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1 Duality functors

1.1 The case of vector spaces
Let k be a field, and Vectk be the category of finite-dimensional vector spaces over k. Write
D for the functor V 7→ V ∗, where V ∗ denotes the linear dual Homk(V, k) of V .

The we have the following properties:

• D(D(V )) is isomorphic to V in a functorial way (we say thatD◦D and id are isomorphic
as functors)

• if 0→ A→ B → C → 0 is an exact sequence, then so is 0→ D(C)→ D(B)→ D(A)→
0

• Hom(D(V ), D(W )) and Hom(W,V ) are canonically isomorphic (the isomorphism is
called transposition).

Definition. A functor D having these properties is called a dualising functor.

1.2 Naïve duality for modules over algebras
Denote byM →M∗ the naïve duality functor forA-modules of finite type,M∗ = Hom(M,A).
Then we only have the following properties:

• if A→ B → C → 0 is exact, then 0→ C∗ → B∗ → A∗ is exact;

• the natural transformation M →M∗∗ can be neither injective nor surjective;

• transposition Hom(M,N)→ Hom(N∗,M∗) is no longer injective nor surjective.

However, it is sometimes true that the naïve duality functor shares properties of D. For
example, if A = Z/pnZ, remember that any A-module of finite type can be wriĴen as a direct
sum M =

⊕
Z/piZ where i 6 n. Now observe that Hom(Z/pkZ, Z/pnZ) ≃ Z/pkZ (if f is

such a morphism, f(1) is pn−k times some element a of Z/pkZ, and we say f = fa).
Moreover, given a morphism g : Z/plZ → Z/pkZ (l > k), and fa : Z/pkZ → Z/pnZ, the

induced morphism g ◦ fa takes 1 to ag(1)pn−k = ag(1)pl−kpn−l. So the transpose morphism
g∗ : Z/pkZ→ Z/plZ is multiplication by g(1)pl−k. Thus transposition acts as an involution.

When M →M∗ is a dualising functor, we say the ring A has the Gorenstein property.
Example. The rings Z/pnZ, k[ε]/(εn) have the Gorenstein property.
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Now let A be the ring k[x, y]/(x2, xy, y2), and M be the A-module k ≃ A/(x, y). Then
HomA(M, A) ≃ k2, and HomA(HomA(M, A), A) ≃ k4, which is not isomorphic to k.

The following property says that dualising functors nevertheless have a very simple form.

Proposition 1. Let D be a dualizing functor on the category of finitely generated modules
over A. For any module M of finite type, D(M) is given by the formula

D(M) = HomA(M,D(A))

Proof. This is because D(M) = HomA(A,D(M)) = HomA(D(D(M)), D(A)).

Definition. IfD = HomA(•, ∆) is a dualising functor, we say∆ = D(A) is a dualising module.

1.3 LiĞing duality over fields to algebras
There are simple cases where morphisms of vector spaces correspond tomorphisms of mod-
ules. Let ι : k → A be the inclusion of the field k in a finite-dimensional k-algebra A. There
are canonical functors

Γ∗ : ModA → Vectk Γ∗ : Vectk →ModA

defined by Γ∗(M) = M and Γ∗(V ) = V ⊗k A.

Proposition 2. These functors have the adjunction property :

Homk(V, Γ∗M) ≃ HomA(Γ∗V, M)

Butwe are not interested in linearmaps fromvector spaces tomodules, but inHomk(M,k),
which has all properties required for a dualising functor.

Conjecture 3. Is there a functor Γ! having the adjunction property:

Homk(Γ∗M,V ) ≃ HomA(M, Γ!V ) ?

Since all vector spaces are direct sums of copies of k, we are looking for a A-module
ωA = Γ!(k) having the property

Homk(M,k) ≃ HomA(M,ωA).

Proposition 4. The only A-module giving the adjunction property is ωA = Homk(A, k).

Grothendieck’s duality theory looks for functors Γ! in more general seĴings. In general,
the definition of Γ! is complicated.

2 Local rings of dimension zero

2.1 Injective modules over a k-algebra
Here, A is an arbitrary k-algebra, for some field k.

Definition (Injectivemodule). An injectiveA-module is amodule I such that for any injective
map of modules M → N , any map M → I can be extended to a map N → I .

Lemma 5. A dualising module is necessarily injective.
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Proof. Remember that the dualising functor HomA(M, ωA) has to be exact: for any injection
M → N , HomA(N, ωA)→ HomA(M,ωA) is a surjective map.

This exactly means that any map M → ωA can be extended to a map N → ωA along an
injective M → N .

Arbitrary modules can be embedded into injective modules:

Proposition 6. Any A-module is contained in an injective module.

Proof. Notice that Homk(A,M) is a A-module containing M , and that a morphism of A-
modules f : V → Homk(A,M) is equivalent to a morphism of vector spaces f ′ : V →M (set
f ′(v) = f(v)(1), and given f ′, set f(v)(a) = f ′(av).

Of course, morphism of vector spaces do extend along injections, so Homk(A,M) is in-
jective.

We now turn to the important notion of injective hull, which allows to define the dualising
module. This notion arise naturally from the following fact.

Lemma 7. A dualising module for A contains k as a submodule. More generally, if M is a
simple A-module, then any dualising module contains M .

Proof. This is because HomA(k, ωA) (resp. HomA(M, ωA)) is nonzero, and because such
maps are always injective.

Definition. An injective hull for aA-moduleM is an injective module IM containingM such
that any submodule J ⊂ IM intersects M (i.e. IM is an essential extension).

Theorem 8. Injective hulls exist and are unique up to isomorphism.

Proof. Suppose IM and JM exist and are injective hulls for M . Then the injection M → JM

extends to IM → JM . This morphism is injective (otherwise some element of M would be
in the kernel), so the identity IM → IM can be extended to a morphism JM → IM with is a
retraction: JM = IM ⊕K for some K, and K does not intersect M , so IM = JM .

Now let M ⊂ JM be an inclusion of M in an injective A-module. By Zorn’s lemma there
exists some maximal essential extension M ⊂ IM ⊂ JM (the limit of a chain of essential
extensions is again essential). Let N be a maximal submodule of JM not intersecting M
(equivalently, not intersecting IM ). Then JM/N is an essential extension ofM , since if it were
not, there would be N ′/N not intersecting M nor IM , contradicting the maximality of N .

Not if X has a morphism to IM , it can be extended to Y → JM → IM , so IM is injective
itself, and an essential extension.

2.2 The dualising module
Let (A, m) be a local ring, with residue field k.

Definition. The top (or fibre) of a A-module M is the quotient M/mM , which is a k-vector
space. The socle ofM is the maximal submodule annihilated bym inM . It is again a k-vector
space.

Proposition 9. Suppose A is a finite-dimensional graded local k-algebra. Let D denote the
dualising functor M 7→ Homk(M,k). If M is a finite-dimensional graded vector space, the
socle of M naturally corresponds to the top of D(M).

It follows from the previous section that dualising modules need be injective modules
containing simple A-modules (which are only k if A is a local ring).

We will prove the following theorem:
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Theorem 10. Suppose A is a zero-dimensional local ring, with residue field k. A module ωA defines
a duality functorHom(•, ωA) if and only if ωA is isomorphic to the injective hull of k in the category
of A-modules of (finite length).

In particular, if A is a k-algebra which is finite-dimensional, the dualising module ωA is
Homk(A, k).

Proof. Suppose D is a dualising functor. We already know that D(M) = Hom(M, ωA) and
that ωA is injective. Since A has dimension zero, for any nonzero module M , there is a last
nonzero mkM , which is contained in the socle of M .

Now let M be any nonzero submodule of ωA: then M has a nonzero socle, which is a
k-vector space, and the inclusion of M in ωA defines morphisms from kr to k ⊂ ωA. Since
D(k) = HomA(k, ωA) is a k-vector space andHom(D(k), k) ⊂ Hom(D(k), ωA) ≃ k,D(k) = k,
and M ⊂ ωA maps the socle of M onto k.

It follows that ωA is an essential extension of k, hence its injective hull.
Conversely, if ωA is the injective hull of k, we show thatD(M) = Hom(M, ωA) is a dualiz-

ing functor. First remark that D is exact, since ωA is injective, and that Hom(k, ωA) = k, since
ωA is an essential extension of k. Then D has the duality property on k-vector spaces.

For general M , there exists a finite filtration

M ⊃ mM ⊃ m2M ⊃ · · ·

with k-vector spaces as graded components. By exactness,

D2(M) ⊃ D2(mM) ⊃ D2(m2M) ⊃ · · ·

is also a decreasing filtration, and the morphism X → D2(X) is an isomorphism on the
graded components of these filtrations, and this implies by dévissage that M → D2(M) is an
isomorphism.

2.3 Functoriality property
Theorem 11. Let A be a zero-dimensional local ring, and let f : A ← B be an finite type local
morphism, where B is a local ring. If IB is the injective hull of kB,

ωA = HomB(A, IB)

Proof. Recall that there is a bĳective correspondance between f ∈ HomA(M,HomB(A, IB))
and f1 ∈ HomB(M, IB). For given some f , the formula f1(m) = f(m)(1) is B-linear snice
f1(bm) = f(bm)(1) = f(m)(b) = bf(m)(1). The identity f(am)(x) = f(m)(ax) proves that
f(m)(a) = f1(am), so f is determined by f1.

It follows thatHomB(A, IB) is injective as aA-module, and contains kA ≃ HomB(kA, kB) ⊂
HomB(kA, IB) (use the fact that kA is finite-dimensional).

Let M be a A-submodule of HomB(A, IB). Then M has a nonzero socle S, and S consists
of morphisms f : A → IB such that f(mx) = 0 for m ∈ mA, thus mf(x) = 0 for m ∈ mB. So
f is actually a morphism from kA to the B-socle of IB, which kB, so it intersects non-trivially
kA ≃ HomB(kA, kB).

Hence we are looking at the injective hull of kA, which is ωA.
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2.4 The residue map
Definition. Let A be a local zero-dimensional k-algebra. Then Homk(A, k) has a canonical
map

f ∈ ωA 7→ f(1) ∈ k

which is A-linear, since (af)(1) = f(ā) = āf(1) where ā is the residue of a in k.
This map is called the residue map.

In the case of zero-dimensional quotients of polynomial rings, this is easily understood
as the traditional residue map. Let R = k[[x1, . . . , xd]] be a power series ring, with maximal
idealm and defineKR to be theR-module k((x1, . . . , xr))/mwhose all elements have torsion.

Theorem 12 (Thm 21.6 in Eisenbud). Given an ideal I defining a zero-dimensional quotient R/I ,
the submodule KR/I of KR annihilated by I (KR/I = HomR(R/I, KR)) is isomorphic to ωR/I . This
defined a bĳection between quotients R/I and finite type submodules of KR.

Proof. It is obvious that KR/I contains R/m as a submodule, so KR/I is a (R/I)-module
containing k. It is easy to see that KR, hence KR/I , is an essential extension of k.

To see that KR/I is injective, let p be a large integer such that mp contains I . Then KR/mp

is isomorphic to Homk(R/mp, k) (by κ 7→ (f 7→ (fκ)0) and is injective. Then the diagram

0 // Hom(N/M, KR/I) // Hom(N, KR/I) // Hom(M,KR/I)

0 // Hom(N/M,KR/mp) // Hom(N,KR/mp) // Hom(M, KR/mp) // 0

is commutative, and since the second line is exact, the first one is also exact.

This gives a classical interpretation of the dualisingmodule as residues : ifA = k[z]/(zn+1)
is the ring of Taylor expansions

f = a0 + a1z + · · ·+ anzn + o(zn+1)

then ωA ≃ Hom(A, k((z))/zk[[z]]) is the A-module of differential forms

ω =
( bn

zn
+ · · ·+ b1

z2
+ b0 + o(1)

)
× dz

z

and the pairing A⊗ ωA → k is given by

(f, ω)→ 1

2iπ

∫
C

f(z)ω =
n∑

i=0

aibi

which is a non-degenerate bilinear form.

A Appendix: injective modules over arbitrary rings
We study first the case of Z-modules.

Proposition 13. Abelian divisible groups are injective as Z-modules.

5



Proof. Let I be an abelian divisible group, andM → I amorphism of abelian groups, andN
an abelian group containing M . Let f0; M → I , and construct morphisms fi : Mi → I in the
following way: let n be an element of N −Mi, and Mi+1 = Mi + Zn. Then if k is the smallest
integer such that kn ∈ Mi, choose fi+1(n) such that kfi+1(n) = fi(kn), and fi+1(m) = fi(m)
for m ∈Mi.

By transfinite induction (Zorn’s lemma), this defines a morphism N → I , for some trans-
finite ordinal i.

Now this can be used as a basis for the more general case.

Proposition 14. If A does not contain a field, it is still true that any A-module is contained in
an injective module.

Proof. Let I be the quotient as abelian groups of Q(M) by the relations em + em′ = em+m′ . Then
I is an injective Z-module, because it is divisible.

Now IM = HomZ(A, I) contains M as a A-module, where m is identified with a → eam.
Since for anyA-moduleN , HomA(N, IM) ≃ HomZ(N, I), morphisms to IM extend along any
injective morphism.
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