A NOTE ON IMPLEMENTING DIRECT ISOGENY DETERMINATION IN THE
CASTRYCK-DECRU SIKE ATTACK

REMY OUDOMPHENG

AsstrACT. Matrix formulations of Kani’s theorem given in [MM] are known to link di-
rectly elliptic curve isogenies in a commutative diagram (isogeny diamond) and the cor-
responding isogeny of abelian surfaces determined by Kani’s theorem.

This allows to compute the result of the Castryck-Decru attack in an extremely fast
way, by giving all ternary digits of the secret key in a single computation once the first
digits, necessary to apply Kani’s theorem, have been determined by exhaustive enumer-
ation.

Higher dimensional analogues have been described by Damien Robert in [Rob].

This short note attempts to explain precisely what type of computations must be done
in order to achieve that.

1. KANI'S THEOREM AND ISOGENY DIAMONDS

We refer to [Gal] for a quick and short introduction to Kani’s theorem and how it can
be elegantly formulated using matrices of isogenies.

Considering a diagram of isogenies which is commutative even after replacing par-
allel arrows with the dual isogenies:

Kani’s theorem [Kan97] says that if deg ¢+deg 7 = N then the (N, N)-torsion subgroup
G C E[N] x C'[N] C E x C" defined by the graph of 7'¢ = 7¢' is isotropic for the Weil
pairing and defines a quotient of abelian surfaces £ x C'/G ~ E' x C

Since the computation of this quotient surface only depends on the knowledge of the
graph of the isogeny on the N-torsion subgroup, and not the isogeny itself, Castryck and
Decru used data shared in SIKE key exchange to apply Kani’s theorem and a criterion
for the quotient surface to be a product of elliptic curve as an oracle to determine the
secret key step-by-step.

2. FORMULAS FOR THE (2, 2)-ISOGENY DEFINED BY A DEGREE 2 ELLIPTIC SUBCOVER

The last step of the chain of (2, 2)-isogenies computing the quotient C' x E /G, which is
not computed explicitly in [CD], is the splitting step where the codomain of the isogeny
is again a product of elliptic curves.

It can be computed by essentially reversing the gluing formulas seen for example in
[HLPOO]. The splitting formulas can be found in [Smi].

Starting with a curve:

H: y2 = Gl(I)GQ(ZB)Gg(ZL')
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where G| are linearly dependent degree 2 polynomials, we determine an homography
o of P! such that the transformed hyperelliptic curve has form:

H' oy =d(2* — ay)(2? — ap)(2? — a3)
This is done by solving the equation:

Gl,O G1,1 G1,2 2cd
G270 Gg’l G272 ad -+ bc| =0
Gso Gs1 Gso 2ab

corresponding to the fact that

cx+d

The equation has solutions precisely when the matrix of coefficients (G};) is singular.

H-—>P!

-

HIHPI

The map H' — H can be described explicitly as:

(z,y) = (

ar +b Y >
cx +d’ (cx +d)?

We define curves with the following equations:
H, : y2 = (6172(%2 + él’(])(éggxz + 6270)(6713721'2 + égyo)
El : yQ = (GLQQZ + él,o)(éggﬂf + GQ,Q)(G&QQZ + ég,o)
Ey g = (G + G102)(Gap + Gogr)(Gs 2 + G o)
and the projection maps:
H' — By : (z,y) = (2%,y)
H — Ey: (2,y) — (1/2% y/2?)
which are easily shown to coincide with the ones defined in the gluing construction.

The computation of the abelian surface isogeny requires computing the image of a
divisor D € Jac H to F; and Es.

This can be done explicitly without variable elimination, by mapping D € JacH —
D" € Jac H' using the homography ¢ on Mumford coordinates, then mapping D’ to E;
by defining auxiliary variables x;, x5 for the roots of the first Mumford coordinate of
D', and computing the image in Jac E; ~ E; using Mumford coordinates and replacing
symmetric functions of z; and z, by the coefficients of D'.

Then Cantor’s reduction formulas can be used to compute the coordinates of the cor-
responding point on £;.

3. DESCRIPTION OF THE SIMPLIFIED IMPLEMENTATION

In the context of Castryck-Decru attack, the first step is to construct a prefix of the
secret isogeny: ¢ = @predsur such that we are able, using the endomorphism ring of
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Fiare to define an isogeny of suitable degree targeting a curve C, to construct an isogeny
diamond:

Ppre Bou
Estart s E L E

C—C'
g

The prefix has been determined using the “glue-and-split” construction as an oracle,
and the suffix is unknown. Since the action of this diamond on a 2 torsion subgroup is
known, and since degrees have been chosen suitably, this diagram defines a computable
exact sequence

0—-G—CxE —-ExC' -0
where the map C' x E' — E x (" is a chain of (2, 2)-isogenies comprising a gluing map,
Richelot isogenies, and a terminal splitting map as described in the previous section.

As explained in matrix descriptions of Kani’s theorem, the quotientmap ¢ : C x E/ —

E x C"acts on C precisely by

q(Fo,0) = (£77(Fo), £¢/(Fo))
Let’s complete the diagram as follows:

¢ re ¢su
Estart - E — E’

Tstart l l T \L T

Cstart — C - (o
pre,C @
Since 3’ is coprime to 2, the isogenies 7 act in an invertible way on 3-torsion: if P;,
Q3 are generators of the 3’ torsion subgroup of Fy, then:

Q(T¢pre(P3)v 0)2 = i¢,7¢pre(P3) = T,(¢(P3))

meaning that g o 7 o ¢ is an explicitly computable map whose kernel is exactly the
kernel of the secret isogeny ¢.

The computation of ¢ requires mapping a point in either a product of elliptic curves,
or a genus 2 Jacobian, through a chain of (2, 2)-isogenies.

The kernel can be explicitly computed as follows: let (Ps, ()3) be the basis of 3°-torsion
used to encode the secret key, and choose a symplectic basis of the 3%-torsion of C’. Note
that in the Jacobian splitting step, it may be unclear which factor is £ and which factor
is C'. Trying both ensures success.

Then compute the image of P;, @3 in C’ through the diagram above and the chain of
(2, 2)-isogenies. Then the Weil pairings of their images in C’ with the chosen symplectic
basis will define a 2 x 2-matrix in 4 or equivalently, Z/3°Z whose kernel recovers the
secret key s such that P; + sQ)3 maps to zero.

The resulting code implemented using SageMath will be published to the https:
//github.com/remyoudompheng/Castryck-Decru-SageMath Git repository.
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