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Abstract

We investigate online maximum cardinality matching, a central problem in ad al-
location. In this problem, users are revealed sequentially, and each new user can
be paired with any previously unmatched campaign that it is compatible with.
Despite the limited theoretical guarantees, the greedy algorithm, which matches
incoming users with any available campaign, exhibits outstanding performance in
practice. Some theoretical support for this practical success has been established
in specific classes of graphs, where the connections between different vertices
lack strong correlations – an assumption not always valid in real-world situations.
To bridge this gap, we focus on the following model: both users and campaigns
are represented as points uniformly distributed in the interval [0, 1], and a user is
eligible to be paired with a campaign if they are ”similar enough,” meaning the
distance between their respective points is less than c/N , where c > 0 is a model
parameter. As a benchmark, we determine the size of the optimal offline matching
in these bipartite random geometric graphs. We achieve this by introducing an
algorithm that constructs the optimal matching and analyzing it. We then turn to
the online setting and investigate the number of matches made by the online algo-
rithm CLOSEST, which pairs incoming points with their nearest available neigh-
bors in a greedy manner. We demonstrate that the algorithm’s performance can
be compared to its fluid limit, which is completely characterized as the solution
to a specific partial differential equation (PDE). From this PDE solution, we can
compute the competitive ratio of CLOSEST, and our computations reveal that it
remains significantly better than its worst-case guarantee. This model turns out
to be closely related to the online minimum cost matching problem, and we can
extend the results obtained here to refine certain findings in that area of research.
Specifically, we determine the exact asymptotic cost of CLOSEST in the ϵ-excess
regime, providing a more accurate estimate than the previously known loose upper
bound.

Preprint. Under review.
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1 Introduction

Online matching is motivated, among others, by its application to ad allocation on the internet.
Advertising platforms handle multiple companies paying for relevant ad space, and their goal is to
maximize the number of valid ad-user allocations while adhering to budget constraints.

In this dynamic setting, users generate web pages sequentially, and ads must be allocated immedi-
ately to avoid forfeiting available ad slots. This dynamic allocation process can be represented as an
online matching problem.

Formally, consider the bipartite graph G(X ,Y, E), with set of vertices X ∪ Y and set of edges
E ∈ X × Y . In our context of online matching, the “offline” vertices U represent the side of the
companies, they are present from the beginning, while the vertices V , which represent the users, are
revealed sequentially. At each arrival of a vertex v ∈ V , the edges adjacent to vertex v are revealed.
Based on those edges, the vertex can then be matched irrevocably to a previously unmatched neigh-
bor. The excellent survey Mehta [2012] details in length applications, results, and techniques of
online matching.

The first line of work studied online matching in the adversarial framework, where the algorithm is
evaluated on the worst possible instance and vertex arrival order. It is folklore that greedy random
algorithms, which match incoming vertices to any available neighbor have a competitive ratio of 1/2
in the worst case. However, they achieve 1− 1/e as soon as the incoming vertices arrive in Random
Order, [Goel and Mehta, 2008]. The RANKING algorithm is the worst-case optimal, it achieves
at least 1 − 1/e on any instance [Karp et al., 1990, Devanur et al., 2013, Birnbaum and Mathieu,
2008], and also has a higher competitive ratio in the Random Order setting [Mahdian and Yan, 2011].
Beyond this worse-case setting, the known i.i.d. model assumes there exists a probability distribution
over types of vertices, from which the incoming vertex is drawn i.i.d. at every iteration. With the
knowledge of that distribution, algorithms with much better competitive ratios than RANKING were
designed [Manshadi et al., 2012, Jaillet and Lu, 2014, Brubach et al., 2019, Huang et al., 2022], the
best one to date achieving a competitive ratio of 0.711.

This known i.i.d. model fits some situations and is certainly interesting, but still very general. The
algorithms designed are tailored to the worst known i.i.d. model and fail to handle additional graph
knowledge. Moreover, as the guarantee is given for the worst possible input distribution, it does not
always reflect the average performance of those algorithms. It has been highlighted in Borodin et al.
[2018] that on many average-case and practical input families, simple greedy strategies outperform
or perform comparably to state-of-the-art algorithms designed for that known i.i.d. setting. They
thus call for the formulation of new stochastic input models that better match practical inputs for
certain application domains, e.g., online advertising.

As a consequence, another line of work considers standard online algorithms on some classes of
random graphs, representing situations where some properties of the underlying graph are known.
The seminal example would be online matching in Erdos-Renyi graphs [Mastin and Jaillet, 2013], or
more generally in the configuration model that specifies a law on the degrees of the vertices [Noiry
et al., 2021, Aamand et al., 2022]. The idea behind the latter is that one can “estimate” the typical
popularity of a campaign (say, some of them target a large number of users while others are more
selective). In those instances, greedy strategies can be precisely analyzed. For instance, in [Mastin
and Jaillet, 2013], they show that the competitive ratio of greedy is larger than 0.837, which is much
higher than the worst-case guarantee.

Unfortunately, these approaches fail to model correlations between edges. Campaigns that are “sim-
ilar” tend to target the same users, and vice-versa (for instance, luxury products will target users
with high incomes, while baby products obviously target families). A possible approach to model
these correlations is through space embedding techniques: ads and users are represented by points
in an Euclidian space, typically feature vectors, and an edge is present between two vertices if the
points are close enough.

We shall in the following introduce and analyze the online matching problem for space-embedded
graphs, called geometric graphs. As it is already challenging and interesting, we shall focus on the
one-dimensional geometric graph.
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This model turns out to be strongly related to the minimum cost metric matching one. Similarly to
the features-embedded setting, vertices are points of some Euclidean (or any metric) space, and any
vertices on opposite sides of the partition may be matched together. The cost of the matching is the
total distance between the matched points [Gupta et al., 2019].

A major difference between the two models is that in the metric matching case, the incoming vertex
is necessarily matched at every iteration. The cost function is also completely different: in the
online matching setting, any valid match generates the same reward, which is not the case in the
online metric matching setting. Thus no algorithm tailored for one of those problems generalizes
easily to the other, which implies that the works on both topics are relatively independent.

The CLOSEST algorithm, which consists in matching greedily the incoming vertex to its closest
available neighbor, has received some attention in that field. A first work, [Akbarpour et al., 2021],
focuses on metric matching for a single set of N points drawn i.i.d. on the line. The authors
show that the greedy algorithm that successively matches the two closest points together, has a
competitive ratio of O(log(N)). Later, back in the bipartite setting, some works focused on the
so-called excess supply setting, where N offline points are drawn i.i.d. on the line and N(1 − ϵ)
vertices arrive sequentially. In that setting, the cost of CLOSEST was first shown to be O

(
log(N)

3
)

[Akbarpour et al., 2021]. That result was later refined to O( 1ϵ ) in [Balkanski et al., 2022]. In that
work, they also demonstrate a constant competitive ratio for CLOSEST when there is an equal number
of vertices on both sides, as well as under a semi-random model, where the incoming vertices are
picked adversarially.

Extending the techniques developed for the maximum cardinality matching case, we can precise the
result in the ϵ-excess model and give the exact asymptotic cost of CLOSEST under that setting.

1.1 Model and Contributions

We consider the class of bipartite geometric random graphs Geom(c,N), for some c > 0, whose
set of vertices X and Y are two sets of N points drawn independently and uniformly in [0, 1] (rep-
resenting the features of users/companies),

X = (xi)i∈[N ]
i.i.d.∼ U [0, 1] and Y = (yi)i∈[N ]

i.i.d.∼ U [0, 1],

and there is an edge between xi ∈ X and yj ∈ Y iff these features are ”similar” enough, i.e.,

|xi − yj | <
c

N
.

This choice of parametrization ensures that the expected degree of a vertex remains bounded, of
order c (neglecting the boundary effects). In particular, the graph remains sparse and the online
matching problem is not trivial. In the following, we shall also sometimes refer to geometric graphs
Geom(U ,V, c,N) with pre-specified sets of vertices U and V and edges generated by the same
process as in Geom(c,N).

In the context of metric matching, we denote the graph Geom(N), whose set of vertices X and Y
are two sets of N points drawn independently and uniformly in [0, 1], and the length of the
edges corresponds to the distance between the points. Similarly, we shall also sometimes refer to
geometric graphs Geom(U ,V, N) with pre-specified sets of vertices U and V . Y1−ϵ is a set of
N(1− ϵ) points drawn i.i.d. in [0, 1].

First, we derive the size of the maximum matching in these geometric random graphs, as a function
of the parameter c, along with the description of an algorithm constructing this matching. We
provide a non-asymptotic convergence bound of the size of the maximum matching to c/(c+ 1/2).
This bound is obtained through the study of the algorithm, via the construction of a potential
function which is then treated as a random walk. More precisely, we shall prove the following
theorem.
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Figure 1: The asymptotic optimal offline matching size is displayed in red, as a function of the
parameter c. Several simulations (blue crosses) for different values of c and for N = 100 vertices
illustrate that this limit is reached rapidly.

THEOREM 1 (informal). Let m∗ (c,N) be the size of the maximum matching in an instance of
Geom(c,N). With probability at least 1−O

(
1
N

)
,

m∗ (c,N) =
c

c+ 1
2

N +O
(√

N ln(N)
)
.

This informal result is illustrated in Figure 1.1 which shows both the theoretical asymptotic value
and the optimal value in several realizations of random graphs for a variety of parameters c.

Figure 2: First row, from left to right: the-
oretical (red line) vs. experimental (blue
lines) sizes of the online matching in the
1D uniform geometric graph (c = 1) as
a function of the number of arrived ver-
tices, for N = 100 and N = 10.000. Sec-
ond row, from left to right: theoretical (red
line) vs. experimental (blue lines) length
of the online matching in the 1D uniform
geometric graph as a function of the num-
ber of arrived vertices, for N = 100 and
N = 10.000.

We then study the size of the matching constructed by the online algorithm CLOSEST, which matches
any incoming vertex to its closest available neighbor. We show the convergence of this quantity to the
solution of an explicit PDE. We do that by exhibiting tractable quantities that can be approximated
via the Differential Equation Method [Wormald, 1995].

More precisely, we shall prove the following Theorem.

THEOREM 2 (informal). Let κ(c,N) be the size of the matching obtained by the CLOSEST algorithm
on an instance of Geom(c,N), then

κ(c,N)

N

P−−−−−→
N→+∞

1−
∫ +∞

0

f(x, t)dx

where f is the solution of some explicit PDE, described later in Equation (2).

The difference between the theoretical and the actual sizes of the matchings (as a function of the
number of online vertices observed) for different values of N is illustrated in Figure 2. Those two
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results combined give the value of the competitive ratio of the CLOSEST algorithm in Geom(c,N),
illustrated in Figure 3.

Figure 3: Asymptotic value of the competitive ratio of CLOSEST for several values of c.

We also extend the technique developed to the online metric matching problem, and prove the
following theorem, illustrated in Figure 2.

THEOREM 3 (informal). Let ρ[N ](t) be the length of the matching obtained by CLOSEST on an
instance of Geom(N) when tN ≤ N(1− ϵ) vertices have arrived, then

ρ[N ](t)

N

P−−−−−→
N→+∞

1

2

[
1

1− t
− 1

]
.

Organization of the paper Section 2 is dedicated to the offline case. We give the asymptotic
formula of the size of the optimal offline matching. Our approach is algorithmic: we provide a way
to construct this optimal matching, and we analyze the latter by carefully studying some random
walk. Section 3 focuses on the online case. We focus on a simple greedy algorithm, CLOSEST, that
matches any incoming vertex to the closest available one (as a greedy procedure would do) and we
characterize the size/length of the matching it creates by studying its fluid limit. We shall prove it
satisfies some PDE.

2 Maximum Matching in 1D Uniform Geometric Graphs

This section is dedicated to the offline case, where the whole underlying bipartite 1D geometric
graph is known from the beginning. Consider algorithm SMALL-FIRST which iteratively matches
the unmatched vertices with the smallest coordinates. The following proposition states this algo-
rithm produces a maximum matching.

Proposition 1 Algorithm SMALL-FIRST returns an optimal matching in 1D geometric graphs.

Proof : First, there exists a perfect matching in which no two edges cross. Indeed, assume pairs
(x, y′) and (x′, y) belong to the matching with x < x′ and y < y′. Since the graph is a geo-
metric graph, there are also the edges (x, y) and (x′, y′), so the matches can be uncrossed without
modifying the size of the matching.

Among those perfect matches with no crossing edges, there is one in which each vertex is matched
to its leftmost neighbor not already matched to another vertex. Again, if this is not the case, the
matching can be modified without modifying its size.

This perfect matching with no crossing edges and where every vertex is matched to its leftmost
available neighbor is the one returned by the algorithm SMALL-FIRST. □

Using the optimality of SMALL-FIRST, we can now prove the first main result.

Theorem 1 Let M∗(c,N) be the expected size of the maximum matching in Geom(c,N). The
following holds:

lim
N→∞

M∗(c,N)

N
=

c

c+ 1
2

.
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Let m∗ (c,N) be the size of the maximum matching in an instance of Geom(c,N). With probability
at least 1−O

(
1
N

)
:

m∗ (c,N) =
c

c+ 1
2

N +O
(√

N ln(N)
)
.

Proof : The proof is decomposed into two steps. In the first step, we show that the size of the
maximum matching in Geom(c,N) is related to the size of the maximum matching in a geometric
graph with a set of vertices generated by Poisson point processes. In the second step, the asymptotic
size of the maximum matching in those graphs is derived through the study of a random walk.

Step 1, connection with Poisson point processes. Let ΦNU be an independent homogeneous Pois-
son point process on the segment [0, 1] of intensity N . The definition and some standard properties
of Poisson Point Processes (PPP) are reported in Appendix A for the sake of completeness. Let
UN ∼ ΦN and VN ∼ ΦN denote two independent PPP, and γ∗(c,N) be the expected size of the
maximum matching in Geom(UN ,VN , c,N).

Lemma 1 Under the above notations, the following holds:

|γ∗(c,N)−M∗(c,N)| ≤ 4(1 +
√
N lnN).

Proof: Let NU = |U| and NV = |V| denote the size of the vertex sets. By Chernoff bound:

P
{
|NU −N | ≥ 2

√
N lnN

}
≤ 2

N
(1)

and the same holds for NV . We now explain how to recover the construction of Geom(X ,Y, c,N)

from those two PPP (as they do not have the same vertex set sizes). From U , define a new set Ũ of
N vertices as follows. If NU > N , delete uniformly at random NU −N points from U . If N > NU ,
add N −NU points independently and uniformly distributed in [0, 1] to U . The set Ṽ is constructed
from V similarly. This construction ensures that Geom(Ũ , Ṽ, c,N) and Geom(X ,Y, c,N) have the
same law. Moreover, the transformation affects the size of the matching at most by the number of
added and removed points. □

Step 2, deriving γ∗(c,N). A possible way to draw set U from ϕN is through a renewal process
with exponential holding times. Precisely, let {Fk}k∈N be a sequence of i.i.d. exponential random
variables of parameter N . Ensemble U is defined as:

U =

{
uk =

k∑
i=1

Fi for k s.t.
k∑
i=1

Fi < 1

}
.

The same holds from V .

To compute the size of the maximum matching in a given graph, we introduce a modified version of
Algorithm SMALL-FIRST, that generates the graph together with the matching. Algorithm SMALL-
FIRST-GENERATIVE (Algorithm 1) proceeds as follows. The positions of the first points in U and
V are drawn independently from two exponential distributions of parameter N . At iteration t, note
ux(t) and vx(t) the position of the last generated points in U and V respectively. Define the potential
function

ψ(t) := ux(t) − vx(t).
Until all the points on one side have been drawn, the following operations are iteratively performed:

• if |ψ(t)| < c
N , edge (ux(t), vx(t)) is added to the matching and the next points on both sides

of the graph are generated,

• if ψ(t) > c, the next point in VN is generated,

• if ψ(t) < −c, the next point in UN is generated.

Let τN be number of iterations in Algorithm SMALL-FIRST-GENERATIVE run with input parameter
N . When |ψ(t)| ≤ c, 2 vertices are matched, and when |ψ(t) > c|, 1 vertex is left unmatched, so
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Algorithm 1: SMALL-FIRST-GENERATIVE

input: N, c;
Draw u1 ∼ Exp(N) and v1 ∼ Exp(N);
Initialize x(1)← 1, y(1)← 1 and m← ∅ ;
Define for t = 1, . . ., ψ(t)← ux(t) − vx(t);
while ux(t) < 1 and vx(t) < 1 do

if |ψ(t)| < c then
m← m ∪ (ux(t), vx(t));
x(t+ 1)← x(t) + 1 and y(t+ 1)← y(t) + 1;
Draw ux(t+1) − ux(t) ∼ Exp(N) and vy(t+1) − vy(t) ∼ Exp(N);

end
if ψ(t) > c then

x(t+ 1)← x(t) and y(t+ 1)← y(t) + 1;
Draw vy(t+1) − vy(t) ∼ Exp(N);

end
if ψ(t) < −c then

x(t+ 1)← x(t) + 1 and y(t+ 1)← y(t);
Draw ux(t+1) − ux(t) ∼ Exp(N)

end
end

the fraction of matched vertices is given by the following formula:

2
∑τN
t=1 1{|ψ(t)≤c|}

2
∑τN
t=1 1{|ψ(t)≤c|} +

∑τN
t=1 1{|ψ(t)≥c|}

.

The potential function ψ(t) is a Markov chain with the following transition probability:

ψ(t+ 1)− ψ(t) =

{
xt − yt if |ψ(t)| ≤ c
xt if ψ(t) ≤ −c
−yt if ψ(t) ≥ c

with xt and yt independent exponential random variables of parameter N. The rest of the proof
consists in studying this random walk, its stationary distribution, and its convergence.

Lemma 2 The Markov chain described ψ(t) admits the following stationary distribution:

µ(t) =


1

2c+2 if |x| ≤ c
ex+c

2c+2 if x ≤ −c
e−(x−c)

2c+2 if x ≥ c.

Proof : Let us denote by Π the transition kernel of random walk ψ; then for any x ∈ [−c, c]:

(2c+ 2)

∫ +∞

−∞
Π(x, y)µ(y)dy =

∫ −c

−∞
e−(x−y)ey+cdy +

∫ +∞

c

e−(y−x)e−y+cdy

+

∫ x

−c

1

2
e−(x−y)dy +

∫ c

x

1

2
ex−ydy

=1.

Similarly, for any x ≤ −c:

(2c+ 2)

∫ +∞

−∞
Π(x, y)µ(y)dy =

∫ x

−∞
e−(x−y)ey+cdy +

∫ +∞

c

e−(y−x)e−y+cdy

+

∫ c

−c

1

2
ex−ydy

7



=ex+c.

By symmetry, the computation also holds ∀x ≥ c. □

By Chernoff bound, with probability at least 1 − e−N
4 , τN ≥ N

2 . Thus, by the pointwise ergodic
theorem, the following convergence holds:

γ∗(c,N) = E
[

2
∑τN
t=1 1{|ψ(t)≤c|}

2
∑τN
t=1 1{|ψ(t)≤c|} +

∑τN
t=1 1{|ψ(t)≥c|}

]
N→+∞−−−−−→ 2µ(|x| ≤ c)

2µ(|x| ≤ c) + µ(|x| > c)
=

c

c+ 1
2

.

We now derive the high probability bound. Define pN := 1
τN

∑τN
t=1 1{|ψ(t)≤c|}. Note that we have

that the total number of vertices generated is equal to 2pNτN + (1− pN )τN = (pN + 1)τN .

For any y ∈ R,
∫ +∞
−∞ Π(x, y)µ(y)dy ≤ 1

2 and for any x ∈ R,
∫ +∞
−∞ Π(x, y)µ(x)dx ≤ 3

4 . Thus by
Schur test’s lemma, the operator norm of the kernel is bounded as ||Π||µ ≤

√
3/8. By a version of

Hoeffding’s inequality adapted to Markov chains [Miasojedow, 2014], we get for any δ > 0

P (|pN − µ(|x| < c)| ≥ δ| τN ) ≤ 4(c+ 1)e−
δ2τN

5

Setting δ =
√
10 ln(N)

N , we get:

P

(
|pN − µ(|x| < c)| ≥

√
10

ln(N)

N

∣∣∣∣τN ≥ N

2

)
≤ 4(c+ 1)

N
.

Moreover, by Chernoff bound, with probability at least 1− e−N
4 ,

τN ≥
N

2
.

Thus, the following holds:

P

(
|pN − µ(|x| < c)| ≥

√
10

ln(N)

N

)
≤ 4(c+ 1)

N
+ e−

N
4 .

Note m∗(U,V,c,N)
N the fraction of matched vertices by the algorithm SMALL-FIRST-GENERATIVE.

We have:

m∗ (U ,V, c,N)

N
=

2pN
pN + 1

=
2µ(|x| < c) + 2 (pN − µ(|x| < c))

µ(|x| < c) + 1 + (pN − µ(|x| < c))
.

Since 2µ(|x|<c)
µ(|x|<c)+1 = c

c+ 1
2

, this implies with probability at least 1−O( 1
N ):∣∣∣∣∣m∗ (UN ,VN , c,N)

N
− c

c+ 1
2

∣∣∣∣∣ ≤ 4|pN − µ(|x| < c)| ≤ 4

√
10 ln(N)

N
.

Combining this with Equation (1) implies that with probability at least 1−O( 1
N ),

m∗ (X ,YN , c,N)
N

=
c

c+ 1
2

+O

(√
ln(N)

N

)
.

□
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3 Match to the closest point algorithm

In this section, we study the performances on the 1D Geometric Graph of the online matching
algorithm CLOSEST, which matches the incoming vertex to its closest available neighbor if there
is one. The following theorem states that κ(c,N), the size of the matching obtained by CLOSEST
algorithm on an instance of Geom(c,N), is closely related to the solution of an explicit PDE.

Theorem 2 Let κ[c,N ](t) be the size of the matching obtained by CLOSEST on an instance of
Geom(c,N) when tN vertices have arrived, then

κ[c,N ](t)

N

P−−−−−→
N→+∞

1−
∫ +∞

0

f(x, t)dx

with f(x, t) the solution of the following differential equation

∂f(x, t)

∂t
=−min(x, 2c)f(x, t)− 1∫ +∞

0
f(x′, t)dx′

∫ +∞

0

min(x′, 2c)f(x′, t)dx′f(x, t)

+
1∫ +∞

0
f(x′, t)dx′

∫ x

0

min(x′, 2c)f(x′, t)f(x− x′, t)dx′ (2)

with the following initial conditions
f(x, 0) = e−x.

Remark: Function f depends on c, we omit that dependency in the notations.

Turning to metric matching, the following theorem gives the asymptotic cost of algorithm CLOSEST
in the ϵ-excess regime.

Theorem 3 Let ρ[N ](t) be the length of the matching obtained by CLOSEST on an instance of
Geom(N) when tN ≤ N(1− ϵ) vertices have arrived, then

ρ[N ](t)

N

P−−−−−→
N→+∞

1

2

[
1

1− t
− 1

]
.

Proof structure: The proof of the two theorems is very similar and we prove them together, providing
additional details for each subcase where it is needed. We first show that the score of CLOSEST in
Geom(X ,Y, c,N) is closely related to its score in Gglued(Ũ [k],Y, c,N), where the vertices of the
offline side are generated through a Poisson point process and have their coordinates rounded to
a discrete grid (Section 3.1), with k the discretization parameter. We then show that the score of
CLOSEST on the modified graph is closely related to the solution of a PDE through the differential
equation method [Enriquez et al., 2019](Section 3.2). □

3.1 Graph rounding

Let X be an ensemble of N points drawn i.i.d. uniformly in [0, 1], and Y (Y1−ϵ) be an independent
ensemble of N (N(1 − ϵ)) points also drawn i.i.d. uniformly in [0, 1], with the vertices in the en-
semble indexed according to the order in which they are drawn. We define κ(Geom (X ,Y, c,N))
as the number of matched vertices by CLOSEST in the graph Geom (X ,Y, c,N) when the vertices
in Y arrived in the order prescribed by their indexes. Similarly, define ρ(Geom (X ,Y1−ϵ)) as the
length of the matching produced by CLOSEST in graph Geom (X ,Y1−ϵ) when the vertices in Y1−ϵ
arrived in the order prescribed by their indexes.

The GRAPH-ROUNDING procedure, illustrated in Figure 4, associates to an ensemble X the rounded
ensemble Ũ [k] through the following steps:

• Poissonization step: Let N0 ∼ Poi(N). If N0 > N , then let (ui)N0−N
i=1 be N0 −N points

drawn uniformly and independently in [0, 1] and define U = X ∪ {ui | i ∈ [N0 −N ]}. If
N0 < N , U is obtained be removing N −N0 points selected uniformly at random from X .
This is the same procedure as the one used in Section 2.
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Poissonization

N0 ∼Poi(N)

N0 = N + 1

0
1
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⌊U⌋ :={
⌊uN3/2⌋

N3/2

}

0
1

⌊U⌋ Y

Discard

0
1

Ũ Y

Gluing

0

Figure 4: Graph Rounding

• Rounding step: Transform U in a new ensemble U [k] by rounding the coordinate of each
point u ∈ U to ⌊uNk⌋

Nk ,
U [k] :=

{
⌊uNk⌋
Nk

∣∣∣∣ u ∈ U} .
• Discarding step: For any ℓ ∈ [Nk], if multiple vertices have their coordinates rounded to

ℓ
Nk , a random vertex among those is selected, and all others are removed from the graph.
This gives the final ensemble Ũ [k].

• Gluing step: The interval [0, 1] is mapped to the unit circle of circumference one. Formally,
the distance is replaced with the following one: d(x, y) = min(|x − y|, |x + 1 − y|). We
also add a vertex at coordinate 0 to Ũ [k] if it is not already in it.

In the case of maximum cardinality matching, we denote the obtained graphGglued
(
Ũ [k],Y, c,N

)
,

illustrated in Figure 4. In the case of metric matching we denote it Gglued
(
Ũ [k],Y1−ϵ

)
.

Note that after the poissonization step, the law of U is that of an ensemble of points drawn from a
Poisson point process of intensity N in [0, 1]. Let uℓ = ℓ/(Nk). For each ℓ ∈ [Nk],

P(uℓ ∈ Ũ [k]) = 1− e−1/k := pk,

and the events
(
{uℓ ∈ Ũ [k]}

)
ℓ∈[Nk]

are independent of each other.

The following proposition states that this construction does not impact too much the size of the
matchings.

Proposition 2 With probability at least 1− 4
N − exp

(
−
√
N
)
− exp

(
− 2N
k2

)
, we have:∣∣∣κ (Geom (X ,Y, c,N))− κ

(
Gglued

(
Ũ [k],Y, c,N

))∣∣∣ ≤ 21
N

k
+ 8
√
N ln(N).

Let α = 3max( 12
ϵ2(1−ϵ) ;

32
(ϵ−ϵ2)2 ). For any N ≥ 4, k ≥ 4

ϵ−ϵ2 it holds that:

∣∣∣ρ (Geom (X ,Y1−ϵ))− ρ
(
Gglued

(
Ũ [k],Y1−ϵ

))∣∣∣ ≤ 84
(α ln(N))

2

k
+ 24

√
ln(N)

N
+
α5 ln(N)

3

18N
.

with probability at least 1− 8α+2
N2 − 4

N − exp
(
− 2N
k2

)
.
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The proof of this technical proposition is postponed to Section 4.1.

3.2 Analysis of CLOSEST on the modified graph

This section is dedicated to the analysis of the score of CLOSEST on the rounded graphs,
Gglued(Ũ [k],Y, c,N) in the case of maximum cardinality matching, and Gglued(Ũ [k],Y) in the case
of metric matching. This is done by tracking the number of gaps of a certain length between succes-
sive free vertices at every iteration.

LetNt be the number of free vertices at iteration t. At time t, let ut(i) be the coordinate of the ith free
vertex, with the vertices enumerated according to their coordinates, and the convention ut(Nt+1) =
ut(1). For ℓ ∈ [kN ], define

Fk,N (ℓ, t) :=

∣∣∣∣{i ∈ [Nt] s.t. N (ut(i+ 1)− ut(i)) =
ℓ

k

}∣∣∣∣ ,
which is the number of gaps of size ℓ

Nk between two successive free vertices. Note that at iteration
t, the number of free vertices is equal to

∑
ℓ∈[kN ] FN (ℓ, t). Also define

Mk,N (ℓ−, ℓ+, t) :=

∣∣∣∣{i ∈ [Nt] s.t. (ut(i)− ut(i− 1)) =
ℓ−
Nk

and (ut(i+ 1)− ut(i)) =
ℓ+
Nk

}∣∣∣∣ ,
which is the number of times a gap of size ℓ−

kN is followed by a gap of size ℓ+
kN when enumerating

the free vertices according to their coordinates.

Let Ft be the filtration associated with the values of the sizes of the gaps up to time t,
(Fk,N (ℓ, t′))ℓ,t′≤t. The following lemma describes how many times two gaps of a certain size
follow each other at iteration t, in expectation conditionally on Ft.

Lemma 3 (Gaps repartition) For all t ∈ [N ], for all ℓ−, ℓ+ ∈ [kN ]2,

E

[
Mk,N (ℓ−, ℓ+, t)

∣∣∣∣Ft] = Fk,N (ℓ−, t)

(
1{l− ̸=ℓ+}

Fk,N (ℓ+, t)

Nt − 1
+ 1{ℓ−=ℓ+}

Fk,N (ℓ+, t)− 1

Nt − 1

)
.

Sketch of Proof : This lemma is implied by a stronger result: conditionally on Ft, the gaps are or-
dered uniformly random. This is proved by induction in Section 4.2. In the case of metric matching,
this result can be found in Frieze et al. [1990], the proof here focuses on the case of maximum
cardinality matching. □

Note that the expression on the right-hand side is exactly the expectation obtained by drawing uni-
formly without replacements two successive gaps among all gaps at time t.

This lemma entails explicit computation of the expected evolution of the gaps, still conditionally on
Ft.

Lemma 4 (Evolution law) For all t ∈ [N ], for all ℓ ∈ [kN ],∣∣∣∣ ℓ∑
ℓ′=0

min(2c, ℓ
′

k )

N

Fk,N (ℓ′, t)Fk,N (ℓ− ℓ′, t)
Nt

−

(
min(2c, ℓk )

N
+
∑
ℓ′

min(2c, ℓ
′

k )

N

Fk,N (ℓ′, t)

Nt

)
Fk,N (ℓ, t)︸ ︷︷ ︸

Aℓ,t

− E

[
Fk,N (ℓ, t+ 1)− Fk,N (ℓ, t)

∣∣∣∣Ft, Nt ≥ w1N

] ∣∣∣∣ ≤ 6

w1N
.

In the case of metric matching, the expression simplifies to:∣∣∣∣ ℓ∑
ℓ′=0

ℓ′

Nk

Fk,N (ℓ′, t)Fk,N (ℓ− ℓ′, t)
(1− t)N

−
(

ℓ

kN
+

1

(1− t)N

)
Fk,N (ℓ, t)

− E

[
Fk,N (ℓ, t+ 1)− Fk,N (ℓ, t)

∣∣∣∣Ft] ∣∣∣∣ ≤ 6

Nϵ
.
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Remark: The following proof holds with c = +∞ in the case of metric matching.

Proof : If the ith free vertex at iteration t is s.t. ut(i)− ut(i− 1) = ℓ−
k and ut(i+1)− ut(i) = ℓ+

k ,
we use the shorthand

ut(i) ∈Mk,N (ℓ−, ℓ+, t).

At iteration t, if no vertex is matched, Fk,N (ℓ, t + 1) = Fk,N (ℓ, t), for all ℓ ∈ [Nk]. Note it the
index of the matched vertex if there is one. If ut(it) ∈Mk,N (ℓ−, ℓ+, t), then

• Fk,N (ℓ−, t+ 1) = Fk,N (ℓ−, t)− 1 and Fk,N (ℓ+, t+ 1) = Fk,N (ℓ+, t)− 1,

• Fk,N (ℓ+ + ℓ−, t+ 1) = Fk,N (ℓ+ + ℓ−, t) + 1.

Moreover,

P (vt matched to ut(i)|ut(i) ∈Mk,N (ℓ−, ℓ+, t) ,Ft) =
min

(
c, ℓ−2k

)
+min

(
c, ℓ+2k

)
N︸ ︷︷ ︸

m(ℓ−,ℓ+)

.

Then,

P (vt matched in Mk,N (ℓ−, ℓ+, t) |Ft) =
∑
i∈[Nt]

E [1 {vt matched to ut(i), ut(i) ∈Mk,N (ℓ−, ℓ+, t)} |Ft]

=m(ℓ−, ℓ+)E [1 {ut(i) ∈Mk,N (ℓ−, ℓ+, t)} |Ft]
=m(ℓ−, ℓ+)E [Mk,N (ℓ−, ℓ+, t) |Ft] .

This implies the following chain of equality:

E

[
Fk,N (ℓ, t+ 1)− Fk,N (ℓ, t)

∣∣∣∣Ft] = −
(∑

ℓ′

m(ℓ, ℓ′)E [Mk,N (ℓ, ℓ′, t)|Ft] +m(ℓ′, ℓ)E [Mk,N (ℓ′, ℓ, t)|Ft]

)
+
∑
ℓ′≤ℓ

m(ℓ′, ℓ− ℓ′)E [Mk,N (ℓ′, ℓ− ℓ′, t)|Ft]

= −2
∑
ℓ′

m(ℓ, ℓ′)E [Mk,N (ℓ, ℓ′, t)|Ft] + 2
∑
ℓ′≤ℓ

min(c, ℓ
′

2k )

N
E [Mk,N (ℓ′, ℓ− ℓ′, t)|Ft] ,

where the second line holds since by Lemma 3 E [Mk,N (ℓ, ℓ′, t)|Ft] = E [Mk,N (ℓ′, ℓ, t)|Ft]. We
also have

∑
ℓ′ Mk,N (ℓ, ℓ′, t) = Fk,N (ℓ, t), so the previous equation simplifies to:

E

[
Fk,N (ℓ, t+ 1)− Fk,N (ℓ, t)

∣∣∣∣Ft] = ℓ∑
ℓ′=0

min(2c, ℓ′/k)

N

Fk,N (ℓ′, t)(Fk,N (ℓ− ℓ′, t)− 1{ℓ−ℓ′=ℓ′})

Nt − 1

− min(2c, ℓ/k)

N
Fk,N (ℓ, t)− Fk,N (ℓ, t)

∑
ℓ′

min(2c, ℓ′/k)

N

Fk,N (ℓ′, t)− 1ℓ=ℓ′
Nt − 1

.

We thus have:∣∣∣∣ ℓ∑
ℓ′=0

min(2c, ℓ
′

k )

N

Fk,N (ℓ′, t)Fk,N (ℓ− ℓ′, t)
Nt

−

(
min(2c, ℓk )

N
+
∑
ℓ′

min(2c, ℓ
′

k )

N

Fk,N (ℓ′, t)

Nt

)
Fk,N (ℓ, t)

− E

[
Fk,N (ℓ, t+ 1)− Fk,N (ℓ, t)

∣∣∣∣Ft] ∣∣∣∣ ≤ min(2c, ℓ/2k)Fk,N (ℓ/2, t)

NNt
+

min(2c, ℓ/k)Fk,N (ℓ, t)

NNt︸ ︷︷ ︸
≤ 2

Nt

+

ℓ∑
ℓ′=0

min(2c, ℓ′/k)

N

Fk,N (ℓ′, t)

Nt

Fk,N (ℓ− ℓ′, t)
Nt − 1︸ ︷︷ ︸

≤2
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+
Fk,N (ℓ, t)

Nt − 1︸ ︷︷ ︸
≤2

∑
ℓ′

min(2c, ℓ′/k)

N

Fk,N (ℓ′, t)

Nt
,

≤ 6

Nt
.

To obtain the previous inequalities, we use that by construction,
∑
ℓ

ℓ
kN Fk,N (ℓ, t) = 1 always holds,

which also implies ℓ
kN Fk,N (ℓ, t) ≤ 1 for any ℓ. To simplify for the metric matching case, we use

again that equality along with the identity Nt = (1− t)N . □

The following lemma gives a concentration bound on the initial values of the gaps.

Lemma 5 (Initial Conditions) For any ℓ < kN , with probability at least 1− 4
N4 ,∣∣∣FN,k(ℓ, 0)−Nkp2ke− ℓ

k

∣∣∣ ≤ 3
√

12N ln(N).

Proof : Let G(pk) be the geometric distribution with parameter pk. Consider the process of placing
a sequence of vertices (vi)+∞

i=1 in R, placing v0 at zero, and having

Nk(vi+1 − vi)
i.i.d.∼ G(pk).

With that procedure, the law of the vertices placed before 1 is exactly the law of the vertices in Ũ [k].
We have

E
[
1{vi+1−vi= ℓ

Nk }

]
= pke

− ℓ−1
k .

Thus, by concentration of sums of Bernoulli random variable and since kpk ≤ 1:

P

(∣∣∣∣∣
Nkpk∑
i=1

1{vi+1−vi= ℓ
Nk } −Nke

− ℓ−1
k p2k

∣∣∣∣∣ >√12N ln(N)

)

≤ P

(∣∣∣∣∣
Nkpk∑
i=1

1{vi+1−vi= ℓ
Nk } −Nke

− ℓ−1
k p2k

∣∣∣∣∣ >
√

12ke−
ℓ−1
k p2kN ln(N)

)
,

≤ 2

N4
. (3)

We have:

P
(
v
Nkpk+

√
12N ln(N)

< 1
)
=P
(∣∣Ũ [k]

∣∣ ≥ Nkpk +√12N ln(N)
)

≤P

(∣∣Ũ [k]
∣∣ ≥ Nkpk(1 +

√
12N ln(N)

Nkpk

))

≤ 1

N4
.

Where the last inequality holds by Chernoff bound for sums of Bernoulli random variables. Simi-
larly, P(v

Nkpk−
√

12N ln(N)
> 1) ≤ 1

N4 .

Thus, with probability at least 1 − 2
N4 , there are between Nkpk −

√
12N ln(N) and Nkpk +√

12N ln(N) vertices placed before 1. The count of the gaps for Ũ [k] is thus within
2
√

12N ln(N) + 1 of the counts of the gaps up to vNkpk . Combining with Equation 3 gives the
Lemma. □
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3.3 Application of the differential equation method

The methods employed to relate the discrete process to the differential equation, albeit similar in
spirit, now differ for maximal cardinality matching and metric matching. The proofs are separated
into two different subsections.

3.3.1 Maximum cardinality matching

The following proposition is obtained by applying the differential equation method (DEM, see Ap-
pendix B) on the discretized graphs.

Proposition 3 (DEM, maximum cardinality matching) For any t ∈ [0, 1],

1

N

kN∑
ℓ=0

Fk,N

(
ℓ,
⌊tN⌋
N

)
P−−−−−→

N→+∞

+∞∑
ℓ=0

fk(ℓ, t).

where the functions (fk(ℓ, t))ℓ are the solutions of the following system of differential equations:

∂fk(ℓ, t)

∂t
=−min

(
ℓ

k
, 2c

)
fk(ℓ, t)−

1∑+∞
ℓ′=0 fk(ℓ

′, t)

[
+∞∑
ℓ′=0

min

(
ℓ

k
, 2c

)
fk(ℓ

′, t)

]
fk(ℓ, t)

+
1∑+∞

ℓ′=0 fk(ℓ
′, t)

+∞∑
ℓ′=0

min

(
ℓ′

k
, 2c

)
fk(ℓ

′, t)fk(ℓ− ℓ′, t),

with the initial conditions:
fk(ℓ, 0) = kp2ke

− ℓ
k .

Remark: The functions fk depends on c, we omit that dependency in the notations.

Proof : We first look at the initial condition. Define the event

A1 :=

 ∑
ℓ<kN1/8

∣∣∣∣FN,k(ℓ, 0)−Nke− ℓ
k

(
1− e− 1

k

)2∣∣∣∣ ≤ 3kN−3/8
√
12 ln(N)×N

 .

By union bound on the result of Lemma 5, it holds with probability at least 1− 4kN1/8

N4 .

We now work on the trend condition. Denote

rN,k(t) =

+∞∑
ℓ=kN1/8

fk(ℓ, t) and r̃N,k(t) =
+∞∑

ℓ=kN1/8

min

(
ℓ

k
, 2c

)
fk(ℓ, t).

Define the function Φk,N : RkN1/8+1 → RkN1/8

as:

Φℓk,N

(
t, (yℓ)

kN1/8

ℓ=1

)
=−

∑kN1/8

ℓ′=1 min( ℓ
′

k , 2c)yℓ′ + r̃N,k(t)∑kN1/8

ℓ′=1 yℓ′ + rN,k(t)
yℓ −min

(
ℓ

k
, 2c

)
yℓ

+

∑ℓ
ℓ′=0 min( ℓ

′

k , 2c)yℓ′yℓ−ℓ′∑kN1/8

ℓ′=1 yℓ′ + rN,k(t)
,

and consider the domain:

D :=

{
(aℓ)

kN1/8

ℓ=1 s.t.
1

2
e−4c ≤

∑
ℓ

aℓ ≤ 2

}
.

14



Lemma 6 (Trend, maximum cardinality matching) It holds that for any t ≤ N :

kN1/8∑
ℓ=1

∣∣∣∣∣E
[
Fk,N (ℓ, t+ 1)− Fk,N (ℓ, t)

∣∣∣∣Ft,(Fk,N (ℓ, t)

N

)kN1/8

ℓ=1

∈ D

]
− Φℓk,N

(
t,

(
Fk,N (1, t)

N

)kN1/8

ℓ=1

)∣∣∣∣∣
≤ w5N

−1/8,

with w5 a constant independent of N . Moreover, for any sequence (aℓ)
kN1/8

ℓ=1 ∈ D, ∀ℓ′ ≤ kN−1/8,
∀t ∈ [0, 1],

Φℓ
′

k,N

(
t, (aℓ)

kN1/8

ℓ=1

)
≤ 16c.

This proof is purely computational and delayed to section 4.4.

We now prove Φk,N is Lipschitz on D.

Lemma 7 (Lipschitz, maximum cardinality matching) On domain D, the Φk,N is Lc-lipshcitz
with respect to the L1 norm, with Lc a constant independent of N .

This proof is computational and delayed to section 4.4.

The last step missing is to prove that (fk(ℓ, t))kN
1/8

ℓ=1 remains far enough from the boundaries of D
for t ∈ [0, 1].

Note that we have:

0 ≥
∂
∑
ℓ fk(ℓ, t)

∂t
≥ −4c

∑
ℓ

fk(ℓ, t).

As
∑
ℓ fk(0, t) = 1, this implies that for any t ≤ 1, we have e−4c ≤

∑
ℓ fk(ℓ, t) ≤ 1. We prove in

4.4 (Equation 14) that rN,k(t) ≤ N−1/8 for any t ∈ [0, 1]. Thus, for any N s.t. N−1/8 ≤ 1
4e

−4c,
for any t ∈ [0, 1], (fk(ℓ, t))kN

1/8

ℓ=1 remains within 1
4e

−4c of the boundaries of D.

We are now ready to apply, the Differential Equation Method, Theorem 4.

Fix a(N) = kN1/8. The trend hypothesis holds by Lemma 6 with δ(N) = w5N
−1/8. The

boundedness hypothesis holds with β = 3 as at most a vertex is matched by iteration. Event A1

holds with probability at least 1 − 4kN1/8

N4 , under event A1, the initial condition hypothesis holds

with λ(N) = max
(
3kN−1/4

√
12 ln(N),

(
w5 + 16cLckN

−3/4
)
min(16c, L−1

c )
)
N−1/8, and by

Lemma 7, Φk,N is Lc-Lipschitz with respect to the L1 norm on D. For any N large enough s.t.

N−1/8 ≤ 1
4e

−4c and 3eLλ(N) ≤ 1
4e

−4c, (fk,N (1, ℓ), )
kN1/8

ℓ=1 has L1-distance at least 3eLλ(N)
from the boundary of D for any t ∈ [0, 1].

Theorem 4 implies that, for any large enough N s.t. N−1/8 ≤ 1
4e

−4c and 3eLλ(N) ≤ 1
4e

−4c, with

probability at least 1− 2Ne2e−Nλ(N)2/81 − 3kN1/8

N4︸ ︷︷ ︸
−−−−−→
N→+∞

1

we have

max
0⩽t⩽1

∑
1⩽ℓ⩽kN1/8

∣∣∣∣ 1N Fk,N (ℓ, tN)− fk(ℓ, t)
∣∣∣∣ < 3eLcλ(N)︸ ︷︷ ︸
−−−−−→
N→+∞

0

.

The proposition follows. □

The last step of the proof is to link the functions fk(ℓ, t) to a single function f , that does not depend
on k.

Lemma 8 For any t ∈ [0, 1], it holds:

|| f(x, t)− kfk(⌊kx⌋, t) ||1≤
ω

k
.
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with ω a constant depending only on c and f(x, t) the solution of the following PDE

∂f(x, t)

∂t
=−min(x, 2c)f(x, t)− 1∫ +∞

0
f(x′, t)dx′

∫ +∞

0

min(x′, 2c)f(x′, t)dx′f(x, t) (4)

+
1∫ +∞

0
f(x′, t)dx′

∫ x

0

min(x′, 2c)f(x′, t)f(x− x′, t)dx′.

with initial conditions f(x, 0) = e−x.

The proof of this lemma is postponed to Section 4.4. Combining it with Propositions 3 and 2 gives
the theorem.

3.3.2 Metric matching

In the case of metric matching, more work is still required before the application of the Differential
Equation Method. We start by showing that the length concentrates around its expectation. We then
show that the contribution of long edges is small, and finally control the contribution of short edges
via the Differential Equation Method.

Define ct[k] as the length of the added edge at time t in Gglued
(
Ũ [k],Y1−ϵ

)
.

Lemma 9 The total length concentrates around its expectation.

P

∣∣∣∣∣∣
N(1−ϵ)∑
t=1

ct[k]− E

N(1−ϵ)∑
t=1

ct[k]

∣∣∣∣∣∣ ≥ δ + 4α+ 1

N

 ≤ 4α+ 3

N2
,

with δ =
[√

2 ln(N)(k+4)
N + (4α+1)(k+4)

N2

]
α2 ln(N)

2.

Proof : Define ai = 1{ i
Nk ∈ Ũ}. The total length of the matching obtained by CLOSEST is a

function of (ai)
Nk
ℓ=1 and (yi)

N(1−ϵ)
i=1 , which we denote h

(
(ai)

Nk
ℓ=1 , (yi)

N(1−ϵ)
i=1

)
.

Consider a sequences (yi)
N(1−ϵ)
i=1 and two sequences (ai)

Nk
ℓ=1 and (a′i)

Nk
ℓ=1 s.t. they differ by at most

one element and EI holds wih both sequences. Then, by the same reasoning as in the proof of
Lemma 16,

|h ((ai)ℓ , (yi)i)− h ((a
′
i)ℓ , (yi)i) | ≤

4α2 ln(N)
2

N
.

The same result holds with the roles of y and a reversed. Thus, by McDiarmid’s inequality:

P

(∣∣∣∣∣h ((ai)ℓ , (yi)i)− E

[∑
t

ct[k]

∣∣∣∣EI
]∣∣∣∣∣ ≥ δ

)
≤P(EI) + 2 exp

−
N
(
δ − P(EI)(k + 4)α2 ln(N)

2
)2

(k + 4)α4 ln(N)
4


≤4α+ 3

N2
.

On the other hand: ∣∣∣∣∣E
[∑

t

ct[k]

∣∣∣∣EI
]
− E

[∑
t

ct[k]

]∣∣∣∣∣ ≤ NP(EI) ≤
4α+ 1

N
.

□

The following lemma bounds the total expected contribution of long edges to the final length.
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Lemma 10 [Adaptation of Lemma 12-13 from Balkanski et al. [2022]] For any η ∈ [ 4ϵ−ϵ
2

16N , 1],
k ≥ 1

ϵ and N ≥ 25
1−ϵ , we have:

E

 ∑
t≤N(1−ϵ)

ct[k]1{ct[k] ≥
η

N
}

 ≤Cϵe−ηC′
ϵ .

with Cϵ and Cϵ two constants depending only on ϵ.

The point generation process on this offline side in article [3] is that ofN points drawn i.i.d. in [0, 1],
whereas we focus on points generated on a discrete grid, and the statement we aim for differs slightly.
For those reasons and for completeness, we provide a brief proof of the statement in Appendix C,
which essentially follows the steps of [3].

We now apply the differential equation method to control the contribution of the short edges.

Lemma 11 For any N ≥ 1
ϵ2 have:∣∣∣∣∣∣E

N(1−ϵ)∑
t=1

ct[k]1{ct[k] ≤
η

N
}

− 1

4N

N(1−ϵ)−1∑
t=0

kη∑
ℓ=1

(
ℓ

k

)2

gk(ℓ,
t

N
)

∣∣∣∣∣∣ ≤9kη3e(4η+
1
ϵ )

4

√
12 ln(N)

N

+ 2η

(
2Ne2e− ln(N)k2η2 +

4kη

N4

)
with gk(ℓ, t) the solution of the following system of differential equations.

∂gk(ℓ, t)

∂t
=−

(
ℓ

k
+

1

1− t

)
gk(ℓ, t) +

1

1− t

+∞∑
ℓ′=0

ℓ′

k
gk(ℓ

′, t)gk(ℓ− ℓ′, t),

with the initial conditions:
gk(ℓ, 0) = kp2ke

− ℓ
k .

Remark: gk is the function fk obtained by setting c = +∞ (the dependency of fk on c was omitted
in the notations).

Proof : At a given iteration, we have:

E
[
ct1{ct ≤

η

N
}
∣∣Ft] = 1

4

kη∑
ℓ=1

(
ℓ

kN

)2

Fk,N (ℓ, t) .

Define the function Γk,N : Rkη → Rkη as:

Γℓk,N

(
t, (yℓ)

kη
ℓ=1

)
=−

(
ℓ

k
+

1

1− t

)
yℓ +

∑ℓ
ℓ′=0

ℓ′

k yℓ′yℓ−ℓ′

1− t
.

By Lemma 4, we have:∣∣∣∣Γℓk,N
(
t,

(
Fk,N (1, t)

N

)kη
ℓ=1

)
− E

[
Fk,N (ℓ, t+ 1)− Fk,N (ℓ, t)

∣∣∣∣Ft] ∣∣∣∣ ≤ 6

Nϵ
. (5)

By Lemma 5, it holds that with probability at least 1− 4kη/N4,

kη∑
ℓ=1

∣∣∣FN,k(ℓ, 0)−Nke− ℓ
k p2k

∣∣∣ ≤ 3kη
√
12N ln(N) ≤ 12kη

N1/4
N. (6)
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Note A2 that event. Define domain D2 as:

D2 =

{
(yℓ)

kη
ℓ=1 ,

∑
ℓ

yℓ ≤ 2,
∑
ℓ

ℓ

k
yℓ ≤ 2

}
By Lemmas 22 and 21, (gk(ℓ, t))ℓ ∈ D2,∀t ∈ [0, 1]. Let us study the regularity of the function
Γk,N on D2. For any two sequences (y′1, . . . , y

′
kη) and (y1, . . . , ykη)in D2, we have:

∑
ℓ

∣∣Γℓk,N (t, y1, . . . , ykη)− Γℓk,N
(
t, y′1, . . . , y

′
kη

)∣∣ ≤(η + 1

1− t

)∑
ℓ

|yℓ − y′ℓ|

+
1

1− t
∑
ℓ

∣∣∣∣∣
ℓ∑

ℓ′=1

ℓ′

k
(yℓ′yℓ−ℓ′ − y′ℓ′y′ℓ−ℓ′)

∣∣∣∣∣︸ ︷︷ ︸
(iv)

We work on bounding (iv).

(iv) ≤
∑
ℓ

∣∣∣∣∣
ℓ∑

ℓ′=1

ℓ′

k
yℓ′(yℓ−ℓ′ − y′ℓ−ℓ′)

∣∣∣∣∣+
∣∣∣∣∣
ℓ∑

ℓ′=1

ℓ′

k
y′ℓ−ℓ′(yℓ′ − y′ℓ)

∣∣∣∣∣ ,
≤η (||y||1 + ||y′||1) ||y − y′||1 ≤ 4η||y − y′||1.

Γk,N is thus (η +
4η + 1

ϵ
)︸ ︷︷ ︸

Lη

-lipschitz with respect to the L1 norm on D2. We also have:

kη∑
ℓ=1

∣∣Γℓk,N (t, y1, . . . , ykη)
∣∣ ≤ ∣∣∣∣∣

kη∑
ℓ=1

(
ℓ

k
+

1

1− t

)
yℓ

∣∣∣∣∣+
∣∣∣∣∣
kη∑
ℓ=1

∑ℓ
ℓ′=0

ℓ′

k yℓ′yℓ−ℓ′

1− t

∣∣∣∣∣
≤2
(
1 +

1

1− t

)
+

4

1− t
≤ 2 +

6

ϵ︸ ︷︷ ︸
Rϵ

. (7)

Fix a(N) = kη. The trend hypothesis holds by Equation 5 with δ2(N) = 6
ϵN . The boundedness

hypothesis holds with β = 3. By Equation 6, event A2 holds with probability at least 1 − 4kη
N4 ,

and under event A2, the initial condition hypothesis holds with λ2(N) = 3kη
√

12 ln(N)
N . For any

N ≥ 1
ϵ2 , δ2(N)/Lη + Rϵkη/N ≤ λ2(N). Γk,N is Lη-Lipschitz with respect to the L1 norm

and bounded by Rϵ on D2. By Theorem 4, w.p. at least 1 − 2Ne2e− ln(N)k2η2 − 4kη/N4, for all
t ≤ N(1− ϵ):

kη∑
ℓ=1

∣∣∣∣Fk,N (ℓ, t)−Ngk(ℓ,
t

N
)

∣∣∣∣ ≤ 3λ2(N)e(η+
4η+1

ϵ )N.

We denote that event C. Under event C,

N(1−ϵ)∑
t=1

∣∣∣∣∣14
kη∑
ℓ=1

(
ℓ

kN

)2

Ngk

(
ℓ,
t

N

)
− 1

4

kη∑
ℓ=1

(
ℓ

kN

)2

Fk,N (ℓ, t)

∣∣∣∣∣
≤
N(1−ϵ)∑
t=1

1

4

( η
N

)2 kη∑
ℓ=1

∣∣∣∣∣Ngk
(
ℓ,
t

N

)
−

kη∑
ℓ=1

Fk,N (ℓ, t)

∣∣∣∣∣
≤ 9kη3e(η+

4η+1
ϵ )

4

√
12 ln(N)

N
.
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Thus:∣∣∣∣∣∣E
N(1−ϵ)∑

t=1

ct1{ct ≤
η

N
}

− 1

4N

N(1−ϵ)−1∑
t=0

kη∑
ℓ=1

(
ℓ

k

)2

gk(ℓ,
t

N
)

∣∣∣∣∣∣ ≤ 9kη3e(η+
4η+1

ϵ )

4

√
12 ln(N)

N
+ 2ηP(C).

□

Lemma 12 (Link with the continuous equation, metric matching version)∣∣∣∣∣∣
∫ 1−ϵ

t=0

∫ η

x=1

x2g(x, t)dxdt− 1

N

N(1−ϵ)−1∑
t=0

kη∑
ℓ=1

(
ℓ

k

)2

gk(ℓ,
t

N
)

∣∣∣∣∣∣ ≤ η2
[
1

N

(
2 +

6

ϵ

)
+

2e3η+
1
ϵ + 3 + η

k

]

with g(x, t) the solution of the following PDE:

∂g(x, t)

∂t
=−

(
x+

1

1− t

)
g(x, t) +

1

1− t

∫ x

x′=0

x′g(x′, t)g(x− x′, t)dx′,

with the initial conditions:
g(x, 0) = e−x.

The proof of that lemma is a computation deferred to section 4.5.

Lemma 13 We have: ∫ 1−t

0

∫ +∞

0

x2

4
g(x, t)dx =

1

2

[
1

1− t
− 1

]
.

The proof of that lemma is a computation deferred to section 4.5.

Now take any ε ≥ 0. By lemma 2, for any N large enough so that 84 (α ln(N))2

N1/8 + 24
√

ln(N)
N +

α5 ln(N)3

18N ≤ ε
2 , we have:

P

(∣∣∣∣∑
t

ct − 0.5

[
1

1− t
− 1

] ∣∣∣∣ ≥ ε
)
≤P

(∣∣∣∣∑
t

ct[N
1/8]− 0.5

[
1

1− t
− 1

] ∣∣∣∣ ≥ ε

2

)
︸ ︷︷ ︸

(i)

+
8α+ 2

N2
+

4

N
+ e−2N−3/4︸ ︷︷ ︸

−−−−−→
N→+∞

0

.

If N is also large enough so that δ + 4α+1
N ≤ ε

4 , we have:

(i) ≤ 1

{∣∣∣∣∣E
[∑

t

ct[N
1/8]

]
− 0.5

[
1

1− t
− 1

]∣∣∣∣∣ ≥ ε

8

}
︸ ︷︷ ︸

(ii)

+
4α+ 3

N2︸ ︷︷ ︸
−−−−−→
N→+∞

0

.

Take η large enough so that, Cϵ

C′
ϵ
e−ηC

′
ϵ +

∫ 1−ϵ
t=0

∫ +∞
x=η

x2f(x, t)dxdt ≤ ε
16 . Then by Lemma 10:

(ii) = 1

{∣∣∣∣∣E
[∑

t

ct[N
1/8]1

{
ct[N

1/8] ≤ η

N

}]
−
∫ 1−ϵ

t=0

∫ η

x=0

x2

4
f(x, t)dxdt

∣∣∣∣∣ ≥ ε

16

}
︸ ︷︷ ︸

(iii)

.
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Take N large enough so that: 9η3e(η+
4η+1

ϵ
)

4

√
12 ln(N)
N3/4 +2η

(
2Ne2e− ln(N)N1/4η2 + 4N1/8η

N4

)
≤ ε

32 .

Then by Lemma 11:

(iii) = 1


∣∣∣∣∣∣14
∫ 1−ϵ

t=0

ηN1/8∑
ℓ=1

(
ℓ

N1/8

)2

fk(ℓ, t)dt−
∫ 1−ϵ

t=0

∫ +∞

x=η

x2f(x, t)dxdt

∣∣∣∣∣∣ ≥ ε

32

︸ ︷︷ ︸
(iv)

.

However, by Lemma 12 if N is large enough so that η
2

4

[
1
N

(
2 + 6

ϵ

)
+ 2

N1/8 e
3η+ 1

ϵ + 4
N1/8

]
≤ ε

32 ,
(iv) = 0, and the theorem follows.

4 Technical Steps for the proofs of section 3

4.1 Proof of Proposition 2

The proposition is a consequence of four lemmas that bound the impact in matching sizes incurred
in each step. We start with two technical lemmas that are used in the proofs of the four following
ones.

Lemma 14 Adding or removing a vertex to the offline side of the graph modifies the score of CLOS-
EST by at most one. Modifying the match of a vertex modifies the score of CLOSEST by at most
two.

Proof : Let us compare the runs of the CLOSEST algorithm in

Geom(X ,Y, c,N) and Geom(X ∪ x+0 ,Y, c,N)

when the vertices in Y arrive in the same order. Letmt andm+
t be the number of matched vertices at

iteration t, andXt andX+
t the sets of free vertices at iteration t, in Geom(X ,Y, c,N) and Geom(X∪

x+0 ,Y, c,N) respectively. We will show by induction that at every iteration, one of the following
properties holds:

(P1): {mt = m+
t and ∃ x+t ∈ X ∪ x+0 s.t. X+

t = Xt ∪ x+t }, (P2): {mt + 1 = m+
t and X+

t = Xt}.

If (P2) is true at some iteration t, it remains true until the end of the run and the proof is over. If (P1)
is true at iteration t, the following cases are possible:

1. if yt has no neighbor in X+
t , it is unmatched in both graphs,

2. if yt’s closest neighbor in X+
t is not x+t , it is matched to the same vertex in both graphs,

3. if yt’s closest neighbor in X+
t is x+t and x+t+1 in Xt, it is matched to x+t in Geom(X ∪

x+0 ,Y, c,N) and to x+t+1 in Geom(X ,Y, c,N),

4. yt’s only neighbor inX+
t is x+t , in which case it is matched to x+t in Geom(X∪x+0 ,Y, c,N)

and unmatched in Geom(X ,Y, c,N).

Cases 1 to 3 imply that (P1) remains true at iteration t+1, case 4 implies that (P2) is true at iteration
t+ 1. (P1) is true at iteration 0, thus either (P1) or (P2) holds at iteration N .

For the second part of the Lemma, modifying the match of a vertex is equivalent to adding and
removing a vertex. □

Lemma 15 Let α = 3max( 12
ϵ2(1−ϵ) ;

32
(ϵ−ϵ2)2 ). For any N ≥ 4, k ≥ 4

ϵ−ϵ2 probability at least

1− (4α+ 1)/N2, For any interval I =
[
i
N ; i+ℓN

]
s.t. ℓ ≥ α ln(N),

|U∩I| ≥ |Y1−ϵ∩I|+16 ln(N)+6, |Ũ∩I| ≥ |Y1−ϵ∩I|+16 ln(N)+6, |X∩I| ≥ |Y1−ϵ∩I|+16 ln(N)+6

and |Y1−ϵ ∩ I| ≤ (1− ϵ)
(
1 +

ϵ

2

)
ℓ,

∣∣∣∣Vε ∩ [
i

N
;
i+ 1

N
]

∣∣∣∣ ≤ 4 ln(N) + 1.
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We note EI that event.

Proof : We start by proving the two last inequalities. Consider any interval I =
[
i
N ; i+ℓN

]
. By

Chernoff bound for sums of Bernoulli r.v.:

P
(
|Y1−ϵ ∩ I| ≥ (1− ϵ)

(
1 +

ϵ

2

)
ℓ
)
≤ e−

ϵ2(1−ϵ)
12 ℓ.

The following bound holds:

+∞∑
ℓ=α ln(N)

e−
ϵ2(1−ϵ)

12 ℓ =
e−

ϵ2(1−ϵ)
12

e−
ϵ2(1−ϵ)

12 − 1
e−

ϵ2(1−ϵ)
12 α ln(N) ≤ 2

12

ϵ2(1− ϵ)
e−

ϵ2(1−ϵ)
12 α ln(N) ≤ α

N3
.

The first inequality holds since ex

ex−1 ≤
2
x for any x ≤ 1, and the second one by definition of α.

Now, by union bound over all possible values of i, we get that probability at least 1−α/N2, for any
interval I =

[
i
N ; i+ℓN

]
s.t. ℓN ≥ α ln(N),

|Y1−ϵ ∩ I| ≤ (1− ϵ)
(
1 +

ϵ

2

)
ℓ. (8)

For any i ∈ 0, . . . , N − 1,

E

N(1−ϵ)∑
j=1

1

{
vj ∈

[
i

N
;
i+ 1

N

]} = 1− ϵ.

Again by Chernoff bound, we have:

P

N(1−ϵ)∑
j=1

1

{
vj ∈

[
i

N
;
i+ 1

N

]}
≥
(
1 +

4 ln(N)

1− ϵ

)
(1− ϵ)

 ≤ e− 16 ln(N)2

2(1−ϵ)+4 ln(N)

≤ e−3 ln(N),

The second inequality holds for any N ≥ 5. The last inequality of the lemma then follows by union
bound over all possible N intervals.

We now lower bound |X ∩ I|, |U ∩ I| and |Ũ ∩ I| for any interval I =
[
i
N ; i+ℓN

]
s.t. ℓN ≥ α ln(N).

Fist note that:

P
(
|X ∩ I| ≤ (1− ϵ)

(
1 +

ϵ

2

)
ℓ+ 16 ln(N) + 6

)
≤ P

(
|X ∩ I| ≤

(
1− ϵ

2
+
ϵ2

2

)
ℓ

)
, (9)

as, by definition of α, for any N ≥ 5, 16 ln(N) + 6 ≤ 20 ln(N) ≤ ϵ2α ln(N). The same holds for
U and Ũ . By Chernoff bound:

P
(
|X ∩ I| ≤ (1− ϵ)

(
1 +

ϵ

2

)
ℓ+ 16 ln(N) + 6

)
≤ P

(
|X ∩ I| ≤

(
1− ϵ

4
+
ϵ2

4

)
ℓ

)
≤ e−

(ϵ−ϵ2)2

32 ℓ.

By tail bounds for Poisson random variables:

P
(
|U ∩ I| ≤

(
1− ϵ

4
+
ϵ2

4

)
ℓ

)
≤ e−

(ϵ−ϵ2)2

32 ℓ.

As 1 ≥ pkk ≥ 1− 1
2k and k ≥ 4

ϵ−ϵ2 , we also have the bound:(
1− ϵ− ϵ2

4
√
kpk

)
kpkℓ ≥

(
1− 1

2k
−
√
kpk

ϵ− ϵ2

4

)
ℓ ≥

(
1− ϵ− ϵ2

2

)
ℓ.
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Hence, by Chernoff bound:

P
(
|Ũ ∩ I| ≤

(
1− ϵ

2
+
ϵ2

2

)
ℓ

)
≤ e−

(ϵ−ϵ2)2

32 ℓ.

We now compute the union bound over all possible length ℓ:

+∞∑
ℓ=αN

e−
(ϵ−ϵ2)2

32 ℓ =
e−

(ϵ−ϵ2)2

32

e−
(ϵ−ϵ2)2

32 − 1
e−

(ϵ−ϵ2)2

8 α ln(N) ≤ 64

(ϵ− ϵ2)2
e−

(ϵ−ϵ2)2

32 α ln(N) ≤ α

N3
.

A union bound over the N possible values of i terminates the proof.

□

Lemma 16 (Poissonization) With probability at least 1− 2
N , it holds that:∣∣κ (Geom (X ,Y, c,N))− κ (Geom (U ,Y, c,N))

∣∣ ≤ 2
√
N ln(N).

If EI holds and |U − X | ≤ 2
√
N ln(N), then :

|ρ (Geom (X ,Y1−ϵ))− ρ (Geom (U ,Y1−ϵ)) | ≤
8
√
N ln(N)(α ln(N))2

N
.

Moreover, |U − X | ≤ 2
√
N ln(N) holds with probability at least 1− 2

N .

Proof: To obtain the first equation, we combine equation 1, which implies that the poissonisation
step only adds or removes 2

√
N ln(N) vertices with probability at least 1− 2

N , with Lemma 14.

For the second equation, let us first assume that |X | ≤ |U| and that event EI holds. Consider x and
x′, two consecutive free vertices remaining at the end of the run of CLOSEST in Geom (X ,Y). Let
us study the impact of adding an offline vertex between x and x′. This can only modify the match
of vertices lying in the interval [x, x′] to another vertex within that interval. An upper bound on the
modification to the length of the matching is thus |x′ − x| × |Vϵ ∩ [x, x′]|. We have:

|Vϵ ∩ [x, x′]| ≤|Vϵ ∩ [
⌊Nx+ 1⌋

N
,
⌊Nx′⌋
N

]|+ |Vϵ ∩ [
⌊Nx⌋
N

,
⌊Nx+ 1⌋

N
]|+ |Vϵ ∩ [

⌊Nx′⌋
N

,
⌊Nx′ + 1⌋

N
]|

≤|Vϵ ∩ [
⌊Nx+ 1⌋

N
,
⌊Nx′⌋
N

]|+ 6 ln(N) + 2

where the second inequality holds under event EI . On the other hand,

|U ∩ [x, x′]| ≥|U ∩ [
⌊Nx+ 1⌋

N
,
⌊Nx′⌋
N

]|.

All the vertices in U∩[x, x′] have been matched to vertices in Vϵ∩[x, x′], so Vϵ∩[x, x′] ≥ U∩[x, x′].
This implies that x′ − x ≤ α ln(N)+3

N . Thus:

|x′ − x| × |Vϵ ∩ [x, x′]| ≤ (1− ϵ)
(
1 +

ϵ

2

)
(α ln(N) + 5)

α ln(N) + 3

N

≤ (α ln(N) + 5)2

N
.

To modify X into U , we need to add |U −X | vertices, which upon each addition modifies the length
of the matching by at most (α ln(N)+5)2

N , which is smaller than 4(α ln(N))2

N . The same reasoning can
be applied if |X | ≥ |U|. □

Lemma 17 (Rounding) With probability at least 1− exp
(
− 2N
k2

)
− 2

N , it holds that:∣∣κ (Geom (U [k],Y, c,N))− κ (Geom (U ,Y, c,N))
∣∣ ≤ 20N

k
,
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and with probability at least 1− exp
(
− 2N
k2

)
− 2

N −
4α+1
N2 :

∣∣ρ (Geom (U [k],Y1−ϵ))− ρ (Geom (U ,Y1−ϵ))
∣∣ ≤ 80 (α ln(N))

2

k
.

Proof: Consider a i-CLOSEST algorithm, which matches the incoming vertex to the closet rounded
vertex up to iteration i, then to the closest vertex. In the case of ties with the rounded coordi-
nates, they are broken following the unrounded ones’ order. The runs of algorithms i-CLOSEST and
i + 1-CLOSEST only differ if yi’s closest neighbor upon arrival is modified by the rounding of the
coordinates, which we denote event Ei. Note that this can only happen if yi falls within 2/Nk of the
middle of the segment between two consecutive free vertices at iteration i. As yi ∼ U [0, 1],

P
(
Ei|U , y1, . . . , yi−1, |U| ≤ N + 2

√
N ln(N)

)
≤ 4|U|

Nk
≤ 8

k
.

By Azuma-Hoeffding,

P

(
N∑
i=1

1Ei ≥
10N

k

∣∣∣∣|U| ≤ N + 2
√
N ln(N)

)
≤ e−

2N
k2 . (10)

It now remains to combine with Equation 1, Lemma 14 and a union bound to get the first equation
of the Lemma. The proof of the second one continues.

Let us assume Ei holds, and denote u the match of yi by i-CLOSEST and u′ the match by i + 1-
CLOSEST. In the proof of the Lemma, denote Ui \ {u, u′} the set of free vertices obtained when
running i-CLOSEST with u, u′, and yi removed.

Let ua and ub be the two closest vertices in Ui\{u, u′} s.t. u ∈ [ua;ub]. By definition of i-CLOSEST,
all vertices in ]ua;ub[∩Ui \ {u, u′} are matched to vertices in

[
⌊Nua⌋
N ;ub

]
∩ Y1−ϵ, which implies

that ∣∣∣∣ ]ua;ub[ ∩ U∣∣∣∣− 2 ≤
∣∣∣∣ [⌊Nua⌋N

;ub

]
∩ Y1−ϵ

∣∣∣∣,
=⇒

∣∣∣∣ [⌊Nua + 1⌋
N

;
⌊Nub⌋
N

]
∩ U

∣∣∣∣− 2 ≤
∣∣∣∣ [⌊Nua⌋N

;
⌊Nua + 1⌋

N

]
∩ Y1−ϵ

∣∣∣∣+ ∣∣∣∣ [⌊Nua + 1⌋
N

;
⌊Nub⌋
N

]
∩ Y1−ϵ

∣∣∣∣
+

∣∣∣∣ [⌊Nub⌋N
;
⌊Nub + 1⌋

N

]
∩ Y1−ϵ

∣∣∣∣
Since EI holds, this implies that |ua − ub|N ≤ α ln(N) + 2. Still since EI holds,∣∣∣∣ [ua − 1

N
;ub +

1

N

]
∩ Y1−ϵ

∣∣∣∣ ≤ (12 + α) ln(N) + 6.

Now adding back u can only modify the match of the vertices in [ua − 1
N ;ub +

1
N ], as ua and

ub remain unmatched without u. Moreover, the match of those vertices can only be modified to
another vertex within that interval. This implies that the length of the matching created with and
without u differ by at most [(12 + α) ln(N) + 6]

(
α ln(N)+2

N

)
. Repeating the same reasoning with

u′, we get that the modification of the match of yi modifies the length of the matching by at most
2 [(12 + α) ln(N) + 6]

(
α ln(N)+2

N

)
, which is smaller than 8α2 ln(N)2

N .

This combined with Equations 10, 1 and Lemma 15 terminates the proof of the lemma. □

Lemma 18 (Discard) With probability at least 1− 4
N , it holds than:∣∣∣κ(Geom

(
Ũ [k],Y, c,N

))
− κ (Geom (U [k],Y, c,N))

∣∣∣ ≤ N

k
+ 4
√
N ln(N).
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If EI holds, then∣∣ρ(Geom
(
Ũ [k],Y1−ϵ

))
− ρ (Geom (U [k],Y1−ϵ))

∣∣ ≤ (N
k

+ 4
√
N ln(N)

)
4(α ln(N))2

N
.

Proof: For any ℓ ∈ [kN ], let

nℓ :=

{
⌊uNk⌋
Nk

=
ℓ

Nk

∣∣∣∣ u ∈ U} .
The points in U are generated through a Poisson point process of intensity N in [0, 1], thus, for any
ℓ ∈ [Nk]:

P(nℓ > 0) = 1− e−1/k,

and the (nℓ)ℓ∈[Nk] are independent of each other. The number of points in Ũ is

|Ũ | =
Nk∑
ℓ=1

1nℓ>0.

We have

E
[
|Ũ |
]
=Nk(1− e−1/k)

≥N − N

k
.

By Chernoff bound,

P(|Ũ | ≤ N − N

k
− 2
√
N ln(N)) ≤ 2

N
We have

Nremoved := |U| − |Ũ |.

We have already obtained by concentration of Poisson random variables

P
(∣∣N − |U|∣∣ ≥ 2

√
N ln(N)

)
≤ 2

N
.

Thus,

P
(
Nremoved ≥ 4

√
N ln(N) +

N

k

)
≤ 4

N
.

Combining this with Lemma 14 terminates the proof of the first equation. For the second, we proceed
in the same way as in the proof of Lemma 16, using this time the lower bound on the number of
vertices in Ũ per interval. □

Lemma 19 (Gluing) With probability at least 1− exp
(
−
√
N
)

, it holds:∣∣∣κ(Geom
(
Ũ [k],Y, c,N

))
− κ

(
Gglued

(
Ũ [k],Y, c,N

))∣∣∣ ≤ 2
√
N + 1.

Under event EI , it holds that:∣∣∣ρ(Geom
(
Ũ [k],Y1−ϵ

))
− ρ

(
Gglued

(
Ũ [k],Y1−ϵ

))∣∣∣ ≤ α5 ln(N)
3

18N

Proof: By Lemma 14, adding the vertex at coordinate 0 modifies the score of the algorithm by at
most one.

The match of some vertex y ∈ Y may be modified by the gluing step only if y < c
N or y > 1− c

N .

Ngluing :=
∑
y∈Y

1{the match of y is modified during the gluing step}.
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By Chernoff bound,
P(Ngluing ≥ 2c+

√
N) ≤ e−

√
N .

Lemma 14 concludes the proof of the first inequality.

For the second, we proceed as in the proof of Lemma 17.

Consider algorithm i-CLOSEST’ which matches the incoming vertex to the closest vertex in the
glued space up to iteration i, then to the closest on the line. Denote E ′i the event that yi’s closest
neighbor is modified. This can happen only if yi lands between the remaining vertex of highest
and smallest coordinates at iteration i. This interval is included in the interval [uh, uℓ] between the
remaining vertex of highest and smallest coordinates at iteration N(1 − ϵ) when running CLOSEST
algorithm with the glued coordinates at every iteration. By the same reasoning we employed before,
under event EI this interval is at most of length α ln(N)+2

N and there are at most α ln(N) + 2 online
vertices that have their match directly modified by the gluing step.

Let us now bound the impact of this modification. As before, denote u and u′ the two matches of yi
and denote Ũi \ {u, u′} the remaining free vertices at the end of the run of i-CLOSEST’ with u, u′
and yi removed. Denote uih, u

i
ℓ the remaining vertex of highest and smallest coordinates at iteration.

All the vertices in U∩]uih, 0] are matched to vertices in Y1−ϵ ∩ [uih, uℓ]. Thus we have:

|U∩]uih, 0]| ≤|Y1−ϵ ∩ [uih, uℓ]|,
≤|Y1−ϵ ∩ [uih, 0]|+ α ln(N) + 2.

This implies that |1 − uih| ≤
α2 ln(N)

12N . Similarly, we get the bound uiℓ ≤
α2 ln(N)

12N . Adding back
u or u′ to the offline vertices can only modify the match of vertices in the interval [uih, u

i
ℓ] to other

vertices in that interval. We thus have that for each modification, the impact on the length is bounded
by α4 ln(N)2

36N . □

4.2 Proof of Lemma 3 (Gaps repartition)

Denote |H| the length of a sequence H and S([N ]) the ensemble of all permutations over [N ]. For
a sequence H = (hi)i∈[K] let At (H) be the event:{

Nt = |H|,∃σ ∈ S([Nt]) s.t. ∀i ∈ [Nt], ut(i+ 1)− ut(i) =
hσ(i)

Nk

}
,

and At (σ,H) the event:{
Nt = |H|,∀i ∈ [Nt], ut(i+ 1)− ut(i) =

hσ(i)

Nk

}
.

Note thatAt (H) = ∪σ∈S([H])At (σ,H) . For a list of sequencesH1, . . . ,Ht, we denoteA1:t (H1:t)
the event that As(Hs) hold for all s ≤ t:

A1:t (H1:t) := ∩1≤s≤tAs(Hs).

Lemma 3 is a consequence of the following stronger Lemma.

Lemma 20 For any sequence H , any iteration t, any two permutations σ, σ′ ∈ S ([|H|]),

P
(
At (σ,Ht)

∣∣∣∣ A1:t (H1:t)

)
= P

(
At (σ′, Ht)

∣∣∣∣ A1:t (H1:t)

)
. (11)

Proof : We prove this lemma by induction. LetK < Nk be a non-negative integer and letH = (hi)i
be any sequence of integers s.t.

|H|∑
i=1

hi
Nk

= 1.
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Since u0(1) = 0, the knowledge of the sizes and the ordering of the gaps determines the position of
the points. Thus, for any σ ∈ S ([|H|]):

P
(
∀i ∈ [|H|], u0(i+ 1)− u0(i) =

hσ(i)

Nk

)
= p

|H|−1
k (1− pk)Nk−|H|.

This does not depend on the choice of permutation σ. Thus for any sequence H s.t.
∑|H|
i=1

hi

Nk = 1

and any two permutations (σ, σ′) ∈ S ([|H|])2:

P
(
A0 (σ,H)

∣∣∣∣A0 (H)

)
= P

(
A0 (σ

′, H)

∣∣∣∣A0 (H)

)
. (12)

Equation (11) thus holds at iteration 0. Let us assume that Equation (11) holds at all iterations until
the t-th one. Let us show this implies that it also holds at iteration t+1. There are two cases possible,
depending on whether or not a vertex is matched.

We first show the implication in the case where the incoming vertex is not matched, i.e. it lays at
a distance larger than c/N of any free vertex. Note yt the incoming vertex at iteration t. For any
σ ∈ S([Nt]), any Ht a sequence of length Nt s.t.

∑|H|
i=1

hi

Nk = 1,

P
(
yt is not matched

∣∣ At (σ,Ht)
)
= 1−

Nt∑
i=1

min(2c, hi/k)

N
(13)

The following therefore holds:

P

(
At+1 (σ,Ht)

∣∣∣∣ A1:t (H1:t)

)
= P

(
yt is not matched,At (σ,Ht)

∣∣∣∣ A1:t (H1:t)

)
.

By the induction hypothesis and Equation (13), the right term does not depend on σ, thus, for any
σ, σ′ in S([Nt]),

P

(
At+1 (σ,Ht)

∣∣∣∣ A1:t (H1:t) ∩ At+1 (Ht)

)
= P

(
At+1 (σ

′, Ht)

∣∣∣∣ A1:t (H1:t) ∩ At+1 (Ht)

)
.

We now turn to the case where yt is matched. We define an admissible sequence for sequence H
and a couple j < j′ ≤ |H| as a sequence H̃(j, j′) s.t. for any i ∈ [|H]− 1]

h̃j,j
′

i =


hi if i < j′ and i ̸= j

hj + hj′ if i = j

hi+1 if i ≥ j′.

Note it is the sequence of gaps obtained when event At (H) is true and a vertex ut(i) with ut(i) −
ut(i− 1) = hj and ut(i+ 1)− ut(i) = hj′ is matched.

For any H1:t, any j < j′ ≤ |Ht|, any σ ∈ S([|Ht| − 1]) define events :

Bt(Ht, i, j, j
′) =

{
ut(i)− ut(i− 1) =

hj
Nk

and ut(i+ 1)− ut(i) =
hj′

Nk

}
∪
{
ut(i)− ut(i− 1) =

hj′

Nk
and ut(i+ 1)− ut(i) =

hj
Nk

}
.

and

Ct(σ,Ht, i, j, j
′) ={∀k < i− 1, ut(k + 1)− ut(k) =

h̃j,j
′

σ(k)

Nk
} ∩ {∀k > i, ut(k + 1)− ut(k) =

h̃j,j
′

σ(k−1)

Nk
}.
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Note Et(σ,Ht, i, j, j
′) = Bt(Ht, i, j, j

′) ∩ Ct(σ,Ht, i, j, j
′). For any H1:t, any j < j′ ≤ |Ht|, any

σ ∈ S([|Ht| − 1]), it holds that:

P

(
At+1

(
σ, H̃t(j, j

′)
) ∣∣∣∣ A1:t (H1:t)

)
=

∑
i s.t. h̃σ(i−1)=h̃j

P

(
ut(i) is matched, Et(σ,Ht, i, j, j

′)

∣∣∣∣ A1:t (H1:t)

)

=
min(c,

hj

k ) + min(c,
hj′

k )

N

∑
i s.t. h̃σ(i−1)=h̃j

P

(
Et(σ,Ht, i, j, j

′)

∣∣∣∣ A1:t (H1:t)

)
.

By the induction property, the right term does not depend on σ. This implies that the induction
property remains true when a vertex is matched as well, which implies that Equation (11) holds for
all t ∈ [N ].

□

We now show that Lemma 20 implies Lemma 3. Let Ft be the event associated with the values
(Fk,N (ℓ, t′))ℓ∈[Nk] for all t′ ≤ t, which also determines the value of Nt. Let H be any sequence of
length Nt s.t. for any ℓ ∈ [Nk], |{hi = ℓ|i ∈ [Nt]}| = Fk,N (ℓ, t). Equation (11) implies:

E

[
Mk,N (ℓ−, ℓ+, t)

∣∣∣∣Ft] = 1

|S([Nt])|
∑

σ∈S([Nt])

Nt∑
i=1

1{hσ(i)=ℓ−,hσ(i+1)=ℓ+}

=

Nt∑
i=1

1

|S([Nt])|
∑

σ∈S([Nt])

1{hσ(i)=ℓ−,hσ(i+1)=ℓ+}

=

Nt∑
i=1

|S([Nt − 2])|
|S([N0])|

[
1{ℓ− ̸=ℓ+}Fk,N (ℓ−, t)Fk,N (ℓ+, t)

]
+

Nt∑
i=1

|S([Nt − 2])|
|S([N0])|

1{ℓ−=ℓ+}Fk,N (ℓ−, t) (Fk,N (ℓ+, t)− 1)

=Fk,N (ℓ−, t)

(
1{ℓ− ̸=ℓ+}

Fk,N (ℓ+, t)

Nt − 1
+ 1{ℓ−=ℓ+}

Fk,N (ℓ+, t)− 1

Nt − 1

)
.

□

4.3 Analysis of the PDEs

In this section, we prove some properties of the functions fk, f, gk and g that are useful for the
proofs of the following sections.

Lemma 21 (Total length invariant) For any t ∈ [0, 1],

+∞∑
ℓ=1

ℓ

k
fk(ℓ, t) = 1 and

∫ +∞

x=0

f(x, t) = 1.

The same holds for gk and g.

Proof : This is true for t = 0 by definition of the initial condition. We now show that this quantity is
an invariant of the system of ODEs. We have:

∂
∑+∞
ℓ=1

ℓ
kfk(ℓ, t)

∂t
=−

+∞∑
ℓ=1

ℓ

k
min(

ℓ

k
, 2c)f(

ℓ

k
, t)− 1∑+∞

ℓ=1 fk(ℓ, t)

+∞∑
ℓ=1

min(
ℓ

k
, 2c)f(

ℓ

k
, t)

+∞∑
ℓ=1

ℓ

k
f(
ℓ

k
, t)

+
1∑+∞

ℓ=1 fk(ℓ, t)

+∞∑
ℓ=1

+∞∑
ℓ′=0

min(
ℓ′

k
, 2c)fk(ℓ

′, t)(ℓ− ℓ′)fk(ℓ− ℓ′, t)
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+
1∑+∞

ℓ=1 fk(ℓ, t)

+∞∑
ℓ=1

+∞∑
ℓ′=0

ℓ′ min(
ℓ′

k
, 2c)fk(ℓ

′, t)fk(ℓ− ℓ′, t),

=−
+∞∑
ℓ=1

ℓ

k
min(

ℓ

k
, 2c)f(

ℓ

k
, t)− 1∑+∞

ℓ=1 fk(ℓ, t)

+∞∑
ℓ=1

min(
ℓ

k
, 2c)f(

ℓ

k
, t)

+∞∑
ℓ=1

ℓ

k
f(
ℓ

k
, t)

+
1∑+∞

ℓ=1 fk(ℓ, t)

+∞∑
ℓ=1

min(
ℓ

k
, 2c)f(

ℓ

k
, t)

+∞∑
ℓ=1

ℓ

k
f(
ℓ

k
, t)

+
1∑+∞

ℓ=1 fk(ℓ, t)

+∞∑
ℓ=1

ℓ

k
min(

ℓ

k
, 2c)f(

ℓ

k
, t)

+∞∑
ℓ=1

fk(ℓ, t),

=0.

The computation is similar for f , g and gk. □

Lemma 22 (Bound L1 norm) For any t ∈ [0, 1],

e−4c ≤
+∞∑
ℓ=1

fk(ℓ, t) ≤ 1 and e−4c ≤
∫ +∞

0

f(x, t)dx ≤ 1.

Also, for any t ∈ [0, 1],
+∞∑
ℓ=1

gk(ℓ, t) = 1− t =
∫ +∞

0

g(x, t)dx.

Proof :

∂
∑+∞
ℓ=1 fk(ℓ, t)

∂t
=−

+∞∑
ℓ=1

min(
ℓ

k
, 2c)f(

ℓ

k
, t)− 1∑+∞

ℓ=1 fk(ℓ, t)

+∞∑
ℓ=1

min(
ℓ

k
, 2c)f(

ℓ

k
, t)

+∞∑
ℓ=1

f(
ℓ

k
, t)

+
1∑+∞

ℓ=1 fk(ℓ, t)

+∞∑
ℓ=1

+∞∑
ℓ′=0

min(
ℓ′

k
, 2c)fk(ℓ

′, t)fk(ℓ− ℓ′, t),

=−
+∞∑
ℓ=1

min(
ℓ

k
, 2c)f(

ℓ

k
, t).

This implies that for any t ∈ [0, 1] ,e−4c ≤ e−4ct ≤
∑+∞
ℓ=1 fk(ℓ, t) ≤

∑+∞
ℓ=1 fk(ℓ, 0) = 1.

We have:

∂
∑+∞
ℓ=1 gk(ℓ, t)

∂t
=−

+∞∑
ℓ=1

ℓ

k
gk(

ℓ

k
, t) = −1.

So,
∑+∞
ℓ=1 gk(ℓ, t) = 1− t, and the same holds for g.

□

4.4 Proofs of the technical lemmas for section 3.3

Proof of lemma 6 : In this proof, we use the shorthand aℓ =
Fk,N (ℓ,t)

N . For any t ≤ N ,∑Nk
ℓ=1

ℓ
kaℓ = 1. This and Lemma 21 imply:

Nk∑
ℓ=kN1/8

aℓ ≤ N−1/8 and rN,k(t) ≤ N−1/8, (14)
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so that |
∑Nk
ℓ=kN1/8 aℓ − rN,k(t)| ≤ 2N−1/8.

If (aℓ)kN
1/8

ℓ=1 ∈ D, for any N large enough s.t. N−1/8 ≤ 1
4e

−4c,

kN1/8∑
ℓ=1

aℓ ≥
1

2
e−4c −

kN∑
ℓ=kN1/8+1

aℓ ≥
1

4
e−4c.

Therefore, for any N s.t. N−1/8 ≤ 1
4e

−4c, if (aℓ)kN
1/8

ℓ=1 ∈ D,∣∣∣∣∣ 1

Nt/N
− 1∑kN1/8

ℓ=1 aℓ + rN,k(t)

∣∣∣∣∣ ≤ w2N
−1/8, (15)

with w2 a constant that does not depend on N . Now, for any ℓ ≤ kN1/8, we have:

∣∣∣Aℓ,t − Φℓk,N

(
t, (aℓ)

kN1/8

ℓ=1

)∣∣∣ ≤2c ∣∣∣∣∣ 1

Nt/N
− 1∑kN1/8

ℓ′=1 aℓ′ + rN,k(t)

∣∣∣∣∣
ℓ∑

ℓ′=0

aℓ′aℓ−ℓ′

+

∣∣∣∣∣∣
kN∑
ℓ′=1

min

(
ℓ′

k
, 2c

)
N

Nt
aℓ′ −

∑kN1/8

ℓ′=1 min
(
ℓ′

k , 2c
)
aℓ′ + r̃N,k(t)∑kN1/8

ℓ′=1 aℓ′ + rN,k(t)

∣∣∣∣∣∣︸ ︷︷ ︸
(i)

aℓ.

We start by bounding (i). First, since
∑
ℓ′ aℓ′ ≤ 1 and rN,k(t) ≤ N−1/8, we have∑kN1/8

ℓ′=1 min
(
ℓ′

k , 2c
)
aℓ′ + r̃N,k(t) ≤ 4c. By Equation 15, this entails:

(i) ≤

∣∣∣∣∣∣
∑
ℓ′

min

(
ℓ′

k
, 2c

)
aℓ′

Nt/N
−

∑kN1/8

ℓ′=1 min
(
ℓ′

k , 2c
)
aℓ′ + r̃N,k(t)

Nt/N

∣∣∣∣∣∣+ 4cw2N
−1/8

=

∣∣∣∣∣
Nk∑

ℓ′=kN1/8

min

(
ℓ′

k
, 2c

)
aℓ′

Nt/N
− r̃N,k(t)

Nt/N

∣∣∣∣∣+ 4cw2N
−1/8

≤4e4c
∣∣∣∣∣

Nk∑
ℓ′=kN1/8

min

(
ℓ′

k
, 2c

)
aℓ′ − r̃N,k(t)

∣∣∣∣∣+ 4cw2N
−1/8

≤4c
(
4e4c + w2

)
N−1/8.

The third inequality holds as Nt/N ≥ 4e4c, and the last one by equation 14. This entails:

∣∣∣Aℓ,t − Φℓk,N

(
t, (aℓ)

kN1/8

ℓ=1

)∣∣∣ ≤ 2cw2N
−1/8

ℓ∑
ℓ′=0

aℓ′aℓ−ℓ′ + 4c
(
4e4c + w2

)
N−1/8N−1/8aℓ.

By Young’s convolution inequality,
∑
ℓ

∑ℓ
ℓ′=0 aℓ′aℓ−ℓ′ ≤ (

∑
ℓ aℓ)

2 ≤ 1, so:

kN1/8∑
ℓ=1

∣∣∣Aℓ,t − Φℓk,N

(
t, (aℓ)

kN1/8

ℓ=1

)∣∣∣ ≤ (8ce4c + 6cw4

)
N−1/8

Combining with Lemma 4, we obtain:

kN1/8∑
ℓ=1

∣∣∣∣E [Fk,N (ℓ, t+ 1)− Fk,N (ℓ, t)

∣∣∣∣Ft, (aℓ) ∈ D]− Φℓk,N

(
t, (aℓ)

kN1/8

ℓ=1

)∣∣∣∣ ≤2c
(
4e4c + 3w2

)
N1/8

+
24e4ck

N7/8

29



≤ w5

N1/8
.

Note that w5 depends on c and k but not on N . □

Proof of lemma 7 : Consider two sequences a = (aℓ)
kN1/8

ℓ=1 and b = (bℓ)
kN1/8

ℓ=1 in D.

||Φk,N (t,a)− Φk,N (t,b) ||1 ≤ 2c||a− b||1

+
∑
ℓ

∣∣∣∣∣
∑kN1/8

ℓ′=1 min( ℓ
′

k , 2c)aℓ′ + r̃N,k(t)∑kN1/8

ℓ′=1 aℓ′ + rN,k(t)
aℓ −

∑kN1/8

ℓ′=1 min( ℓ
′

k , 2c)bℓ′ + r̃N,k(t)∑kN1/8

ℓ′=1 bℓ′ + rN,k(t)
bℓ

∣∣∣∣∣︸ ︷︷ ︸
(a)

+
∑
ℓ

∣∣∣∣∣
∑ℓ
ℓ′=0 min( ℓ

′

k , 2c)aℓ′aℓ−ℓ′∑kN1/8

ℓ′=1 aℓ′ + rN,k(t)
−
∑ℓ
ℓ′=0 min( ℓ

′

k , 2c)bℓ′bℓ−ℓ′∑kN1/8

ℓ′=1 bℓ′ + rN,k(t)

∣∣∣∣∣︸ ︷︷ ︸
(b)

.

Assume w.l.o.g.
∑kN1/8

ℓ=1 bℓ ≥
∑kN1/8

ℓ=1 aℓ. We have:

1∑
ℓ aℓ + rN,k(t)

≥ 1∑
ℓ bℓ + rN,k(t)

=
1∑

ℓ aℓ + rN,k(t)

 1

1 +
∑

ℓ(bℓ−aℓ)∑
ℓ aℓ+rN,k(t)


≥ 1∑

ℓ aℓ + rN,k(t)

(
1−

∑
ℓ bℓ − aℓ∑

ℓ aℓ + rN,k(t)

)
.

As
∑
ℓ aℓ ≥

1
2e

−4c, we have:∣∣∣∣ 1∑
ℓ aℓ + rN,k(t)

− 1∑
ℓ bℓ + rN,k(t)

∣∣∣∣ ≤ 4e8c||a− b||1. (16)

Bound of (a) It holds that
∑kN1/8

ℓ=1 min( ℓk , 2c)bℓ + r̃N,k(t) ≤ 6c, which together with Equation
16 implies:∣∣∣∣∣
∑kN1/8

ℓ′=1 min( ℓ
′

k , 2c)bℓ′ + r̃N,k(t)∑kN1/8

ℓ′=1 aℓ′ + rN,k(t)
bℓ −

∑kN1/8

ℓ′=1 min( ℓ
′

k , 2c)bℓ′ + r̃N,k(t)∑kN1/8

ℓ′=1 bℓ′ + rN,k(t)
bℓ

∣∣∣∣∣ ≤ 24ce8c||a− b||1bℓ

so that:

(a) ≤24ce8c||a− b||1
∑
ℓ

bℓ︸ ︷︷ ︸
≤2

+
r̃N,k(t)∑kN1/8

ℓ′=1 aℓ′ + rN,k(t)︸ ︷︷ ︸
≤2c

||a− b||1

+
∑
ℓ

1∑kN1/8

ℓ′=1 aℓ′ + rN,k(t)

∣∣∣∣∣∣
kN1/8∑
ℓ′=1

min(
ℓ′

k
, 2c)aℓ′aℓ −

kN1/8∑
ℓ′=1

min(
ℓ′

k
, 2c)bℓ′bℓ

∣∣∣∣∣∣︸ ︷︷ ︸
(ii)

We now bound (ii).

(ii) ≤

∣∣∣∣∣∣
kN1/8∑
ℓ′=1

min(
ℓ′

k
, 2c)aℓ′aℓ −

kN1/8∑
ℓ′=1

min(
ℓ′

k
, 2c)aℓ′bℓ

∣∣∣∣∣∣+
∣∣∣∣∣∣
kN1/8∑
ℓ′=1

min(
ℓ′

k
, 2c)aℓ′bℓ −

kN1/8∑
ℓ′=1

min(
ℓ′

k
, 2c)bℓ′bℓ

∣∣∣∣∣∣
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≤2c
kN1/8∑
ℓ′=1

aℓ′ |aℓ − bℓ|+ 2cbℓ||a− b||1

so

(a) ≤2c(24e8c + 1)||a− b||1 + 2c
∑
ℓ

∑kN1/8

ℓ′=1 aℓ′ |aℓ − bℓ|+ bℓ||a− b||1∑kN1/8

ℓ′=1 aℓ′ + rN,k(t)

≤2c(24e8c + 4e4c + 2)||a− b||1.

Bound of (b) By Young’s inequality, it holds that
∑
ℓ |
∑ℓ
ℓ′=0 min( ℓ

′

k , 2c)bℓ′bℓ−ℓ′ | ≤ 8c, so we
have by equation 16:∑

ℓ

∣∣∣∣∣
∑ℓ
ℓ′=0 min( ℓ

′

k , 2c)bℓ′bℓ−ℓ′∑kN1/8

ℓ′=1 aℓ′ + rN,k(t)
−
∑ℓ
ℓ′=0 min( ℓ

′

k , 2c)bℓ′bℓ−ℓ′∑kN1/8

ℓ′=1 bℓ′ + rN,k(t)

∣∣∣∣∣ ≤ 32ce8c||a− b||1

This implies:

(b) ≤32ce8c||a− b||1 +
∑
ℓ

∣∣∣∣∣
∑ℓ
ℓ′=0 min( ℓ

′

k , 2c)aℓ′aℓ−ℓ′∑kN1/8

ℓ′=1 aℓ′ + rN,k(t)
−
∑ℓ
ℓ′=0 min( ℓ

′

k , 2c)bℓ′bℓ−ℓ′∑kN1/8

ℓ′=1 aℓ′ + rN,k(t)

∣∣∣∣∣
≤32ce8c||a− b||1 + 2e4c

∑
ℓ

∣∣∣∣∣
ℓ∑

ℓ′=0

min(
ℓ′

k
, 2c)aℓ′aℓ−ℓ′ −

ℓ∑
ℓ′=0

min(
ℓ′

k
, 2c)bℓ′bℓ−ℓ′

∣∣∣∣∣︸ ︷︷ ︸
(iii)

.

We have:

(iii) ≤
∑
ℓ

∣∣∣∣∣
ℓ∑

ℓ′=0

min(
ℓ′

k
, 2c)aℓ′(aℓ−ℓ′ − bℓ−ℓ′)

∣∣∣∣∣+∑
ℓ

∣∣∣∣∣
ℓ∑

ℓ′=0

min(
ℓ′

k
, 2c)bℓ−ℓ′(aℓ′ − bℓ′)

∣∣∣∣∣
≤2c (||a||1 + ||b||1) ||a− b||1.

So:

(b) ≤ 48ce8c||a− b||1.

□

Proof of Lemma 8 Define

Lc :=
{
g ∈ L1 s.t. e−4c ≤|| g ||1≤ 1 and g ≥ 0

}
.

By Lemmas 21 and 22, ∀t ∈ [0, 1], fk(., t), f(., t) ∈ Lη . Define application A : Lc → Lc as

A(f)(x) =−min(x, 2c)f(x, t)− 1∫ +∞
0

f(x′, t)dx′

∫ +∞

0

min(x′, 2c)f(x′, t)dx′f(x, t)

+
1∫ +∞

0
f(x′, t)dx′

∫ x

0

min(x′, 2c)f(x′, t)f(x− x′, t)dx′.

Let us show it is Lipschitz with respect to the L1 norm, and derive the Lipschitz constant. First, for
any two functions f1, f2 ∈ L2

c ,∣∣∣∣∣ 1∫ +∞
0

f1(x, t)dx
− 1∫ +∞

0
f2(x, t)dx

∣∣∣∣∣ ≤ e4c || f1 − f| |1 .
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Also, noting f̃ the function min(x, 2c)f(x), we have || f̃1 − f̃2 ||1≤ 2c || f1 − f2 ||1, and

|| f̃1 ∗ f1 − f̃2 ∗ f2 ||1≤ || (f̃1 − f̃2) ∗ f1 ||1 + || f̃2 ∗ (f2 − f1) ||1
≤ || f̃1 − f̃2 ||1|| f1 ||1 + || f̃2 ||1|| f2 − f1 ||1
≤4c || f2 − f1 ||1,

where the second line comes from Young’s inequality. Putting everything together, we get:

|| A(f1)−A(f2) ||1≤ || f̃2 − f̃1 ||1 +(e4c + 2c) || f1 − f2 ||1
+ e4c || f1 − f2 ||1|| f1 ∗ f̃1 ||1 +e2c || f̃1 ∗ f1 − f̃2 ∗ f2 ||1
≤
(
4c+ (2c+ 1) e4c + 4ce2c

)
|| f̃2 − f̃1 ||1 .

We note this Lipschitz constant lipc. Extend the function in Lemma 3 to R+as:

fk(x, t) = fk

(
⌈kx⌉
k

, t

)
,

Define application Bk : Lc → Lc

Bk(f)(x) =−min

(
⌈kx⌉
k

, 2c

)
f(x, t)− 1∫ +∞

0
f(x′, t)dx′

∫ +∞

0

min

(
⌈kx′⌉
k

, 2c

)
f(x′, t)dx′f(x, t)

+
1∫ +∞

0
f(x′, t)dx′

∫ ⌈kx⌉
k

0

min

(
⌈kx′⌉
k

, 2c

)
f(x′, t)f(x− x′, t)dx′.

Which is defined s.t. for any x ∈ R+, ∂fk(x,t)∂t = Bk (fk (., t)) (x). For any t ∈ [0, 1], we have:

||Bk,2 (fk (., t)) (x)−A2 (fk (., t)) (x)||1

≤
∫ 2c

0

∣∣∣∣⌈kx⌉k − x
∣∣∣∣ fk(x, t)dx︸ ︷︷ ︸

≤ 1
k ||fk||1≤ 1

k

+
1∫ +∞

0
fk(x′, t)dx′

∫ 2c

0

∫ ⌈kx⌉
k

x

2cfk(x
′, t) fk(x− x′, t)︸ ︷︷ ︸

≤1

dx′dx

+
1∫ +∞

0
fk(x′, t)dx′

∫ +∞

0

∣∣∣∣∫ x

0

(
⌈kx′⌉
k
− x′

)
fk(x

′, t)fk(x− x′, t)dx′
∣∣∣∣ dx︸ ︷︷ ︸

≤ 1
k

∫ +∞
0

∫ x
0
fk(x′,t)fk(x−x′,t)dx′dx≤ 1

k ||fk||21≤
1
k ||fk||1≤≤ 1

k

,

≤ 2

k
+

2c∫ +∞
0

fk(x′, t)dx′

∫ η

0

∫ x+ 1
k

x

fk(x
′, t)dx′dx ≤ 2c+ 2

k
.

We also have:
|| f(., 0)− fk(., 0) ||1≤

2

k
.

Thus, by application of Gronwall’s Lemma, for any t ∈ [0, 1]

|| f(., t)− fk(., t) ||1≤
2

k
elipct +

2c+ 2

k
.

□

4.5 Proofs of the technical lemmas for section 3.3.2

Proof of Lemma 12 : By equation 7, it holds that:∣∣∣∣∣∂
∑kη
ℓ=1 gk(ℓ, t)

∂t

∣∣∣∣∣ ≤
kη∑
ℓ=1

∣∣∣Γℓk,N (t, (gk(ℓ, t))kηℓ=1

)∣∣∣ ≤ (2 + 6

1− t

)
.
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This implies:∣∣∣∣∣∣
∫ 1−ϵ

t=0

kη∑
ℓ=1

(
ℓ

k

)2

gk(ℓ, t)dt−
1

N

N(1−ϵ)−1∑
t=0

kη∑
ℓ=1

(
ℓ

k

)2

gk(ℓ,
t

N
)

∣∣∣∣∣∣ ≤η2
∫ 1−ϵ

t=0

∣∣∣∣gk(ℓ, t)dt− gk (ℓ, ⌊tN⌋N

)∣∣∣∣ ,
≤η

2

N

(
2 +

6

1− t

)
. (17)

Define domain:

Lη := {g : [0, η]→ [0, 1] s.t. || g ||1≤ 1, || xg ||1≤ 1 and 1 ≥ g ≥ 0} .
By Lemmas 21 and 22, ∀t ∈ [0, 1], gk(., t), g(., t) ∈ Lη .

Define application A2 : Lη → Lη by

A2(g)(x) =−
(
x+

1

1− t

)
g(x, t) +

1

1− t

∫ x

0

x′g(x′, t)g(x− x′, t)dx′.

Let us show thatA2 is Lipschitz with respect to theL1 norm onLη , and derive the Lipschitz constant.
Take any (g1, g2) ∈ L2

η . We have:

|| (xg1) ∗ g1 − (xg2) ∗ g2 ||1≤ || (xg1 − xg2) ∗ g1 ||1 + || (xg2) ∗ (g1 − g2) ||1,
≤ || xg1 − xg2 ||1|| g1 ||1 + || xg2 ||1|| g1 − g2 ||1,
≤2η || g1 − g2 ||1,

where the second line comes from Young’s convolution inequality. We thus get:

|| A2(g1)−A2(g2) ||1≤
(
3η +

1

1− t

)
|| g1 − g2 ||1≤

(
3η +

1

ϵ

)
|| g1 − g2 ||1 .

Extend the function in Lemma 11 gk(ℓ, t) to x ∈ R+ as:

gk(x, t) = gk

(
⌈kx⌉
k

, t

)
,

Define application Bk,2 : Lη → Lη

Bk,2(g)(x) =−
(
⌈kx⌉
k

+
1

1− t

)
g(x, t) +

1

1− t

∫ ⌈kx⌉
k

0

⌈kx′⌉
k

g(x′, t)g(x− x′, t)dx′.

Which is defined s.t. for any x ∈ R+, ∂gk(x,t)dx∂t = Bk,2 (gk (., t)) (x). For any t ∈ [0, 1], we have:

||Bk,2 (gk (., t)) (x)−A2 (gk (., t)) (x)||1

≤
∫ η

0

∣∣∣∣⌈kx⌉k − x
∣∣∣∣ gk(x, t)dx︸ ︷︷ ︸

≤ 1
k ||gk||1≤ 1

k

+
1

1− t

∫ η

0

∫ ⌈kx⌉
k

x

⌈kx′⌉
k︸ ︷︷ ︸
η+1

gk(x
′, t) gk(x− x′, t)︸ ︷︷ ︸

≤1

dx′dx

+
1

1− t

∫ η

0

∣∣∣∣∫ x

0

(
⌈kx′⌉
k
− x′

)
gk(x

′, t)gk(x− x′, t)dx′
∣∣∣∣ dx︸ ︷︷ ︸

≤ 1
k

∫ η
0

∫ x
0
gk(x′,t)gk(x−x′,t)dx′dx≤ 1

k ||gk||21≤
1
k ||gk||1≤≤ 1

k

,

≤ 2

k
+
η + 1

1− t

∫ η

0

∫ x+ 1
k

x

gk(x
′, t)dx′dx ≤ 3 + η

k
.

We also have:
|| g(., 0)− gk(., 0) ||1≤

2

k
.
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Thus, by application of Gronwall’s Lemma, for any t ∈ [0, 1]∫ η

0

|f(x, t)− fk(x, t)|dx ≤
2

k
e3η+

1
ϵ +

3 + η

k
.

□

Proof of lemma 13 : We have:

d

dt

∫ +∞

0

x2

4
g(x, t)dx =−

∫ +∞

0

x2

4

(
x+

1

1− t

)
g(x, t)dx+

1

1− t

∫ +∞

0

x2

4

∫ x

0

x′g(x′, t)g(x− x′, t)dx′︸ ︷︷ ︸
(a)

.

Let us simplify (a):

(a) =

∫ +∞

0

∫ x

0

x′
(x− x′)2

4
g(x′, t)g(x− x′, t)dx′ −

∫ +∞

0

∫ x

0

(x′)3

4
g(x′, t)g(x− x′, t)dx′,

+

∫ +∞

0

∫ x

0

(x′)2

2
xg(x′, t)g(x− x′, t)dx′,

=

∫ +∞

0

x2

4
g(x, t)dx′

∫ +∞

0

xg(x, t)dx′︸ ︷︷ ︸
=1

−
∫ +∞

0

∫ x

0

(x′)3

4
g(x′, t)g(x− x′, t)dx′

+

∫ +∞

0

∫ x

0

(x′)2

2
(x− x′)g(x′, t)g(x− x′, t)dx′ +

∫ +∞

0

∫ x

0

(x′)3

2
g(x′, t)g(x− x′, t)dx′,

=3

∫ +∞

0

x2

4
g(x, t)dx+

∫ +∞

0

x3

4
g(x, t)dx

∫ +∞

0

g(x, t)dx︸ ︷︷ ︸
=1−t

.

Reinjecting in the previous equation we obtain:

d

dt

∫ +∞

0

x2

4
g(x, t)dx =

2

1− t

∫ +∞

0

x2

4
g(x, t)dx.

Define z(t) =
∫ +∞
0

x2

4 g(x, t)dx. Note that z(0) = 0.5. We get:

z′(t)

z(t)
=

2

1− t
,

which integrates to ln (z(t)) = −2 ln(1− t) + ln (z(0)). Thus z(t) = z(0)
(1−t)2 , and the total length

of the matching created is: ∫ t

0

z(t)dt = z(0)

[
1

1− t
− 1

]
.

□
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A Poisson Point Processes

The following definitions and properties of point processes come from lecture notes Blaszczyszyn
[2017], and are reported here for clarity.

Definition 1 (Homogeneous Poisson point process). A point process Φ on [0, 1] is an homogeneous
Poisson point process of intensity λ if the following two conditions are satisfied:

1. For any (a, b] ∈ [0, 1],Φ(a, b], the number of points in interval (a, b], is a Poisson random
variable of intensity λ(b− a), i.e.;

P{Φ(a, b] = n} = [λ(b− a)]n

n!
e−λ(b−a).

2. The number of points in any two disjoint intervals are independent of each other, and this
extends to any finite number of disjoint intervals, i.e.;

P {Φ (ai, bi] = ni, i = 1, . . . , k} =
k∏
i=1

[λ (bi − ai)]ni

ni!
e−λ(bi−ai),

for any integer k ≥ 2, any a1 < b1 ≤ a2 . . . < bk.

Note that the second point of the definition implies the following property: given there are n points
of the homogeneous Poisson process in the window B, these points are independently and uniformly
distributed in B.

Let ΦN be a Poisson point process of intensity N on [0, 1], and UN ∼ ΦN . Let us enumerate
the points of the point process UN according to their coordinates. The sequence {uk} can be con-
structed as a renewal process with exponential holding times, i.e., uk =

∑k
i=1 Fi for k ≥ 1, where

{Fk : k = 1, . . .} is a sequence of independent, identically distributed exponential random variables
of parameter N . Indeed,

P {F1 > t} = P {u1 > t} = P{Φ((0, t]) = 0} = e−Nt,

and, for k ≥ 2 by independence (second point of the definition),

P {Fk > t | F1, . . . , Fk−1} = P {uk − uk−1 > t | u1, . . . , uk−1}
= P {Φ (uk−1, uk−1 + t] = 0 | uk−1}
= e−Nt.

B A generalized version of Wormald’s theorem

The following theorem is a generalized version of Wormald’s theorem [Wormald et al., 1999]. The
main difference with the original theorem is that we apply the concentration inequality to the whole
vector rather than coordinate by coordinate, that is Lemma 23 rather than the classical Azuma-
Hoeffding inequality. We repeat here the whole proof for completeness. It is largely based on the
one in Warnke [2019].
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Lemma 23 (Hayes [2005]) Let X be a real-value martingale taking values in Rd s.t. X0 = 0 and
||Xi −Xi−1|| ≤ 1. Then for every t > 0

P(||Xm|| ≥ a) < 2e2e−a
2/2m.

Theorem 4 Take a(n), n ≥ 1, a collection of variables (Yk(i))1≤k≤a(n), a bounded domain D ⊆
Ra(n)+1, and a function F : D → Ra(n) that is L-Lip with respect to the L1 norm on D and
each coordinate is bounded by R on D. Assume the random variables (Yk(i))1≤k≤a(n) are Fi-

measurable and the following holds when
(
i
n ,

Y1(i)
n , . . . ,

Ya(n)(i)

n

)
∈ D:

• (Trend,i)
∑
k≤a(n)

∣∣∣E [Yk(i+ 1)− Yk(i)|Fi]− Fk
(
i
n ,

Y1(i)
n , . . . ,

Ya(n)(i)

n

)∣∣∣ ≤ δ(n),
• (Bounded jumps, ii)

∑
k≤a(n) |Yk(i+ 1)− Yk(i)| ≤ β,

• (Initial condition, iii)
∑
k≤a(n) |Yk(0)− nyk(0)| ≤ λ(n)n.

Then there is T = T (D) ∈ (0,∞) such that, whenever λ(n) ⩾ (δ(n)+RLa(n)/n)min
{
T, L−1

}
,

with probability at least 1− 2Tne2e−nλ(n)
2/(8Tβ2) we have

max
0⩽i⩽σn

∑
1⩽k⩽a(n)

∣∣∣∣Yk(i)− yk ( in
)
n

∣∣∣∣ < 3eLTλ(n)n

where (yk(t))1⩽k⩽a(n) is the unique solution to the system of differential equations
y′k(t) = Fk (t, y1(t), . . . , ya(t)) with yk(0) defined in (iii) ∀1 ⩽ k ⩽ a(n), and σ =
σ
(
y1(0), . . . y(0)a(n)

)
∈ [0, T ] is any choice of σ ⩾ 0 with the property that

(
t, y1(t), . . . ya(n)(t)

)
has L1-distance at least 3eLTλ(n) from the boundary of D for all t ∈ [0, σ).

Proof : Define ID,n as the minimum of ⌊Tn⌋ and the smallest integer i ⩾ 0 where(
i/n, Y1(i)/n, . . . , Ya(n)(i)/n

)
/∈ D holds. Set ∆Yk(i) := 1{i<ID} [Yk(i+ 1)− Yk(i)] and

Mk(j) :=
∑

0⩽i<j

[∆Yk(i)− E (∆Yk(i) | Fi)] .

Since the event {i < ID} is Fi-measurable (determined by all information of the first i steps), we
have

Yk(j) =Mk(j) + Yk(0) +
∑

0⩽i<j

E (Yk(i+ 1)− Yk(i) | Fi) for all 0 ⩽ j ⩽ ID.

Furthermore, for all i ⩾ 0, the ’tower property’ of conditional expectations implies

E (Mk(i+ 1)−Mk(i) | Fi) = 1{i<ID}E (Yk(i+ 1)− Yk(i)− E (Yk(i+ 1)− Yk(i) | Fi) | Fi) = 0.

The ’Boundedness hypothesis’ (ii) implies∑
k≤n(a)

|Mk(i+ 1)−Mk(i)| =
∑

k≤n(a)

|∆Yk(i+ 1)− E (∆Yk(i+ 1) | Fi)| ⩽ 2β.

DefiningM as the event
max

0⩽j⩽ID

∑
k≤n(a)

|Mk(j)| < λ(n)n,

the vector Azuma-Hoeffding inequality (Lemma 23 withm := ⌊Tn⌋) and a union bound thus yields
P(¬M) ⩽ 2Tne2e−nλ(n)

2/(8Tβ2).

The final deterministic part of the argument is based on a discrete variant of Gronwall’s inequality
(and induction).
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Assuming that the event M holds, for all
(
0, y1(0), . . . , ya(n)(0)

)
∈ D satisfying∑

1⩽k⩽a(n) |Yk(0)− yk(0)n| ⩽ λ(n)n it remains to prove by induction that, for all integers
0 ⩽ m ⩽ σn, we have ∑

1⩽k⩽a(n)

∣∣∣Yk(m)− yk
(m
n

)
n
∣∣∣ < 3λ(n)neLT .

The base case m = 0 holds since
∑

1⩽k⩽a(n) |Yk(0)− yk(0)n| ⩽ λ(n)n by assumption.

Turning to the induction step 1 ⩽ m ⩽ σn, note that m− 1 < ⌊σn⌋ ⩽ ⌊Tn⌋ by definition. So, by
choice of σ, the induction hypothesis implies m− 1 < ID and thus m ⩽ ID.

Fix 0 ⩽ j ⩽ m. We have:∣∣∣∣Yk(j)− yk ( jn
)
n

∣∣∣∣ ⩽ |Mk(j)|+ |Yk(0)− yk(0)n|

+
∑

0⩽i<j

∣∣∣∣E (Yk(i+ 1)− Yk(i) | Fi)−
[
yk

(
i+ 1

n

)
− yk

(
i

n

)]
n

∣∣∣∣
Under eventM and (iii), we have:∑

k≤n(a)

|Mk(j)|+ |Yk(0)− yk(0)n| ≤ 2λ(n)n.

On the other hand:∑
k≤a(n)

∑
0⩽i<j

∣∣∣∣E (Yk(i+ 1)− Yk(i) | Fi)−
[
yk

(
i+ 1

n

)
− yk

(
i

n

)]
n

∣∣∣∣
≤δ(n) +

∑
k≤a(n)

∑
0⩽i<j

sup
ε∈[ i

n ; i+1
n ]

∣∣∣Fk(i/n, Ỹi/n)− y′k(ε)∣∣∣
For any ε ∈ [ in ;

i+1
n ], we have:

|y′k(ε)− y′k(
i

n
)| = |Fk(ε, ỹ(ε))− Fk

(
i

n
, ỹ(

i

n
)

)
| ≤ LR

n
.

It follows that:

∑
k≤a(n)

∣∣∣∣Yk(j)− yk ( jn
)
n

∣∣∣∣ ⩽ ∑
0⩽i<j

LRa(n)
n

+ δ(n) +
∑

k≤a(n)

∣∣∣Fk(i/n, Ỹi/n)− Fk(i/n, y(i/n))∣∣∣


+ 2λ(n)n

≤
∑

0⩽i<j

LRa(n)
n

+ δ(n) +
L

n

∑
k≤a(n)

|Yk(i/n)− yk(i/n)n|


+ 2λ(n)n.

We now use the following discrete version of Gronwall’s Lemma:

Lemma 24 Assume that there are b, c ⩾ 0 and a > 0 such that xj < c+
∑

0⩽i<j (axi + b) for all
0 ⩽ j ⩽ m. Then xm <

(
c+ bmin

{
m, a−1

})
eam.

It yields:∑
k≤a(n)

∣∣∣Yk(m)− yk
(m
n

)
n
∣∣∣ ≤(2λ(n)n+

(
LR

a(n)

n
+ δ(n)

)
min(m,

n

L
)

)
e

Lm
n
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≤ 3λ(n)neLT .

□

C Proof of Lemma 10

Proof : Consider any interval [ akN ; b
kN ]. Denote z the length of that interval. We have z = b

kN −
a
kN

if b > a, else z = b
kN + 1− 1

kN . Assume

z ≥ 4ϵ− ϵ2

16N
.

The number of vertices from the online side that have fallen in this interval before yt,∣∣{yi ∈ [ akN ; b
kN ]|i < t

}∣∣ follows a binomial distribution B (t− 1, z). By Chernoff bound:

P
(∣∣∣∣{yi ∈ [ a

kN
;
b

kN

] ∣∣∣∣i < t

}∣∣∣∣ ≥ (1 + ϵ

4

)
(t− 1)z

)
≤P
(∣∣∣∣{yi ∈ [ a

kN
;
b

kN

] ∣∣∣∣i ̸= t

}∣∣∣∣ ≥ (1 + ϵ

4

)
(N(1− ϵ)− 1)z

)
≤e− ϵ2

48 (N(1−ϵ)−1)z ≤ e− ϵ2

50N(1−ϵ)z

The last inequality holds as N ≥ 25
1−ϵ . The number of vertices from the offline side,∣∣∣{u ∈ [ akN ; b

kN ]|u ∈ Ũ
}∣∣∣ follows a binomial distribution B (Nkz + 1, pk).

P
(∣∣∣∣{u ∈] akN ;

b

kN
[

∣∣∣∣u ∈ Ũ}∣∣∣∣ ≤ (1− ϵ

4

)
(Nkz − 1)pk

)
≤ e− ϵ2

32 (Nkz−1)pk ≤ e− ϵ2

50N(1−ϵ)z.

We have:

(
1− ϵ

4

)
(Nkz − 1)pk −

(
1 +

ϵ

4

)
(N(1− ϵ)− 1)z ≥zN

(1− ϵ

4

)
kpk︸︷︷︸
≥1− ϵ

2

−
(
1 +

ϵ

4

)
(1− ϵ)

− 1,

≥zN
[ ϵ
2
− ϵ

4

(
1 +

ϵ

2

)]
− 1,

≥zN
[
4ϵ− ϵ2

4

]
− 1 ≥ 0.

This implies that if
∣∣∣∣{u ∈] akN ; b

kN [

∣∣∣∣u ∈ Ũ}∣∣∣∣ ≥
(
1− ϵ

4

)
(Nkz − 1)pk and∣∣∣∣{yi ∈ [ a

kN ; b
kN

] ∣∣∣∣i < t

}∣∣∣∣ ≤ (1 + ϵ
4

)
(t− 1)z, then:∣∣∣∣{yi ∈ [ a

kN
;
b

kN

] ∣∣∣∣i < t

}∣∣∣∣ ≤ ∣∣∣∣{u ∈] akN ;
b

kN
[

∣∣∣∣u ∈ Ũ}∣∣∣∣ .
Let us now bound P (ct ≥ z|yt). Denote aL

kN and bH

kN the positions of the two free vertices closest
to yt upon arrival. Note that ct ≥ η can only hold if min(| a

L

kN − yt|; |
bH

kN − yt||] ≥ η and all online
vertices that arrived before yt in the interval [ a

L

kN ; b
H

kN ] have been matched strictly inside that interval.

P (ct ≥ η|yt) ≤P


⋃

yt∈[ a
kN ; b

kN ]

min(|[ a
kN ;yt];[yt,

b
kN ]|)≥η

{∣∣∣∣{u ∈] akN ;
b

kN
[

∣∣∣∣u ∈ Ũ}∣∣∣∣ ≤ ∣∣∣∣{yi ∈ [ a

kN
;
b

kN

] ∣∣∣∣i < t

}∣∣∣∣} ∣∣∣∣yt
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≤
kN∑

ℓ=ηkN

∑
min(|[ a

kN ;yt];[yt,
b

kN ]|)≥η
|[ a

kN ; b
kN ]|= ℓ

kN

P
(∣∣∣∣{u ∈] akN ;

b

kN
[

∣∣∣∣u ∈ Ũ}∣∣∣∣ ≤ ∣∣∣∣{yi ∈ [ a

kN
;
b

kN

] ∣∣∣∣i < t

}∣∣∣∣)

≤
kN∑

ℓ=ηkN

∑
min(|[ a

kN ;yt];[yt,
b

kN ]|)≥η
|[ a

kN ; b
kN ]|= ℓ

kN

2e−
ϵ2

50N(1−ϵ) ℓ
kN

≤e−C
′
ϵNη

kN∑
ℓ=1

∑
min(|[ a

kN ;yt];[yt,
b

kN ]|)≥η
|[ a

kN ; b
kN ]|= ℓ

kN +η

2e−
ϵ2

50N(1−ϵ) ℓ
kN

≤e−C
′
ϵNη

kN∑
ℓ=1

2ℓe−
ϵ2

50N(1−ϵ) ℓ
kN

︸ ︷︷ ︸
C′′

ϵ

.

We have:

E

 ∑
t≤N(1−ϵ)

ct[k]1{ct[k] ≥
η

N
}

 ≤ N∑
t=1

∫ 1

z=η

P(ct[k] ≥ z)dz,

≤
N∑
t=1

∫ 1

z= η
N

C
′′

ϵ e
−zNC′

ϵdz,

≤C
′′

ϵ

C ′
ϵ

e−ηC
′
ϵ .

□
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