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Exercise 1

Let K = Q(α), where α3 − 5α + 5 = 0.

1. Compute the ring of integers ZK of K.

Let A(x) = x3−5x+5. We have disc(A) = −4 ·(−5)3−27 ·52 = 52 ·(4 ·5−27) =
−52 · 7, so the order Z[α] is maximal at all p except maybe at p = 5. However,
A(x) is Eisenstein at 5 (which, by the way, proves that it is irreducible and so
that K is a number field), so Z[α] is in fact also maximal at 5. As a result,

ZK = Z[α].

2. Which primes p ∈ N ramify in K ?

The primes that ramify are the ones which divide the discriminant, which in
this case is discK = −52 · 7 according to the previous question. Therefore, the
primes that ramify in K are precisely 5 and 7.

3. For n ∈ N, n 6 7, compute explicitly the decomposition of nZK as a product of
prime ideals.

Since ZK = Z[α], we can see how pZK decomposes by studying how A(x) factors
mod p. For this, we can use the fact that since it is of degree 3, it is irreducible
iff. it has no root.

• We have 1ZK = ZK .

• Since A(0) ≡ A(1) ≡ 1 mod 2, A(x) is irreducible mod 2, and so 2 is inert
in K, i.e. 2ZK = p2 is a prime of inertial degree 3.
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• Mod 3, we have A(−1) ≡ 0, so x + 1 | A(x) mod 3. After a Euclidian
division, we find that A(x) ≡ (x+ 1)(x2−x− 1) mod 3, and the quadratic
factor has no root in F3 so this is the full factorisation. Therefore, 3ZK =
p3p
′
3, with p3 = (3, α+1) and p′3 = (3, α2−α−1), whose respective inertial

degrees are 1 and 2.

• We have 4ZK = 2ZK · 2ZK = p22.

• We have A(x) ≡ x3 mod 5, and so 5ZK = p35, where p5 = (5, α), whose
inertial degree is 1. In particular, 5 is totally ramified in K, but we already
knew that since f(X) is Eisenstein at 5.

• We have 6ZK = 2ZK · 3ZK = p2p3p
′
3.

• Finally, we check that A(x) has two roots in F7, namely 4 ≡ −3 and
5 ≡ −2, so (x + 3)(x + 2) | f(x) mod 7. A Euclidian division1 reveals
that in fact, A(x) ≡ (x + 2)2(x + 3) mod 7, and so 7ZK = p27p

′
7, where

p7 = (7, α + 2) and p′7 = (7, α + 3) both have inertial degree 1.

4. Prove that the prime(s) above 5 are principal, and find explicitly a generator for
them.

The only prime above 5 is p5. We have α ∈ p5, and NK
Q (α) = −5 (from the

constant coefficient of A(x)), so |NK
Q (α)| = N(p5), which proves that p5 = αZK

is the ideal generated by α.

5. List the ideals a of ZK such that N(a) 6 7.

• The only ideal of norm 1 is ZK itself.

• An ideal of norm 2 would be a prime (since its norm is prime) lying above
2, but N(p2) = 23 = 8, so no such ideal exists.

• For the same reason, we find that the only ideal of norm 3 is p3.

• An ideal of norm 4 would be a product of ideals above 2, but since N(p2) =
8, there are no such ideals.

• An ideal of norm 5 must be a prime above 5, so must be p5.

• An ideal of norm 6 must factor as a product of primes above 2 and 3.
Among these primes, the product of those lying above 2 must be of norm
2, but N(p2) = 8, so there is not such ideal.

• Finally, for the same reasons as above, the only ideals of norm 7 are p7
and p′7.

As a conclusion, the ideals of ZK of norm up to 7 are p3, p5, p7 and p′7.

1Other possibility : since −3 and −2 are the only roots of A(x) mod 7, we must have either
A(x) ≡ (x + 2)2(x + 3) or (x + 2)(x + 3)2 mod 7. Expand both and check that only the first one
works mod 7. (It was impossible that both would work mod 7, because F7[x] is a UFD since F7 is
a field, so we could predict that this method would succeed before we even tried.)
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6. Compute and factor explicitly the different of K.

Since ZK = Z[α], the different is

DK = f ′(α)ZK = (3α2 − 5).

Besides, its norm is | discK| = 52 ·7, and its prime factors are precisely the ram-
ified primes, namely p5 and p7. Besides, p5 and p7 both have inertial degree 1,
so N(p5) = 51 and N(p7) = 71. We can then use the fact that the norm of ideals
is multiplicative to determine the exponents of p5 and p7 in the factorisation of
DK :

DK = p25p7.

Exercise 2

Let K = Q(ζ), where ζ is a primitive 90th root of 1.

1. What is the degree of K ?

The degree of the cyclotomic field K is

[K : Q] = ϕ(90) = 90

(
1− 1

2

)(
1− 1

3

)(
1− 1

5

)
= 24.

2. Which primes p ∈ N ramify in K ?

In general, the primes that ramify in the N th cyclotomic field are the ones that
divide N , except for 2 which ramifies iff. 4 | N . Here, N = 90, so 2 does NOT
ramify in K although 2 | 90. Therefore, the primes that ramify in K are 3 and
5.

3. For p = 2, 3, 5, 7, describe how p decomposes in K.

This is just an application of theorem 3.10.1 from the notes. For each p, write
90 = pvm, where v is a nonnegative integer and m ∈ N is coprime to p.

• For p = 2, we have v = 1 and m = 45, so the ramification indices of the
primes are ϕ(21) = 1 (and so 2 is unramified, but we already knew that),
their inertial degrees are the order of 2 in (Z/45Z)∗ which is 12, and there
are 24

1·12 = 2 of them. Thus

2ZK = p2p
′
2

splits into a product of 2 distinct unramified primes of inertial degrees 12.

• For p = 3, we have v = 2 and m = 10, so the ramification indices of the
primes are ϕ(32) = 6 (and so 3 is ramified, but we already knew that),
their inertial degrees are the order of 3 in (Z/10Z)∗ which is 4, and there
are 24

6·4 = 1 of them. Thus
3ZK = p63

is the 6th power of a single prime (whose ramification index is thus 6) of
inertial degree 4.
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• For p = 5, we have v = 1 and m = 18, so the ramification indices of the
primes are ϕ(51) = 4 (and so 5 is ramified, but we already knew that),
their inertial degrees are the order of 5 in (Z/18Z)∗ which is 6, and there
are 24

4·6 = 1 of them. Thus
5ZK = p45

is the 4th power of a single prime (whose ramification index is thus 4) of
inertial degree 6.

• Finally, for p = 7, we have v = 0 and m = 90, so the ramification indices
of the primes are ϕ(70) = 1 (and so 7 is unramified, but we already knew
that), their inertial degrees are the order of 7 in (Z/90Z)∗ which is 12, and
there are 24

1·12 = 2 of them. Thus

7ZK = p7p
′
7

splits into a product of 2 distinct unramified primes of inertial degrees 12.

4. Give an example of a prime p ∈ N which splits completely in K.

The primes p ∈ N that split totally in K are the ones such that p ≡ 1 mod 90.
Of course, 1 is not prime, and neither is 91 = 7 ·13 (although I’ll grant you that
it looks like it at the first glance), but 181 is. Thus, p = 181 is a (in fact, the
smallest) prime which splits totally in K.

5. Does there exist a prime p ∈ N which is inert in K ?

Such a p would have to be distinct from 3 and 5 (so as not to ramify) and to
have order [K : Q] = 24 in (Z/90Z)∗. However, Chinese remainders tell us that

(Z/90Z)∗ ' (Z/2Z)∗ × (Z/32Z)∗ × (Z/5Z)∗ ' Z/6Z× Z/4Z

is not cyclic (because 6 and 4 are not coprime), and so this group, which is of
order 24, does not have elements of order 24. Therefore, such a p cannot exist.

Remark: As ZK = Z[ζ], this means that although the cyclotomic polynomial
Φ90(x) is irreducible over Z and Q, it becomes reducible mod p for all
p ∈ N. This shows that it is not always possible to prove the irreducibility
of a polynomial over Q by finding a prime modulo which it is irreducible.

UNASSESSED QUESTION

Exercise 3

Let K be a number field of degree n. Prove that if there exists a prime p < n
which splits completely in K, then ZK is not of the form Z[α] for any α ∈ K.

Suppose on the contrary that ZK = Z[α] for some α ∈ K. Then in particular
α lies in ZK and is a primitive element, so its minimal polynomial A(x) has degree
n and lies in Z[x]. Besides, if p splits completely in K, then A(x) must split into
distinct n linear factors mod p, but this is not possible if p < n, since there are only
p possibilities for these linear factors, namely x, x+ 1, · · · , x+ p− 1.

In fact, this proves not only that Z[α] is never the whole of ZK , but also that its
index is in fact always divisible by p (i.e. it is never maximal at p).
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