Algebraic number theory Exercise sheet for chapter 3

Nicolas Mascot (n.a.v.mascot@warwick.ac.uk), Aurel Page (a.r.page@warwick.ac.uk)

TAs: Chris Birkbeck (c.d.birkbeck@warwick.ac.uk), George Turcas (g.c.turcas@warwick.ac.uk)

Version: February 20, 2017

Answers must be submitted by Friday 24 February, 14:00

Exercise 1 (40 points)

- (20 points) How many ideals of norm 900 are there in the ring of integers of Q(√7) ?
 Hint: Compute the decomposition in Q(√7) of the primes p ∈ N that divide 900.
- 2. (20 points) How many ideals of norm 80 are there in the ring of integers of $\mathbb{Q}(\zeta)$,

Exercise 2 (60 points)

The goal of this exercise is to prove that the number fields $\mathbb{Q}(\sqrt[3]{6})$ and $\mathbb{Q}(\sqrt[3]{12})$ have the same degree and discriminant, but are not isomorphic.

To ease notation, we let $\alpha = \sqrt[3]{6}$, $\beta = \sqrt[3]{12}$, $K = \mathbb{Q}(\alpha)$ and $L = \mathbb{Q}(\beta)$.

- 1. (3 points) Prove that $[K : \mathbb{Q}] = 3$.
- 2. (8 points) Prove that $\mathbb{Z}_K = \mathbb{Z}[\alpha]$ and compute disc K.

where ζ is a primitive 60th root of unity ?

- 3. (10 points) Prove that $[L : \mathbb{Q}] = 3$ and that disc L is of the form $-2^a 3^5$ for some integer $a \ge 0$. What are the possible values of a ?
- 4. (4 points) Prove that $L \simeq \mathbb{Q}(\sqrt[3]{18})$. Hint: Take a look at $\gamma = \beta^2/2$.
- 5. (7 points) Deduce that disc $L = \operatorname{disc} K$.

- 6. (2 points) Which primes $p \in \mathbb{N}$ ramify in K? What about L?
- 7. (8 points) Compute explicitly the decomposition of 7 in K and in L.
- 8. (3 points) Deduce that K and L are not isomorphic.
- 9. (6 points) Compute explicitly the decomposition of 2 and 3 in K and in L.
- 10. (9 points) Deduce the factorisation of the ideals $\alpha \mathbb{Z}_K$, $\beta \mathbb{Z}_L$ and $\gamma \mathbb{Z}_L$ into primes.

UNASSESSED QUESTIONS

The next questions are not worth any points. I still recommend you to try to solve them, for practice. Correction will be available online, just as for the marked questions.

Exercise 3

Let $K = \mathbb{Q}(\alpha)$, where $\alpha^3 - 5\alpha + 5 = 0$.

- 1. Prove that the ring of integers of K is $\mathbb{Z}[\alpha]$.
- 2. Which primes $p \in \mathbb{N}$ ramify in K?
- 3. For $n \in \mathbb{N}$, $n \leq 7$, compute explicitly the decomposition of $n\mathbb{Z}_K$ as a product of prime ideals.
- 4. Prove that the prime(s) above 5 are principal, and find explicitly a generator for them.
- 5. List the ideals \mathfrak{a} of \mathbb{Z}_K such that $N(\mathfrak{a}) \leq 7$.