Robustness of noise-induced synchronization
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Mainen & Sejnowski experiment
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[Mainen & Sejnowski, 1995]
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Synchronization interpretation
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Outline

© Modelling “noise”: Stochastic Differential Equations
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Random walk and Wiener process

e Random walk (discrete-time): X1 ar = X¢ + £ AL
where (&;)ten are Gaussian and mutually independent

o If one is interested in very rapidly varying perturbations, At has to be
very small

@ Wiener process (or Brownian motion) (continuous-time): limit of the
random walk when At — 0
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Wiener process and “white noise”

@ Problem: a Wiener process is not differentiable (why?), thus it is not
the solution of any ordinary differential equation

@ Define formally & (“white noise”) = “derivative” of the Wiener process
o Formally: W(t) — W(0) = [, &dt or dW/dt = & or dW = .dt
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Stochastic Differential Equations

@ We consider processes driven by “white noise”

@ We would like to write (but it's not correct, because £ does not exist)
x = f(x) +g(x)¢
@ In integral form, it may be more correct
x(t) — x(0 /f(xdt+/ g(x)dW

where the last term is a Stieltjes integral against W (which does exist)

@ The integral form can also be written in differential form

dx = f(x)dt + g(x)dW
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Definition of 1t6 and Stratonovich integrals

@ For deterministic function «, the Stieltjes integral (which generalizes
Riemann integrals) against « is defined as

N-1

.
| Ateda = tim 37 5(e) (i) - ()
1
@ Thus one can define, by analogy
T N—1
| Aoaw = tim 37 (e W(ti41) - W(e)
1

which is the Itd integral
@ But one can also define

/oTﬁ( 4w = Jim Zﬂ(HLH)[W(““)_W(t")]

which is the Stratonovich integral
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Independance properties

@ The two above definitions lead to the same result in the deterministic
case (probably, C! is required)

@ But there are differences in the stochastic case:

@ Since ((t;) (present) is independent of W(t;+1) — W(t;) (future), one
has, for It6 integrals

E(B(t)[W(ti11) — W(5)]) = E(B(t))E(W (tir1) — W(t)) = 0

E (/OTB(t)dW> —0

This explains Teramae claim “In the It6 formulation, [...], the
correlation between ¢ and £ vanishes”

leading to
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Variable transformation

@ The variable transformation (“changement de variable” in French)
formula is also different for It6 and Stratonovich integrals

o Consider the function y(x). In the deterministic case, one has, for
instance

dy Jdy dx Ay

d “ox @ " Yok

@ The same rule is valid for Stratonovich integrals (Teramae's

“conventional variable transformation”): if

dx

dx = f(x)dt + g(x)dW

then
dy = Fx (f(x)dt + g(x)dW)
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[td's formula for variable transformation

@ Consider the 16 SDE
dx = f(x)dt 4+ g(x)dW

@ Then for a function y(x), one has (It6's formula)

oy 162)/ 8y

@ This will explain Teramae's “the disappeared correlation is
compensated by the new extra drift term Z'DZ"
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Phase reduction

o Consider the system x = f(x) which has a limit-cycle.
e We would like to find a phase variable ¢(x) such that:

do
— =w w = constant
dt
X
Example: a mobile travelling on a circle ‘A

with constant velocity

@ General case (using the chain rule):

dp  0¢ dx  0¢
E:&X)'Ezg(x)' (x) =w

@ One then has to solve the above PDE to find ¢
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Phase reduction(continued)

Consider now a small perturbation &

x=f(x)+¢

Then the equation on the phase becomes

do 96 oo Ao
9= S0X) () G (X) €=t ()€

This can be converted into a ¢-only equation using some
approximations
d¢

E:W‘*‘Z(d))f

This was equation (2) in [Teramae & Tanaka, 2004]
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Stratonovich to It switch

@ Actually, the authors could have done everything in 16!

@ Let us compute the phase equation obtained previously but using now
1t6's formula (with D = %g2)

(09 %¢ D¢
@ As above, let Z(¢) = %. Then
92 0 0Z 0 ,
e = 520 = G e = Z(0)2(0)

@ Thus
dp = (w+ Z'(¢)DZ())dt + Z(¢)dW

which is equation (3) (after formal division by dt)
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Linearization

o Consider ¢1 = f(¢1) and ¢ = f(¢2)
@ Then (using the Taylor expansion assuming ¢; — ¢, very small)

f(¢1) — f(¢2)
= f(¢1) — (f(¢1) + (92 — ¢1)f'(¢1))
= f'(¢1)(¢1 — ¢2)

@ This explains equation (4) if we set ¢ = ¢1 — ¢

61— b
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Lyapunov exponent

@ Consider two infinitesimally close trajectories. The Lyapunov exponent
A verifies (intuitively)

166(2)]| = X*[|aol]

e If A > 0, then nearby trajectories diverge = instability
e If A <0, then nearby the trajectories converge = stability

@ (Remark: if a system is contracting, then A < 0)
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Lyapunov exponent (continued)

@ Let us manipulate the above expression:

e I8l (el 1, (el
= ogel I<H5¢0H> A=g <ra¢o||>

@ Actually, the Lyapunov exponent is defined as (because we are
interested in long-time behaviour)

2 (122000
1=t (o
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Ergodic hypothesis

e Consider a stochastic process x(w, t)

@ Any physicist knows that (ergodic hypothesis): Vw, t

T—o0

. 1 T N g (o' ' — R (x
lim T/o x(w, ')dt /Q (', £)dw’ = E (x(t))

Time average Ensemble average
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Ergodic hypothesis (continued)

e Remark now that y in equation (5) is defined as
y =In(v) = In(¢1 — ¢2) = In(0¢)

@ Remark that

T i B _ 4, 99(T)
|5 =T = (0) = m(@e(T) = n(io(0) = 1n S
thus - 56(T)
1 . 1 .
rr'l“oofo V=7 se0) —
By the ergodic hypothesis, we then have

A=E(y)

which explains the first line in equation (6).
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Probability density

@ Let P(¢, t) denotes the time-dependent probability density of the
random variable ¢ € [0, 27]

@ P is constant intuitively means that ¢ has equal probability of being
anywhere in [0, 27]
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@ Limitations of the analysis
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Some limitations

@ A lot of unproven statements (ergodicity, uniform distribution of ¢ in
steady state,...). Perhaps those statements are evident for physicists!

@ There is a mistake in the computation of the phase equation, as
pointed out by [Yoshimura & Arai, 2007] (Thank you, Francis!).
However, this mistake does not alter the result.

@ The analysis is only valid when Z is continuously differentiable up to
the second-order, which is not verified for e.g. resetting neuron
models (Integrate and Fire, Izhikevich,...)
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