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Path parameterization algorithm

I Time-optimal path parameterization under torque limits algorithm
(Bobrow et al 1985, and many others)

I Inputs :
I Manipulator equation

M(q)q̈+ q̇>C(q)q̇+ g(q) = τ ,

I Torque limits for each joint i

τmin
i ≤ τi (t) ≤ τmax

i

I A given path q(s), s ∈ [0, L]

I Output : the time parameterization

s : [0,T ] −→ [0, L]
t 7−→ s(t)

that minimizes the traversal time T 3 / 35
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Transforming the manipulator equations

I Let’s express the manipulator equations in terms of s, ṡ, s̈

I Differentiate q with respect to s

q̇ = qs ṡ

q̈ = qs s̈ + qss ṡ
2

I Substitute in the manipulator equation to obtain

M(q(s))qs(s)s̈ +
(
M(q(s))qss(s) + qs(s)

>C(q(s))qs(s)
)
ṡ + g(q(s))

= τ(s)

which can be rewritten as

a(s)s̈ + b(s)ṡ2 + c(s) = τ(s)
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Transforming the torque constraints

I The torque constraints become

τmin
i ≤ ai (s)s̈ + bi (s)ṡ

2 + ci (s) ≤ τmax
i

I Set of 2n inequalities

τmin
i − bi (s)ṡ

2 − ci (s)

ai (s)
≤ s̈ ≤

τmax
i − bi (s)ṡ

2 − ci (s)

ai (s)

I Minimal time = high ṡ

I Let’s go to the phase plane (s, ṡ) . . .
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Phase plane (s, ṡ) integration

maximum acceleration

minimum acceleration

maximum velocity curve

I “Bang-bang” behavior
I Switch points can be found very efficiently (Pfeiffer and Johanni 1987,

Slotine and Yang 1989, Shiller and Lu 1992)
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Global time-optimal algorithm

I Generate paths by grid search and apply the path parameterization
algorithm

Shiller and Dubowsky, 1991
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Trajectory smoothing using time-optimal shortcuts

I Grid search does not work in higher dimensions (dof > 3)
I RRT works well in high-dof, cluttered spaces, but produces non optimal

trajectories

Karaman and Frazzoli, 2011

I Post-process with shortcuts, e.g. Hauser and Ng-Thow-Hing 2010
(acceleration and velocity limits)

I Here we propose to use time-optimal shortcuts with torque and velocity
limits
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Time-optimal shortcuts

Pham, Asian MMS, 2012
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Simulation results

Velocity profiles Torque profiles

Pham, Asian MMS, 2012
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Critically dynamic motion planning for humanoid robots

I “ZMP is defined as that point on the ground
at which the net moment of the inertial
forces and the gravity forces has no
component along the horizontal axes”
(Vukobratovic, 1969)

I Condition for dynamic balance: ZMP
contained in the support area
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Fig. 1. Biped mechanism and forces acting on its sole.

reaction force Rz represents the ground reaction that balances vertical forces. It

remains to consider the balancing of the horizontal component of the foot load

moment. However, due to a unidirectional nature of the connection between the

foot and the ground (it is obvious that the ground reaction force induced by foot

action is always oriented upwards) horizontal components of all active moments can

be compensated for only by changing position of the reaction force R within the

support polygon. Therefore, the horizontal component of the moment MA will shift

the reaction force to the corresponding position, to balance the additional load.

This is illustrated in Fig. 1(d), where, for the sake of simplicity, we present a simple

planar case in the y–z plane. The moment MAx is balanced by shifting the acting

point of the force Rz, whose intensity is determined from the equation of balance

of all the forces acting on the foot, by the corresponding distance y. It is necessary

to emphasize that all the time the reaction force is within the area covered by the

foot, the increase in the ankle moment will be compensated for by changing the

position of this force, and no horizontal components of the moments Mx and My

will exist. This is the reason why in Fig. 1(b) at point P only the Mz component

exists.

However, if the real support polygon is not large enough to encompass the

appropriate position of the force R to balance the action of external moments, the

force R will act at the foot edge and the uncompensated part of the horizontal
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Optimal time parameterization

I ZMP equation

xZMP =

∑
i mi (z̈i + g)xi −

∑
i mi ẍizi −

∑
i (Mi )y∑

i mi (z̈i + g)
,

I Express as a function of joint angles xi = r(q)

I Differentiating yields

xi = rqq̇ xi = rqq̈+ q̇>rqqq̇

I Parameterize q by a path parameter s as q = q(s)

I This gives

q̇ = qs ṡ q̈ = qs s̈ + qss ṡ
2
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Optimal time parameterization (continued)

I Replacing yields

xi = (rqqs)s̈ + (rqqss + q>s rqqqs)ṡ
2

I Thus ẍi can be expressed as

ẍi = axi (s)s̈ + bxi (s)ṡ
2,

I Finally one can express

xZMP =
a(s)s̈ + b(s)ṡ2 + c(s)

d(s)s̈ + e(s)ṡ2 +mg

I This last expression can be treated by a Bobrow-like algorithm
I One can run the Bobrow algorithm to find the optimal parameterization

s and which verifies

xmin ≤ xZMP ≤ xmax

ymin ≤ yZMP ≤ ymax

13 / 35
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Simulation results

ZMP in space ZMP as function of time Phase-space (s, ṡ)
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Pham and Nakamura, Humanoids, 2012
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Why deform trajectories ?

I To deal with perturbations

I To retarget motion-captured motions
I Advantages

I save time
I natural-looking motions

15 / 35



Time-optimal control under dynamics constraints
Affine trajectory deformation

Motivation
Proposed algorithm
Examples of application

Existing approaches

I Spline-based (e.g. Lee and Shin, SIGGRAPH, 1999)

q→ q+
∑

aisi

I Dynamic-system-based (e.g. Ijspeert et al, ICRA, 2002)

q solution of q̇ = f(q,
∑

aiψi ),

ai → a′i

16 / 35
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Existing approaches (continued)

Drawback: extrinsic basis functions (si , ψi ) ⇒ artefacts

I loss of smoothness (splines that undulate too much,. . . )

I undesirable frequencies, phase-shift

I loss of invariance

I ⇒ computational effort to reduce artefacts, preserve invariance

I need of reintegration

17 / 35
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Affine geometry and invariance

I Affine transformation :
Rn → Rn

x 7→ u+M(x)

I Affine transformations : group of dimension n + n2

I Affine invariance : properties preserved by this group
I non-affine-invariant : euclidean distance, angle, circles, euclidean

velocity,. . .
I affine-invariant : straight lines, parallelism, midpoints, ellipses, affine

distance, affine velocity,. . .

18 / 35
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Two-thirds power law

I Inverse relationship between velocity and
curvature

I Formalization : v = cκ−1/3 (ω = cκ2/3)

I Very robust in hand drawing (Lacquaniti et al,

Acta Psy, 1983, Pham and Bennequin, in revision,

2010)

I Exists in locomotion (Hicheur et al, Exp Brain

Res, 2005, Bennequin et al, PLoS Comp Biol, 2010)

is lower. The transitions between these values suggests a division of the movement in 
two pairs of symmetrical segments. It is therefore justifiable to average both curvature 
and angular velocity over each pair of segments yielding two data points for each 
template as in the previous case. In the range of curvature values covered in our 

$: v 00 0.90 0.60 1.20 1.60 2.00’ , 2.90 I 

CURVATURE POWER TWO-THIRD 

Fig. 8. The IWO-third power luw holds true for scribbles. In A, a representative example of scribble. 
In B, the instantaneous values of the angular velocity are plotted against the power two-third of the 
curvature (cf. fig. 6). The relation between the two variables is piece-wise linear. Each segment in 
the bundle, corresponding to non-overlapping segments of the traJectory, has a different slope. The 
clustering of slopes around the average (dashed line) is representative of the results for this type of 
experiment. 

Lacquaniti et al, Acta Psy,

1983
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Two-thirds power law and affine invariance

I Pollick and Sapiro, Vision Res, 1996 :
two-thirds power law = constant affine velocity

I Possible explanation : affine invariance in vision, perception/action
coupling

380 J. Opt. Soc. Am. A/Vol. 8, No. 2/February 1991

transformation), the equiluminance contours for a given di-
rection of light source (idem), and so forth. Although the
affine solution does not permit predictions of a metrical
nature, it is a true three-dimensional entity in the sense that
it allows you to predict arbitrary views. We now present a
numerical example.

NUMERICAL EXPERIMENT
It is a straightforward exercise to implement the affine stage
numerically. You need a routine that enables you to find
the image b of a vector a, say, under an affine transformation
that carries the pair of vectors f 2 into the pair g1,2. This is a
problem in linear algebra.

First we write a as a linear combination of fl,2, say, a = cf1
+ flf 2. This leads to a set of simultaneous linear equations
for the coefficients a and /3 with the solution

[al = D-'r f2f2 flf21fla
LizJ L -f 2 f1 ff, Lf 2 aJ

with
D = (flf1)(f 2f 2) - (flf2)2.

This procedure succeeds whenever the vectors f, 2 are not
collinear-that is, when the determinant D 54 0. Then the
required image of the vector a is b = a + 3g2-

To find the affine frame, take three points, , X, and Y,
say. Define the vectors f 2 as the projections of the directed
line segments X and 02/, respectively. The vectors g1,2 in
the second view are similarly defined. The vectors f, 2 and
g1,2 are the projections of the first two affine frame vectors in
the two views.

Find the image of f3 in the way described above: In the
first view, the projection of f3 is degenerated into a point.
For instance, you may pick a fourth point Z (in an equally
arbitrary manner as you did with the first triple) and consid-
er the projections of Z and of the trace (relative to the first
viewing direction) Z of Z on the OXY plane. In the first
view, these projections (trivially) coincide, and the projec-
tion of ZZ degenerates into a point. In the second view,
however, the projection of the line segment ZZ is nondegen-
erate. Regard the directed line segment ZZ as the projec-
tion of the third frame vector 3 in the second view. (You
may shift the vector such that its tail is at the origin 0;
however, this is not essential.)

This concludes the construction of the frame.
Now suppose that you have the two projections of any

point P, say. To find its affine coordinates in the frame, you
first write OP as a linear combination of fl,2. This yields the
first two coordinates a and Ap. The difference of the pro-
jection of P in the second view and the image (found by the
method outlined above) of that line segment in the first view
has to be a vector that is collinear with the projection of the
third frame vector. (If it is not, the assumption that the
configuration suffered an affine transformation between the
two views has been falsified.) The (signed) length ratio is
the third coordinate, yp.

Thus you end up with an affine model of the spatial con-
figuration. This model has the coordinate representations

0 = (0,0,0),
X= (1,0,0),

2y= (0,1,0),
Z= (0,0,1),
P = (ap, f, yp).

This may look rather trivial at first sight (it is a rather trivial
affair!), but you may add an arbitrary number of points like
P, of course. The more points you add, the less trivial the
solution appears: You really have constructed a three-di-
mensional model of the spatial configuration modulo an
arbitrary affine transformation. This model suffices to pre-
dict possible contours or equiluminance curves, for instance,
surely not a minor step toward shape calculation.

This procedure has been applied to the triple of projec-
tions illustrated in Fig. 1. (The triangulated head used in
these examples is due to Rydfalk.1 4 ) As you see, the projec-
tions differ through a magnification, a cyclorotation (rota-
tion about the axis of projection), a translation in the plane
of projection, and a rotation about an axis orthogonal to the
direction of view. These components are completely differ-
ent for the transitions 0-1 and 1-2 (we denote the projec-
tions 0, 1, and 2). These projections are the input to the

Fig. 1. Superposition of the 0th and 1st (left) and 1st and 2nd
(right) views. Both figures contain one identical view (the 1st), a
full frontal view of the triangulated face. The 0-1 transition is due
to a rotation in space about the vertical (head shake) and a diver-
gence; the 1-2 transition is due to a rotation about the horizontal
(head nod) and a curl, or cyclorotation.

0

IN\ N

\N .

X
Fig. 2. The triangulated head as it appears in the 1st view with the
fiducial triangle (XYi') marked (left). The choice of fiducial
points is essentially arbitrary. It is a good choice if the three points
are not collinear in the projection. Notice that the fiducial triangle
will be slanted and tilted with respect to the plane of projection,
although its orientation cannot be calculated from any single view
and is thus indeterminate. On the right an affinely equivalent view
is presented. The algorithm runs on such representations in its first
stage.

J. J. Koenderink and A. J. van Doorn

Koenderink and van Doorn, JOSA, 1991
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Affine deformation of a trajectory

I Deformation of a trajectory
q = (q1(t), . . . , qn(t))t∈[0,T ] at a time
instant τ by F :

∀t < τ q′(t) = q(t)
∀t ≥ τ q′(t) = F(q(t))

I Affine deformation :
F(x) = u+M(x)

I Use u andM to achieve various
objectives

I Euclidian deformation : cf. Seiler et
al, WAFR, 2010 Pham and Nakamura,

RSS, 2012
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Advantages of affine deformations

I Purely intrinsic function basis q1, . . . , qn
I ⇒ Naturally preserves motion properties

I smoothness for t > τ
I synchronization (e.g. in synergies)
I periodicity, frequency spectrum, phase-shift
I piece-wise parabolicity (e.g. industrial robots)
I all affine-invariant properties (straight lines, affine velocity,...)

22 / 35
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Advantages of affine deformations (continued)

I Yet versatile enough : n + n2 + 1 free parameters (u,M, τ)
I C p-ness at τ
I Desired final position, velocity, acceleration, . . .
I Optimization
I Inequality constraints

23 / 35
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C p-ness at τ

Admissible

τ

Non-admissible

Initial trajectory

Examples :

I Planar wheeled robots of type I : C 1

I Planar wheeled robots of type II : C 1 and curvature
continuous (Pham, RSS, 2011 ; Pham and
Nakamura, ICRA, 2012)

I Joint trajectories of manipulators : C 1

24 / 35
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C p-ness at τ (continued)

I Enforcement :
I C 0 → fix u
I C p → fix u and pn coefficients ofM

q′ = u+M(q)

q̇(τ) =M(q̇(τ))

q̈(τ) =M(q̈(τ))

I Examples :

I Type I wheeled robot : n = 2,C 1 ⇒ 2 coefficients ofM and τ left
I Type II wheeled robot : 1 coefficients ofM and τ left

25 / 35
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Final configuration

I Reach a new desired final position : fix n coefficients ofM
I Desired final position and final velocity : fix 2n coefficients ofM
I k final constraints : fix kn coefficients ofM
I Recap : Cp at τ and k final constraints : fix u and n(p + k)

I Remaining : n2 − n(p + k) coefficients

26 / 35
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Flowchart of the algorithm

n : number of generalized coordinates
p : required degree of smoothness
k : number of final constraints

n=p+k n>p+k

Minimum norm
deformation

Dynamics
optimization

Solve the 
square system:

m=V  -1

Apply the
pseudo-inverse:

m=V +

Optimization
(under ineq constraints)
using iterative methods

Solve a QP
with inequality

constraints

W/o inequality
constraints

With inequality
constraints

Pham and Nakamura, RSS, 2012
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Optimization

I Minimization of trajectory change (minimum norm deformation)

minimize ‖q− q′‖
↓

minimize ‖M− I‖
↓

exact formula using pseudo-inverse

I Minimization of torques, energy, . . .

minimize
∫ T
τ c(q′(t), q̇′(t), q̈′(t))dt

↓
minimize

∫ T
τ c(q(τ) +M(q(t)− q(τ)),M(q̇(t)),M(q̈(t)))dt

↓
iterative optimization in the space ofM

28 / 35
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Optimization (bis)

I Maximization of rigidity : findM “closest” to an Euclidean
transformation

I Use the polar decomposition M = QS where Q is orthogonal and S is
symmetric and minimize S2 − I

29 / 35
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Inequality constraints

I Joint limits, velocity limits, obstacle avoidance,. . .

I Inequality on q′(ti ) → inequality on coefficients ofM
I Hierarchy of

I equality constraints (C p-ness, final constraints)
I inequality constraints (joint limits, obstacle avoidance)

I Optimization → Quadratic Programming

30 / 35



Time-optimal control under dynamics constraints
Affine trajectory deformation

Motivation
Proposed algorithm
Examples of application

Subgroup constraints

I Equi-affine subgroup: dimension n2 + n − 1 (e.g. hand movements,
locomotion, etc. cf. Pollick and Sapiro 1997, Bennequin et al 2009)

I Euclidean subgroup: dimension n(n + 1)/2 (e.g. needle steering, cf.
Duindam et al 2010)
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Group formulation

I Group property
I Composition of deformations
I Inverse
I Lie group of dimension

n2 − n(p + k) + 1

I Group-based interpretation of
trajectory redundancy

I “Trajectory redundancy” : dimension
of the deformation group

I (“Configuration redundancy” :
dimension n −m)

I Adding a constraint = taking a
subgroup

I Sampling within the group

1

2
3g1

g og2 1

g og og3 2 1
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Examples

I Interactive real-time motion editing with OpenRAVE

I Motion transfer to a humanoid robot

I Combine affine deformations and time-optimal parameterization in
pick-and-place tasks on conveyor belts
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Conclusion

I Deformation algorithm inspired from human motor control
I More likely to preserve human-like features

I Computational advantages
I fast computation (one-step matrix computation)
I naturally preserves relevant features
I versatility :

I C p-ness at τ
I final constraints
I inequality constraints (joint limits, obstacles,. . . )
I optimization (closeness, torques, energy,. . . )
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General conclusions

I Two algorithms
I Planning time-optimal trajectories under dynamics constraints using the

path-parameterization algorithm
I Deformation of trajectories using affine transformations

I Thank you very much for your attention and questions and comments !
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