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2D Quantum Gravity?

[Polyakov 81]
”We have to develop an art of handling sums over
random surfaces. These sums replace the old fashioned
(and extremely useful) sums over random paths.”

Sums over random paths: Feynman path integrals.

Well understood question:
Pick a, b ∈ R2, what does a random path γ : [0, 1]→ R2 chosen
”uniformly at random” between all paths from a to b look like?

Brownian motion!

Not so well understood question:
What does a random metric on S2 distributed ”uniformly” look like?

Brownian surface?

First idea: try discrete metric spaces (Donsker)
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Planar Maps as discrete planar metric spaces

Definition:
A planar map is a proper embedding of a finite connected graph into
the two-dimensional sphere (considered up to orientation-preserving
homeomorphisms of the sphere).

faces: connected components of the
complement of edges

p-angulation: each face is bounded by p edges

This is a triangulation
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Definition:
A planar map is a proper embedding of a finite connected graph into
the two-dimensional sphere (considered up to orientation-preserving
homeomorphisms of the sphere).

M Planar Map: • V (M) := set of vertices of M
• dgr := graph distance on V (M)
• (V (M), dgr) is a (finite) metric space
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Rooted map: mark an oriented edge of the map
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”Classical” large random triangulations

Take a triangulation of size n uniformly at random. What does it look like
if n is large ?

Two points of view: global/local, continuous/discrete

Local :
Don’t rescale distances and look at
neighborhoods of the root

[Angel – Schramm 03, Krikun 05]:
Converges to the Uniform Infinite Planar
Triangulation

• Local topology
• Metric balls of radius R grow like R4

• ”Universality” of the exponent 4.

Euler relation in a triangulation: number of edges / vertices / faces linked
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Definition:
The local topology on Mf is induced by the distance:
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′) := (1 + max{r ≥ 0 : Br(m) = Br(m

′)})−1

where Br(m) is the graph made of all the vertices and edges of m
which are within distance r from the root.



Local Topology for planar maps

Mf := {finite rooted planar maps}.

Definition:
The local topology on Mf is induced by the distance:

dloc(m,m
′) := (1 + max{r ≥ 0 : Br(m) = Br(m

′)})−1

where Br(m) is the graph made of all the vertices and edges of m
which are within distance r from the root.

• (M, dloc): closure of (Mf , dloc). It is a Polish space
(complete and separable).

• M∞ :=M\Mf set of infinite planar maps.
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1 2 n
−→ (Z+, 0)
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n
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Z2

+, 0
)

0
Root = 0

1 2 n
−→ (Z, 0)

0
Uniformly chosen root

Root does not matter

0 n

n

−→
(
Z2, 0

)
0

Uniformly chosen root
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Local convergence: more complicated examples

Uniform plane rooted trees with n vertices:

n = 1 n = 2 n = 4n = 3

1/2

1/2

1/5

1/5 1/5 1/5

1/5

n = 1000n = 500

The limit is a probability distribution on
infinite trees with one infinite branch.



Local convergence of uniform triangulations

Theorem [Angel – Schramm, ’03]
As n→∞, the uniform distribution on triangulations of size n
converges weakly to a probability measure called the Uniform Infinite
Planar Triangulation (or UIPT) for the local topology.
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Theorem [Angel – Schramm, ’03]
As n→∞, the uniform distribution on triangulations of size n
converges weakly to a probability measure called the Uniform Infinite
Planar Triangulation (or UIPT) for the local topology.

Some properties of the UIPT:

• Volume (nb. of vertices) and perimeters of balls known to some extent.

For example E [|Br(T∞)|] ∼ 2

7
r4 [Angel ’04, Curien – Le Gall ’12]

• Simple random Walk is recurrent [Gurel-Gurevich and Nachmias ’13]

Universality: we expect the same behavior for slightly different models
(e.g. quadrangulations, triangulations without loops, ...)

• The UIPT has almost surely one end [Angel – Schramm, ’03]

• Volume of hulls explicit [M. 16]

• ”Uniqueness” of geodesic rays and horofunctions [Curien – M. 18]

• Bond and site percolation well understood [Angel, Angel–Curien, M.–Nolin]
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Adding matter: Ising model on triangulations

How does Ising model influence the underlying map?

First, Ising model on a finite deterministic graph:

G = (V,E) finite graph
Spin configuration on G:

σ : V → {−1,+1}.

− +

+
−

−

−
Ising model on G: take a random
spin configuration with probability

P (σ) ∝ e−
β
2

∑
v∼v′ 1{σ(v) 6=σ(v′)}

β > 0: inverse temperature.

Combinatorial formulation: P (σ) ∝ νm(σ)

with m(σ) = number of monochromatic edges and ν = eβ .

m(σ) = 4m(σ) = 4
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Adding matter: Ising model on triangulations

Tn = {rooted planar triangulations with 3n edges}.

Generating series of Ising-weighted triangulations:

Q(ν, t) =
∑
T∈Tf

∑
σ:V (T )→{−1,+1}

νm(T,σ)te(T ).

Theorem [Bernardi – Bousquet-Mélou 11]
For every ν the series Q(ν, t) is algebraic, has ρν > 0 as unique
dominant singularity and satisfies

[t3n]Q(ν, t) ∼
n→∞

{
κ ρ−nνc n−7/3 if ν = νc := 1 + 1√

7
,

κ ρ−nν n−5/2 if ν 6= νc.

This suggests an unusual behavior of the underlying maps for ν = νc.

Random triangulation in Tn with probability ∝ νm(T,σ) ?

See also [Boulatov – Kazakov 1987], [Bousquet-Mélou – Schaeffer 03]
and [Bouttier – Di Francesco – Guitter 04].
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Adding matter: the model and Watabiki’s predictions

Counting exponent:
coeff [tn] of generating series of (decorated) maps ∼ κρ−nn−α

Central charge c:

α =
25− c+

√
(1− c)(25− c)
12

Hausdorff dimension: [Watabiki 93]

• α = 5/2 gives DH = 4

• α = 7/3 gives DH = 7+
√

97
4 ≈ 4.21

DH = 2

√
25− c+

√
49− c√

25− c+
√

1− c

Pνn
(
{(T, σ)}

)
=

νm(T,σ)

[t3n]Q(ν, t)
.

Probability measure on triangulations of Tn with a spin configuration:
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Definition:
The local topology on Tf is induced by the distance:

dloc(T, T
′) := (1 + max{r ≥ 0 : Br(T ) = Br(T

′)})−1

where Br(T ) is the submap (with spins) of T composed by the faces
of T with a vertex at distance < r from the root.
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Local Topology for planar maps : balls

Definition:
The local topology on Tf is induced by the distance:

dloc(T, T
′) := (1 + max{r ≥ 0 : Br(T ) = Br(T

′)})−1

where Br(T ) is the submap (with spins) of T composed by the faces
of T with a vertex at distance < r from the root.

r

T Br(T )

simple cycles

• (T , dloc): closure of (Tf , dloc).
It is a Polish space.

• T∞ := T \ Tf set of infinite planar
triangulations.



Weak convergence for the local topology

Portemanteau theorem + Levy – Prokhorov metric:
A sequence of measures measures (Pn) on Tf converge weakly to a
measure P on T∞ if:

Pn

(
{(T, v) ∈ Tf : Br(T, v) = ∆}
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Weak convergence for the local topology

Portemanteau theorem + Levy – Prokhorov metric:
A sequence of measures measures (Pn) on Tf converge weakly to a
measure P on T∞ if:

Pn

(
{(T, v) ∈ Tf : Br(T, v) = ∆}

)
−→
n→∞

P

(
{T ∈ T∞ : Br(T ) = ∆}

)
.

degree n

1. For every r > 0 and every possible r-ball ∆

Problem: not sufficient since the
space (T , dloc) is not compact!

Ex:



Weak convergence for the local topology

Portemanteau theorem + Levy – Prokhorov metric:
A sequence of measures measures (Pn) on Tf converge weakly to a
measure P on T∞ if:

Pn

(
{(T, v) ∈ Tf : Br(T, v) = ∆}

)
−→
n→∞

P

(
{T ∈ T∞ : Br(T ) = ∆}

)
.

2. No loss of mass at the limit: Tightness of (Pn), or
the measure P defined by the limits in 1. is a probability measure.

1. For every r > 0 and every possible r-ball ∆

∀r > 0,
∑

r−balls∆

P

(
{T ∈ T∞ : Br(T ) = ∆}

)
= 1.

• Vertex degrees are tight (at finite distance from the root)

•
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Local convergence and generating series

Need to evaluate, for every possible ball ∆
(here, one boundary to keep it simple)

Pn ∆ ???

( )

Simple (rooted) cycle,
spins given by a word ω

=
νm(∆)−m(ω) [t3n−e(∆)+|ω|]Zω(ν, t)

[t3n]Q(ν, t)

Zω(ν, t) := generating series of
triangulations with simple boundary ω



Local convergence and generating series

Theorem [Albenque – M. – Schaeffer 18+]
For every ω and ν, the series t|ω|Zω(ν, t) is algebraic, has ρν = t3ν as
unique dominant singularity and satisfies

Need to evaluate, for every possible ball ∆
(here, one boundary to keep it simple)

Pn ∆ ???

( )

Simple (rooted) cycle,
spins given by a word ω

=
νm(∆)−m(ω) [t3n−e(∆)+|ω|]Zω(ν, t)

[t3n]Q(ν, t)

Zω(ν, t) := generating series of
triangulations with simple boundary ω

[t3n]t|ω|Zω(ν, t) ∼
n→∞

{
κω(νc) ρ

−n
νc n−7/3 if ν = νc := 1 + 1√

7
,

κω(ν) ρ−nν n−5/2 if ν 6= νc.



Triangulations with simple boundary

To get exact asymptotics we need, as series in t3,

1. algebraicity,
2. no other dominant singularity than ρν .

Fix a word ω, with injections from and into triangulations of the sphere:

[t3n]t|ω|Zω = Θ
(
ρ−nν n−α

)
, with α = 5/2 of 7/3 depending on ν.



Triangulations with simple boundary

= +
∑
a

a

Zω

(
Z⊕ω + Z	ω +

∑
ω=ω1aω2

Zaω1
·Zaω2

)
= × ν1←−ω=−→ω t

Tutte’s equation (or peeling equation, or loop equation... ):

To get exact asymptotics we need, as series in t3,

1. algebraicity,
2. no other dominant singularity than ρν .

Fix a word ω, with injections from and into triangulations of the sphere:

[t3n]t|ω|Zω = Θ
(
ρ−nν n−α

)
, with α = 5/2 of 7/3 depending on ν.



Triangulations with simple boundary

= +
∑
a

a

Zω

(
Z⊕ω + Z	ω +

∑
ω=ω1aω2

Zaω1
·Zaω2

)
= × ν1←−ω=−→ω t

Tutte’s equation (or peeling equation, or loop equation... ):

Double induction on |ω| and number of 	’s:
enough to prove 1. and 2. for the tpZ⊕p ’s

To get exact asymptotics we need, as series in t3,

1. algebraicity,
2. no other dominant singularity than ρν .

Fix a word ω, with injections from and into triangulations of the sphere:

[t3n]t|ω|Zω = Θ
(
ρ−nν n−α

)
, with α = 5/2 of 7/3 depending on ν.
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Positive boundary conditions: two catalytic variables

= +
∑

Peeling equation at interface 	–⊕:

= +
∑

A(x) :=
∑
p≥1

Z⊕px
p =

+

νtx2+ +
νt

x
(A(x))2

S(x, y) :=
∑
p,q≥1

Z⊕p	qx
pyq

+

νt

x

(
A(x)−xZ⊕

)
+νt [y]S(x, y)

= txy+
t

x

(
S(x, y)−x[x]S(x, y)

)
+
t

y

(
S(x, y)−y[y]S(x, y)

)
+
t

x
S(x, y)A(x) +

t

y
S(x, y)A(y)
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Kernel method: equation for S reads

K(x, y) · S(x, y) = R(x, y)

K(x, y) = 1− t

x
− t

y
− t

x
A(x)− t

y
A(y).where

1. Find two series Y1 and Y2 in Q(x)[[t]] such that K(x, Yi/t) = 0.

It gives 1
Y1

(A(Y1/t) + 1) = 1
Y2

(A(Y2/t) + 1).

I(y) := 1
y (A(y/t) + 1) is called an invariant.

2. Work a bit with the help of R(x, Yi/t) = 0 to get a second invariant
J(y) depending only on t, Z⊕(t), y and A(y/t).

3. Prove that J(y) = C0(t) + C1(t)I(y) + C2(t)I2(y) with Ci’s explicit
polynomials in t, Z⊕(t) and Z⊕2(t).

Equation with one catalytic variable for A(y) with Z⊕ and Z⊕2 !
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Explicit solution for positive boundary conditions

2t2ν(1− ν)

(
A(y)

y
− Z⊕

)
= y · Pol

(
ν,
A(y)

y
, Z⊕, Z⊕2 , t, y

)Equation with one catalytic variable reads:

[Bousquet-Mélou – Jehanne 06] gives algebraicity and strategy to
solve this kind of equation.

Much easier: [Bernardi – Bousquet Mélou 11] gives us Z⊕ and Z⊕2 !

t3 = U
P1(µ,U)

4(1− 2U)2(1 + µ)3

y = V
P2(µ,U, V )

(1− 2U)(1 + µ)2(1− V )2

t3A(t, ty) =
V P3(µ,U, V )

4(1− 2U)2(1 + µ)3(1− V )3

Maple: rational (and Lagrangian) parametrization !

with ν = 1+µ
1−µ and

Pi’s explicit polynomials.



Going back to local convergence

Pn (Br(T, v) = ∆) =
νm(∆)−m(∂∆) [t3n−e(∆)+|∂∆|]

(∏k
i=1 Zωi(ν, t)

)
[t3n]Q(ν, t)

→
n→∞

(
k∏
i=1

Zωi(ν, tν)

)
·
k∑
j=1

νm(∆)−m(∂∆) t
|∆|−|ω|
ν κωj

κ t
|ωj |
ν Zωj (ν, tν)

.

1. Fix r ≥ 0 and take ∆ a r-ball with boundary spins ∂∆ = (ω1, . . . , ωk):
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.

2. Remains to prove tightness.

1. Fix r ≥ 0 and take ∆ a r-ball with boundary spins ∂∆ = (ω1, . . . , ωk):

• Maps are uniformly rooted:
tightness of root degree is enough

• We show that expected degree at the root
under Pn is bounded with n



A simple tightness argument

Pn (δ ∈ e) =

3n∑
k=1

P (δ ∈ e|deg(δ) = k) · Pn (deg(δ) = k)

≥
3n∑
k=1

k

2 · 3n
Pn (deg(δ) = k) =

1

6n
En [deg(δ)]

Mark a uniform edge conditionally on the triangulation

We want to study the degree of the root vertex δ:
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A simple tightness argument

Pn (δ ∈ e) =

3n∑
k=1

P (δ ∈ e|deg(δ) = k) · Pn (deg(δ) = k)

≥
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Pn (deg(δ) = k) =

1

6n
En [deg(δ)]

Pn (δ ∈ e) ≤ max

{
1

ν
, 1

}2
[t3n+2](Z4 + Z2

2 + Z2
1 + Z2

1Z2 + Z1Z3)

3n [t3n]Z
= O(1/n)

Mark a uniform edge conditionally on the triangulation

We want to study the degree of the root vertex δ:

Cut open the marked edge and the root:

En [deg(δ)] = O(1).
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The story so far

What we know:

• Convergence in law for the local toplogy.
• The limiting random triangulation has one end a.s.

What we would like to know:

• Singularity with respect to the UIPT?
• Volume growth?
• At least volume growth 6= 4 at νc?

• A spatial Markov property.
• Some links with Boltzmann triangulations.

• Recurrence of SRW (vertex degrees have exponential tails)
• Cluster properties.

In progress:



Summer school Random trees and graphs
July 1 to 5, 2019 in Marseille France

Org. M. Albenque, J. Bettinelli, J. Rué and L.Menard

Thank you for your attention!

Summer school Random walks and models of complex networks
July 8 to 19, 2019 in Nice

Org. B. Reed and D. Mitsche


