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Exercise 1. What is the ring of integers of Q(
√

98) ?

Exercise 2. What kinds of number fields have a unit group of rank 1 ?

Exercise 3. Compute the class group of Q(
√
−47).

Exercise 4. The aim of this exercise is to determine the class group of K = Q(
√

82),
seen as a subfield of R.

1. Prove that the class group of K is either trivial or isomorphic to Z/2Z or Z/4Z.

2. What is the rank of the unit group of K ? Compute a fundamental unit u > 1
of K.

3. Suppose that there exist an element β = x+ y
√

82 ∈ ZK of norm 2. Why may
we assume that 1√

u
< β <

√
u ? Prove that x − y

√
82 = 2

β
, use this to derive

bounds on x, and deduce that no such β exists.

4. Prove similarly that no element of ZK has norm −2.

5. What is the class group of K ?

6. Was is absolutely necessary that the unit u be fundamental for the above rea-
soning to be valid ?

Exercise 5. Let f(x) = x3− 4x2 + 2x− 2, which is an irreducible polynomial over Q
(why ?), and let K = Q(α), where α is a root of f .

1. Given that disc f = −300, what can you say about the ring of integers of K
and the primes that ramify in K ? What if, on the top of that, you notice that
f(x+ 3) = x3 + 5x2 + 5x− 5 ?

1

mailto:n.a.v.mascot@warwick.ac.uk
mailto:a.r.page@warwick.ac.uk
mailto:lemos.pj@gmail.com


We have disc f = −300 = −22 · 3 · 52, so the order Z[α] is p-maximal at every
prime p 6= 2, 5. Besides, f is Eisenstein at 2, so Z[α] is actually also maximal
at p = 2, and 2 is totally ramified in K; incidentally this also proves that f is
irreducible as claimed. We thus have only two possibilities: either Z[α] is also
maximal at p = 5, in which case ZK = Z[α], so that discK = −22 · 3 · 52 and
so K ramifies precisely at 2, 3 and 5, or Z[α] is not maximal at p = 5, in which
case Z[α] has index exactly 5 (and not a larger power of 5 since 54 - disc f), and
so discK = −22 · 3 so K is ramified precisely at 2 and 3, but not at 5.

However, the fact that α−3 is a root of f(x+3) which is Eisenstein at 5 proves
that the order Z[α− 3] is maximal at 5 and that 5 is totally ramified in K. But
clearly Z[α − 3] = Z[α], so Z[α] is in fact maximal at 5 and so ZK = Z[α] and
K is ramified precisely at 2, 3 and 5. On the top of that, we have shown that
2 and 5 are actually totally ramified. We do not know yet whether 3 is totally
ramified.

2. Prove that ZK is a PID.

Hint: For n ∈ Q, what relation is there between f(n) and the norm of n− α ?
Use this to find elements of small norm, and thus relations in the class group.

Let (r1, r2) be the signature of K. As discK = −300 < 0, we know that r2 is
odd, and so the relation r1 + 2r2 = [K : Q] = 3 forces r1 = r2 = 1. As a result,
the Minkowski bound for K is M = 3!

33
4
π

√
300 ≈ 4.9, so the class group of K is

generated by the primes above 2 and 3.

We already know that 2 is totally ramified, say 2ZK = p32, whence the relation
[p2]

3 = 1 in the class group. To compute the decomposition of 3, we factor f
mod 3 (this is legitimate because the order Z[α] attached to f , being maximal
at every p, is in particular maximal at 3). We thus compute that

f ≡ x3 − x2 − x+ 1 mod 3 ≡ (x− 1)(x2 − 1) ≡ (x− 1)2(x+ 1) mod 3,

whence the decomposition 3ZK = p23p
′
3, where p3 = (3, α−1) and p′3 = (3, α+1).

We also get the relation [p3]
2[p′3] = 1 in the class group.

Now that we have generators, we need to find relations between these generators.
For this, we look for elements of small norm : if the norm of an element only
involves powers of 2 and 3, then the principal ideal generated by this element
will have the same norm (up to sign), and so its factorisation will only involve
p2, p3 and p′3, whence a relation between [p2], [p3] and [p′3]. We have

N(n− α) =
∏

σ : K↪→C

σ(n− α) =
∏

σ : K↪→C

(
n− σ(α)

)
= f(n)

for all n ∈ Q where the products range over the embeddings of K into C, so we
can use this formula to compute the norm of elements of the form n− α.

For example, we have N(α) = f(0) = −2, whence (α) = q2 where q2 is some
prime of inertial degree 1 above 2, which can only be p2. Thus [p2] = 1.
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Similarly, we have N(1− α) = f(1) = −3, so (1− α) = q3 for some prime q3 of
degree 1 above 3. Thanks to the criterion

p | (β)⇐⇒ (β) ⊆ p⇐⇒ β ∈ p

valid for all prime p and element β ∈ ZK , we see that (1− α) = p3.

Therefore [p3] = 1 and so [p′3] = 1, so the class group is trivial and ZK is a PID.

3. Find a generator for each of the primes above 2, 3 and 5.

We have already proved that p2 = (α) and that p3 = (α − 1). Besides, we
know that (5) = p35 is totally ramified, and since α − 3 is a root of f(x + 3) =
x3 + 5x2 + 5x− 5, we have N(α− 3) = 5 whence p5 = (α− 3).

It remains to find a generator for p′3. For this, we can use the relation (3) =
p23p
′
3 = (α − 1)2p′3 to deduce that p′3 = (β) where β = 3

(α−1)2 . Note that we get
for free that β is an algebraic integer, and that its norm is ±3.

There is (at least) one other easy way to find a generator for p′3: we have
N(2−α) = f(2) = −6, so the ideal (2−α) factors as q2q3, a,d as in the previous
question we see that q2 = p2 and that q3 = p′3. Thus p′3 = (2 − α)/(α) = (β′),
where β′ = 2−α

α
= 2

α
− 1 = α2 − 4α + 1 in view of the relation f(α)/α = 0.

4. Use the results of the previous question to discover that u = 2α2 − α + 1 is a
unit.

The key to discovering units is finding more than one generator for the same
principal ideal.

For instance, we have just seen that p′3 = (β) = (β′), so β′/β is a unit. Unfor-
tunately, it turns out that

β′

β
= (α2 − 4α + 1)

(α− 1)2

3
= −1,

so this unit is not a very interesting one...

Let’s try again : we have (2) = p32 = (α)3 = (α3), so u = α3/2 = 2α2 − α+ 1 is
a unit.

We could also have used the fact that (5) = (α − 3)3 to discover the unit

v = (α−3)3
5

= −α2 + 5α− 5.

5. We use the unique embedding of K into R to view K as a subfield of R from
now on. Prove that there exists a unit ε ∈ Z×K such that Z×K = {±εn, n ∈ Z}
and ε > 1.

According to Dirichlet’s theorem, the rank of Z×K is r1 + r2 − 1 = 1. Besides,
as K can be embedded into R, the only roots of unity it contains are ±1, so
Z×K = {±εn, n ∈ Z} for some fundamental unit ε. Possibly after replacing ε
with ±ε±1 which is also a fundamental unit, we may assume that ε > 1.

Note that since Z×k has rank 1, there must be a relation between our units u
and v; indeed it turns out that v = 1/u.
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6. By the technique of exercise 2 from exercise sheet number 5, it can be proved
that ε > 4.1. Given that u ≈ 23.3, prove that u is a fundamental unit.

Hint : Reduce u modulo the primes above 3 to prove that u is not a square in
ZK.

What is the regulator of K ?

We have u = ±εn for some n ∈ Z. As u > 1, we must in fact have u = εn for
some n > 0. Besides, since ε > 4.1, we have n 6 2. As a result, we either have
u = ε or u = ε2; in the first case, u is a fundamental unit, in the second case it
isn’t.

In order to prove that u is fundamental, we are going to prove that u is not a
square in K. As u is a unit, its norm is ±1, so we could conclude immediately
if its norm were −1; unfortunately N(u) = +1, so we must find something else.

The key is to compute the reduction of u modulo some primes p : if we get a
non-square in the finite field ZK/p, this will prove that u is not a square. Now,
every element of F2 is a square, so let us not consider p = p2. Let us try p = p3
instead : we have α−1 ∈ p3, so α ≡ 1 mod p3 and so u = 2α2−α+1 ≡ 2 mod p3,
which is not a square in ZK/p3, bingo ! You may check that, on the other hand,
p = p′3 and p5 were inconclusive.

As a consequence, the regulator of K is log ε = log u. (This turns out to be
pretty close to π, but this is purely coincidental.)

Exercise 6. Let f(x) = x4+3x3−18x2−24x+129, which is an irreducible polynomial
over Q (why ?), and let K = Q(α), where α is a root of f .

1. If I told you that disc f = 930069, why would not that be very useful to you ?
Which information can you get from that nonetheless ?

The primary use of the discriminant is the determination of the ring of integers
and of the ramification of the primes. However, this is done in terms of the
factorisation of the discriminant, and since we’d rather not factor 930069 by
hand there is not much we can do. There is still something though : since we
are dealing with a field of degree 4, the possible signatures are (r1, r2) = (4, 0),
(2, 1) and (0, 2), and the fact that disc f > 0 and that discK differs from it by
a square means that discK > 0, so r2 is even. As a result, our field K is either
totally real or totally imaginary.

2. I now tell you that the roots of f are approximately −4.1± 0.1i and 2.6± 1.0i.
What is the signature of K ? Can you compute the trace of α from these
approximate values ? Why is the result obvious ?

The non-realness of the roots means that K is totally imaginary, so its signature
is in fact (0, 2). The roots of f are the images of α under the embeddings of
K into C, so Tr(α) is the sum of these roots, which is approximately −3. But
α is an algebraic integer, so its trace is an integer and so Tr(α) = −3 exactly.
However, we already knew that : the trace of an algebraic number is minus the
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coefficient of xn−1 in its characteristic polynomial (same rule as for matrices).
As f is irreducible, it is the characteristic polynomial of α, and so Tr(α) = −3.

3. If I now tell you that disc f factors as 33 · 72 · 19 · 37, what can you say about
the ring of integers of K and the primes that ramify in K ?

We immediately see that Z[α] is maximal at every prime except possibly at 3
and 7, and that its index is at most 3 · 7. Even if 3 did divide the index, discK
would still be divisible by 3 because 3 shows up to an odd power in disc f , so 3
is definitely ramified in K, and so are 19 and 37. The factor 72 in disc f could
either come from discK, in which case 7 ramifies and Z[α] is maximal at 7, or
from the index of Z[α], in which case 7 does not ramify and Z[α] is not maximal
at 7. The other primes are unramified in K.

One last thing : if you pay attention enough (and you should !), you’ll notice
that f is Eisenstein at 3 (and hence irreducible as claimed). As a result, Z[α] is
maximal at 3, and 3 is totally ramified in K. Thus either Z[α] has index 7 and
7 does not ramify, or Z[α] = ZK and 7 does ramify. In the former case, there
would exists elements of ZK which, when written as polynomials in α, would
have a non-trivial denominator, which would be powers of 7 only.

4. In principle (don’t actually do it), how could you test whether β = α3−2α2−α+2
7

is an algebraic integer ?

I’d compute its characteristic polynomial : β is an algebraic integer if and only
if this polynomial lies in Z[x]. To do so, I could for example use the formula

χ(β) =
∏

σ : K↪→C

(
x− σ(β)

)
=
∏
z∈C
f(z)=0

(
x− z3 − 2z2 − z + 2

7

)

= Resy

(
f(y), x− y3 − 2y2 − y + 2

7

)
.

5. If I now tell you that the characteristic polynomial of β is χ(β) = x4 + 28x3 +
207x2 + 154x + 247, whose discriminant is discχ(β) = 25364993616, which
conclusions can you draw from that ?

Lots of conclusions. First, since χ(β) lies in Z[x], we see that β is an algebraic
integer, so that ZK is strictly larger than Z[α]. In view of question 3, this means
that Z[α] has index 7, that 7 does not ramify in K, and that discK = 33 ·19 ·37.

Besides, Z[α, β] is an order which is strictly larger than Z[α], its index is strictly
smaller (by a factor which is a power of 7 to be precise, since the denominator
of β w.r.t. Z[α] is 7), and since the index of Z[α] is 7 which is prime, we must
have ZK = Z[α, β].

Finally, since discχ(β) 6= 0, χ(β) is squarefree. It is thus the minimal polyno-
mial of β (remember proposition 1.2.18), so β has degree 4 and is thus another
primitive element for K. Since it is also an algebraic integer, Z[β] is an order
in K.
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6. Given that discχ(β) factors as 24 ·33 ·174 ·19 ·37, what is the index of the order
Z[β] ? What consequence does this have on the expression of a Z-basis of ZK
in terms of β ?

The formula
discO = [ZK : O]2 discK

shows that the index of Z[β] is 22 · 172. A consequence of this is that if we were
to elements of ZK as polynomials in β, we would get non-trivial denominators,
which would be made up of powers of 2 and 17.

7. Let γ = β2−3β−3
34

, and let δ = β3−12β−9
34

, whose respective characteristic polyno-
mials are χ(γ) = x4−13x3+42x2+8x+1 and χ(δ) = x4+139x3+5163x2+973.
Prove that {1, β, γ, δ} is a Z-basis of ZK.

As β is a primitive element for K, the elements 1, β, β2 and β3 form a Q-basis
of K. Since the elements 1, β, γ, δ are in echelon form with respect to this
basis, they also form a Q-basis of K. Let Λ be the lattice they span.

The fact that χ(γ) and χ(δ) lie in Z[x] shows that γ and δ are algebraic integers,
so Λ ⊆ ZK . Besides, it is clear that Λ ) Z[β].

The change of basis matrix between the two aforementioned bases of K is
1 0 −3

34
−9
34

0 1 −3
34

−12
34

0 0 1
34

0
0 0 0 1

34


whose determinant is clearly 1/342. As these bases are Z-bases of Z[β] and of
Λ, this means that [Λ : Z[β]] = 342 = 22 · 172 = [ZK : Z[β]]. The containment
Λ ⊆ ZK and the equality of indices then forces Λ = ZK .

Note that we get for free the fact that Λ is stable under multiplication, which
was by no means obvious.

8. Compute explicitly the decomposition of 2, 3, and 7 in K.

Since Z[α] is maximal at 2, we may compute the decomposition of 2 by factoring
f mod 2. Clearly, neither 0 nor 1 is a root of f mod 2, so f is either irreducible or
the product of 2 irreducible factors of degree 2. The only polynomials of degree
2 over F2 are x2, x2 + 1, x2 + x and x2 + x+ 1, and clearly only the last one is
irreducible. Therefore, if f mod 2 were reducible, it would be (x2 +x+ 1)2, but
this is impossible. There are two ways to see why : we can use the fact that we
are in characteristic 2 to compute that (x2 +x+ 1)2 = x2

2
+x2 + 12 6≡ f mod 2,

or we can say that if f were not squarefree mod 2, then its discriminant would
be 0 mod 2, which we know is not the case. Either way, we deduce that f
remains irreducible mod 2, so that 2 is inert in K. In symbols, 2ZK = p2 is a
prime of norm 24.
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We have already seen that 3 is totally ramified in K. To be more precise, as
Z[α] is maximal at 3 it is legitimate to factor f mod 3; we find f ≡ x4 mod 3,
whence 3ZK = p43, where p3 = (3, α) is a prime of norm 31.

Finally, we may not determine the decomposition of 7 by factoring f mod 7,
because the order Z[α] is not maximal at 7. However, since 72 - discχ(β), the
order Z[β] is maximal at 7, so we are saved. We have χ(β) ≡ x4 − 3x2 + 2 ≡
(x2 − 1)(x2 − 2) ≡ (x− 1)(x+ 1)(x− 3)(x+ 3) mod 7, so

7ZK = (7, β − 1)(7, β + 1)(7, β − 3)(7, β + 3)

is totally split.

9. What is the rank of the unit group of K ? Can you spot a nontrivial (i.e.
not ±1) unit of K ?

Since the signature of K is (0, 2), the rank of Z×K is 0 + 2− 1 = 1.

The fact that the constant term of χ(γ) is 1 indicates that N(γ) = (−1)4 · 1, so
γ is a unit of norm +1.

10. What can you say about the roots of unity contained in K ? How could you
use this to test whether the unit you spotted in the previous question if a root of
unity ?

If we had a p-th root of 1 in K where p is an odd prime, then K would contain
the p-th cyclotomic field, whose degree is p − 1 and which is ramified at p;
therefore the degree of K would be a multiple of (p− 1) and p would ramify in
K. This excludes all the possibilities, except p = 3.

If we did have a 3rd root of 1, say ζ, in K, then we would also have −ζ ∈ K,
which is a 6th root of 1. According to proposition 5.2.9, we would then have
N(p) ≡ 1 mod 6 for every prime p not above 2 or 3, but this is not contradictory
with the decomposition of 7 in K.

So, all we can say is that the roots of unity in K are either the 6th roots of
unity, or just ±1. In any case, a root of unity u ∈ K would satisfy u6 = 1, so
we could determine whether γ is a root of unity by checking if γ6 = 1. (In fact,
we could save ourselves some effort by checking if γ2± γ + 1 = 0 — thank you,
cyclotomic polynomials !).

In fact, it turns out that K does contain the 6th roots of unity, that γ is not a
root of unity, and that γ is in fact a fundamental unit of K, as luck would have
it. However, I really do not think this can be proved without massive help from
a computer.
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