Isospectrality, regulators and torsion of Vignéras manifolds

Aurel Page joint work with Alex Bartel

02/09/2024 Explicit Methods in Number Theory Oberwolfach

Inria Bordeaux / IMB

Aurel Page Isospectrality, regulators and torsion of Vignéras manifolds

・ 同 ト ・ ヨ ト ・ ヨ ト

æ

Isospectral manifolds

Aurel Page Isospectrality, regulators and torsion of Vignéras manifolds

ヘロト ヘワト ヘビト ヘビト

ъ

Isospectral manifolds

Vignéras's construction Isospectrality, regulators and torsion

A famous question

Mark Kac 1966: "Can you hear the shape of a drum?" Vibrating frequencies \longleftrightarrow eigenvalues of Laplace operator

$$\Delta = \frac{\partial^2}{\partial^2 x} + \frac{\partial^2}{\partial^2 y}$$

E >

A mathematical question

In this talk: manifold M = closed connected orientable Riemannian manifold.

 \rightarrow Laplace operator ∆ acting on space $\Omega^i(M)$ of *i*-forms, with discrete spectrum.

Definition

Two manifolds *M* and *N* are **isospectral** if for all *i*, the spectra of Δ on $\Omega^{i}(M)$ and $\Omega^{i}(N)$ agree with multiplicity.

Question: isospectral \implies isometric? **Answer**: no in all dimensions ≥ 2 (Vignéras 1978).

A mathematical question

In this talk: manifold M = closed connected orientable Riemannian orbifold.

 \rightarrow Laplace operator ∆ acting on space $\Omega^i(M)$ of *i*-forms, with discrete spectrum.

Definition

Two manifolds *M* and *N* are **isospectral** if for all *i*, the spectra of Δ on $\Omega^{i}(M)$ and $\Omega^{i}(N)$ agree with multiplicity.

Question: isospectral \implies isometric? **Answer**: no in all dimensions ≥ 2 (Vignéras 1978).

A refined question

Question: which invariants of Riemannian manifolds are isospectral invariants?

- dimension dim M: yes
- volume Vol(M): yes
- Betti numbers rk $H_i(M)$: yes
- ring H[•](M): no (Lauret–Miatello–Rossetti 2013)
- torsion homology $\#H_i(M)[p^{\infty}]$: no $\forall p$ (Bartel–P. 2016).

Special values of zeta functions

The spectral zeta function

$$\zeta_{\mathcal{M},i}(\boldsymbol{s}) = \sum_{\lambda > 0} (\dim \Omega^i(\boldsymbol{M})_{\Delta = \lambda}) \lambda^{-\boldsymbol{s}} \text{ for } \Re(\boldsymbol{s}) \gg 0$$

has a special value formula (Cheeger, Müller 1978):

$$\prod_{i=0}^{\dim M} \exp(\zeta'_{M,i}(0))^{i(-1)^i} = \prod_{i=0}^{\dim M} \left(\frac{\#H_i(M)_{\operatorname{tors}}}{\operatorname{Reg}_i(M)}\right)^{(-1)^i}$$

where

$$\mathsf{Reg}_i(M) = \mathsf{Vol}\left(rac{H_i(M,\mathbb{R})}{H_i(M)}
ight).$$

Example: $\operatorname{Reg}_0(M) = \operatorname{Vol}(M)^{-1/2}$, $\operatorname{Reg}_{\dim M-i}(M) = \operatorname{Reg}_i(M)^{-1}$.

(日本) (日本) (日本)

3

Special values of zeta functions

Example: if two 3-manifolds M and N are isospectral, then

$$\frac{\#H_1(M)_{\mathrm{tors}}}{\mathrm{Reg}_1(M)^2} = \frac{\#H_1(N)_{\mathrm{tors}}}{\mathrm{Reg}_1(N)^2},$$

and in particular

$$\frac{\operatorname{\mathsf{Reg}}_1(M)^2}{\operatorname{\mathsf{Reg}}_1(N)^2} = \frac{\#H_1(M)_{\operatorname{tors}}}{\#H_1(N)_{\operatorname{tors}}} \in \mathbb{Q}^{\times}$$

Questions:

- Is this rationality true more generally?
- What primes can enter these rational numbers?
- At which primes can $H_i(M)_{\text{tors}}$ and $H_i(N)_{\text{tors}}$ differ?

・ 同 ト ・ ヨ ト ・ ヨ ト

Isospectral manifolds

Vignéras's construction Isospectrality, regulators and torsion

Two constructions of isospectral manifolds

Marie-France Vignéras 1978: **number theory** (arithmetic groups)

Toshikazu Sunada 1983: **group theory** (finite group *G*) Bad primes = divisors of #G.

Vignéras's construction

Aurel Page Isospectrality, regulators and torsion of Vignéras manifolds

Arithmetic manifolds

 ${\sf GL}_2(\mathbb{C})$ acts on hyperbolic 3-space $\mathcal{H}^3={\sf GL}_2(\mathbb{C})/\,{\sf U}_2(\mathbb{C})\mathbb{C}^{\times}.$

Let F be a field¹. A **quaternion algebra** over F is

$$A = \left(\frac{a,b}{F}\right) = F + Fi + Fj + Fij,$$

where
$$i^2 = a \in F^{\times}$$
, $j^2 = b \in F^{\times}$ and $ij = -ji$.

Pick A/F a division quaternion algebra over a number field such that

$$\mathbb{R} \otimes A \cong M_2(\mathbb{C}) \times \left(\frac{-1,-1}{\mathbb{R}}\right)^m$$

Let $\mathcal{O} \subset A$ be an **order** (subring with $\mathbb{Q} \otimes_{\mathbb{Z}} \mathcal{O} \cong A$). Then $M(\mathcal{O}) = \mathcal{O}^{\times} \setminus \mathcal{H}^3$ is a hyperbolic 3-manifold.

¹of characteristic not 2

ヘロン 人間 とくほ とくほ とう

= 990

Vignéras's theorem

Maximal order: maximal for inclusion.

- Always exists.
- Not unique: $\mathcal{O} \rightsquigarrow x\mathcal{O}x^{-1}$ for $x \in A^{\times}$.
- Finite number up to conjugation.

Theorem (Vignéras)

If \mathcal{O}_1 and \mathcal{O}_2 are maximal orders **and extra conditions hold**, then $M(\mathcal{O}_1)$ and $M(\mathcal{O}_2)$ are isospectral.

Representation equivalence

The proof uses the **trace formula** and in fact proves the stronger fact that there is an isomorphism

$$L^2(\mathcal{O}_1^{ imes} ackslash \operatorname{GL}_2(\mathbb{C})) \cong L^2(\mathcal{O}_2^{ imes} ackslash \operatorname{GL}_2(\mathbb{C}))$$

of unitary representations of $GL_2(\mathbb{C})$.

When such an isomorphism holds, we say that $M(\mathcal{O}_1)$ and $M(\mathcal{O}_2)$ are **representation-equivalent**.

Representation equivalence

The proof uses the **trace formula** and in fact proves the stronger fact that there is an isomorphism

$$L^2(\mathcal{O}_1^{ imes} ackslash \operatorname{GL}_2(\mathbb{C})) \cong L^2(\mathcal{O}_2^{ imes} ackslash \operatorname{GL}_2(\mathbb{C}))$$

of unitary representations of $GL_2(\mathbb{C})$.

When such an isomorphism holds, we say that $M(\mathcal{O}_1)$ and $M(\mathcal{O}_2)$ are **representation-equivalent**.

Theorem (DeTurck–Gordon 1989)

Representation-equivalent \implies isospectral.

Dimension 2: rigidity

Question (Pesce 1995): how much stronger is representation-equivalence compared to isospectrality?

Theorem (Doyle–Rossetti 2011)

If two hyperbolic manifolds of dimension 2 are isospectral, then they are representation-equivalent.

Conjecture (Doyle-Rossetti 2011)

If two hyperbolic manifolds are isospectral, then they are representation-equivalent.

Dimension 3: an exotic pair

Theorem (Bartel-P.-PARI/GP)

There exists a pair of isospectral hyperbolic 3-manifolds with volume 0.251 ... that are **isospectral**, but **not representation-equivalent**.

Vignéras's construction with $F = \mathbb{Q}(\sqrt{-10 - 14\sqrt{5}})$, the unique *A* ramified exactly at the real places, and maximal orders.

Smallest possible volume? Previous record was 2.83... (Linowitz–Voight 2014) and Sunada's construction cannot produce smaller ones.

くりょう 小田 マイボット 山下 シックション

Isospectrality, regulators and torsion

Aurel Page Isospectrality, regulators and torsion of Vignéras manifolds

Theorem template

Theorem $\langle * \rangle$ (Bartel–P.)

At least one of the following two statements is true:

- there exists a number field L in an a-priori finite list and a certain Hecke character of L;
- 2 $M(\mathcal{O}_1)$ and $M(\mathcal{O}_2)$ are *-isospectral.

For each instance of *, existence can be checked using PARI/GP's new Hecke characters package!

Theorem template

Theorem $\langle * \rangle$ (Bartel–P.)

At least one of the following two statements is true:

- there exists a number field L in an a-priori finite list and a *-shady character of L;
- 2 $M(\mathcal{O}_1)$ and $M(\mathcal{O}_2)$ are *-isospectral.

For each instance of *, existence can be checked using PARI/GP's new Hecke characters package!

Instantiating the template

- * = representation-equivalence ↔ *-shady characters = certain (possibly transcendental) Hecke characters.
- * = rational regulator ratios ↔ *-shady characters = certain algebraic Hecke characters.
- * = same regulators and torsion at p ↔ *-shady characters = certain mod p Hecke characters (assuming a conjecture about mod p Galois representations attached to torsion homology).

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Sketch of proof

• Use Hecke operators

$$\mathcal{F}(\mathcal{O}_1) \to \mathcal{F}(\mathcal{O}_2)$$

- They are sums of $T_{\mathfrak{p}}$ for all \mathfrak{p} inert in some quadratic L/F.
- We would like an invertible one.
- If none is invertible, by dévissage there is an eigenvector f such that a_p(f) = 0 for all p inert in L/F, i.e.

$$a_{\mathfrak{p}}(f) = \chi(\mathfrak{p})a_{\mathfrak{p}}(f)$$
 for all \mathfrak{p} .

くロト (過) (目) (日)

Sketch of proof

• Use Hecke operators

$$\mathcal{F}(\mathcal{O}_1) \to \mathcal{F}(\mathcal{O}_2)$$

- They are sums of $T_{\mathfrak{p}}$ for all \mathfrak{p} inert in some quadratic L/F.
- We would like an invertible one.
- If none is invertible, by dévissage there is an eigenvector f such that a_p(f) = 0 for all p inert in L/F, i.e.

$$a_{\mathfrak{p}}(f) = \chi(\mathfrak{p})a_{\mathfrak{p}}(f)$$
 for all \mathfrak{p} .

- This implies that *f* is "CM" and comes from some ψ .
- ρ irreducible 2-dimensional representation of a group G: $\rho \cong \rho \otimes \chi \iff \rho \cong \operatorname{ind}_{G/\ker\chi} \psi.$

Conclusion

Thanks!

arXiv 2407.07240

Aurel Page Isospectrality, regulators and torsion of Vignéras manifolds

ヘロト ヘワト ヘビト ヘビト

ъ