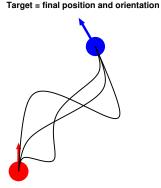
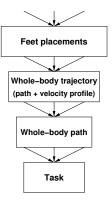

Some aspects of sensori-motor control in human locomotion

Phạm Quang Cường 范光強

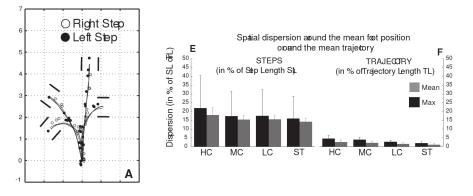
Laboratoire de Physiologie de la Perception et de l'Action Collège de France, Paris, France


The "problem" of "redundancy" in human motor control


Adapted from Jordan & Wolpert, 1999

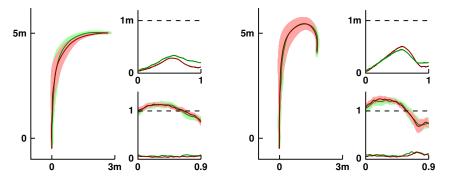
イロト 不得 トイヨト イヨト

"Redundancy" in human locomotion


Starting position and orientation

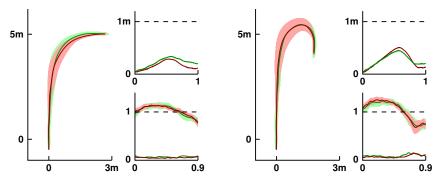
æ

イロト 不得 トイヨト イヨト


Variabilities of feet positions and of trajectories

Hicheur et al., Eur. J. Neurosci. 2007

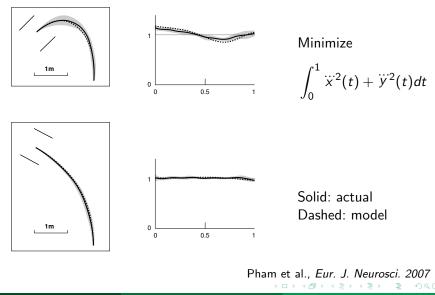
Forward vs backward walking


Red: Forward walking / Green: Backward walking

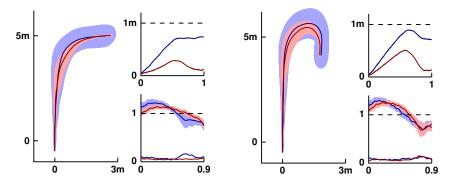
Pham et al, in preparation (work supported by the Locanthrope project)

Forward vs backward walking

Red: Forward walking / Green: Backward walking

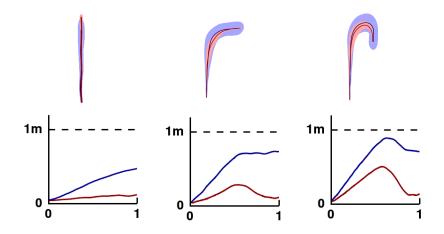

Pham et al, in preparation (work supported by the Locanthrope project)

Similarity at the first-order (average trajectories) and the second-order (variability profile) !


 \Rightarrow The formation of the trajectory is independent of the detailed motor implementation.

Quang-Cuong Pham (LPPA)

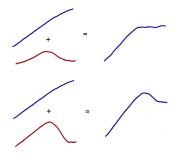
A maximum-smoothness model for trajectory formation


Red: Visual walking / Blue: Non-visual walking

Pham et al, in preparation (work supported by the Locanthrope project)

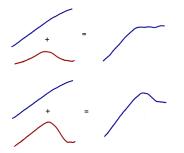
 \Rightarrow Very similar average trajectories, which suggests similar basic strategies

What about variability?



The variability profile in the non-visual condition is non-trivial. Indeed, we would expect the variability to increase all the time.

We suggest that


- In the visual condition, the bell-shaped variability profile is related to the fact that correction feedback is generated with respect to the task (as opposed to the "trajectory tracking" hypothesis, see Todorov and Jordan, 2002)
- In the non-visual condition, humans use the same strategy as in the visual condition, but correction feedback is generated towards a imagined target location (which generally differs from the actual target location, because of memory decay, sensory drift, etc.)

Modelling (ongoing work)

Sensory drift + Motor variability = Variability in the non-visual condition

Modelling (ongoing work)

Sensory drift + Motor variability = Variability in the non-visual condition

Following the above observations, we derive a simple online-feedback version of the previous maximum-smoothness model, which can now reproduce the average trajectories *and* the variability profiles in both visual and non-visual conditions.