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General instructions:

1. Install Pari/GP

2. Do the basic exercises corresponding to each lecture.

3. If you have time, select the advanced exercises or exploration topics that
you are interested in.

1 Basic exercises

1.1 Installing Pari/GP

Go to the webpage http://pari.math.u-bordeaux.fr/Events/COGENT2022.
It also contains advanced instructions here: http://pari.math.u-bordeaux.

fr/Events/COGENT2022/talks/sources.pdf.

• If you are a Windows user:

1. Download a precompiled installer by clicking on 32bits (http://
pari.math.u-bordeaux.fr/pub/pari/windows/snapshots/Pari32-2-14-0.

G2022.exe) or 64 bits (http://pari.math.u-bordeaux.fr/pub/pari/
windows/snapshots/Pari64-2-14-0.G2022.exe).

Warning: pay attention to the directory in which Pari/GP is in-
stalled. If your system refuses to give you access to a particular
directory, pick another one. In fact, make sure you have write access
to this directory (this is often not the case in Program Files).

2. Then open the file gprc from the pari directory and edit it, including
the following lines with modification if needed:
breakloop = 1

parisizemax = "4G"

\\or the maximum amount of memory that GP can use (important)

• If you are a Linux user: do not install Pari/GP using a package manager
(you would get an old version). Use the git version as follows.

1. Assuming you are using Debian/Ubuntu:
sudo apt install build-essential

sudo apt build-dep pari
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sudo apt install libreadline-dev libgmp-dev

sudo apt install git bison automake autoconf

2. Then download and compile the source files as follows:
git clone https://pari.math.u-bordeaux.fr/git/pari.git

cd pari

./Configure --prefix=GP

make -j4 gp

make docpdf

make bench

make install

make statest-all

While the tests are running, you can install optional packages or
create the configuration files.

3. You can install optional packages by downloading them from http://

pari.math.u-bordeaux.fr/packages.html into the pari directory,
and then running:
make install-data

4. Create configuration files: create a file ~/.gprc and edit it, including
the following lines with modification if needed:
histfile = "~/.gp history"

colors = "lightbg" \\or "darkbg"

lines = 40

parisizemax = "4G"

\\or the maximum amount of memory that GP can use (important)

5. Run pari with the command GP/bin/gp. If you want to be able to
run it from any place by simply typing gp, run the command:
sudo ln -s PATH-TO-YOUR-PARI-DIRECTORY/pari/GP/bin/gp /usr/bin/gp

(replacing PATH-TO-YOUR-PARI-DIRECTORY by the path to your Pari
directory).

• If you are a MacOS user:

1. Download a precompiled DMG here: https://pari.math.u-bordeaux.
fr/pub/pari/mac/snapshots/PariGP-full-2.14.0.G2022.dmg. On
some systems, you need to go to the file menu and select ”Open”, so
that you can bypass the security check.

Crash: If Pari/GP starts, prints the banner (”GP/PARI CALCU-
LATOR Version ...”), and then crashes, then

– Try this one: https://pari.math.u-bordeaux.fr/pub/pari/

mac/snapshots/PariGP-full-2.14.0.G2022-norl.dmg.

– If it does not work, you should create a file .gprc in your home
directory and put the line readline=0 in this file.

If the DMG does not work, try the precompiled binary: https://

pari.math.u-bordeaux.fr/pub/pari/mac/snapshots/gp-git-latest-osx.
You may have to make it executable by opening a terminal in the
folder containing gp-git-latest-osx and typing
chmod +x gp-git-latest-osx
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2. Create a file .gprc in your home directory and add the following
lines with modification if needed:
colors = "lightbg" \\or "darkbg"

lines = 40

parisizemax = "4G"

\\or the maximum amount of memory that GP can use (important)

1.2 Introduction to Pari/GP

Exercise 1.2.1 (Documentation).

1. The complete documentation file is the PDF file doc/users in the pari
installation folder.

2. The doc folder also contains short PDF files called refcard (with a suffix)
that give quick references to many functions of a given topic.

3. In the GP command line, type ? for a list of help topics.

4. Type ?5 (or another number) for the list of GP functions of a given topic.

5. Short help of a function:
?factorial

6. Long help of a function:
??factorial

The same help is also contained in the users PDF file.

7. Searching for a string in the documentation:
???galois

Exercise 1.2.2 (Basic commands). Play with the following basic commands.
You run commands by typing them and then pressing Enter.

1. Arithmetic operations:

2+2

4-7

5*7

3^4

4/3

17\3

128%7

Note: / is the exact division, \ is the Euclidean division quotient, and %

is the Euclidean division remainder.

2. Floating-point numbers:

2.3

3.9E6

Pi

\p 100

Pi

2^Pi
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3. Complex numbers:

I^2

(1+2*I)*(4-3*I)

(-1)^(1/2)

4. Assignment to a variable is =, and can be combined with a basic operation:

a = 19

b = 11

a*b

a += b

a

5. Every non-assigned variable can be used as a polynomial variable:
P = x^3 + 13*x + 1

P'
The polynomial variable can be recovered with a quote (') before the
name of the variable:
a^2+2*a+3

a = 'a
a^2+2*a+3

6. Add a semicolon if you do not want to display the output, or to separate
commands on the same line. Compare:

N = 2022!

N = 2022!;

N = 2022!; N%2027

7. Function call:

sqrt(2)

exp(2*I*Pi/3)

abs(3+4*I)

polcoef(P,1)

subst(P,x,1+T)

P

Some functions have optional arguments:

polcoef((x+1)*(y+2*y^2)*z,1,y)

8. Spaces are not significant:

sin(10)

s i n ( 1 0 )

9. Boolean values are represented by 0 (false) and 1 (true).
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2 < 3

4 >= 4.

P == 1

a != 3

10. Row vectors are created with square brackets, with values (of any type)
separated by commas.

[1,3,2]

v = [-1,y,"bla",1/u]

[-3..10]

Their components are numbered from 1 to the length #v.

v[#v]

They can be concatenated with concat.

concat(v,[1..5])

concat([[a,b,c],v,[-10..-8]])

11. Matrices are created with square brackets, with components of a row sep-
arated by commas and rows separated by semicolons.

M = [1,2;3,4]

M^2

12. You can type a multiline command using backslash as follows:

N = [7,9;\

1,8;\

3,0]

N*M

M*N

13. You can transpose with ~:

v~

N~

14. You can access entries of matrices with square brackets:

N[3,1]

N[,2]

N[,1] = v[2..4]~

N

15. You can create vectors and matrices with formulas for the entries:

vector(5)

vector(5,i,i^2+1)

matrix(3,5,i,j,1/(i+j))
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16. You can write a comment until the end of line with a double backslash:

A = 2 \\ +3 this is ignored

A

You can write a multiline comment with slash-star:

A = 2 + /* this is ignored

and so is this */ 7

17. Power series:

1/(1+x+O(x^5))

cos(x+O(x^6))

18. You can ask for the running time of the last command with ##, and acti-
vate/deactivate the timer with #:

8^8^8;

##

#

8^9^8;

19. Elements of basic quotient rings:

Mod(2,7)^3

Mod(x+7,x^4+1)^10

Mod(Mod(3*x+1,x^3+x+1),11)^100

You can lift them with lift or centerlift:

lift(Mod(13,7))

lift(Mod(x^7,x^3-x+1))

centerlift(Mod(6,7))

20. Type of an object:

type(b)

type(a)

type(Pi)

type(v)

type(v~)

type(M)

type(sin)

Exercise 1.2.3 (Reading files). Once you start working on exercises requiring
more than a few commands (or working on your own projects), you should write
your code in a file and read the file in Pari/GP.
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1. Create a file test with a text editor, and write 10 lines of Pari/GP com-
mands, including some variable assignments. Make sure that there are no
spaces in the file name (for instance, do not use my test as a file name).

Warning: the lines will be executed one by one, as if you hit Enter
between the lines. If you want to write a multiline instruction, you should
use backslash, or enclose the block in curly braces. However, you will then
need to separate instructions with semicolons, as if they were on the same
line.

{M = matrix(10,10,i,j,

a = 1+i+j;

b = 2+i^2+j^2;

a/b

)};

2. To read the file:

• If you are a Linux user, type

\r test

possibly adding a path if the file is not in folder where you started
Pari/GP.

• If you are a Windows user, type

\r

but do not press Enter. Then, click on the file icon of test and drag
it to the Pari/GP windows, and drop it on the command line. The
complete path to your file should appear. Then, press Enter.

• If you are a MacOS user, you can use either of the options above.

Warning: You need to make sure that the file is a plain text file (TXT /
.txt file), not a file with an enriched format (RTF / .rtf, DOC / .doc,
etc). On MacOS, you can try Format → Make Plain Text.

3. Do you see the output of your commands?

4. What are the values of the variables you that assigned in the file?

5. Add some print statements: print(something) to your file (save the
changes!).

6. Read it again by simply typing \r and Enter. You should see the output
of the print statements.

Exercise 1.2.4 (Programming).

1. The syntax to define functions is as follows:

f(a,b,c) =

{

instruction1;

instruction2;
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...

value_to_be_returned

}

You can also return a value in the middle of the function with return(value).

Write a function f(n) that returns nn mod 5. Test it.

2. The syntax of the conditional control structure is as follows:

if(condition, instructions_if_true, instructions_if_false)

It is better to indent your code as follows:

if(condition,

instruction1_if_true;

instruction2_if_true;

etc

,/*else*/

instruction1_if_false;

instruction2_if_false;

etc

)

Write a function parity(n) that tests the parity of n, and prints ”even”
or ”odd” accordingly. Test it.

3. The boolean operators are && (and), || (or), ! (not). Write a function
isgood(n) that prints ”good” when n is (not divisible by 10) or (congruent
to 1 mod 3 and strictly greater than 30), and ”bad” otherwise. Test it.

4. The syntax of the for loops is as follows:

for(i=start_value,end_value,

instruction1;

instruction2;

etc

)

Write a function squares(n) that prints all the squares of integers be-
tween 1 and n. Test it.

5. The syntax of the while loops is as follows:

while(condition,

instruction1;

instruction2;

etc

)

Write a function syracuse(n) that counts the number of times the follow-
ing operations must be performed starting from m = n to reach m = 1:
if m is even, divide it by 2; otherwise, replace it by 3m+ 1. Test it.
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6. After running your function syracuse, what is the value of m? Set m to 0,
and add the statement (declaration of a local variable)

my(m);

at the beginning of your function. Test the function again. What is the
value of m now?

7. Function are allowed to call themselves (recursivity).

• Write a recursive function myfact(n) that computes the factorial of
an integer n by using the following properties:

– 0! = 1, and

– n! = n · (n− 1)!.

• Write a recursive function mygcd(a,b) that computes the GCD of
the two integers a, b by using the following properties:

– gcd(a, b) = gcd(b, a),

– gcd(a, 0) = a,

– gcd(2a, 2b) = 2 gcd(a, b),

– gcd(2a, b) = gcd(a, b) if b is odd, and

– gcd(a, b) = gcd(a− b, b).
Hint: try to decrease one of (a, b) by doing a substraction or dividing
by 2.

Test your function.

Exercise 1.2.5 (Break loop).

1. Run the following code:

{for(i=1,oo,

for(j=-i,i,

if(!random(1000), 1/0)

)

)}

2. The code will trigger an error, and GP will end up in a state called the
break loop. In the break loop, you can run GP commands, and in par-
ticular you can inspect the values of the variables when the error was
triggered. Try it with i and j.

3. You can exit the break loop by tying break or pressing Ctrl+D.

4. Replace 1/0 by print(j). Run the code again. Press Ctrl+C. You enter
the break loop again. Here, since there was no error, you can either
continue running the code by pressing Enter, or exit the break loop as
before.
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1.3 Complexity

Exercise 1.3.1 (Bitsize). Recall that a byte is 8 bits. A machine-size integer
(a word) is therefore 64/8 = 8 bytes on a 64 bits machine (32/8 = 4 on a 32
bits machine).

1. You can measure the size (in bytes) of any pari object with sizebyte.
Measure the size of 0, 1, 2, 3, 264, 2128.

2. After possibly testing more values, predict the general answer for 264k.
Test your hypothesis.

Exercise 1.3.2 (Observing complexities). The goal of this exercise is to get a
feeling for different complexity classes.

Here are four functions of an integer variable N, of different complexities:

• f1(N) = N^2 (Fast, quasilinear time)

• f2(N) = isprime(nextprime(N)) (Medium, polynomial time)

• f3(N) = factor(randomprime(N)*randomprime(N)) (Slow, subexponen-
tial time)

• f4(N) = primepi(N) (Very slow, exponential time)

For each of these four functions, do the following.

1. What do these functions do? (use the documentation)

2. You can measure the running time of some instructions in the middle of
your code as follows:

t = getabstime();

instruction;

t = getabstime()-t; \\now t is the time in milliseconds

print(strtime(t)); \\human-readable format

Measure the running time of the function for a few integer values, and
observe the dependence on the number of bits of the input.

3. What is (approximately) the maximum bitsize of the input for which the
function terminates in less than 1 second?

4. What is (approximately) the maximum bitsize of the input for which the
function terminates in less than 2 second?

1.4 Arithmetic operations

Exercise 1.4.1 (Arithmetic operations). Explore and experiment with the fol-
lowing functions (when meaningful, try both integers and polynomials): fft,
gcd, polresultant, znlog, factor.

Exercise 1.4.2 (Fermat’s compositeness test).
Let p be an integer. Recall that if p is prime, then for all a coprime to p we

have
ap−1 = 1 mod p.
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1. Implement a function fermat(a,p) that tests if this relation is satisfied.
Test it. You should be able to run it for p = nextprime(2^100).

2. Implement a function allfermat(p) that tests if the relation is satisfied
for all a coprime to p.

3. Write code to find a composite integer p such that allfermat(p) succeeds.

1.5 Reconstruction

Exercise 1.5.1 (Reconstruction functions). Explore and experiment with the
following functions: round, chinese, polinterpolate, bestappr, bestapprPade.

Exercise 1.5.2 (Cyclotomic polynomials).

• Implement a function mycyclo(m) constructing the cyclotomic polyno-
mial Φm ∈ Z[X] from the complex roots.

• Compare with polcyclo.

1.6 Algebraic number theory

Exercise 1.6.1 (Number fields). Let Q = x3 − 111x2 + 6064x− 189804.

1. Check that Q is irreducible (polisirreducible).

2. Compute a nicer defining polynomial P for the same field (polredbest).

3. Check that they really define the same number field (nfisisom).

4. Initialise the number field F = Q(α) defined by P (nfinit).

5. What are

• the signature of F? (.sign: usage F.sign)

• the discriminant of F? (.disc)

• a Z-basis of ZF ? (.zk)

6. You can represent elements in polynomial form (Mod(...,P)) or as column
vectors of coefficients on the basis of ZF . What are the coefficients of
− 5

2α
2 + 19

2 α− 3 on the basis (nfalgtobasis)? Is it an algebraic integer?
What are its trace and norm (nfelttrace, nfeltnorm)?

7. Compute the prime decomposition of 2, 3, 19 (idealprimedec). How
many primes ideals are there above them? What are their ramification
indices (.e)? Residue degree (.f)? Compute a basis of these prime ide-
als (idealhnf). Compute the image of some elements in the residue field
(nfmodpr).

8. Compute a product of some ideals in F (idealmul, idealpow, idealfactorback).
Factor it as a product of prime ideals (idealfactor). Check the valua-
tions separately (idealval).
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9. Is F Galois (galoisinit)? Does it have automorphisms (nfgaloisconj)?
What is the Galois group of its Galois closure (polgalois)? Compute a
defining polynomial of its Galois closure (nfsplitting).

Exercise 1.6.2 (Class group and units). To compute the class group and unit
group, use bnfinit. Let’s denote by L the number field defined by x3 − x2 −
54x+ 169
(L=bnfinit(x^3 - x^2 - 54*x + 169);).

1. What is L[7]? Find a way to recover it using L.xxx.

2. What is the structure of the class group (.cyc)?

3. What are the corresponding generators of the class group (.gen)?

4. What is the rank of the unit group? What are generators of the unit group
(.tu, .fu)?

5. Explore and experiment with bnfisprincipal:

• Compute the prime decomposition of 13. Let pr be the first compo-
nent of the output.

• Express the class of the ideal in terms of the generators of the class
group using bnfisprincipal(L,pr). Is this ideal principal?

• Use idealfactorback and bnfisprincipal(L,pr) to compute the
Hermite normal form of the ideal pr. Compare with idealhnf(L,pr).

• Show that the square of the ideal pr is a principal ideal.

6. Explore and experiment with bnfisunit:

• Show that the element defined by u = [0,2,1]~ is a unit of ZL.

• Express it in terms of the generators with bnfisunit.

Exercise 1.6.3 (Field extensions and subfields).

1. Let K = Q[α] the field defined by P = x4 − x3 − 3x + 4. Use nfinit to
compute K.

2. We consider

Q = y3 + (−α− 1)y2 + (α3 + α− 2)y + (−α3 + 3) ∈ Q[α][y].

Check that Q is irreducible over K using nffactor.
Remark: by default, Q[x, y] = Q[y][x]. To force Q[x, y] = Q[x][y], you
have to specify y=varhigher("y").

3. Consider the extension L = K[β] where β is a root of Q. What is the
degree of the extension L/Q?

4. Compute a polynomial which defines L/Q using rnfequation.

5. With nfsubfields, find the number of subfields of L. Are some of them
isomorphic?
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Exercise 1.6.4 (Enumeration of prime ideals). Write a function nfprimesupto(nf,B)

that computes the list of prime ideals of norm less than B.
Notes: to construct a list of which you do not know the length in advance,

you can use List and listput; you can convert it to a vector afterwards with
Vec. You can use forprime or primes to obtain the prime numbers up to a
bound.

1.7 Linear algebra and lattices

Exercise 1.7.1 (Matrices).

1. Use the fonctions matid and matdiagonal to create A = I4 and the diag-
onal matrix B of size 8 with diagonal coefficients equal to 1,. . . , 8.

2. With matconcat, define:

C =

 a

B
...
h


3. What should be the result of the concatenation of A and B? Try.

4. Define the following bloc matrix:

D =

(
I4 B C
I4

)
5. What is the size of D? Use matsize.

6. You can also define vectors and matrices with coefficients in the finite field
Fp with Mod(...,p). Write a function vectors(n,p) which returns the
list of all vectors of Fn

p (you can use forvec).

7. Write a function columntomatrix(C,n) that takes as input a vector C of
size n2 and returns the n× n matrix

C1 C2 C3 . . . Cn

Cn+1 Cn+2 Cn+3 . . . C2n

...
...

...
. . .

...
C(n−1)n+1 . . . . . . . . . Cn2

 .

8. Write a function matrices(n,p) which returns the list of all the elements
of Mn(Fp).

9. Recall that an n×n matrix M over a field is nilpotent if and only if Mn =
0. Write a function nilpotents(n,p) that counts (by testing them all)
the number of nilpotent matrices in Mn(Fp).

Exercise 1.7.2 (Linear algebra over fields).
Let A and Y be the matrices

A =

(
−3 1
6 −2

)
Y =

(
9
−18

)
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1. You can compute the determinant of A with matdet. Is A invertible?

2. Give a basis of the image of A (matimage).

3. Give a basis of the kernel of A (matker)

4. Find a solution of the system AX = Y with matinverseimage.

5. Deduce the set of the solutions of AX = Y .

6. Define an invertible 3×3 matrix A′ and a column vector Y ′. Solve the sys-
tem A′X = Y ′ with both matsolve and matinverseimage. Is it possible
to use matsolve in the previous example? Why?

Exercise 1.7.3 (Inverse).
Consider the matrix

A =

 1 2 −1 4
7 0 1 3
−1 0 5 1


1. Take you favourite 3× 3 invertible matrix. Compute its inverse.

2. Compute the rank of the matrix A. Is A invertible? left-invertible? right-
invertible? Try to compute A−1.

3. Same question with tA.

Exercise 1.7.4 (Linear algebra over Z/NZ).
Consider the matrix A of the previouos exercise.

1. Compute a basis of the image of A mod 5 with matimagemod. Compare
with matimage(Mod(A,5)).

2. Compute the kernel of A mod 5 with matkermod.

3. Extract from A the matrix formed by the three first columns. Compute
its determinant. What should it be mod 5? Check with matdetmod and
compute the inverse using matinvmod. Compare with Mod(M^-1,5).
Deduce the solutions of MX = Y mod 5. Find the same result with
matsolvemod.

Exercise 1.7.5 (Reduction of matrices). Consider the matrix

A =

 0 4 3
2 −2 −3
−2 4 5


1. Show that P (X) = X3 − 3X2 + 4 is the characteristic polynomial of A

(charpoly).

2. Factor P and deduce the eigenvalues ofA. Check your result with mateigen.

3. Compute the minimum polynomial (minpoly). Is A diagonalisable?

4. Give a basis and the dimension of each eigenspace.
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5. Give an upper triangular (or diagonal) matrix ∆ such that ∆ and A are
similar.

Exercise 1.7.6 (Operations on vector spaces). Consider the following vectors:

u1 = (0, 1,−2, 1), u2 = (1, 0, 2,−1), u3 = (3, 2, 2,−1), u4 = (0, 0, 1, 0)

1. Define these four vectors as column matrices. (Mat). Check that it has
the correct type with type.

2. Give a basis β of the subspace Vec (u1, u2, u3, u4).

3. Complete β to get a basis of R4 (matsupplement).

4. Compute the intersection of V1 = Vec (u1, u2) and V2 = Vec (u3, u4)
(matintersect) and check wether it’s equal to Vec (1, 1, 0, 0) or not.

1.8 General algorithmic techniques

1.9 L-functions

2 Advanced exercises

2.1 Arithmetic operations

Exercise 2.1.1 (Karatsuba multiplication).

1. Write the coefficients of the product of two degree 1 polynomials

(aX + b)(cX + d)

2. How many multiplications of coefficients does this formula involve?

3. Expand (a + b)(c + d) and compare it to the coefficient of X. Deduce a
formula for the product of the two linear polynomials, that involves only 3
multiplications.

4. Consider the multiplication of two degree m = 2k polynomials P and Q.
Write P = P1X

m/2 +P0 (and similarly for Q). How should we choose the
degrees of P1 and P0?

5. Deduce a formula for multiplying two degree m polynomials, using 3 mul-
tiplications of smaller degree polynomials.

6. Deduce a recursive polynomial multiplication algorithm, and write a pseu-
docode for it.

7. What is the complexity of your algorithm?

8. Write a function split(R) that takes as input a vector representing a
polynomial R of even degree and returns a two-components vector, each
coefficient being a vector representing R0 and R1 as in 4. Test it. (to test
your function, see Vecrev and Polrev to convert between polynomials and
vectors of coefficients).
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9. Write a recursive function mult(P,Q) that takes as input a vector repre-
senting two polynomials P,Q of degree a power of 2 and computing their
product according to your answer to 6. Test it.

10. Using polynomials with small coefficients and increasing degree, measure
the running time of your implementation. Try to predict the running time
for a larger instance.

11. For R being each of P = aX + b, Q = cX + d and PQ, what are R(0),
R(1) and R(∞) (interpreted as the leading coefficient)? Reinterpret 3 as
an evaluation-interpolation algorithm.

Exercise 2.1.2 (Squarefree factorisation). Design and implement an algorithm
computing the squarefree factorisation of a polynomial in Q[X] using GCDs with
derivatives. Test it. What is its complexity?

Exercise 2.1.3 (Rabin–Miller compositeness test and square roots mod p).
Let p > 1 be an integer, and write p−1 = 2tm wherem is odd (see valuation).

Part A (Compositeness test)

1. Let a be coprime to p. If p is prime, prove that either am = 1 mod p or
there exist an i such that 0 ≤ i < t such that am2i = −1 mod p. In the
second case, what is am2j mod p for j < i?

2. Implement this compositeness test. Test your implementation.

Part B (Square roots mod p)
Here we assume that p is prime. Let a 6= 0 mod p.

1. Prove that a(p−1)/2 mod p is 1 if a is a square in Fp, and −1 otherwise.

2. Implement this test. Test your implementation.

3. Prove that there exists an element g of order 2t in Fp. What is the prob-
ability that rm has order 2t, if r is drawn uniformly randomly from F×p ?

4. Design and implement a probabilistic algorithm to find g as above. Test
it.

5. If a ∈ F×p has odd order, find a formula giving a square root of a.

6. If a ∈ F×p has order a power of 2, prove that it is a power of g. In terms
of this power, give a formula for a square root of p.

7. Design an implement an algorithm writing an element a ∈ F×p as a product
of an element of odd order and a power of g. Test it.

8. Design an implement an algorithm for computing square roots modulo p.
Test it. What is its complexity?
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2.2 Reconstruction

2.3 Algebraic number theory

Exercise 2.3.1 (Round 2 for large p). The goal is to implement the Round 2
algorithm to compute a p-maximal order in a degree d field, when p > d.

Let F = Q(α) be defined by P ∈ Z[X] monic and irreducible.
Here is a list of polynomials that you can use to test your function, but you

should try to produce your own test cases (in particular, you can search number
fields in the LMFDB www.lmfdb.org/NumberField/).

• x2 − 32k+1 for various values of k;

• x2 − 3 · 5k for various values of k;

• x3 − x+ 1;

• x3 − 5x2 − 80x+ 25;

• x3 + 27x2 + 700x+ 1875;

• x3 + 200x− 125;

• x4 − 72x2 + 46;

• x4 − 55x2 − 25.

1. Recall how to compute disc(Z[α]) in terms of P . Write a function initialdisc(P)

that computes this discriminant.

2. Write a function initialbasis(P) that computes a Z-basis of Z[α], ex-
pressed as a vector of polynomials in α.

3. Write a function traceform(ord) that takes as input a Z-basis w1, . . . , wd

of an order O (ord) and returns the d× d matrix (Tr(wiwj))i,j .

4. Prove that the matrix above is a matrix, in a Z-basis that you will specify,
of the map

Φ: O −→ Hom(O,Z)

a 7−→ (x 7→ Tr(ax)).

5. Let

Jp = {a ∈ O/pO | Tr(ax) = 0 for all x ∈ O/pO} = ker(Φ mod p).

Write a function radicalmod(ord,p) that takes as input a Z-basis of and
order O and returns an Fp-basis of Jp.

6. Let
Jp = {a ∈ O | Tr(ax) = 0 mod p for all x ∈ O}.

Prove that Jp is the preimage of Jp under the map O → O/pO.

7. Write a function radical(ord,p) that takes as input a Z-basis of and
order O and returns a Z-basis of Jp (you can use mathnfmodid).
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8. Write a function mulmatrix(B,a) that takes as input a Q-basis B of F
and an element a ∈ F , and returns an element of Md(Q): the matrix of
the map x 7→ ax in the basis B.

9. Write a function mulvector(B,a) with the same input as above, that
returns a column vector of size d2 containing the coefficients of the ma-
trix mulmatrix(B,a).

10. Let
O′ = {a ∈ F | aJp ⊂ Jp}.

Explain why O′ is the set of a ∈ F such that mulmatrix(B,a) has integral
entries, where B is a Z-basis of Jp.

11. Write a function mulorder(B) that takes as input a Z-basis of Jp and
returns a Z-basis of O′ (you can use matrixqz(...,-2)).

12. Recall that for p > d, an order O is p-maximal if and only if O = O′, and
that we always have O ⊂ O′. Write a function ispmaximal(ord,p) that
takes as input a Z-basis ord of an order O and a prime p > d, and returns 1
if O is p-maximal, and a Z-basis of a strictly larger order otherwise.

13. Write a function pmaximalorder(P,p) that takes as input a defining poly-
nomial P and returns a Z-basis of a p-maximal order in ZF .

14. Write a function pdiscval(P,p) with the same input as above, that re-
turns the exponent of p in the discriminant of the field F .

2.4 Linear algebra and lattices

2.5 General algorithmic techniques

2.6 L-functions

3 Exploration

3.1 Arithmetic operations

Exercise 3.1.1 (Divisibility properties of integers).

1. Let y > 1. Consider the class of integers N such that all prime factors of N
are greater than y. Experiment with the proportion of such integers. Can
you conjecture a value? Prove it? (useful advanced loop: forfactored)

2. Let y > 1. Consider the class of integers N such that all prime factors
of N are less than y. Experiment with the proportion of such integers.
What does the proportion look like? For large values, it may be better to
observe the proportion by taking random large integers instead of all up
to a bound.

3. Considering that we can find small prime factors more easily than a com-
plete factorisation, what is the shape of easily factorable numbers? Ex-
periment with the options of factorint (the algorithm mentioned in the
lecture to find small prime factors is called ECM). What does the propor-
tion of easily factorable numbers look like?
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3.2 Reconstruction

3.3 Algebraic number theory

Exercise 3.3.1 (Statistics on class group). The general question is the follow-
ing: Let Ab be the set of isomorphism classes of finite groups. Let f : Ab→ R
be a map, and let F be a family of number fields (for instance: all quadratic
fields). For X > 0, let FX be the set of elements of F of discriminant up to X.
We are interested in the behaviour when X tends to infinity, and in particular
in the limit if it exists, of the quantity:

EF,X(f) =

∑
F∈FX

f(Cl(F ))

|FX |
.

If the limit exists, we write it EF (f) and we call it the average of f in the
family F . If f is the indicator function of a subset Y of Ab, we call it the
probability that the class group belongs to Y in the family F .

1. Write a function that enumerate quadratic fields by increasing discrimi-
nant and computes their class groups.

2. Write a function that computes EF,X(f).

3. For some maps f of your choice, does EF,X(f) seem to approach a limit?
For instance, f(A) = 1 if A is the trivial group and f(A) = 0 otherwise,
or f(A) = the p-rank of A for a fixed prime p (snfrank).

4. Does the limit stay the same in subfamilies? For instance, does it depend
on the signature of the fields? On the number of ramified primes? On the
decomposition type of small primes?

5. Does the probability that a prime number p divide the class number look
like 1/p, as it would for a random integer?

6. What happens if you look at the family of quadratic fields defined by a
polynomial x2 − tx+ 1, ordered by increasing |t|? Are these fields real or
imaginary?

7. What happens in higher degrees? Is it influenced by the Galois group?
You can generate fields with nflist or download fields from www.lmfdb.

org/NumberField/.

3.4 L-functions
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