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1 Duality functors

1.1 The case of vector spaces

Let k be a field, and Vect;, be the category of finite-dimensional vector spaces over k. Write
D for the functor V +— V*, where V'* denotes the linear dual Hom(V, k) of V.
The we have the following properties:

e D(D(V))isisomorphicto V in a functorial way (we say that Do D and id are isomorphic
as functors)

e if 0 - A— B — C — 0is an exact sequence, then sois 0 — D(C') — D(B) — D(A) —
0

e Hom(D(V), D(W)) and Hom(WW, V') are canonically isomorphic (the isomorphism is
called transposition).

Definition. A functor D having these properties is called a dualising functor.

1.2 Naive duality for modules over algebras

Denote by M — M* the naive duality functor for A-modules of finite type, M* = Hom(M, A).
Then we only have the following properties:

e if A— B — (C — (Oisexact, then() — C* — B* — A* is exact;
e the natural transformation M — M** can be neither injective nor surjective;
e transposition Hom(M, N) — Hom(N*, M*) is no longer injective nor surjective.

However, it is sometimes true that the naive duality functor shares properties of D. For
example, if A = Z/p"Z, remember that any A-module of finite type can be written as a direct
sum M = @ 7Z/p'Z where i < n. Now observe that Hom(Z/p*Z,7Z/p"Z) ~ 7/p*7Z (if f is
such a morphism, f(1) is p"~* times some element a of Z/p*Z, and we say f = f,).

Moreover, given a morphism g : Z/p'Z — Z/p*Z (I > k), and f, : Z/p*Z — Z/p"Z, the
induced morphism g o f, takes 1 to ag(1)p"" = ag(1)p'~*p"~'. So the transpose morphism
g* : Z/p*Z — 7Z/p'Z is multiplication by g(1)p'~*. Thus transposition acts as an involution.

When M — M* is a dualising functor, we say the ring A has the Gorenstein property.

Example. The rings Z/p"Z, k[e]/(c") have the Gorenstein property.



Now let A be the ring k[z,y]/(2? xy,y*), and M be the A-module k& ~ A/(z,y). Then
Hom (M, A) ~ k?, and Hom 4(Hom 4 (M, A), A) ~ k*, which is not isomorphic to .
The following property says that dualising functors nevertheless have a very simple form.

Proposition 1. Let D be a dualizing functor on the category of finitely generated modules
over A. For any module M of finite type, D(M) is given by the formula

D(M) =Homu (M, D(A))
Proof. This is because D(M) = Hom (A, D(M)) = Homy(D(D(M)), D(A)). O

Definition. If D = Hom (e, A) is a dualising functor, we say A = D(A) is a dualising module.

1.3 Lifting duality over fields to algebras

There are simple cases where morphisms of vector spaces correspond to morphisms of mod-
ules. Let ¢ : £ — A be the inclusion of the field % in a finite-dimensional k-algebra A. There
are canonical functors

I, : Mod4 — Vect, I' : Vect;, — o0y
defined by I',(M) = M and I''(V) =V @, A.
Proposition 2. These functors have the adjunction property :
Hom,(V,I',M) ~ Hom,(I""V, M)

But we are not interested in linear maps from vector spaces to modules, butin Homy (M, k),
which has all properties required for a dualising functor.

Conjecture 3. Is there a functor I having the adjunction property:
Hom,(I',M, V) ~ Homy(M,T'V) ?

Since all vector spaces are direct sums of copies of k, we are looking for a A-module
wy = I''(k) having the property

Homy, (M, k) ~ Hom (M, wy).
Proposition 4. The only A-module giving the adjunction property is wy = Homy (A4, k).

Grothendieck’s duality theory looks for functors I'' in more general settings. In general,
the definition of I'' is complicated.

2 Local rings of dimension zero

2.1 Injective modules over a k-algebra
Here, A is an arbitrary k-algebra, for some field k.

Definition (Injective module). Aninjective A-module is a module / such that for any injective
map of modules M — N, any map M — [ can be extended to a map N — I.

Lemma 5. A dualising module is necessarily injective.
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Proof. Remember that the dualising functor Hom 4 (1, w4 ) has to be exact: for any injection
M — N, Homy(N,w4) — Homu(M,w,) is a surjective map.

This exactly means that any map M — wy can be extended to a map N — w4 along an
injective M — N. [

Arbitrary modules can be embedded into injective modules:
Proposition 6. Any A-module is contained in an injective module.

Proof. Notice that Homy(A, M) is a A-module containing )/, and that a morphism of A-
modules f : V — Homy (A, M) is equivalent to a morphism of vector spaces f': V — M (set
f'(v) = f(v)(1), and given f’, set f(v)(a) = f'(av).

Of course, morphism of vector spaces do extend along injections, so Hom, (A, M) is in-
jective. [

We now turn to the important notion of injective hull, which allows to define the dualising
module. This notion arise naturally from the following fact.

Lemma 7. A dualising module for A contains k as a submodule. More generally, if M is a
simple A-module, then any dualising module contains M.

Proof. This is because Hom4(k,w,4) (resp. Homy(M,wy)) is nonzero, and because such
maps are always injective. [

Definition. An injective hull for a A-module }/ is an injective module /,; containing M such
that any submodule J C I, intersects M (i.e. I)s is an essential extension).

Theorem 8. Injective hulls exist and are unique up to isomorphism.

Proof. Suppose I, and J); exist and are injective hulls for M. Then the injection M — Jy,
extends to Ip; — Jjs. This morphism is injective (otherwise some element of A/ would be
in the kernel), so the identity I, — I, can be extended to a morphism Jy; — Iy, withis a
retraction: J,; = Iy @ K for some K, and K does not intersect M, so Iy = Jy.

Now let M C Jjs be an inclusion of M in an injective A-module. By Zorn’s lemma there
exists some maximal essential extension M C Ip; C Jy (the limit of a chain of essential
extensions is again essential). Let N be a maximal submodule of Jj; not intersecting M
(equivalently, not intersecting I,,). Then J); /N is an essential extension of A, since if it were
not, there would be N'/N not intersecting M nor I, contradicting the maximality of N.

Not if X has a morphism to I, it can be extended to Y — Jy, — Iy, so Iy is injective
itself, and an essential extension. O

2.2 The dualising module
Let (A, m) be a local ring, with residue field k.

Definition. The top (or fibre) of a A-module M is the quotient M /mM, which is a k-vector
space. The socle of M is the maximal submodule annihilated by m in M. It is again a k-vector
space.

Proposition 9. Suppose A is a finite-dimensional graded local k-algebra. Let D denote the
dualising functor M — Homy (M, k). If M is a finite-dimensional graded vector space, the
socle of M naturally corresponds to the top of D(M).

It follows from the previous section that dualising modules need be injective modules
containing simple A-modules (which are only & if A is a local ring).
We will prove the following theorem:



Theorem 10. Suppose A is a zero-dimensional local ring, with residue field k. A module w4 defines

a duality functor Hom(e,w ) if and only if w4 is isomorphic to the injective hull of k in the category
of A-modules of (finite length).

In particular, if A is a k-algebra which is finite-dimensional, the dualising module w, is
Homy (A, k).

Proof. Suppose D is a dualising functor. We already know that D(M) = Hom(M,w,) and
that wy is injective. Since A has dimension zero, for any nonzero module ), there is a last
nonzero m*M, which is contained in the socle of M.

Now let M be any nonzero submodule of w,: then M has a nonzero socle, which is a
k-vector space, and the inclusion of M in w, defines morphisms from k" to k C wy4. Since
D(k) = Homa(k,wy) is a k-vector space and Hom(D(k), k) C Hom(D(k),wa) ~ k, D(k) =k,
and M C w4 maps the socle of M onto k.

It follows that w, is an essential extension of &, hence its injective hull.

Conversely, if wy is the injective hull of £, we show that D(M) = Hom(M,w,) is a dualiz-
ing functor. First remark that D is exact, since wy is injective, and that Hom(k,w,) = k, since
w4 is an essential extension of k. Then D has the duality property on k-vector spaces.

For general M, there exists a finite filtration

M>mM>D>m*M D ---
with k-vector spaces as graded components. By exactness,
D*(M) > D*(mM) D> D*(m*M) D ---

is also a decreasing filtration, and the morphism X — D?(X) is an isomorphism on the
graded components of these filtrations, and this implies by dévissage that M — D?*(M) is an
isomorphism. O]

2.3 Functoriality property

Theorem 11. Let A be a zero-dimensional local ring, and let f : A < B be an finite type local
morphism, where B is a local ring. If I is the injective hull of kp,

wa = Hompg(A, Ip)

Proof. Recall that there is a bijective correspondance between f € Hom (M, Homp(A, Ig))
and f; € Homg(M, Ig). For given some f, the formula fi(m) = f(m)(1) is B-linear snice
fi(bm) = f(bm)(1) = f(m)(b) = bf(m)(1). The identity f(am)(z) = f(m)(az) proves that
f(m)(a) = fi(am), so f is determined by f;.

It follows that Hompg (A, I5) isinjective as a A-module, and contains k4 ~ Homp(k4, k) C
Homp(ka, Ig) (use the fact that k4 is finite-dimensional).

Let M be a A-submodule of Homp(A, I3). Then M has a nonzero socle S, and S consists
of morphisms f : A — I such that f(mz) = 0 for m € my, thus mf(z) = 0 for m € mg. So
f is actually a morphism from k4 to the B-socle of I, which kg, so it intersects non-trivially
kA ~ HomB(kA, k?B)

Hence we are looking at the injective hull of k4, which is wa. O



2.4 The residue map

Definition. Let A be a local zero-dimensional k-algebra. Then Homy(A, k) has a canonical
map

feEwar f(1) ek

which is A-linear, since (af)(1) = f(a) = af(1) where a is the residue of a in k.
This map is called the residue map.

In the case of zero-dimensional quotients of polynomial rings, this is easily understood
as the traditional residue map. Let R = k[[x1, ..., z4]] be a power series ring, with maximal
ideal m and define K'i to be the R-module k((z1, ..., z,))/m whose all elements have torsion.

Theorem 12 (Thm 21.6 in Eisenbud). Given an ideal I defining a zero-dimensional quotient R/I,
the submodule Kr/; of K annihilated by I (Kg/;r = Hompg(R/I, Kg)) is isomorphic to wgr. This
defined a bijection between quotients R/I and finite type submodules of Kp.

Proof. It is obvious that K/, contains R/m as a submodule, so Ky/; is a (R/I)-module
containing k. It is easy to see that K, hence K/, is an essential extension of .

To see that K/ is injective, let p be a large integer such that m” contains /. Then Kp/w»
is isomorphic to Homy(R/m?, k) (by x — (f — (fk)o) and is injective. Then the diagram

0 —— Hom(N /M, Kg/;) — Hom(N, Kp/;) —Hom(M, Kg/)

0 —Hom(N /M, Kg/w) — Hom(N, Kg/mr) — Hom(M, Kg/me) — 0

is commutative, and since the second line is exact, the first one is also exact. ]

This gives a classical interpretation of the dualising module as residues: if A = k[2]/(2"*)
is the ring of Taylor expansions

f=ap+aiz+ - +a,z" +o(z"")
then wy ~ Hom(A, k((z))/zk[[z]]) is the A-module of differential forms

b, b d
w:(z—n+- +—1+bo+0( 1)) x ?Z

and the pairing A ® wa — k is given by

fwﬁ%/f

which is a non-degenerate bilinear form.

A Appendix: injective modules over arbitrary rings

We study first the case of Z-modules.

Proposition 13. Abelian divisible groups are injective as Z-modules.



Proof. Let I be an abelian divisible group, and M — I a morphism of abelian groups, and N
an abelian group containing M. Let fo; M — I, and construct morphisms f; : M; — I in the
following way: let n be an element of N — M, and M, ; = M, + Zn. Then if k is the smallest
integer such that kn € M;, choose f;;1(n) such that kf;11(n) = fi(kn), and fi11(m) = fi(m)
form € Mz

By transfinite induction (Zorn’s lemma), this defines a morphism N — I, for some trans-
finite ordinal . ]

Now this can be used as a basis for the more general case.

Proposition 14. If A does not contain a field, it is still true that any A-module is contained in
an injective module.

Proof. Let I be the quotient as abelian groups of Q) by the relations e, + €,/ = €,,4m/. Then
I is an injective Z-module, because it is divisible.

Now I,; = Homy(A, I) contains M as a A-module, where m is identified with a — eg,.
Since for any A-module N, Hom (N, I);) ~ Homy(N, I), morphisms to I); extend along any
injective morphism. O
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