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Time-optimal control under dynamics constraints

Path parameterization algorithm

» Time-optimal path parameterization under torque limits algorithm

(Bobrow et al 1985, and many others)
» Inputs :
» Manipulator equation

M(q)d +q' C(q)g +g(a) = 7,
» Torque limits for each joint i
7__nuin < T'(t) < 7_;11;1)(

> A given path q(s), s € [0, ] o

» Qutput : the time parameterization

s: [0,T] — [0,L]
t  — s(t)

that minimizes the traversal time T 3/35



Time-optimal path parameterization algorithm
ng t al shortcuts
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Time-optimal control under dynamics constraints

Transforming the manipulator equations

> Let's express the manipulator equations in terms of s, 5,5
» Differentiate q with respect to s

q=qs$
q=qs5+ qssé2

» Substitute in the manipulator equation to obtain
M(a(s))as(s)3 + (M(a(5))ss(5) + as(5) T C(a(5))as(s)) 5 + g(a(s))
= 7(s)

which can be rewritten as

a(s)s + b(s)s% + c(s) = 7(s)



terization algorithm

Time-optimal control under dynamics constraints tir I's

Transforming the torque constraints

» The torque constraints become
TN < 2:(5)8 + bi(s)$% 4 ci(s) < T
» Set of 2n inequalities
T,-min — bi(s)32% — ci(s) <i< TImex — bi(s)$? — ci(s)
ai(s) - ai(s)
> Minimal time = high s
» Let's go to the phase plane (s,$) ...



. . . . Time-optima arameterization algorithm
Time-optimal control under dynamics constraints T P P alg

Phase plane (s, $) integration
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» “Bang-bang” behavior
» Switch points can be found very efficiently (Pfeiffer and Johanni 1987,
Slotine and Yang 1989, Shiller and Lu 1992)
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Time-optimal path parameterization algorithm
Traj thi timal shortcuts
i humanoid robots

Time-optimal control under dynamics constraints

Global time-optimal algorithm

» Generate paths by grid search and apply the path parameterization
algorithm

Shiller and Dubowsky, 1991



gorithm
al shortcuts
humanoid robots

» Grid search does not work in higher dimensions (dof > 3)
» RRT works well in high-dof, cluttered spaces, but produces non optimal
trajectories

Karaman and Frazzoli, 2011

> Post-process with shortcuts, e.g. Hauser and Ng-Thow-Hing 2010
(acceleration and velocity limits)

» Here we propose to use time-optimal shortcuts with torque and velocity
limits



Time-optimal control under dynamics constraints

Time-optimal shortcuts

Original portion

\ Candidate

shortcut

optimal path parar
Trajectory smoothmg using time-optimal shortcuts
Critically dynamic motion planning for humanoid robots

I Find a collision-free path (e.g. RRT) l

|

I Generate a random shortcut l

Compute the optimal time-parameterization
of the shortcut (Bobrow)

|

I Replace the original portion by the shortcut l

Y

| Final trajectory |

Pham, Asian MMS, 2012
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Time-optimal control under dynamics constraints

Trajectory smoothing using time-optimal shortcuts
i y dynamic motion planning for humanoid robo

Simulation results

Velocity profiles
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Time-optimal control under dynamics constraints

Critically dynamic motion planning for humanoid robots

» “ZMP is defined as that point on the ground
at which the net moment of the inertial
forces and the gravity forces has no
component along the horizontal axes”
(Vukobratovic, 1969)

» Condition for dynamic balance: ZMP
contained in the support area =

Vukobratovic and Borovac,
IJHR, 2004



Time-optimal control under dynamics constraints

t cuts
Critically dynamic motion planning for humanoid robots

Optimal time parameterization

» ZMP equation

i mi(Zi + g)xi — >0 mixizi — 32;,(Mi)y
Z,’ mi(éi + g)

XZMP =

Y

» Express as a function of joint angles x; = r(q)
» Differentiating yields als)
_ . _ .- . T .
X =rqd X =rqd+q reqq e
» Parameterize q by a path parameter s as q = q(s)
» This gives

Q=0s5 =055+ qssS’
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Time-optimal control under dynamics constraints

Optimal time parameterization (continued)

» Replacing yields

Xi = (rqQs)$ + (rqdss + q;—rqus)52

v

Thus X; can be expressed as

Xi = ax,(5)s + by (5)32,

v

Finally one can express

a(s)s + b(s)s% + c(s)

XZMP =

vV Yy

s and which verifies

Xmin

<
Ymin <

XZMP
yzmp

<
<

d(s)s + e(s)s> + mg
This last expression can be treated by a Bobrow-like algorithm
One can run the Bobrow algorithm to find the optimal parameterization

Xmax

ymax
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Simulation results

ZMP in space ZMP as function of time  Phase-space (s, $)
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Motivation

Affine trajectory deformation

Why deform trajectories ?

» To deal with perturbations

» To retarget motion-captured motions
» Advantages

> save time
» natural-looking motions

15/35



Motivation

Affine trajectory deformation

Existing approaches

» Spline-based (e.g. Lee and Shin, SIGGRAPH, 1999)

q—>Q+ZaiSi

» Dynamic-system-based (e.g. ljspeert et al, ICRA, 2002)
q solution of ¢ = f(q, Z aii),

aj — a
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Affine trajectory deformation E

Existing approaches (continued)

Drawback: extrinsic basis functions (s;, ©);) = artefacts

» loss of smoothness (splines that undulate too much,...)

v

undesirable frequencies, phase-shift

loss of invariance

v

» = computational effort to reduce artefacts, preserve invariance

v

need of reintegration
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Affine trajectory deformation

Affine geometry and invariance

» Affine transformation :
R" - R"

x — u + M(x)

» Affine transformations : group of dimension n + n?
» Affine invariance : properties preserved by this group
» non-affine-invariant : euclidean distance, angle, circles, euclidean

velocity,. . .
» affine-invariant : straight lines, parallelism, midpoints, ellipses, affine

distance, affine velocity,. ..

18 /35



Affine trajectory deformation

Two-thirds power law

> Inverse relationship between velocity and

curvature

» Formalization : v = cx™ /3 (w = ck?/3)

» Very robust in hand drawing (Lacquaniti et al,
Acta Psy, 1983, Pham and Bennequin, in revision,

2010)

» Exists in locomotion (Hicheur et al, Exp Brain
Res, 2005, Bennequin et al, PLoS Comp Biol, 2010)
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5 .
Affine trajectory deformation i e
) X pplication

Two-thirds power law and affine invariance

» Pollick and Sapiro, Vision Res, 1996 :
two-thirds power law = constant affine velocity

» Possible explanation : affine invariance in vision, perception/action
coupling

Koenderink and van Doorn, JOSA, 1991
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algorithm

Affine trajectory deformation Examples of application

Affine deformation of a trajectory

Initial trajectory (C)

» Deformation of a trajectory T ===

q= (ql(t)7"')qn(t))te[o’T] at a time |

instant 7 by J : ]
Affine

deformation

vi<r  q(t)=a(t)
vezT  q(t) = Fa(t))

» Affine deformation : /7
F(x) =u+ M(x)
» Use u and M to achieve various
objectives
» Euclidian deformation : cf. Seiler et
al. WAFR. 2010 Pham and Nakamura,
' ' RSS, 2012
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Affine trajectory deformation e vl
° of application

Advantages of affine deformations

» Purely intrinsic function basis g1, ..., qn

» = Naturally preserves motion properties

smoothness for t > 7

synchronization (e.g. in synergies)

periodicity, frequency spectrum, phase-shift

piece-wise parabolicity (e.g. industrial robots)

all affine-invariant properties (straight lines, affine velocity,...)

vV vy VY VvYYy
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Affine trajectory deformation

Advantages of affine deformations (continued)

> Yet versatile enough : n+ n? 4 1 free parameters (u, M, 7)
» (CP-ness at T

Desired final position, velocity, acceleration, ...

Optimization

Inequality constraints

v vy

23 /35
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Affine trajectory deformation

CP-ness at 7

Initial trajectory

Examples :

> Planar wheeled robots of type | : C!

> Planar wheeled robots of type Il : C* and curvature
continuous (Pham, RSS, 2011 ; Pham and
Nakamura, ICRA, 2012)

> Joint trajectories of manipulators : C!

24 /35



Affine trajectory deformation

CP-ness at 7 (continued)

» Enforcement :
» CO = fixu
» CP — fix u and pn coefficients of M

(),

q(r)d(r) q°(r)
1 ™mi,p+1 mi,n
q =u+ M(q) : :
M= 1 Mp,p+1 Mp,n
q(T) = M(q(T)) 0 ... 0 I4mpiips1 =+ Mpiln n
i(7) = M((r)) I
p n-p

> Examples :

» Type | wheeled robot : n =2, C! = 2 coefficients of M and 7 left
» Type Il wheeled robot : 1 coefficients of M and 7 left

25 /35



Affine trajectory deformation o vl
J s of application

Final configuration

>

Reach a new desired final position : fix n coefficients of M

v

Desired final position and final velocity : fix 2n coefficients of M

v

k final constraints : fix kn coefficients of M

v

Recap : CP at 7 and k final constraints : fix u and n(p + k)

v

Remaining : n?> — n(p + k) coefficients

26 /35



Pr;)posed algorithm

Affine trajectory deformation Examples of application

Flowchart of the algorithm

n : number of generalized coordinates
p : required degree of smoothness
k : number of final constraints

s l;?:a(:;/: tztim- Minimum norm Dynamics
& _ yﬂ : deformation optimization

m=V"d
Optimization

Wi/o inequality
constraints

With inequality
constraints

(under ineq constraints)
using iterative methods

|

|

Apply the
pseudo-inverse:

m=V'd

Solve a QP
with inequality
constraints

Pham and Nakamura, RSS, 2012
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algorithm

Affine trajectory deformation Examples of application

Optimization

» Minimization of trajectory change (minimum norm deformation)
minimize ||q — q'||
+
minimize |[M — Z||
+

exact formula using pseudo-inverse

» Minimization of torques, energy, ...

minimize [7 c(q/(t),d'(t),d(t)) dt
!
minimize [T c(q(r) + M(q(t)i_ q()), M(a(t)), M(a(t))) dt

iterative optimization in the space of M
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Mot
Proposed algorithm

Affine trajectory deformation Examples of application

Optimization (bis)

» Maximization of rigidity : find M “closest” to an Euclidean
transformation

» Use the polar decomposition M = QS where Q is orthogonal and S is
symmetric and minimize S% — |
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algorithm

Affine trajectory deformation Examples of application

Inequality constraints

>

Joint limits, velocity limits, obstacle avoidance,. ..

v

Inequality on q’(t;) — inequality on coefficients of M
Hierarchy of

v

» equality constraints (CP-ness, final constraints)
» inequality constraints (joint limits, obstacle avoidance)

v

Optimization — Quadratic Programming

30/35



algorithm

Affine trajectory deformation Examples of application

Subgroup constraints

» Equi-affine subgroup: dimension n?> + n — 1 (e.g. hand movements,
locomotion, etc. cf. Pollick and Sapiro 1997, Bennequin et al 2009)

» Euclidean subgroup: dimension n(n+1)/2 (e.g. needle steering, cf.
Duindam et al 2010)
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Affine trajectory deformation

Group formulation

» Group property
» Composition of deformations
> Inverse
» Lie group of dimension
n?—n(p+k)+1
» Group-based interpretation of
trajectory redundancy

» “Trajectory redundancy” : dimension
of the deformation group

» (“Configuration redundancy” :
dimension n — m)

» Adding a constraint = taking a
subgroup

» Sampling within the group

32/35



Affine trajectory deformation

EES

> Interactive real-time motion editing with OpenRAVE
» Motion transfer to a humanoid robot

» Combine affine deformations and time-optimal parameterization in
pick-and-place tasks on conveyor belts
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P algorithm

Affine trajectory deformation Examples of application

Conclusion

» Deformation algorithm inspired from human motor control
» More likely to preserve human-like features
» Computational advantages

» fast computation (one-step matrix computation)
» naturally preserves relevant features
> versatility :
> (CP-ness at 7
> final constraints
> inequality constraints (joint limits, obstacles,. .. )
> optimization (closeness, torques, energy,...)
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Affine trajectory deformation ed a'g
7 les of a

General conclusions

» Two algorithms

» Planning time-optimal trajectories under dynamics constraints using the
path-parameterization algorithm
» Deformation of trajectories using affine transformations

» Thank you very much for your attention and questions and comments !
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