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Trajectory deformation

I Planning trajectories for nonholonomic robots (e.g. cars, submarines,
quadrotors, satellites,...) is difficult and time-consuming

I Better to deform a previously planned trajectory than re-plan anew
I Existing methods: e.g.

I inputs perturbation (e.g. Lamiraux et al, IEEE T Rob 2004)
I Euclidean transformations (e.g. Cheng et al, IEEE T Rob 2008; Seiler et

al, WAFR 2010)

I Drawbacks of these methods:

I iterative search/gradient descent to find the appropriate deformation
I require trajectory re-integration at each step
I approximate corrections

I Advantages of the proposed method based on affine transformations
(Pham, RSS 2011):

I single step (no iterative search/gradient descent)
I no trajectory re-integration
I exact, algbraic, corrections
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Affine trajectory deformation

I A transformation F deforms a
trajectory C = (x(t), y(t))t∈[0,T ]

into C′ at a time instant τ by

∀t < τ C′(t) = C(t)
∀t ≥ τ C′(t) = F(C(t))

I Not all affine transformations
deform C into an admissible C′

I How to characterize the set of
admissible affine transformations?

τ
Initial trajectory (C)

Affine
deformations
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Admissible affine transformations for some systems

Surprisingly, the set of admissible affine transformations can be shown to be
a Lie subgroup of the General Affine group (GA2 or GA3) of dimension...

I
2 for the unicycle and omni-directional mobile
robots (out of the 6 dimensions of GA2)

I
1 for the bicycle or kinematic car (out of the 6
dimensions of GA2)

I
4 for the 3D underwater vehicle (out of the 12
dimensions of GA3)

I
1 for the 3D bevel needle (out of the 12 dimen-
sions of GA3)
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Trajectory correction for a 3D underwater vehicle

Model description:

ux

uy

uz

v

Inertial basis

Local basis

y

z

x

Position of the robot: (x , y , z)
Orientation of the robot: (φ, θ, ψ)

Kinematic equations:

v̇ = a φ̇

θ̇

ψ̇

 = R(φ, θ)

 ωx

ωy

ωz


ẋ = v cosψ cos θ
ẏ = v sinψ cos θ
ż = −v sin θ
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Trajectory correction for a 3D underwater vehicle (II)

Conditions for a trajectory to be admissible

I The position (x , y , z) must be continuous

I The orientation (φ, θ, ψ) must be
continuous

I The linear velocity v must be continuous
(to avoid infinite linear accelerations)

I The angular velocities (ωx , ωy , ωz) must
be continuous (e.g. if using rudders)

Recall:

Admissible

τ

Non-admissible

Initial trajectory

In contrast,

I The linear acceleration a is not required to be continuous

I The angular accelerations are not required to be continuous
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Trajectory correction for a 3D underwater vehicle (III)

I One can show that, at time τ , the space of affine transformations that
guarantee the previous conditions is a subgroup of dimension 4 of GA3

I These corrections are of the form

∀t ≥ τ C ′(t) = C (τ) +M(C (t)− C (τ)),

where C (t) = (x(t), y(t), z(t)) and the matrix of M in some
well-defined basis has 4 free coefficients (out of 9)

I To correct the final position, one only needs 3 free coefficients ⇒
“redundancy”

I Note: after obtaining a deformed trajectory C ′(t) by the above formula,
one can recover the commands (a, ωx , ωy , ωz) by some differentiations
and elementary operations
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Trajectory correction for a 3D underwater vehicle (IV)

Three examples of final position corrections
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I The original trajectory is in red

I The three corrections respect the continuities of x, y, z, v, φ, θ, ψ

I The magenta correction results from an affine transformation that does not belong to the admissible group ⇒ it does not
respect the continuity of the angular velocities (cf ωz )

I The green and blue corrections correct towards a same final position, but with different final orientations (“redundancy”)
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Conclusion and ongoing research

I Other systems that can benefit from affine corrections:

I All 2D wheeled robots without slip
I Bevel needle (used in surgery)
I Ongoing research on other 3D mobile robots (quadrotor, satellites, space

robots,...)
I Redundant manipulators (holonomic)

I Advantages of affine trajectory corrections (reminder):

I single step
I no trajectory re-integration
I exact corrections

I More theoretical questions

I How to compute systematically the set of admissible affine deformations
for a given system?

I Is it always a Lie group?
I How about using more general groups (e.g. projective)?
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