Algebraic number theory Exercise sheet for chapter 4

Nicolas Mascot (n.a.v.mascot@warwick.ac.uk), Aurel Page (a.r.page@warwick.ac.uk)

TAs: Chris Birkbeck (c.d.birkbeck@warwick.ac.uk), George Turcas (g.c.turcas@warwick.ac.uk)

Version: March 1, 2017

Answers must be submitted by Wednesday March 15, 14:00

Exercise 1 (30 points). Let $K = \mathbb{Q}(\sqrt{-155})$.

- 1. (3 points) Write down without proof the ring of integers, the discriminant and the signature of K.
- 2. (10 points) Describe a set of prime ideals of \mathbb{Z}_K whose classes generate the class group of K. For each of these prime ideals, give the residue degree and ramification index.
- 3. (8 points) Factor the ideal $\left(\frac{5+\sqrt{-155}}{2}\right)$ into primes.
- 4. (10 points) Prove that $\operatorname{Cl}(K) \cong \mathbb{Z}/4\mathbb{Z}$.

Exercise 2 (35 points). Let $d \neq 0, 1$ be a squarefree integer and let $K = \mathbb{Q}(\sqrt{d})$.

- 1. (15 points) Let $n \in \mathbb{Z}$. Prove that if neither n nor -n are squares modulo d, then no integral ideal in K of norm n is principal. *Hint: consider the cases* disc K = d and disc K = 4d separately.
- 2. (3 points) From now on d = 105. Write down without proof the ring of integers, the discriminant and the signature of K.
- 3. (10 points) Find an element of norm -6 and an element of norm -5 in \mathbb{Z}_K . Hint: write down the norm of a generic element of \mathbb{Z}_K , the norm of a generic element of $\mathbb{Z}[\sqrt{105}]$, and try small values of the variables.
- 4. (7 points) Prove that $\operatorname{Cl}(K) \cong \mathbb{Z}/2\mathbb{Z}$.

Exercise 3 (35 points). We consider the equation

$$y^2 = x^3 - 6, \quad x, y \in \mathbb{Z}.$$
 (1)

- 1. (3 points) Write down without proof the ring of integers, signature and discriminant of $K = \mathbb{Q}(\sqrt{-6})$.
- 2. (10 points) Determine the class group of K.
- 3. (10 points) Let $(x, y) \in \mathbb{Z}^2$ be a solution of (1). Prove that $(y + \sqrt{-6})$ and $(y \sqrt{-6})$ are coprime.
- 4. (4 points) Prove that there exists an ideal \mathfrak{a} such that $(y + \sqrt{-6}) = \mathfrak{a}^3$.
- 5. (3 points) Prove that \mathfrak{a} is principal.
- 6. (2 points) Using without proof the fact that $\mathbb{Z}_{K}^{\times} = \{\pm 1\}$, prove that $y + \sqrt{-6}$ is a cube in \mathbb{Z}_{K} .
- 7. (3 points) Prove that (1) has no solution.

UNASSESSED QUESTIONS

The next questions are not worth any points. I still recommend you to try to solve them, for practice. Corrections will be available online, just like for the marked questions.

Exercise 4. Let $K = \mathbb{Q}(\sqrt{-231})$.

- 1. Write down without proof the ring of integers, the discriminant and the signature of K.
- 2. Compute the decompositions of 2, 3, 5 and 7 in K.
- 3. Prove that for every element $z \in \mathbb{Z}_K$ such that $|N_{\mathbb{Q}}^K(z)| \leq 57$, we have $z \in \mathbb{Z}$.
- 4. Let \mathfrak{p}_2 be a prime of \mathbb{Z}_K above 2. Prove that the class of \mathfrak{p}_2 in $\mathrm{Cl}(K)$ has order 6.
- 5. Let \mathfrak{p}_7 be a prime of \mathbb{Z}_K above 7. Prove that the class of \mathfrak{p}_7 in $\mathrm{Cl}(K)$ has order 2.
- 6. Prove that $[\mathfrak{p}_7]$ does not belong to the subgroup of $\operatorname{Cl}(K)$ generated by $[\mathfrak{p}_2]$. *Hint: prove that if it did, then* $\mathfrak{p}_7\mathfrak{p}_2^3$ *would be principal.*
- 7. Compute the prime factorisations of the ideals $\left(\frac{3+\sqrt{-231}}{2}\right)$ and $\left(\frac{7+\sqrt{-231}}{2}\right)$.
- 8. Prove that $\operatorname{Cl}(K) \cong \mathbb{Z}/6\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.

Exercise 5. Let d > 0 be a squarefree integer, let $K = \mathbb{Q}(\sqrt{-d})$ and let disc_K be the discriminant of K. Let p be a prime that splits in K and let \mathfrak{p} be a prime ideal above p.

- 1. Prove that for all integers $i \ge 1$ such that $p^i < |\operatorname{disc} K|/4$, the ideal \mathfrak{p}^i is not principal. *Hint: consider the cases* disc K = -d and disc K = -4d separately.
- 2. What does this tell you about the class number of K?
- 3. Using without proof the fact that there exists infinitely many squarefree positive numbers of the form 8k + 7 for $k \in \mathbb{Z}_{>0}$, prove that for every X > 0 there exists a number field K such that $h_K > X$.

Exercise 6.

- 1. Log in to a university computer that has the computer algebra software gp installed (Linux computers should have it).
- 2. Type gp in a terminal to start the software.
- 3. Pick d > 0 squarefree.
- 4. Type $\text{bnfinit}(x^2+d)$.clgp[2] and hit Enter. This will compute the class group of $K = \mathbb{Q}(\sqrt{-d})$ and display its structure in the form of a list $[a_1, \ldots, a_n]$ representing the group $\mathbb{Z}/a_1\mathbb{Z} \times \cdots \times \mathbb{Z}/a_n\mathbb{Z}$.
- 5. Compute the class group Cl(K) by hand.