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Trajectory deformation

» Planning trajectories for nonholonomic robots (e.g. cars, submarines,
quadrotors, satellites,...) is difficult and time-consuming

> Better to deform a previously planned trajectory than re-plan anew
» Existing methods: e.g.
> inputs perturbation (e.g. Lamiraux et al, IEEE T Rob 2004)
» Euclidean transformations (e.g. Cheng et al, IEEE T Rob 2008; Seiler et
al, WAFR 2010)
» Drawbacks of these methods:
> iterative search/gradient descent to find the appropriate deformation
> require trajectory re-integration at each step
> approximate corrections
» Advantages of the proposed method based on affine transformations

(Pham, RSS 2011):
> single step (no iterative search/gradient descent)
> no trajectory re-integration
» exact, algbraic, corrections



Affine trajectory deformation

» A transformation F deforms a Initial trajectory (C)
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into C’ at a time instant 7 by

Affine
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Affine trajectory deformation

Initial trajectory

» A transformation F deforms a

trajectory C = (x(t), y(t))eeo, 7]
into C’ at a time instant 7 by

Vi<t C'(t) =C(¢)
Vt>T1 C'(t) = F(C(t))

N~
Admissible , S Non-admissible

» Not all affine transformations
deform C into an admissible C’

» How to characterize the set of
admissible affine transformations?




Admissible affine transformations for some systems
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Admissible affine transformations for some systems

Surprisingly, the set of admissible affine transformations can be shown to be

a Lie subgroup of the General Affine group (GA; or GA3) of dimension...

2 for the unicycle and omni-directional mobile
robots (out of the 6 dimensions of GA>)

1 for the bicycle or kinematic car (out of the 6
dimensions of GA)

4 for the 3D underwater vehicle (out of the 12
4 . .
dimensions of GA3)

1 for the 3D bevel needle (out of the 12 dimen-
sions of GA3)



Trajectory correction for a 3D underwater vehicle

Model description:

Inertial basis
Kinematic equations:

(

Wx
= R(d)v 9) Wy

Wz
= v cos ) cos f
= vsini cosf
= —vsind

N < X 2.9 <

Position of the robot: (x,y, z)
Orientation of the robot: (¢,0,1)

Ve



Trajectory correction for a 3D underwater vehicle (II)

Conditions for a trajectory to be admissible

» The position (x, y, z) must be continuous
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Trajectory correction for a 3D underwater vehicle (I1)

Conditions for a trajectory to be admissible Bec-allz
» The position (x,y, z) must be continuous -[\I:I:“—rm—c‘:ryﬂl
» The orientation (¢, 6,v) must be LN
continuous

/\

~
Admissible ; Non-admissible

> The linear velocity v must be continuous
(to avoid infinite linear accelerations)

» The angular velocities (wy,wy,w;) must
be continuous (e.g. if using rudders)

In contrast,
» The linear acceleration a is not required to be continuous

» The angular accelerations are not required to be continuous



Trajectory correction for a 3D underwater vehicle (lII)

» One can show that, at time 7, the space of affine transformations that
guarantee the previous conditions is a subgroup of dimension 4 of GAs
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Trajectory correction for a 3D underwater vehicle (I11)

» One can show that, at time 7, the space of affine transformations that
guarantee the previous conditions is a subgroup of dimension 4 of GA3

» These corrections are of the form
ve>7 C'(t) = C(r) + M(C(t) — C(7)),

where C(t) = (x(t),y(t),z(t)) and the matrix of M in some
well-defined basis has 4 free coefficients (out of 9)

» To correct the final position, one only needs 3 free coefficients =
“redundancy”

» Note: after obtaining a deformed trajectory C’(t) by the above formula,
one can recover the commands (a, wy,wy,w,) by some differentiations
and elementary operations



Trajectory correction for a 3D underwater vehicle (V)

Three examples of final position corrections

P
FT.
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P> The original trajectory is in red

P The three corrections respect the continuities of x, y, z, v, ¢, 0, 1

8/9
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Three examples of final position corrections

v

P
FT.
0.4
02 o.sj _g
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The original trajectory is in red
The three corrections respect the continuities of x, y, z, v, ¢, 6, ¢

The magenta correction results from an affine transformation that does not belong to the admissible group = it does not
respect the continuity of the angular velocities (cf w;)
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v

P
FT.
0.4
02 o.sj _g
0
0 -2

-02 -05 -3
0 51015 0 5 1015 0 5 10 15

The original trajectory is in red

The three corrections respect the continuities of x, y, z, v, ¢, 6, ¢

The magenta correction results from an affine transformation that does not belong to the admissible group = it does not
respect the continuity of the angular velocities (cf w;)

The green and blue corrections correct towards a same final position, but with different final orientations (“redundancy”)
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v

» Advantages of affine trajectory corrections (reminder):
> single step
> no trajectory re-integration
> exact corrections

» More theoretical questions

» How to compute systematically the set of admissible affine deformations
for a given system?

> Is it always a Lie group?

» How about using more general groups (e.g. projective)?



