ
+

»
‖a0 − b0‖2 − C

λ

–+

e−2λt
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Practical meaning

After exponential transients, we have

E (‖a(t)− b(t)‖) ≤
√

C

λ
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Vocabulary and remarks

We say that a system that verifies the conditions of the stochastic
contraction theorem is stochastically contracting with rate λ and
bound C

Discrete and continuous-discrete versions of the theorem are available

The theorem can be easily generalized to time-varying metrics
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“Optimality” of the theorem

The mean square bound in the theorem is optimal (consider an
Ornstein-Uhlenbeck process dx = −λxdt + σdW where the bound is
attained)

In general, one cannot obtain asymptotic almost-sure stability
(consider again the Ornstein-Uhlenbeck process)
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Noisy and noise-free trajectories

The theorem can be used to compare noisy and noise-free versions of a
(stochastically) contracting system

da = f(a, t)dt + σ(a, t)dW

db = f(b, t)dt

b
0

a
0

C/2λ

 1

Any contracting system is automatically protected against white noise
(robustness)

Very useful in applications (see later)
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Combinations of stochastically contracting systems

Combinations results in deterministic contraction can be adapted very
naturally for stochastic contraction

Parallel combinations

Hierarchical combinations

Negative feedback combinations

Small gains
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Example: Negative feedback combination

Two systems coupled by negative feedback gain k

J =

(
J1 −kJT

21

J21 J2

)
System 1 stochastically contracting with rate λ1 and bound C1

System 2 stochastically contracting with rate λ2 and bound C2

Then the coupled system is stochastically contracting with rate
min(λ1, λ2) and bound C1 + kC2
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Application: contracting observers and noisy measurements

Consider the system ẋ = f(x, t) with the measurements y = H(t)x

Typically dim(y) < dim(x)

Recall the deterministic contracting observer

˙̂x = f(x̂, t) + K(t)(ŷ − y)

i.e. ˙̂x = f(x̂, t) + K(t)(H(t)x̂−H(t)x)

If K is chosen such that
(

∂f(x,t)
∂x −K(t)H(t)

)
is negative definite,

then the observer system is contracting

Since actual state of the system x is a particular solution of the
observer system, the state of the observer x̂ will exponentially
converge to x
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Application: contracting observers and noisy measurements

Now, the measurements are corrupted by “white noise”

y = H(t)x + Σ(t)ξ(t)

Using the formal rule ξ(t)dt = dW , the observer equation becomes

d x̂ = (f(x̂, t) + K(t)(H(t)x−H(t)x̂))dt + K(t)Σ(t)dW

Using the same K as earlier, the system is stochastically contracting
with rate λ and bound C where

λ = inf
x,t

˛̨̨̨
λmax

„
∂f(x, t)

∂x
−K(t)H(t)

«˛̨̨̨
C = sup

t≥0
tr(Σ(t)TK(t)TK(t)Σ(t))

After exponential transients, ‖x̂− x‖ ≤
√

C/2λ
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Application: stochastic synchronization

See next talk by Nicolas
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Current directions of research

Extension to space-dependent metrics

Stochastic contraction analysis of Kalman filters (which are a
Bayesian filters) and other Bayesian algorithms
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The end

Thank you for your attention!
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