
POINCARÉ, MODIFIED LOGARITHMIC SOBOLEV AND

ISOPERIMETRIC INEQUALITIES FOR MARKOV CHAINS WITH

NON-NEGATIVE RICCI CURVATURE

MATTHIAS ERBAR AND MAX FATHI

Abstract. We study functional inequalities for Markov chains on discrete spaces with en-
tropic Ricci curvature bounded from below. Our main results are that when curvature is
non-negative, but not necessarily positive, the spectral gap, the Cheeger isoperimetric con-
stant and the modified logarithmic Sobolev constant of the chain can be bounded from below
by a constant that only depends on the diameter of the space, with respect to a suitable
metric. These estimates are discrete analogues of classical results of Riemannian geometry
obtained by Li and Yau, Buser and Wang.

1. Introduction

Ricci curvature bounds play an important role in geometric analysis on Riemannian manifolds.
For instance, a lower bound on the curvature by a strictly positive constant entails many
interesting properties for the manifold, most notably Harnack inequalities, bounds on the
eigenvalues of the Laplacian, concentration bounds and isoperimetric inequalities.
In the light of this wide range of implications, considerable effort has been put into devel-
oping a notion of Ricci curvature lower bounds for non-smooth spaces. Bakry and Émery
[1] proposed a curvature condition for general Markov diffusion operators via the so-called
Γ-calculus. Lott-Villani [28] and Sturm [38] presented an approach that applies to (geodesic)
metric measure spaces. Such a space has Ricci curvature bounded below by a constant κ pro-
vided the entropy is κ-convex along geodesics in the Wasserstein space of probability measures.
Subsequently, many of the classical relating curvature bounds to functional inequalities have
been generalized to such ’continuous’ non-smooth spaces, we refer to [2, 39] for an overview.
In recent years, there has been a strong interest in developing an analogous theory for dis-
crete spaces. Unfortunately, the Lott–Sturm–Villani theory does not apply and a number of
alternative notions of Ricci bounds have been proposed, see for instance [7, 16, 35]. In this
work, we will focus on the notion of entropic Ricci curvature bounds put forward in [29, 13]
that applies to finite Markov chains and seems to be particularly well suited to study discrete
functional inequalities. Here the key point is to replace the L2-Wasserstein distance with a
new transportation distance W in the definition of Lott–Sturm–Villani. It has been shown
in [13] that a strictly positive entropic Ricci curvature lower bound implies a spectral gap
estimate, a modified logarithmic Sobolev inequality and an analogue of Talagrand’s transport
cost inequality.
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In the present work, we are interested in the situation where the curvature is bounded from
below but not strictly positive. We show that in this situation relatively weak extra informa-
tion (for instance a bound on the diameter of the space) still allows one to establish strong
functional inequalities.
To state our main results we consider an irreducible and reversible continuous time Markov
chain on a finite space X whose generator is given by

Lψ(x) =
∑

y ∈ X
(
ψ(y)− ψ(x)

)
Q(x, y) ,

where Q(x, y) are the transition rates between x and y and let π be the unique reversible
probability measure.
For the purpose of this introduction we state our main results for simplicity under the as-
sumption that the chain has non-negative entropic Ricci curvature. We shall actually derive
more general statements allowing for a negative curvature bound in the main text. We refer
to Section 2 for a precise definition of entropic Ricci curvature bounds and the functional
inequalities we consider.
The first result establishes an isoperimetric inequality using information on the spectral gap
(see Theorem 4.1 below).

Theorem 1.1. If the entropic Ricci curvature of (X , Q, π) is non-negative, then the Cheeger
(or linear isoperimetric) constant h and the spectral gap λ1 of L satisfy

h ≥ 1

3

√
Q∗λ1

where Q∗ = min
(
Q(x, y) : Q(x, y) > 0

)
is the minimal transition rate. Here the Cheeger

constant is defined by

h = max
A⊂X

π+(∂A)

π(A)(1− π(A))
,

where π+(∂A) =
∑

x∈A,y∈Ac Q(x, y)π(x) denotes the perimeter measure of A.

This result is a discrete version of the classical Buser theorem in Riemannian geometry [8].
A simple analytic proof was later obtained by Ledoux [19], and extended to weighted spaces
in [21]. A matching upper bound (up to a different universal constant) is valid in any space,
without any assumption on the curvature.
The next two results establish estimates on the spectral gap and the logarithmic Sobolev
constant in non-negative curvature using information on the diameter of X . A natural distance
dW on X is induced by the discrete transport distance W between probability measures by
setting dW(x, y) :=W(δx, δy). The distance dW can be compared to more traditional weighted
graph distances, see Lemma 2.3, yielding immediate analogues of the results below in terms
of weighted graph distance.

Theorem 1.2. If the entropic Ricci curvature of (X , Q, π) is non-negative and the diameter
of (X , dW) is bounded by D, then the spectral gap of of the generator L satisfies

λ1 ≥
c

D2

for some universal constant c.

See Theorem 5.7 below for a more general statement in negative curvature. The continuous
version of this statement is a classical result of Li and Yau [26] (extending a previous result
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of Li [25] for manifolds without boundary and of [36] for convex sets in Euclidean spaces),
and for which the sharp constant was determined in [41]. A version taking into account the
dimension has been obtained by Bakry and Qian [3], and recently extended to geodesic metric
measure spaces by Cavaletti and Mondino [9, 10] (with a completely different method).

Theorem 1.3. If the entropic Ricci curvature of the Markov chain is non-negative and the
diameter of (X, dW) is bounded by D, then a modified logarithmic Sobolev inequality holds,

with constant c′

D2 for some universal constant c′.

See Theorem 6.1 below. This last result is a weakened discrete version of a work of Wang [40],
where the finite diameter is replaced by a bound on some square-exponential moment of the
distance to an arbitrarily fixed point. It immediately implies a discrete version of Talagrand’s
inequality, via the discrete Otto-Villani theorem of [13], as well as an upper bound on the
total variation mixing time, as we shall see in Section 5.2. We shall actually obtain a version
of this result only assuming finiteness of a square-exponential moment as in [40] but with a
constant that we do not believe to be sharp, see Theorem 6.5 below.
In the last two results, the dependence on the diameter is optimal, since it is sharp (up to the
values of the constants c and c′) for the random walk on the one-dimensional discrete torus.
However, it behaves badly in high dimensions. This leads us to formulate conjectures about
possible improvements using measure concentration bounds instead of diameter bounds in
Section 5. Impressive results in this direction for manifolds have been obtained by Milman
[32, 33].
Versions of Theorems 1.1 and 1.2 have been obtained for another notion of curvature, namely
a discrete version of the Bakry-Émery Γ2 condition, in [18] and [11] respectively. The two
notions of curvature are known to be not equivalent. A Markov chain with non-negative
entropic Ricci curvature but negative Bakry-Émery curvature has recently been discovered
[12]. However, no analogue of Theorem 1.3 is known using Bakry-Émery curvature. To our

knowledge it is not even known whether strictly positive Bakry-Émery curvature is enough
to ensure the validity of a modified logarithmic Sobolev inequality as in Theorem 1.3. The
proofs of Theorem 1.1 and the main result of [18] are quite close and both based on arguments
developed by Ledoux in the continuous setting. For Theorem 1.2, we shall give two proofs.
One of them replicates the technique used in [11]. The other one uses an HWI interpolation
inequality obtained in [13], for which no analogue is known in the setting of discrete Bakry-

Émery curvature. This technique has the advantage that the assumptions can be weakened
to a bound on a square exponential moment instead of the diameter. It will also be used to
prove Theorem 1.3.
One of the main technical tools in our study is a new equivalent characterization of entropic
Ricci curvature lower bounds in terms of gradient estimates for the associated Markov semi-
group. In the continuous setting this characterization is one of the cornerstones of the theory
initiated by Bakry and Émery [1, 2].
We shall present an application of our results to a particular interacting particle system,
namely the zero-range process on the complete graph with constant rates. The best known
entropic Ricci bound for this model is 0. Using Theorem 1.3 and easily obtained diameter
bound allows us to establish a new bound on the mLSI constant for the zero range process.

Outline. In Section 2, we shall recall the definition and basic results about the discrete
transport distance W and entropic Ricci curvature bounds for Markov chains. In Section 3,
we shall give and equivalent characterization of entropic Ricci bounds in terms of gradient
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estimates for the Markov semigroup. Section 4 will provide the proof of the discrete Buser
theorem, while Sections 5 and 6 will be concerned with the Poincaré and modified log Sobolev
inequalities under joint curvature and diameter bounds. Finally, in Section 7, we consider
applications to the zero range process.

Acknowledgments. M.F. was supported by NSF FRG grant DMS-1361122. M.E. gratefully
acknowledges support by the German Research Foundation through the Hausdorff Center for
Mathematics. We thank Michel Ledoux, Jan Maas, Emanuel Milman, André Schlichting and
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timal transport organized at the Hausdorff Institute for Mathematics in Bonn, whose support
is gratefully acknowledged. We also benefited from the hospitality of the American Institute
of Mathematics during the SQUARE meetings Displacement convexity for interacting Markov
chains.

2. Entropic Ricci curvature bounds for Markov chains

We briefly recall the definitions of the transport distance W and of entropic Ricci curvature
bounds for finite Markov chains and some of their consequences. For a detailed account
we refer to the work of Maas and Mielke [29, 30] where the discrete transport distance and
its associated Riemannian structure have been introduced and to [13] where entropic Ricci
curvature bounds have been introduced and studied.

2.1. Transport distance and Ricci bounds. Let X be a finite set let Q : X ×X → R+ be
a collection of transition rates with the convention that Q(x, x) = 0 for all x. The operator
L acting on functions ψ : X → R defined by

Lψ(x) =
∑

y ∈ X
(
ψ(y)− ψ(x)

)
Q(x, y) ,

is the generator of a continuous time Markov chain on X . We will assume that Q is irreducible,
i.e. for all x, y ∈ X there exist (x1 = x, x2, . . . , xn = y) with Q(xi, xi+1) > 0. This implies
the existence of a unique stationary probability measure π on X . We will assume that Q is
reversible w.r.t. π in the sense that the detailed balance condition Q(x, y)π(x) = Q(y, x)π(y)
holds for all x, y ∈ X . We denoted by

P(X ) :=
{
ρ : X → R+ |

∑
x∈X

π(x)ρ(x) = 1
}

the set of probability densities w.r.t. π. Since the measure π is strictly positive and we can
identify the set of probability measures on X with P(X ). The subset consisting strictly
positive probability densities is denoted by P∗(X ). We consider the metric W defined for
ρ0, ρ1 ∈P(X ) by

W(ρ0, ρ1)2 := inf
ρ,ψ

{
1

2

∫ 1

0

∑
x,y∈X

(ψt(x)− ψt(y))2ρ̂t(x, y)Q(x, y)π(x) dt

}
,

where the infimum runs over all sufficiently regular curves ρ : [0, 1]→P(X ) and ψ : [0, 1]→
RX satisfying the continuity equation

d

dt
ρt(x) +

∑
y∈X

(ψt(y)− ψt(x))ρ̂t(x, y)Q(x, y) = 0 ∀x ∈ X ,

ρ|t=0 = ρ0 , ρ|t=1 = ρ1 .

(2.1)



FUNCTIONAL INEQUALITIES FOR MARKOV CHAINS WITH NON-NEGATIVE CURVATURE 5

Here, given ρ ∈ P(X ), we write ρ̂(x, y) := θ
(
ρ(x), ρ(y)

)
where θ(s, t) :=

∫ 1
0 s

1−ptp dp is the
logarithmic mean of s and t.
It has been shown in [29] that W defines a distance on P(X ) and that it is induced by
a Riemannian structure on the interior P∗(X ). The logarithmic mean serve the purpose to
obtain a discrete chain rule for the logarithm, namely ρ̂(x, y)

(
log ρ(x)−log ρ(y)

)
= ρ(x)−ρ(y),

replacing the usual identity ρ∇ log ρ = ∇ρ. The distanceW is constructed in such a way that
Markov semigroup Pt = etL is the gradient flow of the entropy

H(ρ) =
∑
x∈X

π(x)ρ(x) log ρ(x) , (2.2)

w.r.t. the Riemannian structure induced by W, see [29, 30]. It turns out that every pair of
densities ρ0, ρ1 ∈ P(X ) can be joined by a constant speed geodesic, i.e. a curve (ρs)s∈[0,1]

with W(ρs, ρt) = |s − t|W(ρ0, ρ1) for all s, t ∈ [0, 1]. In the spirit of the approach of Lott–
Sturm–Villani [28, 38] the following definition was given in [13].

Definition 2.1. (X , Q, π) has entropic Ricci curvature bounded from below by κ ∈ R if for
any constant speed geodesic {ρt}t∈[0,1] in (P(X ),W) we have

H(ρt) ≤ (1− t)H(ρ0) + tH(ρ1)− K

2
t(1− t)W(ρ0, ρ1)2 . (2.3)

In this case, we write Ric(X , Q, π) ≥ κ.

We should mention that several other notions of Ricci curvature for Markov chains on discrete
spaces have been proposed in the past few years: Ollivier’s coarse Ricci curvature [35], con-

vexity along approximate geodesics [7], discrete Bakry-Émery curvature (defined in [1], and
used in the discrete setting for example in [37, 27]), convexity along binomial interpolations
[16] or along entropic interpolations [23].

2.2. Riemannian structure and equivalent formulation. We will briefly describe the
Riemannian structure induced byW to give an equivalent formulation of entropic Ricci bounds
in terms of a discrete analogue of Bochner’s inequality.
For ψ ∈ RX we denote by ∇ψ ∈ RX×X the discrete gradient ∇ψ(x, y) = ψ(y) − ψ(x). We
denote by G = {∇ψ : ψ ∈ RX , ψ(x0) = 0} the set of discrete gradients modulo constants, for
some fixed x0 ∈ X . In [29] it has been shown that for each ρ ∈P∗(X ) the map

∇ψ 7→
∑
y

∇ψ(x, y)Q(x, y)

is a linear bijection between G and the tangent space T = {s ∈ RX :
∑

x s(x)π(x) = 0}
to P∗(X ) at ρ. A Riemannian tensor on P∗(X ) can be defined using this identification by
introducing the scalar product 〈·, ·〉ρ given by

〈∇ϕ,∇ϕ〉ρ =
1

2

∑
x,y

∇ψ(x, y)∇ϕ(x, y)ρ̂(x, y)Q(x, y)π(x) .

Then W is the associated Riemannian distance. We will set A(ρ, ψ) := |∇ψ|2ρ. Convexity of
the entropy alongW-geodesics is controlled by lower bounds on the Hessian of the entropy H
in the Riemannian structure just defined. An explicit calculation of the Hessian at ρ ∈P∗(X )
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yields

HessH(ρ)[∇ψ] =
1

2

∑
x,y

[
1

2
L̂ρ(x, y)|∇ψ(x, y)|2 − ρ̂(x, y)∇ψ(x, y)∇Lψ(x, y)

]
Q(x, y)π(x) ,

where we set L̂ρ(x, y) = ∂1θ
(
ρ(x), ρ(y)

)
Lρ(x) + ∂2θ

(
ρ(x), ρ(y)

)
Lρ(y). Setting for brevity

B(ρ, ψ) := HessH(ρ)[∇ψ] we have the following reformulation of entropic Ricci bounds. Note
that the statement is non-trivial since the Riemannian structure degenerates at the boundary
of P(X ).

Proposition 2.2. We have Ric(X , Q, π) ≥ κ if and only if for every ρ ∈P∗(X ) and ψ ∈ RX
we have

B(ρ, ψ) ≥ κA(ρ, ψ) .

2.3. Functional inequalities. Here we introduce the discrete functional inequalities that we
shall be interested in. The discrete Dirichlet form E associated to the Markov triple (X , Q, π)
is given by

E(ϕ,ψ) =
1

2

∑
x,y

∇ϕ(x, y)∇ψ(x, y)Q(x, y)π(x) .

We say that (X , Q, π) satisfies for a constant λ > 0

• a Poincaré inequality P(λ) if

Varπ(ψ) ≤ 1

λ
E(ψ,ψ) ∀ψ ∈ RX , (2.4)

• a modified logarithmic Sobolev inequality MLSI(λ) if

H(ρ) ≤ 1

2λ
E(ρ, log ρ) ∀ρ ∈P∗(X ) , (2.5)

• a modified Talagrand inequality TW(λ) if

W(ρ,1)2 ≤ 2

λ
H(ρ) ∀ρ ∈P(X ) . (2.6)

Here Varπ(ψ) := π[ψ2] − π[ψ]2. The Poincaré inequality is a spectral estimate: the optimal
constant coincides with the the smallest nonzero eigenvalue of the generator L of the Markov
chain. It is well known that these functional inequalities govern the trend to equilibrium for
the Markov semigroup Pt = etL. Indeed, noting that

d

dt
H(Ptρ) = −E(Ptρ, logPtρ) ,

d

dt
Varπ(Ptψ) = −E(Ptψ, Ptψ) ,

we see that (2.4) and (2.5) are respectively equivalent to the exponential convergence estimates

H(Ptρ) ≤ e−2λtH(ρ) , Varπ(Ptψ) ≤ e−λt Varπ(ψ) . (2.7)

We shall often denote the entropy production functional by I(ρ) := E(ρ, log ρ). The modified
Talagrand inequality implies concentration properties for the measure π.
It has been shown in [13] that entropic Ricci bounds are intimately related with the functional
inequalities above. The bound Ric(X , Q, π) ≥ κ for κ ∈ R implies the HWI(κ) inequality

H(ρ1)−H(ρ0) ≤ W(ρ0, ρ1)
√
I(ρ1)− κ

2
W(ρ0, ρ1)2 . (2.8)
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If κ > 0, this inequality readily implies MLSI(κ). The latter in turn was shown to imply
the modifies Talagrand inequality TW(κ) in analogy with the result of Otto–Villani in the
continuous case. By a linearization argument, it can be shown that MLSI(κ) and TW(κ) both
imply the Poincaré inequality P(κ). The converse is not true in general, see for example [2].

2.4. Distances on X . The transport distance W on P(X ) gives rise to a distance dW on
X by restriction to Dirac masses. More precisely, we set for x, y ∈ X

dW(x, y) =W(δx, δy) .

We can give an upper bound on dW in terms of a weighted graph distance. Let us define a
distance dQ on W by setting

dQ(x, y) = inf
{ n−1∑
i=0

1√
min

(
Q(zi, zi+1), Q(zi+1, zi)

)} ,
where the infimum runs over all sequences z0 = x, z1, . . . , zn = y such that Q(zi, zi+1) > 0
(and hence also Q(zi+1, zi) > 0 by detailed balance).

Lemma 2.3. For any x, y ∈ X we have

dW(x, y) ≤ cdQ(x, y) , c =

∫ 1

0

dr√
2θ(1− r, 1 + r)

≈ 1.56 .

This is a reinforcement of [13, Lem. 2.13], where dW has been compared to dg/
√
Q∗, where

dg is the unweighted graph distance obtained by replacing the summands in the definition of
dQ by 1 and Q∗ = min{Q(x, y) : Q(x, y) > 0} is the minimal transition rate.

Proof. We argue similarly as in [13, Lem. 2.13]. We shall use that for x, y ∈ X withQ(x, y) > 0
the distanceW(δx, δy) can be estimated by the distance on a two point space. More precisely,
[29, Thm. 2.4, Lem. 3.14] and their proofs yield the estimate

W
(

1{x}

π(x)
,
1{y}

π(x)

)
≤ c

√
max

(
π(x), π(y)

)
Q(x, y)π(x)

= c

√
1

min
(
Q(x, y), Q(y, x)

) ,
where we have used detailed balance in the last step. The result than follows by the triangle
inequality for W and by taking the infimum over all sequences connecting x to y. �

2.5. Notation. In order to alleviate notation in the sequel we introduce the following con-
cepts. Given two functions ϕ,ψ ∈ RX we denote their scalar product in L2(π) by

〈ϕ,ψ〉π =
∑
x∈X

ϕ(x)ψ(x)π(x) .

For two functions Φ,Ψ ∈ RX×X defined on edges we define

〈Φ,Ψ〉π =
1

2

∑
x,y∈X

Φ(x, y)Ψ(x, y)Q(x, y)π(x) .

As a consequence of the detailed balance assumption, the generator L is selfadjoint and we
have an integration by parts formula

〈ψ,Lϕ〉π = −〈∇ϕ,∇ψ〉π = 〈Lψ,ϕ〉π .
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We note moreover, that that the Riemannian metric tensor associate toW can be rewritten as
A(ρ, ψ) = 〈∇ψ,∇ψ〉ρ = 〈ρ̂ · ∇ψ,∇ψ〉π, where the product ρ̂ · ∇ψ is defined component-wise.
Similarly, the Hessian of the entropy can be rewritten in the compact form

B(ρ, ψ) =
1

2
〈L̂ρ · ∇ψ,∇ψ〉π − 〈∇ψ, ρ̂,∇Lψ〉π .

We also define the Γ-operator Γ : RX × RX → RX by setting

Γ(ϕ,ψ)(x) =
∑
y

∇ϕ(x, y)∇ψ(x, y)Q(x, y) ,

and set Γ(ϕ) = Γ(ϕ,ϕ).

3. Gradient estimates

In this section we show that entropic Ricci curvature lower bounds are equivalent to certain
gradient estimates for the Markov semigroup Pt = etL. These will be crucial in establishing
functional inequalities in the sequel.

Theorem 3.1 (Gradient estimate). A Markov triple (X , Q, π) satisfies the entropic Ricci
bound Ric(X , Q, π) ≥ κ if and only if for every ψ ∈ RX and ρ ∈P(X ) we have

|∇Ptψ|2ρ ≤ e−2κt|∇ψ|2Ptρ . (3.1)

Remark 3.2. More explicitly, the gradient estimate reads as follows:

1

2

∑
x,y

|∇Ptψ|2(x, y)ρ̂(x, y)Q(x, y)π(x) ≤ e−2κt 1

2

∑
x,y

|∇ψ|2(x, y)P̂tρ(x, y)Q(x, y)π(x) .

The proof follows the standard semigroup interpolation argument, slightly adapted to our
setting.

Proof. First we note that if (3.1) holds for all ψ and ρ ∈ P∗(X ) then it also holds for all
ρ ∈P(X ). Now fix ψ ∈ RX , ρ ∈P∗(X ) and t > 0. We define for s ∈ [0, t]:

Φ(s) = e−2κs|∇Pt−sψ|2Psρ = e−2κs〈∇Pt−sψ, P̂sρ · ∇Pt−sψ〉π .

Note that Φ(0) = |∇Ptψ|2ρ and Φ(t) = e−2κt|∇ψ|2Ptρ
. We immediately compute the derivative

of Φ. Putting ψs = Psψ and ρs = Psρ we get:

Φ′(s) = e−2κs
[
〈∇ψt−s, L̂ρs · ∇ψt−s〉π − 2〈∇ψt−s, ρ̂s · ∇Lψt−s〉π − 2κ〈∇ψt−s, ρ̂s∇ψt−s〉π

]
= 2e−2κs

[
B(ρs, ψt−s)− κA(ρs, ψt−s)

]
.

If Ric(X , Q, π) ≥ κ holds, we conclude from Proposition 2.2 that Φ′(s) ≥ 0 and obtain (3.1).
For the converse implication we derivate (3.1) at t = 0. More precisely, assume that (3.1)
holds. Then we have that

0 ≤ e−2κt|ψ|2Ptρ − |Ptψ|
2
ρ

=
(
e−2κt − 1

)
|ψ|2ρ + e−2κt

(
|ψ|2Ptρ − |ψ|

2
ρ

)
− |Ptψ|2ρ + |ψ|2ρ .

Dividing by t and letting t→ 0 we obtain that B(ρ, ψ)− κA(ρ, ψ) ≥ 0 which yields the claim
again by Proposition 2.2. �
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Remark 3.3. The previous result is in close analogy with the classical Bakry–Émery gradient
estimate for the heat semigroup on a Riemannian manifold M with Ric ≥ κ which states
that for any smooth function ψ it holds |∇Ptψ|2 ≤ e−2κtPt|∇ψ|2. Integrating this estimate
against a function ρ yields ∫

M
|∇Ptψ|2ρ ≤ e−2κt

∫
M
|∇ψ|2Ptρ ,

which closely resembles (3.1) except for the appearance of the logarithmic mean.

Using the freedom in the choice of ρ in the gradient estimate (3.1), we can deduce a more ex-
plicit estimate, that does not involve logarithmic means. To this end we introduce the heat ker-
nel associated to the continuous-time Markov chain. We put pt(x, y) = π(y)−1Pt1y(x). From
the symmetry and linearity of Pt it is immediate to check that Ptf(x) =

∑
y pt(x, y)f(y)π(y)

and pt(x, y) = pt(y, x).

Corollary 3.4. If Ric(X , Q, π) ≥ κ holds, we have for any ψ ∈ RX and all x, y ∈ X :

1

2
|∇Ptψ|2(x, y)Q(x, y)π(x) ≤ e−2κt

[
PtΓ(ψ)(x)π(x) + PtΓ(ψ)(y)π(y)

]
. (3.2)

Proof. Starting from (3.1) we choose ρ = 1x + 1y. Note that it is not a probability density,
but this does no harm, since both sides of (3.1) are homogeneous in ρ. Note that Ptρ(u) =
pt(x, u)π(x) + pt(y, u)π(y). Using the estimate θ(s, t) ≤ (s + t)/2 and using symmetry we
obtain
1

2
|∇Ptψ|2(x, y)Q(x, y)π(x) ≤ e−2κt 1

2

∑
u,v

|∇ψ|2(u, v)
[
pt(x, u)π(x) + pt(y, u)π(y)

]
Q(u, v)π(u)

= e−2κt
[
PtΓ(ψ)(x)π(x) + PtΓ(ψ)(y)π(y)

]
.

�

Next, we derive a reverse Poincaré inequality along the Markov semigroup.

Theorem 3.5 (Reverse Poincaré inequality). Assume that Ric(X , Q, π) ≥ κ. Then we have
for any ρ ∈P(X ) and ψ ∈ RX :

〈ψ2, Ptρ〉π − 〈(Ptψ)2, ρ〉π ≥
e2κt − 1

κ
|∇Ptψ|2ρ . (3.3)

Proof. We put Φ(s) = 〈(Pt−sψ)2, Psρ〉π and calculate, putting g = Pt−sψ and h = Psρ,

Φ′(s) = 〈∆(Pt−sψ)2 − 2Pt−sψ∆Pt−sψ, Psρ〉π
=
∑
x,y

h(x)
[
g(y)2 − g(x)2

]
Q(x, y)π(x)− 2

∑
x,y

h(x)g(x)
[
g(y)− g(x)

]
Q(x, y)π(x)

=
∑
x,y

h(x)
[
g(y)− g(x)

]2
Q(x, y)π(x)

=
∑
x,y

h(x) + h(y)

2

[
g(y)− g(x)

]2
Q(x, y)π(x)

≥
∑
x,y

θ(h(x), h(y))
[
g(y)− g(x)

]2
Q(x, y)π(x)

= 2|∇Pt−sψ|2Psρ .
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Using the gradient estimate (3.1) we conclude Φ′(s) ≥ e2κs|∇Ptψ|2ρ which yields the claim. �

From the previous theorem we can derive a uniform bound on the gradient. Fix x, y ∈ X and
put ρ = 1

2π(x)δx + 1
2π(y)δy. Then (3.3) yields

e2κt − 1

κ
|∇Ptψ|2(x, y)θ

(
Q(x, y), Q(y, x)

)
≤ ‖ψ‖2∞ .

Putting Q∗ = min{Q(x, y) : x, y s.t. Q(x, y) > 0} we obtain

e2κt − 1

κ
max

x,y:Q(x,y)>0
|∇Ptψ|(x, y) ≤ 1√

Q∗
‖ψ‖∞ . (3.4)

As a consequence we obtain the following L1 bound for the semigroup.

Lemma 3.6. If Ric(X , Q, π) ≥ κ we have for any ψ ∈ RX and t ≤ 1/2|κ|:

‖ψ − Ptψ‖L1(π) ≤
2
√
t√

Q∗
‖∇ψ‖L1 , (3.5)

or more explicitly∑
x

|ψ(x)− Ptψ(x)|π(x) ≤ 2
√
t√

Q∗

∑
x,y

|∇ψ|(x, y)Q(x, y)π(x) .

Proof. Fix a function g with |g| ≤ 1. Then we estimate

〈g, ψ − Ptψ〉π = −
∫ t

0
〈g,∆Psψ〉π ds

=

∫ t

0
〈∇Psg,∇ψ〉π ds

≤ ‖∇ψ‖L1

1√
Q∗

∫ t

0

1√
s

ds

= ‖∇ψ‖L1

2
√
t√

Q∗
.

Here we have used (3.4) and the fact that
(
e2κt − 1

)
/κ ≥ t for 0 < t ≤ 1

2|κ| . Taking the

supremum over g yields the claim. �

Finally, we derive an exponential decay estimate for the Γ operator.

Proposition 3.7. Assuming that Ric(X , Q, π) ≥ κ ∈ R, we have for any f ∈ RX

π [Γ(Ptf)] ≤ e−2κtπ [Γ(f)] .

Moreover, Ptf is Lipschitz with constant ‖f‖∞
√
κ/(e2κt − 1) for the distance dW .

Proof. The first part is a direct consequence of the gradient estimate (3.1) when taking ρ ≡ 1.
For the second part, fix ε > 0 and consider a pair (ρs, ψs)s∈[0,1] satisfying (2.1) such that

W(δx, δy)
2 ≤

∫ 1
0 |ψs|

2
ρs ds+ε. Then we can estimate using Jensen’s inequality and the reverse
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Poincaré inequality 3.5:

Ptf(x)− Ptf(y) =

∫ 1

0
〈∇Ptf,∇ψs〉ρs ds ≤

∫ 1

0
|∇Ptf |ρs |∇ψs|ρs ds

≤ ‖f‖∞
√
κ/(e2κt − 1)

∫ 1

0
|∇ψs|ρs ds

≤ ‖f‖∞
√
κ/(e2κt − 1)

√
W(δx, δy)2 + ε .

Letting ε→ 0 yields the claim. �

4. Isoperimetric estimate and Buser inequality

Now we can formulate an isoperimetric estimate which will immediately yield the discrete
Buser inequality, see Theorem 1.1. To this end we recall that the perimeter measure π+ of a
subset A ⊂ X is defined by

π+(∂A) =
∑

x∈A,y∈Ac

Q(x, y)π(x) .

Theorem 4.1. Assume that Ric(X , Q, π) ≥ κ holds and let λ1 be the spectral gap of L. Then
for any subset A ⊂ X we have

π+(∂A) ≥ 1

3

√
Q∗min

( λ1√
κ
,
√
λ1

)
π(A)

(
1− π(A)

)
. (4.1)

Proof. We apply (3.5) to the indicator function χA and obtain

2
√
t√

Q∗
· π+(∂A) =

2
√
t√

Q∗
‖∇χA‖L1 ≥ ‖χA − PtχA‖L1(π)

= 2π(A)− 2‖P t
2
χA‖2L2(π)

= 2
[
π(A)− π(A)2 − ‖P t

2
(χA − π(A))‖2L2(π)

]
≥ 2

[
π(A)− π(A)2 − e−λ1t‖χA − π(A)‖2L2(π)

]
= 2π(A)

(
1− π(A)

)(
1− e−λ1t

)
.

Now we conclude by optimizing in t. That is, if λ1 ≥ 2|κ| we can take t = 1
λ1

and in the

opposite case we take t = 1
2κ . �

We recall that the Cheeger constant h of the Markov chain (X , Q, π) is defined as the optimal
constant in the previous isoperimetric estimate, i.e.

h = max
A⊂X

π+(∂A)

π(A)
(
1− π(A)

) .
Corollary 4.2 (Buser inequality). If Ric(X , Q, π) ≥ κ, we have the following Buser inequal-
ity:

h ≥ 1

3

√
Q∗min

( λ1√
κ
,
√
λ1

)
. (4.2)

In particular, if κ ≥ 0, we have h ≥
√
λ1
3

√
Q∗.
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Proof. This follows immediately from the previous proposition and the definition of the
Cheeger constant h. The second statement follows by recalling that if κ > 0, Ric(X , Q, π) ≥ κ
implies that λ1 ≥ κ. �

Corollary 4.3. When Ric(X , Q, π) ≥ κ, the Poincaré inequality P(λ1) implies an L1 Poincaré
inequality ∑

x

|ψ(x)− π[ψ]|π(x) ≤ 4

c(κ, λ1)

∑
|∇ψ|Q(x, y)π(x) ∀ψ ∈ RX .

where c(κ, λ1) is the constant in the right hand side of (4.2).

The equivalence of the Cheeger isoperimetric inequality and the L1 Poincaré inequality is
a well-established fact. We briefly prove that the Cheeger inequality (4.1) implies the L1

Poincaré inequality for the sake of completeness. The reverse implication is immediately
established by applying the L1 Poincaré inequality to indicators of sets.

Proof. First, we shall establish the inequality when π[ψ] is replaced by a median of ψ. Let ψ
be a function with median 0. Writing χA for the indicator of a set A, we have∑

x,y

|ψ(x)− ψ(y)|Q(x, y)π(x) =

∫ +∞

−∞

∑
x,y

χ[ψ(y),ψ(x)](t)Q(x, y)dt

=

∫ +∞

−∞
π+(ψ > t)dt

≥
∫ +∞

−∞
c(κ, λ1)π(ψ > t)π(ψ < t)dt

≥ c(κ, λ1)

∫ 0

−∞

π(ψ < t)

2
dt+ c(κ, λ1)

∫ +∞

0

π(ψ > t)

2
dt

=
c(κ, λ1)

2

∑
x

|ψ(x)|π(x) .

We can then replace the median by the mean since π
[
|ψ − π[ψ]|

]
≤ 2π

[
|ψ|
]
. �

5. Poincaré inequality

The aim in this section is to prove that if the curvature of a Markov is non-negative, then the
spectral gap is controlled by the diameter. This is a discrete analog of the following classical
result of Li and Yau [26]:

Theorem 5.1. Let M be a manifold with non-negative curvature and finite diameter D.
Then the spectral gap of the manifold satisfies

λ1 ≥
π2

D2
.

In the continuous setting, the constant π2 is known to be optimal. Moreover, this result
is rigid, in the following sense: if equality holds, then the manifold is isometric to the one-
dimensional torus of diameter D [17]. As we shall discuss in Section 6.3, results of Milman
[32, 31, 33] show that on geodesic spaces the spectral gap can be controlled even by measure
concentration properties.
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The proof is inspired by [15], although the proof of the weak Poincaré inequality follows a
different line of arguments, inspired by [22]. First we establish a weak Poincaré inequality,
under the assumption that curvature is non-negative and that the invariant measures has the
exponential concentration property. Then we establish a tight Poincaré inequality under the
stronger assumption of bounded diameter.

5.1. Weak Poincaré inequality under exponential concentration.

Definition 5.2. A probability measure on a metric space is said to satisfy a concentration
property with profile β : R+ −→ [0, 1] if, for any set A such that µ(A) ≥ 1/2, we have

µ(Acr) ≤ β(r); Acr := {x; d(x,A) > r} . (5.1)

In particular, we shall say that a probability measure satisfies the exponential concentration
property with constants M and α if (5.1) holds with β(r) := Me−αr. Similarly, it is said to

satisfy a Gaussian concentration property with constants M and ρ if it admits β(r) = Me−ρr
2

as a concentration profile.

A concentration profile governs the tail behavior of the measure. Heuristically, the exponential
(resp. Gaussian) concentration property compares the behavior at infinity with that of the
exponential (resp. Gaussian) measure. When the diameter is bounded by D, it is easy to see
that an exponential (resp. Gaussian) concentration property holds with constant α = 1/D
and M = e (resp. ρ = 1/D2 and M = e). However, this estimate is often much worse than
the optimal concentration estimate, and concentration can hold for unbounded spaces (for
example, Rd equipped with a Gaussian measure).
A classical result in the study of concentration of measure is that one can use functional
inequalities to establish concentration with some profile. In particular, the Poincaré inequal-
ity implies an exponential concentration property, while a (modified) logarithmic Sobolev
inequality implies Gaussian concentration [20]. Moreover, one can show that Gaussian con-
centration is equivalent to a transport-entropy inequality for the Wasserstein distance W1 [6].
In the Riemannian setting, Milman [32, 31, 33] showed that the converse is true when cur-
vature is non-negative: functional inequalities and concentration properties are then actually
equivalent. We shall discuss this aspect further in Section 6.3.

Proposition 5.3. Let (X , Q, π) be a Markov chain with Ric(X , Q, π) ≥ κ ∈ R and assume
that π has exponential concentration with respect to the distance dW with constants α and M .
Then for any t > 0 and f ∈ RX we have

Varπ(f) ≤ 1− e−2κt

κ
π
[
Γ(f)

]
+

κ

e2κt − 1

2‖f‖2∞
α2

.

In particular, if Ric(X , Q, π) ≥ 0, then

Varπ(f) ≤ 2tπ [Γ(f)] +
M‖f‖2∞
α2t

.

If moreover the diameter of (X , dW) is bounded by D, we have

Varπ(f) ≤ 2tπ [Γ(f)] +
D2‖f‖2∞

4t
.

Note that by comparing dW with the weighted graph distance, we can use concentration with
respect to the graph distance instead. This will worsen the constant by a universal factor,
see Lemma 2.3.
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Proof. First, we have by Proposition 3.7

Varπ(f) = Varπ(Ptf) + 2

∫ t

0
π [Γ(Ptf)] dt

≤ Varπ(Ptf) +
1− e−2κt

κ
π [Γ(f)] .

Since π satisfies the exponential concentration property with constant α and M , for any
Lipschitz function f , we have

Varπ(f) ≤ 2M

α2
||f ||2lip (5.2)

and applying this to Ptf using Proposition 3.7 yields the result. The variance bound (5.2)
is obtained just by integrating the concentration bound, and using the fact that Varπ(f) ≤
π[(f − m)2], where m is a median of f . The estimate for the case when the diameter is

bounded by D is obtained by using the estimate Varπ(f) ≤ D2

2 ||f ||
2
lip. �

5.2. Tight Poincaré inequality under a diameter bound. The proof of Theorem 1.2
follows the ideas of [15] and relies on a discrete analogue of the HWI inequality that is given
by HWI(κ) in (2.8).
One of the obstacles to applying the strategy of [15] is that the quantity I(ρ) that appears
in the HWI(κ) inequality is given by

I(ρ) = E(ρ, log ρ) = π [Γ(ρ, log ρ)]

and that in the discrete setting this is the latter expression is different from the term π
[
Γ(
√
ρ)
]

which naturally appears in the Poincaré inequality. To this end we need the following com-
parison result.

Lemma 5.4. For any α > 0 the following are equivalent:

(i) Varπ(f) ≤ 1

α
π [Γ(f)] ∀f ∈ RX ,

(ii) Varπ(f) ≤ 1

4α
π
[
Γ(f2, log f2)

]
∀f ∈ RX .

Proof. (i)⇒ (ii) just follows from the inequality Γ(f) ≤ Γ(f2,log f2)
4 .

To prove (ii) ⇒ (i), we linearize (ii) taking f = 1 + εh for some h ∈ RX with π[h] = 0 and
let ε→ 0. �

This equivalence is not true for non-tight versions of the Poincaré inequality, for which we
only have (i) ⇒ (ii). So we shall prove non-tight inequalities with the modified Dirichlet
form, deduce a tight inequality with the modified Dirichlet form, and finally obtain the usual
Poincaré inequality in the end.

Lemma 5.5. Assume that Ric(X , Q, π) ≥ −κ for some κ ≥ 0 and the diameter of (X , δW)
is bounded by D. Then for any δ > 0 and any f ∈ RX , we have

π[f2] ≤ 1

4δ
π
[
Γ(f2, log f2)

]
+ eD

2(δ+κ/2)π
[
|f |
]2
. (5.3)

Proof. Since the distance W can be bounded by the L2 Wasserstein distance built from dW ,
see [13, Prop. 3.12], we have thatW(ρ, ρ′) ≤ D for all ρ, ρ′ ∈P(X ). After multiplying f with
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a constant we can assume that π[f2] = 1. The HWI(−κ) inequality applied to f2 together
with Young’s inequality and the diameter bound yields

π[f2 log f2] = H(f2) ≤ W(f2, 1)
√
π [Γ(f2, log f2)] +

κ

2
W(f2, 1)2

≤ 1

4δ
π
[
Γ(f2, log f2)

]
+D2

(
δ +

κ

2

)
.

To obtain the result from this inequality, we can then just follow the proof of [15, Lemma 3.5]
(The proof uses a different Dirichlet form, but in this case it makes no difference). �

We will use the following tightening result.

Proposition 5.6. Assume that for any function f ∈ RX we have

Varπ(f) ≤ α1π
[
Γ(f2, log f2)

]
+ β1‖f‖2∞ (5.4)

and
Varπ(f) ≤ α2π

[
Γ(f2, log f2)

]
+ β2π

[
|f |
]2

(5.5)

with constants α1, α2, β1, β2 > 0 satisfying β2
2 + 1

2

√
(3β1 + β2 − 1)(2 + β2) < 1. Then the

Poincaré inequality PI(λ) holds with constant λ =
2−(β2+

√
(3β1+β2−1)(2+β2))

8(3α1+α2) .

Combining the weak Poincaré inequality, Lemma 5.5 and this tightening result, after opti-
mizing the constants, we immediately obtain

Theorem 5.7. Assume that Ric(X , Q, π) ≥ −κ for some κ ≥ 0 and that the diameter of

(X , dW) is bounded by D. Assume that eD
2κ/2 +

√
(3κD2/2 + eD2κ/2 − 1)(2 + eD2κ/2) < 2.

Then the Poincaré inequality PI(λ) holds with a constant λ that only depends on κ and D.
In particular, if Ric(X , Q, π) ≥ 0, then PI(cD−2) holds for a universal constant c.

The best possible value of the constant c we obtain with this proof is hard to determine, but

we can show that it satisfies c ≥ 9−
√

62
80(45+ln(11/10)) . In Section 5.3 we present an alternative

argument that yield PI(cD−2) with an explicit and probably better constant c.

Proof of Proposition 5.6. The proof essentially follows the argument of [2, Prop. 7.5.6], except
that we use the Dirichlet form π

[
Γ(f2, log f2)

]
, so some adaptation is required.

Consider f satisfying med(f) = 0 and π[f2] = 1 and fix R > 0. Without loss of generality,
we may assume that π[{f = 0}] = 0, otherwise π

[
Γ(f2, log f2)

]
=∞ and there is nothing to

prove. Let fR(x) = f(x) if |f(x)| < R, and R (resp. −R) if f(x) ≥ R (resp. f(x) ≤ −R),
and dR := ±R + f − fR (depending on the sign of f(x)). We have that both Γ(f2

R, log f2
R)

and Γ(d2
R, log d2

R) are smaller than Γ(f2, log f2). Notice that fR also has median 0.
Now we have

1 = π[f2] = π[(fR + (f − fR))2]

= π[f2
R] + 2π[fR(f − fR)] + π[(f − fR)2]

= π[f2
R] + π[d2

R]−R2

We also have

|π[f − fR]| ≤ π
[
|f − fR|

]
= π

[
|f |1|f |≥R

]
−Rπ[{|f | ≥ R}]

≤
√
π[f2]

√
π[{|f | ≥ R}]−Rπ[{|f | ≥ R}] ≤ 1

4R
.
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Moreover, since f has median 0, we have

|π[dR]| = |π[f − fR]| ≤ 1

4R
. (5.6)

Since fR has median 0, we have π[f2
R] ≤ 3 Varπ(f) (see for instance [32, Lem. 2.1]). Applying

(5.4) to fR, we then get

π[f2
R] ≤ 3 Varπ(f) ≤ 3α1π

[
Γ(f2, log f2)

]
+ 3β1R

2. (5.7)

We now seek to bound π[d2
R]−R2. Applying (5.5), we have

π[d2
R] ≤ π[dR]2 + α2π

[
Γ(f2, log f2)

]
+ β2π

[
|dR|

]2
≤ α2π

[
Γ(f2, log f2)

]
+ β2π

[
|dR|

]2
+

1

16R2
.

Since

π
[
|dR|

]2
= R2 + 2Rπ

[
|f − fR|

]
+ π

[
|f − fR|

]2
≤ R2 +

1

2
+

1

16R2
,

we get

π[d2
R]−R2 ≤ α2π

[
Γ(f2, log f2)

]
+
β2

2
+ (β2 − 1)R2 +

1 + β2

16R2
. (5.8)

Combining this estimate with (5.7) we obtain

1 = π[f2] ≤ (3α1 + α2)π
[
Γ(f2, log f2)

]
+
β2

2
+ (3β1 + β2 − 1)R2 +

2 + β2

16R2
.

Optimizing in R then yields

1 ≤ (3α1 + α2)π
[
Γ(f2, log f2)

]
+
β2

2
+

1

2

√
(3β1 + β2 − 1)(2 + β2) .

Since Varπ(f) ≤ π[f2] = 1, this amounts to the Poincaré inequality by Lemma 5.4 as soon as

β2

2
+

1

2

√
(3β1 + β2 − 1)(2 + β2) < 1 .

�

We can use the same arguments to treat the case where the diameter is not necessarily
bounded, but the distance dW has a square-exponential moment:

Theorem 5.8. Assume that Ric(X , Q, π) ≥ 0, and that there exists a constant α > 0 such
that for some x0 ∈ X

Dα := π
[
eαdW (·,x0)2

]
<∞ .

Then the Poincaré inequality PI(λ) holds with some constant λ which depends on α and on
the value Dα of the above expectation.

Note that the finiteness of the integral does not depend on the choice of x0, but the value
does, which affects the value of the constant λ we obtain.
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Proof. Since the proof follows the same lines as for the bounded diameter case, we shall only
sketch it and point out the extra arguments required. Since we have a square-exponential mo-
ment, a Gaussian concentration property (and hence an exponential concentration property)
holds, and Proposition 5.3 still applies. So all we need to do is to show that the conclusion
of Lemma 5.5 still holds. Let f be a probability density. Note that by convexity of W2 we
have the bound

W(f, 1)2 ≤
∑
x,y

dW(x, y)2f(x)π(x)π(y)

≤ 2π
[
dW(·, x0)2f(·)

]
+ 2π

[
dW(x0, ·)2

]
.

The second term is a constant that does not depend on f , and can be bounded using only
the square-exponential moment. For the first term, we can use the bound

π
[
dW(·, x0)2f(·)

]
≤ 1

α
log π

[
eαdW (·,x0)2

]
+

1

α
π[f log f ] .

Combining this inequality with HWI(0) and Young’s inequality yields for any δ > 0:

π[f log f ] ≤ 1

4δ
π [Γ(f, log f)] + 2δW(f, 1)2

≤ 1

4δ
π [Γ(f, log f)] +

2δ

α
π[f log f ] + Cδ

with a constant C that depends on α and the square-exponential moment Dα, but not on
f . Since we can make δ arbitrarily small, the second term on the right-hand side can be
absorbed into the left-hand side. Then the proof continues by applying this inequality to f2

with π[f2] = 1 and arguing in the same way as for the bounded diameter case. �

5.3. An alternative argument. We present an alternative derivation of the Poincaré in-
equality from diameter bounds in non-negative curvature following the approach of [11].

Proposition 5.9. Assume that Ric(X , Q, π) ≥ 0 and that the diameter of (X , dW) is bounded
by D. Then the Poincaré inequality PI(λ) holds with

λ =
1

eD2
.

Proof. Recall that the optimal constant in the Poincaré inequality is (minus) the first non-zero
eigenvalue of the generator L. Let f be an eigenfunction of the L with eigenvalue −λ1. By
scaling, we can assume without loss of generality that ‖f‖∞ = 1. Since f necessarily satisfies
π[f ] = 0, we have min f < 0 < max f .
Note that Ptf = e−λ1tf . Thus, the reverse Poincaré inequality (3.3) implies that for any
ρ ∈P(X ) we have

|∇f |2ρ ≤
e2λt

2t
‖f‖2∞ .

Optimizing in t and using ‖f‖∞ = 1 we find that

|∇f |2ρ ≤ eλ1 .



18 MATTHIAS ERBAR AND MAX FATHI

Now, let x0, x1 be such that f(x0) = min f and f(x1) = max f . Let ε > 0 and let (ρs, ψs)s∈[0,1]

be a curve satisfying (2.1) such that
∫ 1

0 |∇ψs|
2
ρs ds ≤ W(δx0 , δx1)2 + ε. Then we estimate

1 ≤ [f(x1)− f(x0)]2 =
∣∣∣∑ fρ1π −

∑
fρ0π

∣∣∣2 =

∣∣∣∣∫ 1

0
〈∇f,∇ψs〉ρs ds

∣∣∣∣2
≤ (D2 + ε)

∫ 1

0
|∇f |2ρs ds ≤ (D2 + ε)λ1e

and the result immediately follows. �

This argument could be adapted to treat the case of negative entropic Ricci curvature as
well, but we will not pursue this. We note that the proof just given is quite simpler than the
previous one. However, it is not clear that we can use the same argument to cover the case
where we only assume the invariant measure to have a square-exponential moment, or how
to use it to prove a modified logarithmic Sobolev inequality. We will see in the next section
that this is possible with the first method.

6. Modified logarithmic Sobolev inequalities

In this section we will prove the third main result Theorem 1.3 establishing a modified log-
arithmic Sobolev inequality for Markov chains with non-negative entropic Ricci curvature
under a diameter bound. We will then apply this to derive bounds on the total variation mix-
ing time of the Markov chain. Finally, we formulate conjectures about possible improvements
of the results replacing the bound on the diameter with a control on concentration properties.

6.1. Modified LogSobolev inequality from diameter bounds. We will show the fol-
lowing

Theorem 6.1. Assume that Ric(X , Q, π) ≥ 0 and that the diameter of (X, dW) is bounded
by D. Then the modified logarithmic Sobolev inequality MLSI(λ) holds with constant λ = c

D2

for some universal constant c.

For convenience, we shall reformulate the modified logarithmic Sobolev inequality so that it
applies to arbitrary non-negative functions instead of probability densities. To this end, given
a measure ν and a function g ∈ RX+ we define

Entν(g) = ν[g log g]− ν[g] log ν[g] .

It is then immediate to check that the inequality MLSI(λ) defined in (2.5) is equivalent to

Entπ(f2) ≤ 1

2λ
π
[
Γ(f2, log f2)

]
∀f ∈ RX .

The proof of Theorem 6.1 will again consist in first obtaining a weak version of the MLSI
via the HWI inequality, and then tightening it. In the continuous setting, the corresponding
result (and actually a much stronger one, as we shall discuss in the next section) was proven
employing such a strategy in [15]. That work strongly relies on a self-tightening property of
the logarithmic Sobolev inequality, which states that if a non-tight LSI of the form

Entπ(f2) ≤ cI(f) + α

holds and if α is small enough, then a tight LSI holds. It is not clear whether such a strong
self-tightening property holds for the discrete modified logarithmic Sobolev inequality. To
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bypass this issue, we have to rely on more involved arguments, inspired by a work of Barthe
and Kolesnikov [4].
We shall need the following two lemmas.

Lemma 6.2. Assume that Ric(X , Q, π) ≥ 0 and that the diameter of (X , dW) is bounded by
D. Then we have for any δ > 0 and f ∈ RX :

Entπ(f2) ≤ δD2π
[
Γ(f2, log f2)

]
+

1

4δ
π
[
f21{f2>π[f2]}

]
. (6.1)

Proof. Since (6.10) is homogeneous in f2 we can assume without restriction that π[f2] = 1.
From the HWI(0) inequality and Young’s inequality we infer

π[f2 log f2] ≤ δD2π
[
Γ(f2, log f2)

]
+

1

4δD2
W(f2, 1)2 . (6.2)

We know that W ≤ W2,dW . It is not hard to construct a transport from µ = f2π to π that
moves mass away only from points x where µ(x) > π(x), i.e. f2(x) > 1. Hence we have that

W2,dW (µ, π)2 ≤ D2
Wπ

[
f21{f2>1}

]
, and the result immediately follows. �

Lemma 6.3 ([4, Lem. 2.5]). For any A > 1 there exists γ > 0 such that for any f ∈ RX with
π[f2] = 1, we have

π
[
f21{f2≥A2}

]
≤
(

A

A− 1

)2

Varπ(f) , (6.3)

π[f2 log f2] ≤ γVarπ(f) + π
[
f2 log f21{f2≥A2}

]
. (6.4)

We can now give the proof of our third main result Theorem 1.3.

Proof of Theorem 6.1. Fix A > 1 and f ∈ RX with π[f2] = 1. Set fA(x) := max
(
f(x), A

)
,

and define the probability measure µA = f2
A/ZAπ, where ZA := π[f2

A]. Note that A2 ≤ ZA ≤
1 +A2. From (6.4) in Lemma 6.3 we have

Entπ(f2) ≤ γVarπ(f) + π
[
f2 log f21{f2≥A2}

]
. (6.5)

The first term can be estimated via the Poincaré inequality as

γVarπ(f) ≤ γ c

4D2
π
[
Γ(f2, log f2)

]
(6.6)

using Theorem 5.7 and Lemma 5.4. For the second term, we have

π
[
f2 log f21{f2≥A2}

]
= π

[
f2
A log f2

A

]
−A2 logA2π[{f < A}]

= ZA Entπ(µA) + ZA logZA −A2 logA2π[{f < A}] . (6.7)

The entropy term in (6.7) can be handled using Lemma 6.2 and the fact that we have
Γ(f2

A, log f2
A) ≤ Γ(f2, log f2).

Entπ(µA) ≤ δD2

ZA
π
[
Γ(f2, log f2)

]
+

1

ZA

1

4δ
π
[
f21{f2A≥ZA}

]
≤ δD2

A2
π
[
Γ(f2, log f2)

]
+

1

4δA2
π
[
f21{f2≥A2}

]
.
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Using further (6.3) and again the Poincaré inequality via Theorem 5.7 and Lemma 5.4 we
arrive at

Entπ(µA) ≤ δD2

A2
π
[
Γ(f2, log f2)

]
+

1

4δ(A− 1)2
Varπ(f)

≤
(
δD2

A2
+

1

4δ(A− 1)2

c

4D2

)
π
[
Γ(f2, log f2)

]
. (6.8)

So all that is left is to bound is the term ZA logZA −A2 logA2π[{f < A}]. We have

ZA logZA −A2 logA2π[{f < A}]

=
(
A2π[{f < A}] + π

[
f21{f2≥A2}

] )
log
(
A2π[{f < A}] + π

[
f21{f2≥A2}

] )
−A2 logA2π[{f < A}]

= A2π[{f < A}] log

(
π[{f < A}] +

π
[
f21{f2≥A2}

]
A2

)
+ π

[
f21{f2≥A2}

]
× log

(
A2π[{f < A}] + π

[
f21{f2≥A2}

] )
≤ A2 log

(
1 +

π
[
f21{f2≥A2}

]
A2

)
+ log(1 +A2)π

[
f21{f2≥A2}

]
≤
(
1 + log(1 +A2)

)
π
[
f21{f2≥A2}

]
.

We can then once more use (6.3) from Lemma 6.3 to bound this by the variance, and then
the Poincaré inequality to arrive at

ZA logZA −A2 logA2π[{f < A}]

≤
(
1 + log(1 +A2)

)( A

A− 1

)2 c

4D2
π
[
Γ(f2, log f2)

]
. (6.9)

Combining (6.5) with (6.6), (6.7), (6.8) and (6.9) finishes the proof. �

Remark 6.4. By the same method one can obtain a modified logarithmic Sobolev inequality
under the assumption that Ric(X , Q, π) ≥ −κ and for κ > 0 that the diameter is bounded
by D, provided κ is sufficiently small compared to D. The only modification is an extra
term κ/2W(f2, 1)2 appearing in the application of the HWI(κ) inequality in (6.2). A similar
remark applies to the next result.

As for the Poincaré inequality, we can replace the diameter bound by a finite square-exponential
moment.

Theorem 6.5. Assume that Ric(X , Q, π) ≥ 0 and that there exists a constant α > 0 such
that

Dα = π
[
eαdW (·,x0)2

]
<∞

for some x0 ∈ X . Then the modified logarithmic Sobolev inequality MLSI(λ) holds with some
constant λ which depends on α and on the value Dα of the integral.

The proof proceeds in exactly the same way the proof of Theorem 6.1 except that we need
the following replacement for Lemma 6.2.
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Lemma 6.6. Under the assumptions of Theorem 6.5 there exists a constant C = C(α,Dα)
depending only on α and Dα such that for any δ > 0 and f ∈ RX we have:(

1− δ

α

)
Entπ(f2) ≤ 1

4δ
π
[
Γ(f2, log f2)

]
+ δCπ

[
f21{f>π[f2]}

]
. (6.10)

Proof. Without restriction we can assume that π[f2] = 1. Arguing as in the proof of Lemma
6.2 we obtain the crude bound

W(f2, 1)2 ≤
∑
x,y

δW(x, y)2f2(x)1{f>1}(x)π(x)π(y) .

From the HWI(0) inequality we thus infer that

Entπ(f2) ≤ 1

4δ
π
[
Γ(f2, log f2)

]
+ δ
∑
x,y

dW(x, y)2f2(x)1{f>1}(x)π(x)π(y) .

From the triangle inequality we have∑
dW(x, y)2f2(x)1{f>1}π(x)π(y) ≤ 2π

[
dW(x0, ·)2f21{f>1}

]
+ 2π

[
f21{f>1}

]
π
[
d(·, x0)2

]
.

The bound on the exponential moment immediately leads to a bound of the form Cπ
[
f21{f>1}

]
for the second term on the right-hand side, with C only depending on α and Dα. We thus
consider the first term. From the Young-type inequality ab ≤ a log a+ eb for a ≥ 0 and b ∈ R
we deduce, setting Z = π

[
f21{f>1}

]
, that

π
[
dW(x0, ·)2f21{f>1}

]
=
Z

α
π

[
αdW(x0, ·)2 f

2

Z
1{f>1}

]
≤ Z

α
Entπ1{f>1}

(
f21{f>1}

Z

)
+
Z

α
π
[
eαdW (·,x0)21{f>1}

]
≤ 1

α
Entπ1{f>1}(f

21{f>1}) +
Dα

α
Z .

Hence the proof is finished once we note that Entπ1{f>1}(f
21{f>1}) ≤ Entπ(f2). This is a

consequence of the duality formula

Entν(g) = sup
h

[
ν[hg]− log ν

[
eh
]

+ log ν[X ]
]

for any non-negative function g with ν[g] = 1. �

6.2. Total variation mixing time for Markov chains with non-negative curvature.
Both the Poincaré inequality and the logarithmic Sobolev inequality yield bounds on the rate
of convergence to equilibrium for the Markov chain, respectively in the L2(π) norm and in
relative entropy, see Section 2.3 and in particular (2.7). Another relevant way of measuring
closeness to equilibrium, often used in practice, is the total variation norm. In particular,
there is a lot of interest in obtaining bounds on the total variation mixing time, defined as
follows.

Definition 6.7. The total variation mixing time is defined for ε > 0 as

τmix(ε) := sup
{
t > 0; ‖P ∗t δx − π‖TV < ε ∀x ∈ X

}
.
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Here P ∗t denotes the dual Markov semigroup acting on probability measures. We refer to the
book [24] for an introduction and overview of the many works on mixing times.
Since the Pinsker inequality states that 2‖ν − π‖2TV ≤ Entπ(ν), the modified logarithmic
Sobolev inequality is a useful tool to obtain upper bounds on the mixing time. However,
since the estimate must hold uniformly in the initial data, it is not enough. In the continuous
setting, since the relative entropy functional is unbounded, an extra argument is always
needed. In the finite setting, since we always have Entπ(δx) = − log π(x), the inequality
MLSI(ρ) implies the estimate

τmix(ε) ≤ 1

2ρ

[
− log(2ε2) + log log π−1

∗
]

where π∗ = inf{π(x) : x ∈ X}.
One of the flaws of this bound is that π∗ is quite small when the space has many points. In
particular, it does not behave well when studying continuous limits. In the context of Markov
chains with non-negative curvature, we can give a general estimate on the mixing time that
does not involve π∗.

Theorem 6.8. Assume that Ric(X , Q, π) ≥ 0 and that the diameter of (X , dW) is bounded
by D. If MLSI(ρ) holds then we have

τmix(ε) ≤ D2

4
+

log ε

ρ
.

In particular, we obtain that for a universal constant c

τmix(ε) ≤ D2(1/4 + c log ε) .

Proof. The second bound immediately follows from the first using that Theorem 6.1 yields
the validity of MLSI(cD−2) for a suitable constant c. The show the first bound we first note
the estimate

H(Ptf) ≤ W(f, 1)2

4t

which is an immediate consequence of the Evolution Variational Inequality established in [13,
Thm. 4.5]. Hence H(Ptf) ≤ 2 for all t ≥ D2/4 and all f ∈ P(X ). The result then follows
using the exponential convergence H(Ptf) ≤ e−2ρtH(f) implied by MLSI(ρ) and Pinsker’s
inequality. �

6.3. A conjecture. If we apply the abstract results to a simple random walk on the discrete
torus (Z/LZ)d, we get a spectral gap and a modified LSI with constant O(d2L2). However,
the optimal constant behaves like dL2, so our estimate is off by a dimensional factor. This was
to be expected: if we consider a product space, both the Poincaré inequality and the modified
LSI tensorize (up to a scaling of the time), while the squared diameter grows linearly with
the dimension. This shows that diameter estimates should not allow one to capture the sharp
behavior of functional inequalities for dynamics in high dimension.
To have any hope of obtaining good estimates in high dimension, we should therefore rely on
a different kind of assumption. In a series of contributions [32, 31, 33], Milman showed that
for Riemannian manifolds, we can effectively use assumptions on the concentration profile to
derive functional inequalities for manifolds of non-negative Ricci curvature. This improves on
the diameter assumption, since concentration estimates may be dimension-free (although not
always). Moreover, it is a strictly weaker assumption, since when the diameter is bounded
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we automatically have Gaussian and exponential concentration, with constants controlled by
the diameter.
More precisely, what Milman showed is the following:

• If curvature is bounded from below by −κ for some κ > 0, then a strong enough
Gaussian concentration implies a Gaussian isoperimetric inequality, and hence both a
logarithmic Sobolev inequality and a Poincaré inequality. The constant only depends
on κ and on the constant appearing in the Gaussian concentration property.
• If curvature is non-negative, exponential concentration implies a Cheeger isoperimet-

ric inequality, and hence a Poincaré inequality. The constant only depends on the
constant appearing in the exponential concentration property.

Since Gaussian concentration is equivalent to finiteness of a square-exponential moment,
qualitatively the first result at first glance may not appear so different from Wang’s theorem.
The important difference (in addition to the isoperimetric inequality) is that the constant
does not depend anymore on the value of the square-exponential moment. This makes a
significant difference in high dimensional situations, where the square exponential moment
depends on the dimension, but the Gaussian concentration constant often does not.
Milman’s work relies on tools of Riemannian geometry (concavity of isoperimetric profiles and
the Heinz-Karcher theorem), so it does not seem like his arguments can be adapted to the
discrete case. An alternative proof by Ledoux [22] also relied on concavity of isoperimetric
profiles.
As we have seen in the previous sections, the alternative approach of Gozlan, Roberto and
Samson [15], based on functional inequalities, is more easily adapted to the discrete set-
ting. While unlike Milman, they do not recover the Gaussian isoperimetric inequality, they
nonetheless show that when curvature is bounded from below, a strong enough Gaussian
concentration implies a logarithmic Sobolev inequality. However, we have not been able to
adapt a key step in their approach, which is that Gaussian concentration implies a weak
transport-entropy inequality. In the discrete setting, the analogous inequality we would need
would be

W(µ, π)2 ≤ c1 Entπ(µ) + c2.

To establish it, we would need to better understand the relationship between bounds on W
and concentration. An important difference between the discrete and the continuous situation
is that lack of a dual Kantorovich formulation for the distance W.
Nonetheless, we state as conjectures the discrete analogues of the results of [32, 31, 33, 22, 15]:

Conjecture 6.9. Assume that Ric(X , Q, π) ≥ 0 and that the invariant measure π satisfies a
concentration property w.r.t. the distance dW with profile α(r) = Me−ρr. Then there exists a
constant C(M) such that PI

(
C(M)ρ−2

)
holds.

Conjecture 6.10. Assume that Ric(X , Q, π) ≥ −κ for some κ > 0, and that a concentration

property with respect to the distance dW holds with profile α(r) = Me−ρr
2
. Then there exists

a constant τ(M) and λ(κ,M, ρ) such that if κ
ρ < τ(M) then MLSI

(
λ(κ,M, ρ)

)
holds. If

moreover Ric(X , Q, π) ≥ 0 then MLSI(cMρ) holds for some universal constant c.

In the Riemannian setting, these results hold with no dependence on M , but for non-smooth
geodesic spaces the proof of [15] has an extra dependence on M of the form we use in the
statements of these conjectures.
As in the continuous setting, Theorem 6.5 already tells us that under these assumptions a
mLSI holds. The open problem in Conjecture 6.10 is the value of the constant.
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As we shall see in the next section, if these conjectures are indeed true, then we could use cur-
vature to better understand the behavior of some interacting particle systems with degenerate
rates.

7. Application to the zero-range process with constant rates

In this section, we shall discuss functional inequalities for a system of K interacting particles
on the complete graph with L sites, namely the zero range process.
The state space is XK,L = {η ∈ NL :

∑L
i=1 ηi = K}. The dynamics we are interested in is

defined as follows. With rate 1, we select a site i uniformly at random. If ηi = 0 (no particles
on site i), we do nothing. Else we choose a second site j uniformly at random, and move a
single particle from i to j. We shall denote by ηi,j the new configuration obtained after such
a move. More precisely, the transition rates of the corresponding continuous time Markov
chain for η 6= η′ are thus given by

QK,L(η, η′) =

{
1
L η′ = ηi,j for some i, j ,

0 , else .

The invariant measure is the uniform measure on XK,L denoted by πK,L.
This model constitutes a degenerate version of the classical zero range process, where particles
on site i jump at rate f(ηi) for some rate function f . For example, independent particles
correspond to the case f(n) = λn for a constant λ. Our situation corresponds to the case
where the jump rate f is constant.
In [14], entropic Ricci curvature lower bounds for the zero range process were established,
in the situation where the jump rate is strictly increasing: If the rate satisfies 0 < c ≤
f(n+ 1)− f(n) ≤ c+ δ for all n and some constants c, δ and δ is small enough compared to
c, then curvature is bounded from below by a strictly positive constant. It is easy to check
that the proof can be straightforwardly adapted to show that the zero range process with
constant rates has non-negative curvature, i.e. Ric(XK,L, QK,L, πK,L) ≥ 0. We can thus use
the abstract results of the previous section together with the following diameter estimate to
obtain the mLSI for the degenerate zero range process.

Lemma 7.1. There exists a constant c > 0 such that for any L,K and the diameter of
(XK,L, dW) is bounded by cK

√
L logL.

Theorem 7.2. For the zero-range process with constant rate 1 on the complete graph with L
sites, K particles the modified logarithmic Sobolev inequality MLSI

(
c

K2L logL

)
for a universal

constant c.

We do not believe this constant to be optimal. Morris [34] showed that the spectral gap is of
order L/K2, so for a fixed density of particles K/L our estimate is off by a factor K2 logL.
For the mLSI, no better result seems to be known, but we believe that it should behave like
1/L at fixed density, by analogy with the situation for gamma distributions studied in [5].
As mentioned in Section 6.3, one source of error is that we expect that when curvature is
non-negative the mLSI constant is controlled by the Gaussian concentration constant, and
that in high dimension the diameter is much larger than the Gaussian concentration constant.
Since πK,L is the uniform measure on all admissible configurations, the distribution of the
number of particles on a given site is a binomial distribution, with parameters K and 1/L,
so that it satisfies an exponential concentration property with a constant that only depends
on the particle density K/L (which matches well with the result of Morris). For fixed density
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ρ = K/L and large K and L, the binomial law approximates a Poisson law with parameter
ρ, so that the invariant measure looks like a product of Poisson measures, with an added
constraint of fixed total sum (which is K). The results of [5] then suggest that we should
expect the Gaussian concentration constant to behave like 1/L. With the way we defined the
rates of the Markov chain (that differs with the rate used in [34] by a factor 1/L, this leads
us to expect the mLSI constant to behave like 1/L2 at fixed density K/L, and suggests that
our result is off by a factor 1/(K logL) (since at fixed density, the asymptotic behavior of K
and L is the same).

Proof of Lemma 7.1. We need to show that

W(δη, δη̃) ≤ cK
√
L logL

for any η, η̃ ∈ XK,L and a suitable constant c. For each pair η, η̃ we can find a sequence
η = η1, . . . , ηn = η̃ of length at most K such that ηi and ηi+1 differ only by the position of a
single particle. From the triangle inequality for W, it is enough to show that W(δηi , δηi+1) ≤
c
√
L logL. But when looking at the movement of a single particle, the situation is the same

as for a random walk on the complete graph with rate 1/L. More precisely, we claim that

W(δηi , δηi+1) ≤ W(δx, δy) ,

where the right-hand side is the transport distance between Dirac masses in point x, y on the
complete graph with L sites and rates 1/L. To see this, we can lift an optimal solution to
the continuity equation (ρt, ψt) on the complete graph connecting δx, δy to a solution to the
continuity equation (ρ̄t, ψ̄t) on the state space of the zero range process connecting δηi , δηi+1

(see [29, Lem. 3.14], where such a lifting is carried out in detail for a comparison to the
two-point space). So it is enough to show that the distance on the complete graph induced
by the simple random walk with unit rate has diameter bounded by c

√
logL (the change in

speed changes the diameter by a factor
√
L). This diameter bound will follow from a general

diameter bound in Proposition 7.3 below. For simple random walk on the complete graph,
the minimal mass of a point is given by π∗ = 1/L and curvature is bounded from below by
1/2. �

We conclude with a general estimate on the diameter of (X , dW) that can be seen as a discrete
analogue to the Bonnet-Myers theorem in Riemannian geometry.

Proposition 7.3. Assume that Ric(X , Q, π) ≥ κ for κ > 0. Then for any x, y ∈ X we have

dW(x, y) ≤ 2

√
− log π(x)− log π(y)

κ
.

Thus, the diameter of (X , dW) is bounded by 2
√
−2 log π∗

κ , where π∗ := inf{π(x) : x ∈ X}.

The dependence on π∗ might seem undesirable, but since we used no upper bound on the
dimension, we cannot expect the diameter bound to depend only on κ. In the case of the dis-
crete hyper-cube of dimension n, we have − log π∗ = n log 2, which is the correct dependence
on the dimension.

Proof of Proposition 7.3. From the convexity of the entropy (2.3), we have

0 ≤ H(ρx,y1
2

) ≤ 1

2
H(δx) +

1

2
H(δy)−

κ

8
dW(x, y)2 ,
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where (ρx,yt )t∈[0,1] is theW-geodesic connecting δx to δy. We then use that H(δx) = − log π(x)
to conclude. �
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[23] C. Léonard. On the convexity of the entropy along entropic interpolations. preprint, 2013.
[24] D.A. Levin, Y. Peres, and E.L. Wilmer. Markov chains and mixing times. American Mathematical Society,

Providence, RI, 2009. With a chapter by James G. Propp and David B. Wilson.
[25] P. Li. A lower bound for the first eigenvalue of the Laplacian on a compact manifold. Indiana Univ. Math.

J., 28(6):1013–1019, 1979.



FUNCTIONAL INEQUALITIES FOR MARKOV CHAINS WITH NON-NEGATIVE CURVATURE 27

[26] P. Li and S.-T. Yau. On the parabolic kernel of the Schrödinger operator. Acta Math., 156(3-4):153–201,
1986.

[27] Y. Lin and S.-T. Yau. Ricci curvature and eigenvalue estimate on locally finite graphs. Math. Res. Lett.,
17(2):343–356, 2010.

[28] J. Lott and C. Villani. Ricci curvature for metric-measure spaces via optimal transport. Ann. Math. (2),
169(3):903–991, 2009.

[29] J. Maas. Gradient flows of the entropy for finite Markov chains. J. Funct. Anal., 261(8):2250–2292, 2011.
[30] A. Mielke. Geodesic convexity of the relative entropy in reversible Markov chains. Calc. Var. Partial

Differential Equations, 48(1-2):1–31, 2013.
[31] E. Milman. On the role of convexity in functional and isoperimetric inequalities. Proc. Lond. Math. Soc.

(3), 99(1):32–66, 2009.
[32] E. Milman. On the role of convexity in isoperimetry, spectral gap and concentration. Invent. Math.,

177(1):1–43, 2009.
[33] E. Milman. Isoperimetric and concentration inequalities: equivalence under curvature lower bound. Duke

Math. J., 154(2):207–239, 2010.
[34] B. Morris. Spectral gap for the zero range process with constant rate. Ann. Probab., 34(5):1645–1664,

2006.
[35] Y. Ollivier. Ricci curvature of Markov chains on metric spaces. J. Funct. Anal., 256(3):810–864, 2009.
[36] L. E. Payne and H. F. Weinberger. An optimal Poincaré inequality for convex domains. Arch. Rational
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