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Abstract

Nonlinear contraction theory was introduced by Lohmiller and Slo-
tine in [1]. The development of this theory relies heavily on differential
notions, especially on the so-called “infinitesimal displacement at fixed
time” δx. However, these notions were never explicitly defined, and as
a consequence, some of the proofs remained rather obscure. In these
notes, we aim at providing rigorous proofs of the basic theorems of
nonlinear contraction theory, using only elementary differential calcu-
lus.

Consider a smooth nonlinear dynamical equation

ẋ = f(x, t) (1)

Consider two trajectories starting respectively at a and b. At time t =
0, consider a smooth path γ(0) that connects a and b. The intermediate
values along that path are parameterized by u ∈ [0, 1], with x(0, 0) = a and
x(0, 1) = b. For all t > 0 define now the path γ(t) = {x(t, u)|u ∈ [0, 1]},
where x(t, u) is the position at time t of a particle that starts at x(0, u) at
t = 0. Standard results in differential calculus guarantee that for all t, γ(t)
is a smooth path whose M-length is given by
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Define now
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By Schwarz’s inequality, one has L2
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of φ is next given by
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Using successively Schwarz’s theorem, equation (1) and the chain rule
yields
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where J(x(t, u), t) denotes the Jacobian matrix of f computed at (x(t, u), t).
Thus
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where λ verifies
∀x, t J

T
M + Ṁ + MJ ≤ −2λM

Applying Gronwall’s lemma then yields

∀t ≥ 0 φ(t) ≤ φ(0)e−2λt

Thus φ(t) tends exponentially to 0 with rate 2λ, which implies that LM(γ(t))
tends exponentially to 0 with rate λ.
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