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Stability and modularity

Biological systems (e.g. neuronal networks) are complex, contain
multiple feedback loops

The probability for a network to be stable decreases with the
network’s size (Grey Walter, 1951)

Evolution = accumulation of stable components?

Question: how accumulation can preserve stability?
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Contraction theory: a tool to analyze stability

Consider the dynamical system

ẋ = f(x, t)

If there exist a metric Θ(x, t)>Θ(x, t) such that

∀x, t λmax(Js) < −λ

where

J =

(
Θ̇ + Θ

∂f

∂x

)
Θ−1 Θ(x, t)>Θ(x, t) > 0

then all system trajectories converge exponentially towards a unique
trajectory, independently of initial conditions (Lohmiller & Slotine,
Automatica, 1998)
Proof: Consider a smooth path between each pair of trajectories and
differentiate its length
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Interesting properties

Exact and global analysis (in contrast with linearization techniques)

Converse theorem: global exponential stability ⇒ contraction in some
metric

Combination properties

Parallel combination
Hierarchical
Negative feedback
Small gains
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Example: negative feedback

Consider the combination{
dx1 = f1(x1, x2, t)dt
dx2 = f2(x1, x2, t)dt

where system xi est contracting with rate λi in the metric
Mi = ΘT

i Θi

Assume that the combination is negtive feedback, i.e.

Θ1J12Θ−12 = −kΘ2JT21Θ−11

Then the combined system is contracting with rate min(λ1, λ2) in the
metric M = ΘTΘ where

Θ =

(
Θ1 0

0
√
kΘ2

)
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Application: modeling the basal ganglia

Basal ganglia: role in motor action selection

Multiple hierarchical and feedback loops physiologically identified

Robotics application: action selection in a survival task

Girard, Tabareau, Pham, Berthoz & Slotine, Neural Networks, 2008
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Synchronization phenomena

In neuronal networks
Observation: similar behavior of different neurons in time

Christie et al, J Neurosci, 1989

Proposed mechanisms: connections of neurons through chemical and
electrical connections, network effects

Elsewhere
Flocking (birds), schooling (fishes),. . .
Quorum sensing in cells
Multi-robots deployment
. . .
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Roles of synchronization in neuronal networks

Allow different distant sites to communicate, example:

in the “binding problem”: for instance, relate different attributes
(computed in different brain areas) – color, form, movement – of the
same object (Engel et Singer, Trends Cog Sci, 2001)
between hippocampus and prefrontal cortex in memory consolidation
(Peyrache et al, Nat Neurosci, 2009)

Signal amplication or protection against noise (see later)

. . .
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Synchronization and contraction

Synchronization = convergence towards a linear subspace of the global
state space
Example:

consider a system of 4 oscillators
_
x = (x1, . . . , x4)

then full synchronization corresponds to the subspace
M = {_x : x1 = x2 = x3 = x4} (of dimension 1)
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Convergence to a linear flow-invariant space

Consider a system ẋ = f(x, t) (not contracting in general)

Assume that there exists a flow-invariant linear subspaceM, i.e. :

∀t : f(M, t) ⊂M

Consider an orthonormal “projection” onM⊥, described by a matrix
V and construct the auxiliary system

ẏ = Vf(V>y + U>Ux, t)

If the y-system is contracting then all solutions of the x-system
converge toM.

shrinking length in the
orthogonal subspace 

a given trajectory

the corresponding trajec
tory in the invariant sub

space of dimension p

of dimension n p
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Interesting properties

Naturally inherits the properties of standard contraction theory

Exact and global analysis

Combination properties

Hierarchy
Negative feedback
Small gains
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Concurrent synchronization

Multiple groups of oscillators synchronized within a group but not across
groups

Pham & Slotine, Neural Networks, 2007

⇒ Accumulation and cohabitation of multiple ensembles of synchronized
neurons
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Concurrent synchronization

Concurrent synchronization can be treated by the same framework as
previously. Example:

consider a system of 4 oscillators x1, . . . , x4

a state where x1 = x2 and x3 = x4 but where x1 6= x3 is a concurrent
synchronization state

this concurrent synchronization corresponds to the linear subspace
M = {_x : x1 = x2} ∩ {

_
x : x3 = x4} (of dimension 2)
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Example: symmetry detection

Image to be processed

Pham & Slotine, Neural Networks, 2007

Other examples:

CPG-based control of a turtle-like underwater vehicle (Seo, Chung &
Slotine, Autonomous Robots, 2010)

Quorum sensing (Russo & Slotine, Physical Review E, 2010)
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Motivations

Biological or artificial systems are often subject to random
perturbations

Benefits from the interesting properties of contraction theory

Exact and global analysis
Combination properties
Concurrent synchronization
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How to model perturbations?

In physics, engineering, finance, neuroscience,. . . random perturbations are
traditionnally modelled with Itô stochastic differential equations (Itô SDE)

dx = f(x, t)dt + σ(x, t)dW

f is the dynamics of the noise-free version of the system

σ is the noise variance matrix (noise intensity)

W is a Wiener process (dW /dt = “white noise”)
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The stochastic contraction theorem

If the noise-free system is contracting

λmax(Js) ≤ −λ

and the noise variance is upper-bounded

tr
(
σ(x, t)Tσ(x, t)

)
≤ C

Then

∀t ≥ 0 E
(
‖a(t)− b(t)‖2

)
≤ C

λ
+ ‖a0 − b0‖2e−2λt

Pham, Tabareau & Slotine, IEEE Trans Aut Contr, 2009
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Practical meaning

After exponential transients of rate λ, we have

E (‖a(t)− b(t)‖) ≤
√

C

λ

a
0

b
0

 1

b
0

a
0

C/λ

 1

Quang-Cuong Pham (YNL) Nonlinear contraction and applications 22 / 36



Combinations of stochastically contracting systems

Combinations results in deterministic contraction can be adapted very
naturally for stochastic contraction

Parallel combinations

Hierarchical combinations

Negative feedback combinations

Small gains
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Noise in the nervous system

Observation: variable response to
identical stimulations

Nature Reviews | Neuroscience
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Johnson noise (thermal 
noise, Johnson–Nyquist 
noise or Nyquist noise)
The electronic noise that is 
generated by the thermal 
agitation of the charge carriers 
(electrons and ions) inside an 
electrical conductor at 
equilibrium, which happens 
regardless of any applied 
voltage. Johnson noise is 
distinguished from shot noise, 
which consists of additional 
current fluctuations that occur 
when a voltage is applied to a 
resistance and a macroscopic 
current starts to flow.

Shot noise
A type of noise that occurs 
when the finite number of 
signal particles, such as 
electrons or ions in an 
electrical circuit or photons 
arriving at a photoreceptor, is 
small enough to give rise to 
detectable statistical 
fluctuations in a measurement.

Ephaptic coupling
The coupling of very close or 
touching neurons, mediated by 
the electrical fields the neurons 
generate during electrical 
activity.

Why is AP propagation so sensitive to noise, contrary 
to previous claims41,43,46,66,67? Detailed stochastic model-
ling has shown63 that the leading edge of AP propagation 
is driven by a relatively small — and thus noisy — ionic 
current flowing inside the axon. This causes jitter in the 
speed of the propagation of the AP and thus results in 
variability in AP timing. By contrast, the current follow-
ing the leading edge is large and therefore conduction 
failures owing to channel noise are unlikely, even in very 
thin axons (where <3% of all APs fail). Thus, axonal 
channel noise cannot account for the failure rates that 
have been reported in much larger CNS axons (where 
5–80% of APs fail68), and conduction failures that have 
been observed in the nervous system are more likely to 
be due to computational mechanisms that allow ‘editing’ 
of spike trains69 than to noise63.

Other electrical-noise sources include Johnson noise 
and shot noise owing to membrane resistance, which are 
three orders of magnitude smaller than channel noise in 
CNS neurons70,71. Moreover, variations in the activity of 
nearby neurons could produce ‘cross-talk noise’ in the 

confined spaces of the CNS. Such cross-talk can arise 
through ephaptic coupling68, large changes of extracellular 
ion concentration after electrical signalling72, and spillover  
of neurotransmitters73 between unrelated synapses.

Synaptic noise. If a presynaptic cell is driven repeatedly 
with identical stimuli, there is trial-to-trial variability in  
the postsynaptic response74,75(FIG. 2b). This variability 
could arise from noise41,46 or from a deterministic proc-
ess that is too complex to grasp and thus appears ran-
dom75,76. Here we discuss evidence for the considerable 
contribution of noise to synaptic variability.

Many neocortical cells receive an intense synaptic 
bombardment from thousands of synapses77–79, which 
is often referred to as ‘synaptic background noise’ 
(REFS 80,81). However, the rich set of dendritic mecha-
nisms that allow individual synapses to interact suggests 
that this ‘background’ activity is unlikely to be composed 
only of noise26,27,82,83. Indeed, experimental evidence and 
computational arguments suggest that the synaptic 
background activity contains meaningful structure16,83–85. 

Figure 2 | Examples of cellular noise. a | Channel noise as a source of trial-to-trial variability in action potential (AP) 
propagation. Stochastic simulations of the response of a 0.2 m diameter CNS axon (comparable with a cerebellar parallel 
fibre) in response to repeated identical current stimuli and initial conditions are shown. The only source of variability is the 
stochastic opening and closing of a million individually simulated ion channels. Spike trains were triggered by a time-
varying current stimulus (top plot). Spike raster plots for each measurement site are shown, from the soma (second-from-
top plot) down to the most distal part (the axon; bottom plot). In each raster plot, the precise timing of spikes is marked by 
dots, which are stacked over each other for each repeated trial (there were 60 trials). The shift of the overall spike pattern 
across rows reflects the average propagation speed of the APs. The raster plot of the somatic measurement reflects spike-
time variability from AP initiation. Owing to channel noise, the spike-time variability rapidly increases the further the AP 
propagates, and it eventually reaches millisecond orders. b | Trial-to-trial variability of synaptic transmission measured  
in vitro by paired patch-clamp recordings in rat somatosensory cortex slices. Six consecutive postsynaptic responses 
(black traces) to an identical presynaptic-stimulation pattern (top trace) are shown, along with the ensemble mean 
response (grey trace) from over 50 trials. Part a modified from REF. 65. Part b modified, with permission, from REF. 77  
(2006) American Physical Society.

REVIEWS

296 | APRIL 2008 | VOLUME 9  www.nature.com/reviews/neuro

©!2008!Nature Publishing Group!

Possible causes: canal noise, synaptic noise, etc. (cf. Faisal et al, Nat
Rev Neurosci, 2008)
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Effect of noise on synchronization

Noise can destroy la synchronisation

or, on contrary, enable synchronization: Mainen et Sejnowski (Science
1995), Teramae et Tanaka (PRL 2004)
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Our study

We study here the converse relation: the effect of synchronization on
noise

By doing so, we indentify another functional role for synchronization
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Noise perturbs the trajectories of the oscillators

Noiseless oscillator
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Averaging gets rid of the noise,
but also of the signal!

Average value of 100 noisy
oscillators
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Synchronization protects from noise

Noisy synchronized oscillator
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Tabareau, Slotine & Pham, PLoS Comput Biol, 2010
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Hypothesis (I)

Network of n noisy oscillators and diffusively coupled (Itô SDE):

dxi =

f(xi , t) +
∑
j 6=i

Kji (xj − xi )

 dt + σdWi , i = 1 . . . n

or in the “physicist’s way”

ẋi = f(xi , t) +
∑
j 6=i

Kji (xj − xi ) + σξi , i = 1 . . . n

with ξ representing a “white noise”
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Hypothesis (II)

For assumptions:

A1 The network is balanced: for each oscillator∑
j Kji =

∑
j Kij)

A2 The nonlinearity of f is bounded: |λmax(Hj)| ≤ 1√
d

Hbd

A3 The dynamics of f is robust to small perturbations

A4 The oscillators are synchronized:

E

∑
i<j

‖xi − xj‖2
 ≤ ρ
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Results

Under the previous hypotheses, when ρ/n2 → 0 and n→∞, the effect of
noise on each oscillator evolves as

ρHbd

2n2
+

σ√
n

Remark: when the systems are linear, we have Hbd = 0 and thus the
known result for linear systems are recovered
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Elements of proof

Compare the mean trajectory to a noiseless trajectory

Since the trajectories are close to each other (A4), they are close to
the mean trajectory
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Extension: probabilistic network

200 oscillators

each pair of oscillators has probability 0.1 to be connected
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(no formal proof at the present time)
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Hindmarsh-Rose + time-varying inputs

In
p

u
t 

v
o

lt
a
g

e
 (

V
)

M
e
m

b
ra

n
e
 p

o
te

n
ti

a
l 
(V

)

M
e
m

b
ra

n
e
 p

o
te

n
ti

a
l 
(V

)
M

e
m

b
ra

n
e
 p

o
te

n
ti

a
l 
(V

)

Time (ms)

Time (ms)

 0  50  100  150  200  250  300
Time (ms)

Time (ms)

 0  50  100  150  200  250  300

 0  50  100  150  200  250  300 0  50  100  150  200  250  300

 6

 4

 2

−6

−4

−2

 0

 6

 4

 2

 0

−2

−4

−6

−4

−2

 0

 2

 6

 4

−6

 6

 4

 0

 2

−2

−4

−6

(a)

(c)

(b)

(d)

a Input
b Output – unperturbed oscillators
c Output – noisy oscillators
d Output – noisy synchronized oscillators
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End

Thank you for your attention!
I’ll be happy to answer questions.
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