Introduction to algebraic operads

Homework 2

Due 11:59PM February 18. You can either give me your copy by February 16 course or send a scanned version in a unique and well readable PDF file to thibaut.mazuir@hu-berlin.de.

Difficult questions are indicated by $a(\star)$ or $a(\star \star)$.

Problem 1: Inhomogeneous Koszul duality (12 PT)
We define a quadratic linear data (V, R) to be a vector space V together with a linear subspace $R \subset V \oplus V^{\otimes 2}$. We denote $q R \subset V^{\otimes 2}$ the image of R under the projection $q: V \oplus V^{\otimes 2} \rightarrow V^{\otimes 2}$. The data $(V, q R)$ is then in particular quadratic.

1 pt 1. Prove that under the assumption

$$
\begin{equation*}
R \cap V=\{0\} \tag{1}
\end{equation*}
$$

there exists a linear map $\phi: q R \rightarrow V$ such that $R=\{x-\phi(x), x \in q R\}$.
For a quadratic linear data (V, R), we denote

$$
A=A(V, R):=T(V) /\langle R\rangle \quad q A:=A(V, q R)=T(V) /\langle q R\rangle
$$

In particular $q A$ is the quadratic algebra associated to the quadratic data $(V, q R)$. Under the assumption ql_{1}, we define the map $\tilde{\phi}:(q A)^{i} \rightarrow s V$ as

$$
\tilde{\phi}:(q A)^{i}=C\left(s V, s^{2} q R\right) \rightarrow s^{2} q R \xrightarrow{s^{-2}} q R \xrightarrow{\phi} V \xrightarrow{s} s V .
$$

2 pt 2. Prove that there exists a unique coderivation $d_{\phi}:(q A)^{i} \rightarrow T^{c}(s V)$ which extends the linear map $\tilde{\phi}$.

2 pt 3. Under the assumption ql_{1}, prove that if

$$
(R \otimes V+V \otimes R) \cap V^{\otimes 2} \subset q R
$$

then $\operatorname{Im}\left(d_{\phi}\right) \subset(q A)^{i} \subset T^{c}(s V)$.
The linear map d_{ϕ} then defines a coderivation on $(q A)^{i}$.
2 pt 4. Under the assumption ql_{1}, prove that if

$$
\begin{equation*}
(R \otimes V+V \otimes R) \cap V^{\otimes 2} \subset R \cap V^{\otimes 2} \tag{2}
\end{equation*}
$$

then the coderivation d_{ϕ} squares to zero, $d_{\phi}^{2}=0$.
2 pt 5. Prove that the universal enveloping algebra $U(\mathfrak{g})$ of a Lie algebra \mathfrak{g} admits a quadratic linear presentation satisfying conditions ql_{1} and ql_{2}.

Following question 4, if a quadratic linear data (V, R) satisfies conditions q1 and q1 q_{2}, we can define the Koszul dual coalgebra of $A=A(V, R)$ as the dg coalgebra

$$
A^{i}:=\left((q A)^{i}, d_{\phi}\right)=\left(C\left(s V, s^{2} q R\right), d_{\phi}\right) .
$$

6. Prove that the Koszul dual coalgebra of the universal enveloping algebra $U(\mathfrak{g})$ is the cofree cocommutative coalgebra $\Lambda^{c}(s \mathfrak{g}) \subset T^{c}(s \mathfrak{g})$ endowed with the Chevalley-Eilenberg differential

$$
d_{\phi}\left(x_{1} \wedge \cdots \wedge x_{n}\right)=\sum_{i<j}(-1)^{i+j-1}\left[x_{i}, x_{j}\right] \wedge x_{1} \wedge \cdots \wedge \hat{x_{i}} \wedge \cdots \wedge \hat{x_{j}} \wedge \cdots \wedge x_{n} .
$$

where $x_{1} \wedge \cdots \wedge x_{n}:=\sum_{\sigma \in \bigoplus_{n}} \operatorname{sgn}(\sigma) s x_{\sigma(1)} \otimes \cdots \otimes s x_{\sigma(n)}$.

Problem 2: Higher morphisms between A_{∞}-algebras (26 Pt)

For $n \geqslant 0$, we define Δ^{n} to be the graded vector space

$$
\Delta^{n}=\bigoplus_{0 \leqslant i_{0}<\cdots<i_{k} \leqslant n} \mathbb{K}\left[i_{0}<\cdots<i_{k}\right]
$$

generated by the increasing sequences of $[[0, n]]$. Its grading is defined as

$$
\left|\left[i_{0}<\cdots<i_{k}\right]\right|=k .
$$

We endow this graded vector space with the following degree -1 and degree 0 linear maps:

$$
\begin{aligned}
\partial_{\Delta^{n}}\left(\left[i_{0}<\cdots<i_{k}\right]\right):=\sum_{j=0}^{k}(-1)^{j}\left[i_{0}<\cdots<\widehat{i_{j}}<\cdots<i_{k}\right], \\
\Delta_{\Delta^{n}}\left(\left[i_{0}<\cdots<i_{k}\right]\right):=\sum_{j=0}^{k}\left[i_{0}<\cdots<i_{j}\right] \otimes\left[i_{j}<\cdots<i_{k}\right] .
\end{aligned}
$$

1. Prove that $\left(\Delta^{n}, \partial_{\Delta^{n}}, \Delta_{\Delta^{n}}\right)$ is a dg coalgebra.

We point out that the combinatorics of the dg coalgebra Δ^{n} can be easily understood on the standard n-simplex defined as the convex hull

$$
\Delta^{n}=\operatorname{Conv}((\underbrace{1, \ldots, 1}_{k}, 0, \ldots, 0), 0 \leqslant k \leqslant n) \subset \mathbb{R}^{n}
$$

by labeling the vertex whose first k coordinates are equal to 1 by $[k]$ and by labeling the face whose vertices are $\left[i_{0}\right], \ldots,\left[i_{k}\right]$ with $i_{0}<\cdots<i_{k}$ by $\left[i_{0}<\cdots<i_{k}\right]$. We illustrate this in Figure 1 . We will thereby sometimes denote an increasing sequence of $[[0, n]]$ as a face $I \subset \Delta^{n}$ in the rest of this problem. We then have in particular that $|I|=\operatorname{dim}(I)$.
2. Prove that for every $n \geqslant 0$ there exist morphisms of dg coalgebras

$$
\begin{aligned}
& \delta_{i}^{n}: \boldsymbol{\Delta}^{n-1} \rightarrow \boldsymbol{\Delta}^{n}, 0 \leqslant i \leqslant n, \\
& \sigma_{i}^{n}: \boldsymbol{\Delta}^{n+1} \rightarrow \boldsymbol{\Delta}^{n}, 0 \leqslant i \leqslant n,
\end{aligned}
$$

that satisfy the following equalities

$$
\begin{cases}\delta_{j} \delta_{i}=\delta_{i} \delta_{j-1} & \\ \text { for } i<j, \\ \sigma_{j} \delta_{i}=\delta_{i} \sigma_{j-1} & \\ \text { for } i<j^{\sigma_{j} \delta_{i}=\delta_{i-1} \sigma_{j}} & \\ \text { for } i>j+1 \\ \sigma_{j} \sigma_{i}=\sigma_{i} \sigma_{j+1} & \\ \text { for } i \leqslant j^{\sigma_{j} \delta_{j}=\sigma_{j} \delta_{j+1}=\mathrm{id}} & \end{cases}
$$

where we omit the upper script n in σ_{i} and δ_{i}.
We then say that the collection of dg coalgebras $\left\{\boldsymbol{\Delta}^{n}\right\}_{n \geqslant 0}$ forms a cosimplicial dg coalgebra.
1 pt 3. Let C and C^{\prime} be two dg coalgebras. Prove that their tensor product $C \otimes C^{\prime}$ can naturally be endowed with a dg coalgebra structure.

Let $f_{0}, f_{1}: C \rightarrow C^{\prime}$ be two morphisms of dg coalgebras. We define a homotopy from f_{0} to f_{1} to be a degree +1 linear map $h: C \rightarrow C^{\prime}$ such that

$$
\begin{aligned}
\Delta_{C^{\prime}} h & =\left(f_{0} \otimes h+h \otimes f_{1}\right) \Delta_{C} \\
{[\partial, h] } & =f_{1}-f_{0},
\end{aligned}
$$

where we recall that for a linear map $f: C \rightarrow C^{\prime}$ of degree $|f|$, we denote $[\partial, f]:=\partial_{C^{\prime}} f-(-1)^{|f|} f \partial_{C}$.
2 pt 4. Prove that the data of two morphisms of dg coalgebras $f_{0}, f_{1}: C \rightarrow C^{\prime}$ and of a homotopy between them is equivalent to the datum of a morphism of dg coalgebras $\Delta^{1} \otimes C \rightarrow C^{\prime}$.

2 pt 5. Prove that the datum of a morphism of dg coalgebras $\Delta^{n} \otimes C \rightarrow C^{\prime}$ is equivalent to the data of linear maps $f_{\left[i_{0}<\cdots<i_{k}\right]}: C \rightarrow C^{\prime}$ of degree k for every $\left[i_{0}<\cdots<i_{k}\right] \subset \Delta^{n}$, that satisfy the following equations:

$$
\begin{aligned}
{\left[\partial, f_{\left[i_{0}<\cdots<i_{k}\right]}\right] } & =\sum_{j=0}^{k}(-1)^{j} f_{\left[i_{0}<\cdots<\hat{i}_{j}<\cdots<i_{k}\right]}, \\
\Delta_{C^{\prime}} f_{\left[i_{0}<\cdots<i_{k}\right]} & =\sum_{j=0}^{k}\left(f_{\left[i_{0}<\cdots<i_{j}\right]} \otimes f_{\left[i_{j}<\cdots<i_{k}\right]}\right) \Delta_{C} .
\end{aligned}
$$

We recall that an A_{∞}-algebra structure on a dg vector space A can be defined as a codifferential D_{A} on the reduced tensor coalgebra $\bar{T}(s A)$ such that the restriction of D to the summand $s A$ is equal to $\partial_{s A}$. An A_{∞}-morphism between two A_{∞}-algebras A and B can then be defined as a morphism of dg coalgebras $\left(\bar{T}(s A), D_{A}\right) \rightarrow\left(\bar{T}(s B), D_{B}\right)$.
3 pt 6. Prove that an homotopy H between two A_{∞}-morphisms $F, G:\left(\bar{T}(s A), D_{A}\right) \rightarrow\left(\bar{T}(s B), D_{B}\right)$ can be equivalently defined as a collection of linear maps $h_{n}: A^{\otimes n} \rightarrow B$ of degree $-n$ for $n \geqslant 1$
such that

$$
\begin{aligned}
{\left[\partial, h_{n}\right]=} & g_{n}-f_{n}+\sum_{\substack{i_{1}+i_{2}+i_{3}=n \\
i_{2} \geqslant 2}} \pm h_{i_{1}+1+i_{3}}\left(\mathrm{id}^{\otimes i_{1}} \otimes m_{i_{2}}^{A} \otimes \mathrm{id}^{\otimes i_{3}}\right) \\
& +\sum_{\substack{i_{1}+\cdots+i_{s}+l \\
+j_{1}+\ldots+j_{t}=n \\
s+1+t \geqslant 2}} \pm m_{s+1+t}^{B}\left(f_{i_{1}} \otimes \cdots \otimes f_{i_{s}} \otimes h_{l} \otimes g_{j_{1}} \otimes \cdots \otimes g_{j_{t}}\right)
\end{aligned}
$$

where m_{n}^{A} and m_{n}^{B} are the operations of the A_{∞}-algebras A and B, and $f_{n}, g_{n}: A^{\otimes n} \rightarrow B$ are the operations of the A_{∞}-morphisms F and G. (The explicit signs need not be computed)

Let I be a face of Δ^{n}. An overlapping s-partition of I is defined to be a sequence of faces $\left(I_{l}\right)_{1 \leqslant \ell \leqslant s}$ of I such that
(i) the union of this sequence of faces (seen as increasing sequences of $[[0, n]])$ is I, i.e. $\cup_{1 \leqslant \ell \leqslant s} I_{l}=I$;
(ii) for all $1 \leqslant \ell<s, \max \left(I_{\ell}\right)=\min \left(I_{\ell+1}\right)$.

An overlapping 6-partition for $[0<1<2]$ is for instance

$$
[0<1<2]=[0] \cup[0] \cup[0<1] \cup[1] \cup[1<2] \cup[2] .
$$

An overlapping 3-partition for $[0<1<2<3<4<5]$ is for instance

$$
[0<1<2<3<4<5]=[0<1] \cup[1<2<3] \cup[3<4<5] .
$$

7. Let A and B be two A_{∞}-algebras. Prove that a morphism of dg coalgebras $\Delta^{n} \otimes \bar{T}(s A) \rightarrow$ $\bar{T}(s B)$ is equivalent to a collection of linear maps $f_{I}^{(m)}: A^{\otimes m} \longrightarrow B$ of degree $1-m+|I|$ for $I \subset \Delta^{n}$ and $m \geqslant 1$, that satisfy

$$
\begin{aligned}
& {\left[\partial, f_{I}^{(m)}\right]=} \sum_{j=0}^{\operatorname{dim}(I)}(-1)^{j} f_{\partial_{j} I}^{(m)} \\
&+(-1)^{|I|} \sum_{\substack{i_{1}+i_{2}+i_{3}=m \\
i_{2} \geq 2}} \pm f_{I}^{\left(i_{1}+1+i_{3}\right)}\left(\mathrm{id}^{\otimes i_{1}} \otimes m_{i_{2}}^{A} \otimes \mathrm{id}^{\otimes i_{3}}\right) \\
&+\sum_{\substack{i_{1}+\cdots+i_{s}=m \\
I_{1} \cup \ldots \cup s_{s}=I \\
s \geqslant 2}} \pm m_{s}^{B}\left(f_{I_{1}}^{\left(i_{1}\right)} \otimes \cdots \otimes f_{I_{s}}^{\left(i_{s}\right)}\right),
\end{aligned}
$$

where the last sum runs over all overlapping s-partitions $I_{1} \cup \cdots \cup I_{s}=I$ of I for $s \geqslant 2$. A morphism of dg coalgebras $\Delta^{n} \otimes \bar{T}(s A) \rightarrow \bar{T}(s B)$ will be called a n-morphism from A to B.
8. (\star) Compute the explicit signs in the equations of question 7.

We define the (k, n)-horn Λ_{n}^{k} to be the simplicial subcomplex of the standard n-simplex Δ^{n} obtained by removing the face $[0<\cdots<n]$ as well as the face $[0<\cdots<\hat{k}<\cdots<n]$ in Δ^{n}. This is illustrated in Figure 2. $A(k, n)$-horn of higher morphisms between two A_{∞}-algebras A and B is then defined to be a collection of operations $f_{I}^{(m)}: A^{\otimes m} \longrightarrow B$ of degree $1-m+|I|$ for $I \subset \Lambda_{n}^{k}$ and $m \geqslant 1$ that satisfy the equations of question 7 .
9. ($\star \star$) Prove that for all $0<k<n$, every (k, n)-horn of higher morphisms from A to B can
be filled to a n-morphism from A to B.
In other words, we have proven that the simplicial set of higher morphisms from A to B

$$
\operatorname{HOM}_{\infty-\mathrm{A}_{\infty-\mathrm{alg}}}(A, B)_{n}:=\operatorname{Hom}_{\mathrm{dg}} \operatorname{cog}\left(\Delta^{n} \otimes \bar{T}(s A), \bar{T}(s B)\right)
$$

is an ∞-category.

Figure 1. The standard 2-simplex Δ^{2}

The (1,2)-horn $\Lambda_{2}^{1} \subset \Delta^{2}$

The (0,2)-horn $\Lambda_{2}^{0} \subset \Delta^{2}$

Figure 2

