Torsion homology and regulators of Vignéras isospectral manifolds

Aurel Page joint work with Alex Bartel

17/05/2022 Arithmetic Groups and 3-Manifolds Bonn

Inria Bordeaux / IMB

Aurel Page Torsion homology of Vignéras isospectral manifolds

Isospectral manifolds

Aurel Page Torsion homology of Vignéras isospectral manifolds

ヘロト ヘワト ヘビト ヘビト

Isospectral manifolds

Mark Kac '60: "Can you hear the shape of a drum?"

Formally:

M compact Riemannian orientable manifold

→ Laplace operator Δ acting on *k*-forms $\Omega^k(M)$ with discrete spectrum.

M and *N* are **isospectral** if for all *k*, the Laplace spectrum with multiplicity is the same on $\Omega^k(M)$ and $\Omega^k(N)$.

Question: isospectral \implies isometric?

Answer: **no** in all dimensions \geq 2 (Vignéras '70, Sunada '80).

ヘロン 人間 とくほ とくほ とう

Isospectral invariants

More general question: which invariants of Riemannian manifolds are **isospectral invariants**?

- dimension $d = \dim(M)$;
- volume Vol(M);
- Betti numbers $b_k = \operatorname{rk} H_k(M)$;
- spectral zeta function

$$\zeta_{M,k}(s) = \sum_{\lambda>0} (\dim \Omega^k(M)_{\Delta=\lambda}) \lambda^{-s}$$

for $\Re(s) \gg 0$.

ヘロト ヘアト ヘビト ヘビト

3

The Cheeger–Müeller formula

We have

$$\prod_{k=0}^{d} \exp(\zeta'_{M,k}(0))^{k(-1)^{k}} = \prod_{k=0}^{d} \left(\frac{|H_{k}(M)_{\text{tors}}|}{\operatorname{Reg}_{k}(M)} \right)^{(-1)^{k}}$$

where

$$\operatorname{\mathsf{Reg}}_k(M) = \operatorname{\mathsf{Vol}}\left(rac{H_k(M,\mathbb{R})}{H_k(M)}
ight).$$

Example: $\text{Reg}_0(M) = \text{Vol}(M)^{-1/2}$, $\text{Reg}_{d-i}(M) = \text{Reg}_i(M)^{-1}$.

イロト 不得 とくほ とくほ とうほ

Torsion and regulators

If M and N are isospectral, then

•
$$\operatorname{Reg}_k(M) = \operatorname{Reg}_k(N)$$
? No.

•
$$H_k(M)_{\mathrm{tors}} \cong H_k(N)_{\mathrm{tors}}$$
? No.

$$\prod_{k=0}^{d} \left(\frac{\operatorname{Reg}_{k}(M)}{\operatorname{Reg}_{k}(N)}\right)^{(-1)^{k}} = \prod_{k=0}^{d} \left(\frac{|H_{k}(M)_{\operatorname{tors}}|}{|H_{k}(N)_{\operatorname{tors}}|}\right)^{(-1)^{k}} \in \mathbb{Q}^{\times}.$$

• $\operatorname{Reg}_k(M) / \operatorname{Reg}_k(N) \in \mathbb{Q}^{\times}$?

• At which primes can torsion or regulators differ?

ヘロト 人間 ト ヘヨト ヘヨト

Constructions of Sunada and Vignéras

Can we find a finite set of **bad primes**, outside of which torsion and regulators must be the same?

Sunada's construction involves a finite group *G*: bad primes $\{p \text{ dividing } |G|\}$.

Vignéras's construction is arithmetic: bad primes?

ヘロト ヘアト ヘビト ヘビト

Vignéras's construction

Aurel Page Torsion homology of Vignéras isospectral manifolds

イロト イポト イヨト イヨト

Quaternion algebras

Let K be a number field. A quaternion algebra over K is

$$A = K + Ki + Kj + Kij,$$

where $i^2 = a \in K^{\times}$, $j^2 = b \in K^{\times}$ and ij = -ji.

- For $\sigma \colon K \hookrightarrow \mathbb{C}$, we have $A \otimes_{K,\sigma} \mathbb{C} \cong M_2(\mathbb{C})$.
- For σ: K → ℝ, say σ is unramified if A ⊗_{K,σ} ℝ ≃ M₂(ℝ) and ramified otherwise.
- For p a prime of K, say p is unramified if A ⊗_K K_p ≅ M₂(K_p) and ramified otherwise.

Assume (for simplicity) that K has exactly one nonreal complex embedding and that all real embeddings of K are ramified in A.

<ロト < 同ト < 回ト < 回ト = 三

Maximal orders

Order \mathcal{O} in A: subring, finitely rank over \mathbb{Z} , $\mathcal{KO} = A$.

Example: $\mathcal{O} = \mathbb{Z}_{\mathcal{K}} + \mathbb{Z}_{\mathcal{K}}i + \mathbb{Z}_{\mathcal{K}}j + \mathbb{Z}_{\mathcal{K}}ij$ if $a, b \in \mathbb{Z}_{\mathcal{K}}$.

Maximal order: maximal for inclusion.

- Not unique: $\mathcal{O} \rightsquigarrow x\mathcal{O}x^{-1}$ for $x \in A^{\times}$.
- Finite number up to conjugation.
- Conjugacy classes of maximal orders are in bijection with

$$\mathcal{C} = Cl_{\mathcal{K}}(\infty)/\langle \mathfrak{a}^2, \mathfrak{p} \text{ ramified} \rangle.$$

Assume (for simplicity) that |C| = 2: corresponds to a quadratic extension L/K.

イロト 不得 とくほ とくほ とうほ

Vignéras's theorem

 $PGL_2(\mathbb{C})$ acts on hyperbolic 3-space \mathcal{H}^3 . Let $\Gamma(\mathcal{O})$ be the image of \mathcal{O}^{\times} in $PGL_2(\mathbb{C})$, and

 $M(\mathcal{O}) = \Gamma(\mathcal{O}) \setminus \mathcal{H}^3$

of finite volume, compact iff $A \ncong M_2(K)$.

Theorem (Vignéras)

If \mathcal{O} and \mathcal{O}' are maximal orders, then $M(\mathcal{O})$ and $M(\mathcal{O}')$ are isospectral.

イロト イポト イヨト イヨト 一日

Vignéras's theorem

 $PGL_2(\mathbb{C})$ acts on hyperbolic 3-space \mathcal{H}^3 . Let $\Gamma(\mathcal{O})$ be the image of \mathcal{O}^{\times} in $PGL_2(\mathbb{C})$, and

 $M(\mathcal{O}) = \Gamma(\mathcal{O}) \setminus \mathcal{H}^3$

of finite volume, compact iff $A \cong M_2(K)$.

Theorem (Vignéras)

If \mathcal{O} and \mathcal{O}' are **non-selective** maximal orders, then $M(\mathcal{O})$ and $M(\mathcal{O}')$ are isospectral.

イロト イポト イヨト イヨト 一日

Bad primes, an example

Does the action of Hecke operators control the bad primes?

Field: $K = \mathbb{Q}(\alpha)$ where $\alpha^5 - 2\alpha^4 - 4\alpha^3 + 8\alpha^2 + 3\alpha - 5 = 0$. 3 real embeddings, 1 pair of conjugate embeddings.

Algebra: a = -4, $b = -24\alpha^4 - 12\alpha^3 + 80\alpha^2 + 24\alpha - 71$. A ramified at $\mathfrak{p}_7 = 7\mathbb{Z}_K + (\alpha + 4)\mathbb{Z}_K$ and all real embeddings. |C| = 2, consider \mathcal{O} and \mathcal{O}' non-conjugate.

 $\begin{array}{l} \operatorname{Vol}(\mathcal{M}(\mathcal{O})) = \operatorname{Vol}(\mathcal{M}(\mathcal{O}')) \approx 22.876. \\ \mathcal{H}_1(\mathcal{M}(\mathcal{O})) = \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/8\mathbb{Z} \oplus \mathbb{Z}/11\mathbb{Z} \oplus \mathbb{Z}. \\ \mathcal{H}_1(\mathcal{M}(\mathcal{O}')) = \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/8\mathbb{Z} \oplus \mathbb{Z}. \end{array} \\ \begin{array}{l} \operatorname{Field} \text{ of Hecke eigenvalues: } \mathbb{Q}(\sqrt{11}). \end{array} \end{array}$

・ 同 ト ・ ヨ ト ・ ヨ ト

Rationality of regulators and bad primes

Aurel Page Torsion homology of Vignéras isospectral manifolds

イロト イポト イヨト イヨ

Hecke characters

Special case: characters of ray class groups (finite order)

 $\psi\colon \operatorname{Cl}_{\mathcal{K}}(\mathfrak{M})\to \mathbb{C}^{\times}.$

More generally, idèle class group characters (finite or infinite order)

$$\psi\colon \mathbb{A}_{\mathbf{K}}^{\times}/\mathbf{K}^{\times} \to \mathbb{C}^{\times}.$$

They have a conductor (ideal of *K*) and parameters $m_{\sigma} \in \mathbb{Z}$ and $\varphi_{\sigma} \in \mathbb{R}$ for $\sigma \colon K \hookrightarrow \mathbb{C}$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Isospectrality condition

Theorem (Bartel–P.)

 $M = M(\mathcal{O})$ and $M' = M(\mathcal{O}')$ are isospectral, except possibly if no prime ideal of K ramifies in A and L/K is totally complex. In addition, $\Omega^k(M)_{\Delta=\lambda} \cong \Omega^k(M')_{\Delta=\lambda}$, except possibly if there exists a Hecke character ψ of L satisfying a condition depending on k and λ .

A similar condition appears in work of Rajan, using the Labesse–Langlands multiplicity formula.

<ロト < 同ト < 回ト < 回ト = 三

Regulator rationality condition

Theorem (Bartel-P.)

$$\left(\frac{\operatorname{\mathsf{Reg}}_k(M)}{\operatorname{\mathsf{Reg}}_k(M')}
ight)^2\in\mathbb{Q}^{ imes},$$

except possibly if there exists a Hecke character ψ of L of conductor 1 such that

•
$$m_{\sigma} = \pm 1$$
 and $\varphi_{\sigma} = 0$ for σ real on K, and

• $m_{\sigma} = -m_{\sigma'} = \pm 1$ and $\varphi_{\sigma} = \varphi_{\sigma'} = 0$ for $\sigma \neq \sigma'$ restricting to the complex embedding of *K*.

This condition is weaker than the one for isospectrality!

ヘロン 人間 とくほ とくほ とう

Bad primes

Theorem (Bartel-P.)

Let p > 2 be a prime. Assume a "standard" conjecture on Galois representations attached to mod p cohomology classes.

$$v_{\rho}\left(rac{\operatorname{Reg}_{k}(M)}{\operatorname{Reg}_{k}(M')}
ight) = 0 ext{ and } H_{k}(M)[p^{\infty}] \cong H_{k}(M')[p^{\infty}]$$

except possibly if there exists a mod p Hecke character

$$\psi\colon\operatorname{Cl}_L(p\mathbb{Z}_L)\to\overline{\mathbb{F}}_p^{\times}$$

satisfying certain conditions.

ヘロン 人間 とくほ とくほ とう

Refinement: Hecke action

There is a Hecke algebra acting on $H_k(M)$ and $H_k(M')$.

Consider **maximal ideals** \mathfrak{m} of the Hecke algebra (essentially, the data of an eigenvalue in $\overline{\mathbb{F}}_p$ for each Hecke operator).

We have a decomposition

$$H_k(M,\mathbb{Z}_p)\cong \bigoplus_{\mathfrak{m}} H_k(M)_{\mathfrak{m}}.$$

We would like to understand the situation separately in each summand.

ヘロン 人間 とくほ とくほ とう

Calegari–Venkatesh

Calegari and Venkatesh studied an analogous situation, Jacquet–Langlands pairs of manifolds: not isospectral, but closely related spectrum.

Conjecture (Calegari–Venkatesh)

If (M, M') is a Jacquet–Langlands pair and \mathfrak{m} is "non-Eisenstein", then

 $|H_k(M)^{\mathrm{new}}_{\mathfrak{m}}| = |H_k(M')^{\mathrm{new}}_{\mathfrak{m}}|.$

Proved some versions without the Hecke action.

ヘロン 人間 とくほ とくほ とう

Bad primes with Hecke action

We can define a notion of
$$\left(\frac{\operatorname{Reg}_k(M)}{\operatorname{Reg}_k(M')}\right)_{\mathfrak{m}} \in \mathbb{Q}_p^{\times}/(\mathbb{Z}_p^{\times})^2$$
, such that
 $\frac{\operatorname{Reg}_k(M)}{\operatorname{Reg}_k(M')} = \prod_{\mathfrak{m}} \left(\frac{\operatorname{Reg}_k(M)}{\operatorname{Reg}_k(M')}\right)_{\mathfrak{m}} \mod (\mathbb{Z}_p^{\times})^2.$

Theorem (Bartel-P.)

Let p > 2 be a prime. If \mathfrak{m} is "non-CM", then

$$H_k(M)_{\mathfrak{m}}\cong H_k(M')_{\mathfrak{m}} ext{ and } \Big(rac{\operatorname{\mathsf{Reg}}_k(M)}{\operatorname{\mathsf{Reg}}_k(M')}\Big)_{\mathfrak{m}}\in \mathbb{Z}_{\rho}^{ imes}.$$

イロト 不得 とくほ とくほとう

3

Ideas of proof

Aurel Page Torsion homology of Vignéras isospectral manifolds

イロト イポト イヨト イヨト

Hecke algebras

Hecke operators are indexed by primes of K.

We have two kinds of Hecke operators

- *T*_p for [p] = 0 in *C*, acting on *M* and on *M'*, generating a small Hecke algebra T₀.
- T_q for $[q] \neq 0$ in *C*, swapping *M* and *M'*, generating a \mathbb{T}_0 -module \mathbb{T}_1 .

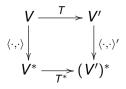
The **big Hecke algebra** $\mathbb{T} = \mathbb{T}_0 \oplus \mathbb{T}_1$ acts on $M \sqcup M'$.

All the isomorphisms we prove come from the action of an operator $\mathcal{T}\in\mathbb{T}_1$ acting invertibly.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

Regulator quotients: algebraic interpretation

From a diagram



we get

$$\left(\frac{\operatorname{\mathsf{Reg}}'}{\operatorname{\mathsf{Reg}}}\right)^2 = \frac{\det T^*}{\det T}.$$

イロト 不得 とくほ とくほ とうほ

Invertibility of Hecke operators

Invertible operator?

- By dévissage, we may assume that \mathbb{T}_0 is a field.
- $T \in \mathbb{T}_1 \Rightarrow T^2 \in \mathbb{T}_0$. When \mathbb{T} is reduced, this implies $\mathbb{T}_1 = 0$ or there exists $T \in \mathbb{T}_1$ acting invertibly.
- $\mathbb{T}_1 = 0 \iff a_{\mathfrak{p}} = 0$ for all $[\mathfrak{p}] \neq 0$ in $C \iff a_{\mathfrak{p}} = a_{\mathfrak{p}}\chi(\mathfrak{p})$ for all \mathfrak{p} , where $\chi \colon C \to \{\pm 1\}$ is nontrivial.
- ρ irreducible 2-dimensional representation of a group *G*: $\rho \cong \rho \otimes \chi \iff \rho \cong \operatorname{ind}_{G/\ker\chi} \psi.$

イロト イポト イヨト イヨト 一日

Thank you!

Aurel Page Torsion homology of Vignéras isospectral manifolds

イロト 不得 とくほと くほう