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1 Linear attractors

Consider general deterministic systems of the form

ẋ = f(x, t) (1)

Assume that there exists a f -invariant linear subspace M, i.e. ∀t : f(M, t) ⊂
M (in particular, it implies that any trajectory starting in M remains in M). As-
sume furthermore that dim(M) = p and consider an orthonormal basis (e1, . . . , en)
where the first p vectors form a basis of M and the last n − p a basis of M⊥.
Inspired by the ideas in [4], we consider an n × (n − p) matrix V whose columns
are ep+1, . . . , en. V⊤ may be regarded as a projection on M⊥, and it verifies the
following properties :

∀x ∈ M : V⊤x = 0, V⊤V = In−p, VV⊤ + UU⊤ = In

where U is the matrix formed by the first p vectors.
We consider now the grounded state z = V⊤x . By construction, x converges

to the subspace M if and only if z converges to 0. Multiplying (1) by V⊤ on the
left, we get

ż = V⊤f(Vz + UU⊤x, t)

Construct the auxiliary system

ẏ = V⊤f(Vy + UU⊤x, t) (2)

By construction, a particular solution of system (2) is y(t) = z(t). In addition,
since UU⊤x ∈ M and M is f -invariant, f(UU⊤x) ∈ M = Ker(V⊤). Thus
y(t) = 0 is another particular solution of system (2). If furthermore system (2)
is contracting with respect to y (x being regarded as an external input), z(t)
converges exponentially to 0 ([12], theorem 1).

We can state the following theorem :

Theorem 1 If a vector subspace M is f -invariant and if V⊤JfsV is uniformly
negative definite (where V⊤ is an orthogonal projection on M⊥ as defined above),
then all solutions of system (1) converge exponentially to M.
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2 Synchronization

2.1 Global synchronization

Using the results stated in the previous section, we study some aspects of syn-
chronization in networks with diffusive couplings.

Consider a network containing n elements with diffusive couplings

ẋi = f(xi, t) +
∑

j∈Ni

Ki,j(xj − xi) i = 1, . . . , n

Let

x =







x1

...
xn






, F(x, t) =







f(x1, t)
...

f(xn, t)






, L =







∑

j 6=1
K1,j · · · −K1,n

...
−Kn,1 · · · ∑

j 6=n Kn,j







L is the Laplacian of the network. Note that Ki,j = 0 if j /∈ Ni.
The above equation can be rewritten

ẋ = F(x, t) − Lx (3)

Consider the vector 1 = (1, . . . , 1)⊤ and let span(1) be its span subspace. Note
that x ∈ span(1) if and only if x1 = . . . = xn, which means that the individual
elements are in synchrony. One can also easily check that span(1) is invariant
by F − L. Let V⊤

g denote an orthogonal projection on span(1)⊥ as in section 1.
Using theorem 1 we can deduce the following proposition

Proposition 1 Regardless of initial conditions, all the elements within a generally
coupled network will reach synchrony if

• λmax(Jfs) is upper-bounded for the isolated dynamics f .

• V⊤
g LsVg is sufficiently positive definite. More precisely

λmin(V⊤
g LsVg) > sup

x,t
λmax(Jfs(x, t))

A few remarks :

Multidimensional case : the proof is straightforward, it suffices to take the
Kronecker product with Id where d is the dimension of each element.

Semi-definite couplings : see [12].

Nonlinear couplings : see [12].
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Slightly more general linear couplings : as in [13] we consider the following
dynamics

{

ẋ1 = f1(x1, t) + A⊤(Bx2 − Ax1)
ẋ2 = f2(x2, t) + B⊤(Ax1 − Bx2)

(4)

Here x1 and x2 could be of different dimensions, say n and m. The Jacobian
of the overall system is

(

∂f1

∂x1

∂f2

∂x2

)

−
(

A⊤A −A⊤B
−B⊤A B⊤B

)

Denote by L the second matrix in the above formula. L is symmetric and
positive semi-definite, indeed

(

x1 x2

)

L

(

x1

x2

)

= x⊤
1 A⊤Ax1 − x⊤

2 B⊤Ax1 − x⊤
1 A⊤Bx2 + x⊤

2 B⊤Bx2

Let z = Ax1 −Bx2, then the above quantity equals z⊤z ≥ 0. Consider now
the linear subspace of R

n × R
m defined by

M =

{(

x1

x2

)

∈ R
n × R

m : Ax1 − Bx2 = 0

}

Consider as above a projection V⊤ on M⊥, then V⊤LV is positive definite.
If we assume furthermore that M is an invariant set of f and that the
individual dynamics are upper-bounded, then strong enough couplings could
ensure exponential convergence to the manifold M.

Two remarks :

• If each subsystem is contracting, then the whole system is also con-
tracting since L is positive.

• If the subsystems have the same dimension and if A = B are non
singular, then we are in presence of classical diffusion couplings.

2.2 Influence of network topology

In this section, we discuss the influence of the network topology on synchronization
behaviour. Since the results stated in the previous section are quite general,
they can be used to address various cases. Indeed, we show in the sequel that
many network configuration encountered in the literature can be easily understood
within our general framework.
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• Symmetric connected networks : in this case, L has a unique zero eigenvalue
corresponding to the eigenspace span(1). Thus V⊤LV is positive definite
and strong enough coupling gain could ensure exponential convergence to
span(1), i.e. synchronization occurs.

• Balanced networks : in [9], the authors consider balanced networks. Note
that the symmetric part of the Laplacian of a balanced network is simply
the Laplacian of a certain symmetric network.

• Ring networks or poursuite strategy : in [7] the authors consider the pour-
suite strategy to solve the rendez-vous problem. The underlying network is
a ring, which is a particular case of balanced networks.

• Networks with globally reachable node :

• Leader-followers networks :

• Switching topology : the problem of switching topologies has already been
adressed in previous works [12], [5], [9], [7]. Here, we believe to shed a new
light by giving a simpler and more intuitive proof.

2.3 Partial synchronization

We study in this section partial synchronization. Partial synchronization occurs
when xi = xj for some states i, j but all states are not necessarily equal. Note
that partial synchronization is pervasive if the network is disconnected, but here,
we investigate partial synchronization in the more interesting case in which the
network is connected.

In the sequel, we develop the original ideas found in [10]. The assumptions, the
results and sometimes even the methodology are roughly the same as in [10]. But
by using the concise yet powerful contraction theory rather than direct Lyapunov
method, we hope to shed a new light on this interesting phenomenon.

Recall that if the network possesses certain symmetry, this symmetry must be
present in the Laplacian matrix L. Indeed, consider a permutation matrix Πσ

associated with some permutation σ ∈ Sn. We know that Πσ commutes with L
if and only if the network is globally invariant by σ. In such a case, Ker(In −Πσ)
is (F − L)-invariant. Indeed, let x ∈ Ker(In − Πσ), i.e. (In − Πσ)x = 0, we have

(In − Πσ)(F(x, t) − Lx) = F(x, t) − ΠσF(x, t) + Lx − ΠσLx

Since Πσ is a permutation matrix, we have ΠσF(x, t) = F(Πσx, t) = F(x, t).
Thus the first two terms annihilate each other. So do the last two terms since we
have assumed that Πσ commuted with L. Hence F(x, t) − Lx ∈ Ker(In − Πσ),
q.e.d.

Let V⊤
σ denote an orthogonal projection on Ker(In − Πσ)⊥ as in section 1.

Using once again theorem 1, we can state the following proposition
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Proposition 2 Assume that the network is invariant by σ. Let C1 ◦ . . . ◦ Ck be
the decomposition of σ into disjoint cycles. Then, regardless of initial conditions,
all the elements within each Ci will synchronize together if

• λmax(Jfs) is upper-bounded for the isolated dynamics f .

• V⊤
σ LsVσ is sufficiently positive definite. More precisely

λmin(V⊤
σ LsVσ) > sup

x,t
λmax(Jfs(x, t))

Proof : Clearly, Ker(In − Πσ) =
⋂k

i=1
{xj1 = . . . = xjp

: Ci = (j1, . . . , jp)}. Us-
ing theorem 1, we can show that all trajectory converge exponentially to Ker(In−
Πσ). Thus, asymptotically, ∀i : xj1 = . . . = xjp

where Ci = (j1, . . . , jp). �

Remark : This proposition may be regarded as an extension of proposition 1.
Indeed, for all σ, Ker(In − Πσ) contains span(1).

Let us go further with this analysis. Recall that in order to construct Vσ, we
had to choose n − p orthonormal vectors in Ker(In − Πσ)⊥ to form its columns.
Since span(1)⊥ ⊃ Ker(In −Πσ)⊥, we can complete those n− p vectors with p− 1
other vectors to form the columns of Vg. Hence V⊤

σ LsVσ is a principal submatrix
of V⊤

g LsVg and therefore λmin(V⊤
σ LsVσ) ≥ λmin(V⊤

g LsVg).

In some cases, one might have λmin(V⊤
g LsVg) < supx λmax(Jfs(x)) < λmin(V⊤

σ LsVσ).
Then, according to propositions 1 and 2, the system does not necessarily synchro-
nize globally, but it does partially.

Example 1 (Partial synchronization of coupled Lorentz oscillators)

3 Further extensions of linear attractors

3.1 Affine attractors

A first, straightforward extension of linear attractors is affine attractors. Suppose
we would like to show that x converges asymptotically to an affine subspace c+M,
where c is a constant vector and M is a linear subspace. Let x̃ = x − c, so that
x̃ converges to M if and only if x converges to c + M. Next, x̃ verifies

˙̃x = f(x̃ + c, t)

Using theorem 1, it suffices to show that M is f(· + c, t)-invariant (i.e. :
∀m ∈ M,∀t > 0 : f(m + c, t) ∈ M, and that V⊤JfsV is uniformly negative
definite.

Example 2 (Formation stabilization and tracking)
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As in [8] we consider the problem of formation stabilization. Assume that
the interesting pattern is given by a vector c = (c⊤1 , . . . , c⊤n )⊤. For example,
a square with side length a and aligned with the axis may be described by
(0, 0, 0, a, a, 0, a, a)⊤ (see figure 1). Let c′ = Lc. Keeping the same notations
as in section 2.1 we consider now the system

ẋ = F(x− c) + c′ − Lx (5)

(0,0)

(0,a) (a,a)

(a,0)

Figure 1: Description of a square formation

For m ∈ span(1), we have F(m+c−c)+c′−L(m+c) = F(m)+Lm+Lc−c′ =
F(m) ∈ span(1).

Thus c + span(1) is an invariant set of system 5. We can then conclude that,
under the same assumptions of contractivity as in section 2.1, all trajectories
converge exponentially to a trajectory of the form







a(t) + c1

...
a(t) + cn







which means that the formation described by c is achieved exponentially fast.
One interesting feature is that a(t) might be time-varying. In fact, a(t) is the

nominal trajectory driven by the isolated dynamics. Thus, after a transient period
during which they strive to achieve the formation, the individual dynamics move
collectively while maintaining the formation, even in presence of pertubations.

Yet another interesting feature is that c might be time-varying too. Indeed, if
the time constant of c(t) is small enough (with respect to the smallest eigenvalue of
the contracting quantity), the overall system can evolve and track the time-varying
formation c(t).

Example 3 (Kuramoto model)

Consider the Kuramoto model of nonidentical and nonlinearly-coupled oscil-
lators of the form

θ̇i = ωi +

n
∑

j=1

kij sin(θj − θi)
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Once again, let M = span(1). We have to look for a c = (c1, . . . , cn), such
that ∀m ∈ M : f(m + c) ∈ M, i.e. :

ω1 +

n
∑

j=1

k1j sin(cj − c1) = . . . = ωn +

n
∑

j=1

knj sin(cj − cn)

This is a system of n − 1 equations and n variables, which has solutions as
soon as the (kij)ij are large enough.

Next, we compute the Jacobian of the system :

J =







−∑n
j=2

k1j cos(θj − θi) · · · k1n cos(θn − θ1)
...

kn1 cos(θ1 − θn) · · · −∑n
j=2

knj cos(θj − θn)







If, similarly to [4], we make the stupid assumption that ∀i : |θi| < π
4

uniformly,
then all the cos(θi − θj) will be strictly positive. In such case, using the same
proof as in section 2.1 we can show that for strong enough couplings, V⊤JsV is
negative definite.

Example 4 (Threshold-linear networks)

In [1] the authors consider threshold-linear networks which are described by
the following dynamics

ẋ = [Wx + b]+ − x (6)

Using theorem 1 we can show the following proposition

Proposition 3 Assume that

• W is nonnegative (i.e. all couplings are excitatory)

• I − W is positive semi-definite (denote by M its null space)

• b is in range space of I − W (let c be a vector such that (I −W)c = b)

Then all trajectories converge exponentially to the affine vector space c + M.

First we need a useful lemma

Lemma 1 Assume that

• W is nonnegative and

• I − W is positive semi-definite

Then I + W, and all their principle submatrices are positive semi-definite.
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Proof : Since λi(I − W) = 1 − λi(W), we have

∀ i = 1, . . . , n : λi(W) ≤ 1 with λmax(W) = 1

According to extended Perron’s theorem [2](page 503), if W is nonnegative,
then its spectral radius ρ(W) is an eigenvalue of W, which implies that ρ(W) = 1
in this case. Thus λi(I + W) = 1 + λi(W)e0, i.e., I +W is positive semi-definite.
Furthermore, all submatrices of I−W and I+W are positive semi-definite, which
can be concluded from Interlacing Theorem. �

Proof of proposition 3 : Actually, we shall only consider trajectories with
initial position laying in the nonnegative orthant as in [1].

First, let m be any element of M such that m + c is nonnegative. We have

[W(m+c)+b]+−(m+c) = [Wm+(Wc+b)]+−(m+c) = [m+c]+−m+c = 0

�

3.2 Nonlinear attractors

In this section, we deal with the more tricky case of nonlinear attractive manifolds.

3.2.1 Hypersurface attractors

M is now a differentiable manifold of codimension 1, or a hypersurface if you
prefer. Assume that there exists a constant vector u which is never tangent to M.
We can thus define a projection on M with respect to u (see figure 2). Note that
Jr(x) is constant along the dashed line and that it is orthogonal to the manifold.
Let z = r(x). Taking the derivative of this equality with respect to time yields

ż = Jr(x)ẋ = Jr(x)f(uz + p(x), t)

As in section 1, we construct the auxiliary system

ẏ = Jr(x)f(uy + p(x), t) (7)

By construction y(t) = z(t) is a particular solution of system 7. Let us show
that y(t) = 0 is another particular solution. Indeed, since M is f -invariant,
f(p(x), t) must be in the tangent hyperplane to M at p(x). But Jr(x) is orthogonal
to the manifold as we have noticed, thus Jr(x)f(p(x), t) = 0.

As a consequence, if system 7 is contracting with respect to y, z(t) converges
exponentially to 0, i.e. x converges exponentially to the manifold M. To check the
contraction condition, one has to compute the Jacobian of system 7 with respect
to y, which is Jr(x)Jf (x, t)u.

A further step is to relax the condition of u being constant. Indeed, the only
conditions we need are
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x

J (  )xr
x

x

(  )p

(  )r
u

Figure 2: Projection on a hypersurface

1. p(x) can be defined without ambiguity

2. Jr(x) is orthogonal to the manifold at p(x) for all x in the equivalence class
of p(x).

These conditions are verified in diverse constructions, for instance the “orthog-
onal” projection on a hypersphere (see figure 3).

Remark : The analogy with the linear case is straightforward. In the linear
case, Jr(x) is V⊤ itself, uz stands for Vz and p(x) replaces UU⊤x.

Example 5 (Andronov-Hopf oscillator)

In [3], the author considers the oscillator of Andronov-Hopf, whose dynamics is
described by

ȧ = a − b − a3 − ab2

ḃ = a + b − b3 − ba2
(8)

First, observe that the unit circle is an invariant set for the system. Next, let

ρ =
√

a2 + b2, then u =

(

a/ρ
b/ρ

)

, r = ρ − 1, Jr =

(

a/ρ
b/ρ

)

The Jacobian of the system is

(

1 − 3a2 − b2 −2ab − 1
−2ab + 1 1 − 3b2 − a2

)
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x

x

x
J (  )xr

(  )r

(  )p

u

Figure 3: Projection on a hypersphere

Such that JrJfu = 1 − 3ρ2. Thus, for any η > 1/3, Cη = {(a, b) ∈ R
2 :

a2 + b2 ≥ η} is a contracting region. It is also easy to check that any trajectory
starting in Cη remains in Cη. One can then conclude that, any trajectory starting
outside of the disk {(a, b) ∈ R

2 : a2 + b2 ≤ 1/3} converges exponentially to the
unit circle.

3.2.2 Nonlinear attractive manifolds of arbitrary dimension

Now, it is easy to extend the hypersurface attractor to the more general case
of a nonlinear attractive manifold of arbitrary dimension. Assume that M is a
manifold of codimension p. We define an “orthogonal” linear space of dimension
p by finding a set of p independant vectors which are never tangent to M (or we
can proceed more generally as in the case of the hypersphere). See figure 4.

3.3 Linear attractors in complex vector spaces and phase-locking

In [12] the authors derive conditions that ensure synchronization or anti-synchro-
nization of two dynamical systems coupled together. One can view these phenom-
ena as special cases of theorem 1 where the invariant linear subspace is the diagonal
subspace M = {x1 = x2} or the the anti-diagonal subspace M = {x1 = −x2},
respectively.

Contraction theory can be extended straightforwardly to complex vector spaces
[6]. Instead of computing the symmetric part of the Jacobian matrix, one has now
to deal with its Hermitian part 1

2
(A + A∗).
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Figure 4: Projection on a manifold of arbitrary dimension
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