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2D Quantum Gravity?

"We have to develop an art of handling sums over
Polyakov 81 random surfaces. These sums replace the old fashioned
y
(and extremely useful) sums over random paths.”

Sums over random paths: Feynman path integrals.

Well understood question:

Pick a,b € R?, what does a random path v : [0, 1] — R? chosen
"uniformly at random” between all paths from a to b look like?

Brownian motion!

Brownian surface?

First idea: try discrete metric spaces (Donsker)
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Definition:
A planar map is a proper embedding of a finite connected graph into

the two-dimensional sphere (considered up to orientation-preserving
homeomorphisms of the sphere).

faces: connected components of the
complement of edges

p-angulation: each face is bounded by p edges

\> This is a triangulation
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Planar Maps as discrete planar metric spaces

Definition:
A planar map is a proper embedding of a finite connected graph into

the two-dimensional sphere (considered up to orientation-preserving
homeomorphisms of the sphere).

\\> In blue, distances from e

M Planar Map: e V(M) := set of vertices of M
e d, := graph distance on V(M)
o (V(M),d,) is a (finite) metric space

Rooted map: mark an oriented edge of the map —»
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Global :
Rescale distances to keep diameter bounded

[Le Gall 13, Miermont 13]:
converges to the Brownian map.

Gromov-Hausdorff topology
Continuous metric space
Homeomorphic to the sphere
Hausdorff dimension 4
Universality
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"Classical” large random triangulations

Euler relation in a triangulation: number of edges / vertices / faces linked
Take a triangulation of size n uniformly at random. What does it look like
if nis large ?

Two points of view: global/local, continuous/discrete

Local :
Don't rescale distances and look at

neighborhoods of the root

[Angel — Schramm 03, Krikun 05]: D= goQ/
Converges to the Uniform Infinite Planar |, -~ "/ =
Triangulation g

e |ocal topology
e Metric balls of radius R grow like R*

e " Universality” of the exponent 4.
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Definition:
The local topology on M« is induced by the distance:
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where B,.(m) is the graph made of all the vertices and edges of m
which are within distance r from the root.




Local Topology for planar maps

M := {finite rooted planar maps}.

Definition:
The local topology on M« is induced by the distance:

—1

dioe(m,m’) := (1 + max{r > 0: B,.(m) = B,.(m')})

where B,.(m) is the graph made of all the vertices and edges of m
which are within distance r from the root.

o (M,dis): closure of (My,dioc). It is a Polish space
(complete and separable).

o My := M\ Mjy set of infinite planar maps.
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Local convergence: simple examples

n
.
2

n 1
— (22.,0)

¢

oo o -o-0-0-o — (7,0)
01 2 n
Uniformly chosen root

— (Z,0)

Root does not matter

0 — (27,0)

0 n
Uniformly chosen root



Local convergence: more complicated examples

Uniform plane rooted trees with n vertices:
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1/2
n = 500

i

The limit is a probability distribution on
infinite trees with one infinite branch.

|

Local convergence: more complicated examples

Uniform plane rooted trees with n vertices:
1/2
n —
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Local convergence of uniform triangulations

Theorem [Angel — Schramm, '03]
As n — oo, the uniform distribution on triangulations of size n

converges weakly to a probability measure called the Uniform Infinite
Planar Triangulation (or UIPT) for the local topology.

—
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Local convergence of uniform triangulations

Theorem [Angel — Schramm, '03]
As n — oo, the uniform distribution on triangulations of size n

converges weakly to a probability measure called the Uniform Infinite
Planar Triangulation (or UIPT) for the local topology.

Some properties of the UIPT:

e The UIPT has almost surely one end [Angel — Schramm, '03]
e Volume (nb. of vertices) and perimeters of balls known to some extent.

For example T 1B, (Tso)|] ~ %r‘l |[Angel '04, Curien — Le Gall "12]
e Volume of hulls explicit [M. 16]
e "Uniqueness” of geodesic rays and horofunctions [Curien — M. 18]
e Bond and site percolation well understood [Angel, Angel-Curien, M.—Nolin|
e Simple random Walk is recurrent |Gurel-Gurevich and Nachmias '13]



Local convergence of uniform triangulations

Theorem [Angel — Schramm, '03]
As n — oo, the uniform distribution on triangulations of size n

converges weakly to a probability measure called the Uniform Infinite
Planar Triangulation (or UIPT) for the local topology.

Some properties of the UIPT:
e The UIPT has almost surely one end [Angel — Schramm, '03]

e Volume (nb. of vertices) and perimeters of balls known to some extent.
For example T 1B, (Tso)|] ~ %r‘l |[Angel '04, Curien — Le Gall "12]
e Volume of hulls explicit [M. 16]
e "Uniqueness” of geodesic rays and horofunctions [Curien — M. 18]
e Bond and site percolation well understood [Angel, Angel-Curien, M.—Nolin|
e Simple random Walk is recurrent |Gurel-Gurevich and Nachmias '13]

Universality: we expect the same behavior for slightly different models
(e.g. quadrangulations, triangulations without loops, ...)
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Adding matter: Ising model on triangulations

How does Ising model influence the underlying map?

First, Ising model on a finite deterministic graph:

Spin configuration on G:
o:V —{-1,+1}.

G = (V, F) finite graph

Ising model on G: take a random
spin configuration with probability

P(O‘) X e_g v~v! 1{0(1})#0(’0’)}

B > 0: inverse temperature.

Combinatorial formulation: P(g) o< v™(%)
with m (o) = number of monochromatic edges and v = e”.
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Adding matter: Ising model on triangulations

T = {rooted planar triangulations with 3n edges}.

Random triangulation in 7,, with probability oc v™(1:9) ?

Generating series of Ising-weighted triangulations:

Q(V, t) _ Z Z Vm(T,a)te(T) .

TreTy o:V(T)—>{—1,+1}
Theorem [Bernardi — Bousquet-Mélou 11]
For every v the series Q(v,t) is algebraic, has p, > 0 as unique
dominant singularity and satisfies

p

[tgn]Q(Va t) ~ X

— —nNn
n @) \/{py n

—5/2

This suggests an unusual behavior of the underlying maps for v = v...
See also [Boulatov — Kazakov 1987], [Bousquet-Mélou — Schaeffer 03]
and [Bouttier — Di Francesco — Guitter 04].
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Vm(T,U)

r]Q(w, 1)

(1T -

Counting exponent:

coeff [t"] of generating series of (decorated) maps ~ kp~"n~“

Central charge c: Hausdorff dimension: [Watabiki 93]
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Adding matter: the model and Watabiki’s predictions

Probability measure on triangulations of 7,, with a spin configuration:

Vm(T,a)

r]Q(w, 1)

(1T -

Counting exponent:

coeff [t"] of generating series of (decorated) maps ~ kp~"n~“

Central charge c: Hausdorff dimension: [Watabiki 93]
25 —c++/(1—¢)(25 — ¢) V25 —c+ /49 — ¢
o — DH = 2
12 “N V25 —c+ V1 —c

4.6 4

o 0425/2 glveS DH:4 4.2—:

b1 40

e o =17/3 gives Dy = HT\/Q_? ~ 4.21

3.4+
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where B,.(T') is the submap (with spins) of T' composed by the faces
of T" with a vertex at distance < r from the root.




Local Topology for planar maps : balls

Definition:
The local topology on 7; is induced by the distance:

dioe(T, T') := (1 + max{r > 0: B,(T) = B.(T")}) "
where B,.(T') is the submap (with spins) of T' composed by the faces
of T" with a vertex at distance < r from the root.




Local Topology for planar maps : balls

Definition:
The local topology on 7; is induced by the distance:

dioe(T, T') := (1 + max{r > 0: B,(T) = B.(T")}) "
where B,.(T') is the submap (with spins) of T' composed by the faces
of T" with a vertex at distance < r from the root.




Local Topology for planar maps : balls

Definition:
The local topology on 7; is induced by the distance:

dioe(T, T') := (1 + max{r > 0: B,(T) = B.(T")}) "
where B,.(T') is the submap (with spins) of T' composed by the faces
of T" with a vertex at distance < r from the root.




Local Topology for planar maps : balls

Definition:
The local topology on 7; is induced by the distance:

dioe(T, T') := (1 + max{r > 0: B,(T) = B.(T")}) "
where B,.(T') is the submap (with spins) of T' composed by the faces
of T" with a vertex at distance < r from the root.




Local Topology for planar maps : balls

Definition:
The local topology on 7; is induced by the distance:

dioe(T, T') := (1 + max{r > 0: B,(T) = B.(T")}) "
where B,.(T') is the submap (with spins) of T' composed by the faces
of T" with a vertex at distance < r from the root.




Local Topology for planar maps : balls

Definition:
The local topology on 7; is induced by the distance:

dioe(T, T") := (1 4+ max{r > 0: B.(T) = B.(T")})™"

where B,.(T') is the submap (with spins) of T' composed by the faces
of I with a vertex at distance < r from the root.

simple cycles

o (7,dio): closure of (T#,djoc)-
It i1s a Polish space.

o T =T \ Ty set of infinite planar
triangulations.



Weak convergence for the local topology

Portemanteau theorem + Levy — Prokhorov metric:
A sequence of measures measures (F,,) on T converge weakly to a
measure P on T if:

1. For every » > 0 and every possible r-ball A

Pn<{(T,v) cT; BT(T,U):A}) . P({TGTOO : BT(T):A})
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1. For every » > 0 and every possible r-ball A
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Problem: not sufficient since the = %‘\

i |
space (7T, do.) is not compact! \V/ degree 1



Weak convergence for the local topology

Portemanteau theorem + Levy — Prokhorov metric:
A sequence of measures measures (F,,) on T converge weakly to a
measure P on T if:

1. For every r > 0 and every possible r-ball A

Pn<{(T,v) cT; BT(T,U):A}> . P({TGTOO : BT(T):A})

n—oo

2. No loss of mass at the limit: Tightness of (P,,), or
the measure P defined by the limits in 1. is a probability measure.

e Vertex degrees are tight (at finite distance from the root)

e Vr>0, > P({TeTOO:BT(T):A}>:1.

r—balls A



Local convergence and generating series

Need to evaluate, for every possible ball A
(here, one boundary to keep it simple)

gl )



Local convergence and generating series

Need to evaluate, for every possible ball A
(here, one boundary to keep it simple)

gl )

Simple (rooted) cycle,
spins given by a word w



Local convergence and generating series

Need to evaluate, for every possible ball A
(here, one boundary to keep it simple)

> B Vm(A)—m(w) [t3n—e(A)—|—|w|]Zw(V7 t)
" 5] Q (v, t) /
Simple (rooted) cycle, Z.(v,t) := generating series of

spins given by a word w triangulations with simple boundary w



Local convergence and generating series

Need to evaluate, for every possible ball A
(here, one boundary to keep it simple)

> B ,m(A)—m(w) [t377,—e(A)—|—|(,u|]Zw(V7 t)
. 5] Q(v, ) /
Simple (rooted) cycle, Z.(v,t) := generating series of
spins given by a word w triangulations with simple boundary w

Theorem [Albenque — M. — Schaeffer 18]
For every w and v, the series tI“! Z,, (v, t) is algebraic, has p, = t3 as
unique dominant singularity and satisfies

f/-ﬁ:w(uc) p, T3 ifu=v. =1+ %,

B Z (vt) ~ 4
! ( )n—><><> \/ﬁzw(u)p;”n_5/2 if v #£ v,




Triangulations with simple boundary

Fix a word w, with injections from and into triangulations of the sphere:
Bl z, =6 (p,"n™%), with @ = 5/2 of 7/3 depending on v.

To get exact asymptotics we need, as series in t°,

1. algebraicity,
2. no other dominant singularity than p,.
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1. algebraicity,
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Tutte's equation (or peeling equation, or loop equation... ):
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Triangulations with simple boundary
Fix a word w, with injections from and into triangulations of the sphere:
Bl z, =6 (p,"n™%), with @ = 5/2 of 7/3 depending on v.

To get exact asymptotics we need, as series in t°,

1. algebraicity,
2. no other dominant singularity than p,.

Tutte's equation (or peeling equation, or loop equation... ):

|
+
(]




Positive boundary conditions: two catalytic variables
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Positive boundary conditions: two catalytic variables

R

L
A(x) :ZZ@pxP_ vta24 = (A( )— a:Z@ +Vt y|S(x,y) +
p>1
Peeling equation at interface ©—®:

S e

S(w,y) = ) Zarcua®y

p,q>1
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R

L
A(x) :ZZ@pxP_ vta24 = (A( )— a:Z@ +Vt y|S(x,y) +
p>1
Peeling equation at interface ©—®:

S e e

vt
X
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Kernel method: equation for S reads

K(xay) ' S(xay) — R(Qf,y)

t t t
where K(z,y)=1———— — — A(x) — —A(y).
LYy & Y

1. Find two series Y; and Y5 in Q(x)[[t]] such that K(x,Y;/t) =
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Kernel method: equation for S reads

K(z,y) - S(x,y) = R(z,y)
where  K(r,y) =1— é _ 5 _ éA(x) _ éA(y).
1. Find two series Y; and Y5 in Q(x)[[t]] such that K(x,Y;/t) =
It gives 3 ( (Y1/t) +1) = Y% (A(Y3/t) +1).

I(y) = 5( (y/t) + 1) is called an invariant.

2. Work a bit with the help of R(z,Y;/t) =0 to get a second invariant
J(y) depending only on t, Z+(t),y and A(y/t).



From two catalytic variables to one: Tutte’s invariants

Kernel method: equation for S reads

K(x,y)-S(x,y) = R(z,y)
where  K(r,y) =1— é _ 5 _ éA(:z;) _ éA(y).
1. Find two series Y7 and Y5 in Q(x)|[t]] such that K(z,Y;/t) =
It gives s (A(Yi/t) + 1) = = (A(Ya/t) + 1).

I(y) = 5( (y/t) + 1) is called an invariant.

2. Work a bit with the help of R(z,Y;/t) =0 to get a second invariant
J(y) depending only on t, Z+(t),y and A(y/t).

3. Prove that J(y) = Co(t) + C1(t)I(y) + Co(t)I*(y) with C;'s explicit
polynomials in t, Z+ (t) and Z42(t).




Explicit solution for positive boundary conditions

Equation with one catalytic variable reads:

A A
2t2V(1 _ V) <ﬂ — Z@) =Y POl (V, (y) ] Z@7 Z@2jt,y)
Y Y

|Bousquet-Mélou — Jehanne 06| gives algebraicity and strategy to
solve this kind of equation.
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Explicit solution for positive boundary conditions

Equation with one catalytic variable reads:

2t*v(1 — v) <M - Z@) =y - Pol (u,

Y

Ay)

72@7 Z@2atay)

|Bousquet-Mélou — Jehanne 06| gives algebraicity and strategy to
solve this kind of equation.

Much easier: [Bernardi — Bousquet Mélou 11] gives us Zg and Zg2!

Maple: rational (and Lagrangian) parametrization !

B Py (p,U)
4(1 —20)2(1 + p)?®
v Py(p, U, V) with v = 174 and
(1-20)(1+p)?(1 = V)? P;'s explicit polynomials.
2 A, ty) = Vs, U, V)

41 -2U0)2(1+p)3(1—-V)3



Going back to local convergence

1. Fix r > 0 and take A a r-ball with boundary spins 0A = (w1,...,wg):

Vm(A)—m(@A) [tBn—e(A)+|8A|] (H§:1 Zwi (V, t))
"] Q (v, t)

P, (B.(T,v) = A) =

Wi
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1% U K
n—_>>oo (1_[1 ZCUz'(Vﬁ tl/)) ' 231
1= 1=

kth Z, (v,t,)



Going back to local convergence

1. Fix r > 0 and take A a r-ball with boundary spins 0A = (w1,...,wg):
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Going back to local convergence

1. Fix r > 0 and take A a r-ball with boundary spins 0A = (w1,...,wg):

Vm(A)—m(@A) [tBn—e(A)+|8A|] (H§:1 Zwi (V, t))

Py (Br(T,v) = A) = 371Q(v, t)
L m(A)—m(dA) tIVAI—IwI o

k k
o Zw, (U, t,) ] - .
n— 00 (7,1:[1 ) 32:31 /{tl/wﬂij (% ty)

Wi

2. Remains to prove tightness.

e Maps are uniformly rooted:
tightness of root degree is enough

e \We show that expected degree at the root
under P,, is bounded with n
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The story so far

What we know:
e Convergence in law for the local toplogy.

e [he limiting random triangulation has one end a.s.

e A spatial Markov property.
e Some links with Boltzmann triangulations.

In progress:

e Recurrence of SRW (vertex degrees have exponential tails)
o (Cluster properties.

What we would like to know:

e Singularity with respect to the UIPT?

e Volume growth?
e At least volume growth # 4 at v.7



Summer school Random trees and graphs
July 1 to 5, 2019 in Marseille France
Org. M. Albenque, J. Bettinelli, J. Rué and L.Menard

Summer school Random walks and models of complex networks
July 8 to 19, 2019 in Nice
Org. B. Reed and D. Mitsche

Thank you for your attention!



