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Abstract

Nonlinear contraction theory was introduced by Lohmiller and Slo-
tine in [1]. The development of this theory relies heavily on differential
notions, especially on the so-called “infinitesimal displacement at fixed
time” dx. However, these notions were never explicitly defined, and as
a consequence, some of the proofs remained rather obscure. In these
notes, we aim at providing rigorous proofs of the basic theorems of
nonlinear contraction theory, using only elementary differential calcu-
lus.

Consider a smooth nonlinear dynamical equation
k= £(x, 1) 1)

Consider two trajectories starting respectively at a and b. At time ¢t =
0, consider a smooth path 7(0) that connects a and b. The intermediate
values along that path are parameterized by u € [0, 1], with x(0,0) = a and
x(0,1) = b. For all ¢ > 0 define now the path v(¢t) = {x(¢t,u)lu € [0,1]},
where x(t,u) is the position at time t of a particle that starts at x(0,u) at
t = 0. Standard results in differential calculus guarantee that for all ¢, v(t)
is a smooth path whose M-length is given by
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Define now
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By Schwarz’s inequality, one has L;(v(t)) < ¢(t). The time derivative
of ¢ is next given by
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Using successively Schwarz’s theorem, equation (1) and the chain rule
yields
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where J(x(t,u),t) denotes the Jacobian matrix of f computed at (x(t,u),t).
Thus
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where \ verifies _
vx,t JITM+M +MJ < -2 M

Applying Gronwall’s lemma then yields
VE>0 ¢t) < ¢(0)e N
Thus ¢(t) tends exponentially to 0 with rate 2\, which implies that Lyg(v(¢))
tends exponentially to 0 with rate .
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