Modularité, synchronisation, bruit: étude de réseaux neuronaux par la Contraction nonlinéaire

Quang-Cuong Pham Laboratoire de Physiologie de la Perception et de l'Action (LPPA) Collège de France, Paris, France

> Travail réalisé en collaboration avec J.-J. Slotine (MIT), N. Tabareau (INRIA Nantes), B. Girard (Paris VI), A. Berthoz (CdF)

Théorie de la contraction nonlinéaire, modularité

- 2 Synchronisation stable, synchronization concurrente
- Contraction stochastique
- 4 Synchronisation et protection contre le bruit

1 Théorie de la contraction nonlinéaire, modularité

- 2 Synchronisation stable, synchronization concurrente
- 3 Contraction stochastique
- 4 Synchronisation et protection contre le bruit

- Les systèmes biologiques (comme les réseaux neuronaux) sont complexes avec de multiples boucles de rétroaction
- Probabilité d'être stable décroît avec la taille du système (Grey Walter, 1951)

Stabilité et modularité

- L'Évolution: accumulation de composants stables?
- Comment la accumulation peut-elle préserver la stabilité?

Ledoux, The Emotional Brain, 1996

э

La contraction: un outil pour l'analyse de la stabilité

Considérons le système dynamique

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, t)$$

Si $\exists \Theta(\mathbf{x}, t)$ tel que

 $\forall \mathbf{x}, t \quad \lambda_{\max}(\mathbf{J}_s) < -\lambda$

où

$$\mathbf{J} = \left(\dot{\mathbf{\Theta}} + \mathbf{\Theta} \frac{\partial \mathbf{f}}{\partial \mathbf{x}}\right) \mathbf{\Theta}^{-1} \qquad \mathbf{\Theta}(\mathbf{x}, t)^{\top} \mathbf{\Theta}(\mathbf{x}, t) > 0$$

alors toutes les trajectoires du systèmes convergent exponentiellement vers une trajectoire unique, indépendemment des conditions initiales

Preuve: Considérer un chemin lisse entre chaque paire de trajectoires, et dériver sa longueur...

Lohmiller & Slotine, Automatica, 1998

- Analyse exacte et globale (contrairement aux techniques de linéarisation)
- Théorème inverse (stabilité exponentielle globale ⇒ contraction dans une certaine métrique)
- Propriétés de combinaison:
 - Parallèle
 - Hiérarchie
 - Feedback négatif
 - Petits gains
 - ⇒ Accumulation de systèmes contractants

Slotine, Int J Adap Contr Sig Proc, 2002

Example: feedback négatif

• Considérons la combinaison

$$\begin{cases} \dot{\mathbf{x}}_1 = \mathbf{f}_1(\mathbf{x}_1, \mathbf{x}_2, t) \\ \dot{\mathbf{x}}_2 = \mathbf{f}_2(\mathbf{x}_1, \mathbf{x}_2, t) \end{cases}$$

où le système \mathbf{x}_i est contractant avec taux λ_i dans la métrique $\mathbf{M}_i = \mathbf{\Theta}_i^T \mathbf{\Theta}_i$

• Supposons que la combinaison est en feedback négatif, i.e.

$$\boldsymbol{\Theta}_1 \mathbf{J}_{12} \boldsymbol{\Theta}_2^{-1} = -k \boldsymbol{\Theta}_2 \mathbf{J}_{21}^T \boldsymbol{\Theta}_1^{-1}$$

 Alors le système global est contractant avec taux min(λ₁, λ₂) dans la métrique M = Θ^TΘ où

$$oldsymbol{\Theta} = \left(egin{array}{cc} oldsymbol{\Theta}_1 & oldsymbol{0} \ oldsymbol{0} & \sqrt{k}oldsymbol{\Theta}_2 \end{array}
ight)$$

Application: modélisation des ganglions de la base

- Ganglions de la base: rôle dans la sélection de l'action motrice
- Multiple boucles hiérarchiques et de rétroaction identifiées physiologiquement
- Construction d'un modèle contractant respectant les connexions identifiées

Girard, Tabareau, Pham, Berthoz & Slotine, Neural Networks, 2008

D Théorie de la contraction nonlinéaire, modularité

2 Synchronisation stable, synchronization concurrente

3 Contraction stochastique

Quang-Cuong Pham (LPPA)

4 Synchronisation et protection contre le bruit

• Observation: comportement similaire dans le temps de neurones différents

Christie et al, J Neurosci, 1989

• Mécanismes: connexions des neurones via des synapses chimiques ou électriques, phénomènes de réseau

- Permettre la communication et la coopération entre sites distants.
 Exemple: relier différents attributs couleur, forme, mouvement d'un objet (le problème du "binding", Engel et Singer, *Trends Cog Sci*, 2001)
- Amplification d'un signal ou protection contre le bruit (voir plus tard)

• . . .

Synchronisation = convergence vers un sous-espace vectoriel

Exemple: $\{x_1 = x_2 = x_3\}$ sous-espace de dimension 2 (dans l'espace global des états, de dimension 3)

Considérons le système $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, t)$ (en général non contractant)

• Supposons qu'il existe un sous-espace flot-invariant \mathcal{M} , i.e. :

$$\forall t : \mathbf{f}(\mathcal{M}, t) \subset \mathcal{M}$$

 Considérons une "projection" orthonormale sur *M*[⊥], décrite par une matrice V et contruisons le système auxiliaire

$$\dot{\mathbf{y}} = \mathbf{V}\mathbf{f}(\mathbf{V}^{\top}\mathbf{y} + \mathbf{U}^{\top}\mathbf{U}\mathbf{x}, t)$$

• Si le systèm **y** est contractant alors toutes les solutions du système **x** convergent exponentiellement vers \mathcal{M} .

• Considérons le réseau d'oscillateurs

$$\dot{\mathbf{x}}_i = \mathbf{f}(\mathbf{x}_i, t) + \sum_{j \neq i} \mathbf{K}_{ji}(\mathbf{x}_j - \mathbf{x}_i) \ i = 1 \dots n$$

• Écriture sous forme matricielle

$$\dot{\widehat{\mathbf{x}}} = \widehat{\mathbf{f}}(\widehat{\mathbf{x}}) - \mathbf{L}\widehat{\mathbf{x}}$$

où $\widehat{\textbf{x}} = (\textbf{x}_1, \dots, \textbf{x}_n)$ et L est la matrice Laplacienne du système

- Sous-espace flot-invariant $\{(\mathbf{x}_1, \dots, \mathbf{x}_n) : \mathbf{x}_1 = \dots = \mathbf{x}_n\}$
- ⇒ Si la dynamique des oscillateurs est bornée supérieurement, ces oscillateurs synchronisent pour un gain de couplage L assez fort (structure du réseau, gains K_{ij})

Hérite naturellement des propriétés de la contraction nonlinéaire

- Analyse exacte et globale
- Combinaisons: synchronisation concurrente (voir transparent suivant)
 - Hiérarchie
 - Feedback négatif
 - Petits gains

Multiples groupes d'oscillateurs synchronisés à l'intérieur d'un groupe mais pas entre les groupes

- Sous des conditions simples, le groupe vert synchronise exponentiellement (délivrant ainsi un input synchronisé aux éléments extérieurs)
- Pareil pour le groupe jaune
- Indépendamment des dynamiques, connections, délais des autres systèmes

Pham & Slotine, Neural Networks, 2007

 \Rightarrow Accumulation et cohabitation de multiples ensembles de neurones synchronisés

Exemple: détection de symétrie

Pham & Slotine, Neural Networks, 2007

18 / 39

D Théorie de la contraction nonlinéaire, modularité

2 Synchronisation stable, synchronization concurrente

Contraction stochastique

4 Synchronisation et protection contre le bruit

- Les systèmes (biologiques, artificiels,...) sont souvent soumis à des perturbation aléatoires
- Bénéficier des propriétés de la contraction
 - Outil simple et puissant, analyse exacte et globale
 - Propriétés de combinaisons
 - Synchronisation concurrente

Modélisation du bruit à l'aide des équations différentielles stochastiques d'Itô

$$d\mathbf{x} = \mathbf{f}(\mathbf{x}, t)dt + \sigma(\mathbf{x}, t)dW$$

- f est la dynamique sans bruit
- σ est la matrice de variance du bruit
- W est un processus de Wiener (dW/dt = "bruit blanc")

• Si le système sans bruit est contractant

$$\lambda_{\max}(\mathbf{J}_{s}) \leq -\lambda$$

• et que la variance du bruit est bornée supérieurement

$$\operatorname{tr}\left(\sigma(\mathbf{x},t)^{\mathsf{T}}\sigma(\mathbf{x},t)\right) \leq C$$

Alors

$$orall t \geq 0 \quad \mathbb{E}\left(\|\mathbf{a}(t) - \mathbf{b}(t)\|^2
ight) \leq rac{C}{\lambda} + \|\mathbf{a}_0 - \mathbf{b}_0\|^2 e^{-2\lambda t}$$

Pham, Tabareau & Slotine, IEEE Trans Aut Contr, 2009

Signification pratique

Après un temps caractéristique de $1/\lambda$, on a

$$\mathbb{E}\left(\|\mathbf{a}(t) - \mathbf{b}(t)\|\right) \leq \sqrt{rac{C}{\lambda}}$$

< A[™]

Les résultats en contraction déterministe peuvent être appliqués naturellement au domaine stochastique:

- Parallèle
- Hiérarchie
- Feedback négatif
- Petits gains

Synchronisation

 d'oscillateurs soumis aux perturbations aléatoires

• Construction d'observateurs

æ

D Théorie de la contraction nonlinéaire, modularité

2 Synchronisation stable, synchronization concurrente

3 Contraction stochastique

4 Synchronisation et protection contre le bruit

• Observation: réponse variable d'un neurone à des simulations identiques

• Causes: bruit de canal, bruit synaptique, etc.

- Le bruit peut détruire la synchronisation
- ou, au contraire, la rendre possible: Mainen et Sejnowski (*Science* 1995), Teramae et Tanaka (*PRL* 2004)

- Nous étudions ici la relation inverse: l'effet de la synchronisation sur le bruit
- Ce faisant, nous identifions un <u>autre</u> rôle pour la synchronisation (cf section précédente)

Le bruit perturbe la trajectoire des oscillateurs

Le bruit perturbe la trajectoire des oscillateurs

En présence de perturbations importantes, les codages

- temporel
- fréquentiel
- de population (averaging)

sont impraticables!

Tabareau, Slotine & Pham, PLoS Comput Biol, 2010

32 / 39

En fréquentiel

Réseau de *n* oscillateurs bruités et couplés diffusivement (équations d'Itô):

$$d\mathbf{x}_i = \left(\mathbf{f}(\mathbf{x}_i, t) + \sum_{j \neq i} \mathbf{K}_{ji}(\mathbf{x}_j - \mathbf{x}_i)\right) dt + \sigma dW_i, \ i = 1 \dots n$$

Ou "à la physicienne"

$$\dot{\mathbf{x}}_i = \mathbf{f}(\mathbf{x}_i, t) + \sum_{j \neq i} \mathbf{K}_{ji}(\mathbf{x}_j - \mathbf{x}_i) + \sigma \xi_i, \ i = 1 \dots n$$

avec ξ représentant du "bruit blanc"

Quatre assomptions:

A1 Le réseau est équilibré: pour chaque oscillateur, $\sum_{j} \mathbf{K}_{ji} = \sum_{j} \mathbf{K}_{ij}$) A2 La nonlinéarité de **f** est bornée: $|\lambda_{\max}(\mathbf{H}_{j})| \leq \frac{1}{\sqrt{d}} \mathbf{H}_{bd}$ A3 La dynamique de **f** est résistante aux petites perturbations A4 Les oscillateurs sont synchronisés:

$$\mathbb{E}\left(\sum_{i< j} \|\mathbf{x}_i - \mathbf{x}_j\|^2\right) \le \rho$$

Sous ces hypothèses, quand $\rho/n^2 \rightarrow 0$ et $n \rightarrow \infty$, l'effet du bruit sur chaque oscillateur évolue comme

$$\frac{\sigma \mathbf{H}_{bd}}{2n^2} + \frac{\sigma}{\sqrt{n}}$$

Remarque: quand les systèmes sont linéaires, on a $\mathbf{H}_{bd} = 0$ et on retrouve le résultat connu pour les sytèms linéaires

- Comparer la trajectoire moyenne à une trajectoire sans bruit
- Puisque les trajectoires sont proches entre elles (A4), elles sont proches de la trajectoire moyenne

Entrées variables dans le temps

 \Rightarrow Préserve le signal même en présence de perturbations importantes

Merci de votre attention!

Quang-Cuong Pham (LPPA)

Ξ.

イロト イヨト イヨト イヨト