
Master’s Internship Proposal (6 months)

Reinforcement Learning for Formal Verification of Liveness in Distributed
Systems

Keywords: reinforcement learning; formal verification; model checking; distributed systems;
concurrent software; testing

Internship supervisors

Inria – CNRS – Université de Rennes: Ocan Sankur (researcher) ocan.sankur@cnrs.fr
Mitsubishi Electric R&D Centre Europe: Florian Faissole (researcher)
f.faissole@fr.merce.mee.com

Location

Inria - IRISA, Université de Rennes, campus de Beaulieu 35042 Rennes, France

Overall context

Inria – IRISA is a joint academic research center in computer science of Université de
Rennes, Inria, and CNRS, located in Rennes, France. The center offers an international
environment; about half of the PhD students and some of the faculty are international.

Mitsubishi Electric R&D Centre Europe is the European R&D centre from the Corporate
R&D organisation of Mitsubishi Electric. Situated at the heart of Europe’s leading R&D
community, Mitsubishi Electric R&D Centre Europe includes two entities, one located in Rennes,
France and another located in Livingston, UK. We conduct R&D into next generation
communication and information systems, power electronic systems and environment and
energy systems.

We are interested in developing formal verification techniques for verifying the
correctness of distributed algorithms and concurrent software, focusing, in this work, on liveness
properties such as absence of livelocks.

Internship subject

A livelock in a concurrent software is a situation where two threads are continuously
executed, but each thread requires a resource owned by the other thread, and they enter a loop
where no progress is made by any of the threads. One example is two polite persons trying to eat
soup with a shared spoon: they both request to eat soup, but the person holding the spoon is too
polite and passes it to the other person before eating the soup. The other person has the same
behavior, so they end up passing the spoon to each other and no one ever actually eats the soup.

Livelocks are notoriously difficult to detect because it is difficult to distinguish them
from a trace where the threads just need to wait for a long time before making progress (say,
because they are waiting for some computations to terminate). Theoretically, the difficulty can
be explained by the fact that absence of livelocks is a liveness property (a proof of violation is an
infinite execution), and not a safety property (for which a proof of violation could be finite).

Reinforcement Learning (RL) is set of techniques which aims at learning an optimal
policy to control a system by interacting with it [6]. Lately RL has been used in test generation

mailto:ocan.sankur@cnrs.fr
mailto:f.faissole@fr.merce.mee.com

where the tester is seen as a policy, and the goal is to find the best tester which achieves maximal
coverage, or some other criterion such as reaching a specific location in the code. This has been
used in symbolic/concolic execution [5, 4], and fuzzing [1]. Deep reinforcement learning and
similar techniques based on neural networks have been used to prove the termination of
programs but also to establish their satisfaction of temporal properties [3].

Detailed objectives

We are interested in developing algorithms for automatically proving the absence of
livelocks or detecting livelocks bugs in distributed protocols using reinforcement learning
algorithms. We suggest developing deep RL algorithms to analyze maximal wait times in
distributed protocols. The wait time is the number of steps a process is executed before it gains
access to a resource. There are no livelocks if the wait times are always finite. The work consists
in modeling this problem as an RL problem, choosing the right rewards and RL algorithms, and
making sure it scales to real implementations of distributed algorithms.

Because the overall goal is formal verification, the computed neural policy must be
formally verified at the end as in [3]. This can be achieved using SMT solvers or specific abstract
interpretation techniques for neural networks.

Here the RL agent chooses at each step the schedule, that is, which process to execute,
whether there are packet losses etc. and observes the next global state of the system. It receives
a reward of 1 at each step a process waiting to access a resource is executed but without
accessing that resource. Thus, the distributed protocol can be seen as a game which the RL agent
must learn how to play to exhibit the worst-case behavior.

 The model and RL algorithms can be chosen either to attempt to prove the absence of
livelocks and compute bounds on wait times, or to detect livelock bugs. The precise direction to
be taken and the weight given to RL versus formal verification in this work can be chosen
according to the student’s background and preferences.

The work also includes an extensive bibliographic study, the development of the above
algorithms, implementation and experiments. Furthermore, an internship report will also be
written by the intern as part of the training course in which this internship is included.

 There is a possibility to extend this internship into a PhD thesis.

Prerequisites

• excellent theoretical background in computer science or related fields with a (ongoing)
master’s degree,

• good programming skills,
• knowledge (course work, internship, or master’s thesis) in at least one of the two fields:

reinforcement learning, and formal verification or logic, and a strong motivation to learn
about the other field.

Period: anytime in 2025-2026 (possibility of flexibility, depending on schools’ internships periods)

Contact : Florian Faissole (f.faissole@fr.merce.mee.com) + Ocan Sankur
(ocan.sankur@cnrs.fr)

Please provide us an application letter, your CV, and transcripts of all courses taken during your
master’s.

mailto:f.faissole@fr.merce.mee.com
mailto:ocan.sankur@cnrs.fr

References
[1] Konstantin Bottinger, Patrice Godefroid, and Rishabh Singh. Deep reinforcement fuzzing. In
2018 IEEE Security and Privacy Workshops (SPW), pages 116–122. IEEE, 2018.

[2] Malay K. Ganai. Dynamic livelock analysis of multi-threaded programs. In Shaz Qadeer and
Serdar Tasiran, editors, Runtime Verification, pages 3–18, Berlin, Heidelberg, 2013. Springer
Berlin Heidelberg.

[3] Mirco Giacobbe, Daniel Kroening, Abhinandan Pal, and Michael Tautschnig. Neural model
checking. arXiv preprint arXiv:2410.23790, 2024.

[4] Jinkyu Koo, Charitha Saumya, Milind Kulkarni, and Saurabh Bagchi. Pyse: Automatic
worstcase test generation by reinforcement learning. In 2019 12th IEEE Conference on Software
Testing, Validation and Verification (ICST), pages 136–147, 2019.

[5] Ciprian Paduraru, Miruna Paduraru, and Alin Stefanescu. Optimizing decision making in
concolic execution using reinforcement learning. In 2020 IEEE International Conference on
Software Testing, Verification and Validation Workshops (ICSTW), pages 52–61, 2020.

[6] Richard S Sutton, Andrew G Barto, et al. Reinforcement learning: An introduction. MIT press
Cambridge, 1998.

