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The results presented in this talk are taken from my two recent
papers : Higher algebra of A∞ and ΩBAs-algebras in Morse theory
I (arXiv:2102.06654) and Higher algebra of A∞ and ΩBAs-algebras
in Morse theory II (arxiv:2102.08996).
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Suspension : Let A be a graded module (over the ring Z). We
denote sA, the suspension of A to be the graded module defined by
(sA)i := Ai−1.

Cohomological conventions : differentials will have degree +1.
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Definition
Let A be a dg-module with differential m1. An A∞-algebra
structure on A is the data of a collection of maps of degree 2− n

mn : A⊗n −→ A , n ⩾ 1,

extending m1 and which satisfy

[m1,mn] =
∑

i1+i2+i3=n
2⩽i2⩽n−1

±mi1+1+i3(id
⊗i1 ⊗mi2 ⊗ id⊗i3).

These equations are called the A∞-equations.
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Representing mn as a corolla of arity n, these equations can
be written as

[m1, ] =
∑

i1+i2+i3=n
2≤i2≤n−1

± i1

i2

i3 .
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In particular,

[m1,m2] = 0 ,

[m1,m3] = m2(id⊗m2 −m2 ⊗ id) ,

implying that m2 descends to an associative product on H∗(A). An
A∞-algebra is thus simply a correct notion of a dg-algebra whose
product is associative up to homotopy.

The operations mn are the higher coherent homotopies which keep
track of the fact that the product is associative up to homotopy.

Thibaut Mazuir Higher algebra of A∞-algebras and the n-multiplihedra



A∞-algebras and A∞-morphisms
Higher algebra of A∞-algebras

The n-multiplihedra
Higher morphisms in Morse theory

A∞-algebras
A∞-morphisms
Homotopy theory of A∞-algebras

Define the reduced tensor coalgebra of a graded module V to be

TV := V ⊕ V⊗2 ⊕ · · ·

endowed with the coassociative comultiplication

∆TV (v1 . . . vn) :=
n−1∑
i=1

v1 . . . vi ⊗ vi+1 . . . vn .
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Using the universal property of the bar construction, we have the
following one-to-one correspondence

collections of morphisms of degree 2− n
mn : A⊗n → A , n ⩾ 1,

satisfying the A∞-equations


←→

{
coderivations D of degree +1 of T (sA)

such that D2 = 0

}
.
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Definition
An A∞-morphism between two A∞-algebras A and B is a family of
maps fn : A⊗n → B of degree 1− n satisfying

[m1, fn] =
∑

i1+i2+i3=n
i2⩾2

±fi1+1+i3(id
⊗i1 ⊗mi2 ⊗ id⊗i3)

+
∑

i1+···+is=n
s⩾2

±ms(fi1 ⊗ · · · ⊗ fis ) .
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Representing the operations fn as , the operations mA
n in red

and the operations mB
n in blue, these equations read as

[
∂,

]
=

∑
i1+i2+i3=n

i2≥2

± i1

i2

i3 +
∑

i1+···+is=n
s≥2

±

i1 is

.
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We check that [∂, f2] = f1m
A
2 −mB

2 (f1 ⊗ f1) .

An A∞-morphism between A∞-algebras induces a morphism of
associative algebras on the level of cohomology, and is a correct
notion of morphism which preserves the product up to homotopy.
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Using the universal property of the bar construction, an
A∞-morphism between two A∞-algebras A and B can be
equivalently defined as a dg-coalgebra morphism
F : (T (sA),DA)→ (T (sB),DB) between their shifted bar
constructions.
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Given two coalgebra morphisms F : TV → TW and
G : TW → TZ , the family of morphisms associated to G ◦ F is
given by

(G ◦ F )n =
∑

i1+···+is=n

±gs(fi1 ⊗ · · · ⊗ fis ) .

Equivalently,

(G ◦ F )n =
∑

i1+···+is=n

±

i1 is

. (1)

Thibaut Mazuir Higher algebra of A∞-algebras and the n-multiplihedra



A∞-algebras and A∞-morphisms
Higher algebra of A∞-algebras

The n-multiplihedra
Higher morphisms in Morse theory

A∞-algebras
A∞-morphisms
Homotopy theory of A∞-algebras

A∞-algebras together with A∞-morphisms form a category,
denoted A∞ − alg, which can be seen as a full subcategory of
dg− Cogc of cocomplete dg-coalgebras, using the shifted bar
construction viewpoint.
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The category A∞ − alg provides a framework that behaves well
with respect to homotopy-theoretic constructions, when studying
homotopy theory of associative algebras. See for instance [LH02]
and [Val20].

Thibaut Mazuir Higher algebra of A∞-algebras and the n-multiplihedra



A∞-algebras and A∞-morphisms
Higher algebra of A∞-algebras

The n-multiplihedra
Higher morphisms in Morse theory

A∞-algebras
A∞-morphisms
Homotopy theory of A∞-algebras

It is because this category is encoded by the two-colored operad

A2
∞ := F( , , , · · · , , , , · · · , , , , , · · · ) .

It is a quasi-free object in the model category of two-colored
operads in dg-modules and a fibrant-cofibrant replacement of the
two-colored operad As2, which encodes associative algebras with
morphisms of algebras,

A2
∞−̃→As2 .
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Theorem (Homotopy transfer theorem)

Let (A, ∂A) and (H, ∂H) be two cochain complexes. Suppose that
H is a deformation retract of A, that is that they fit into a diagram

(A, ∂A) (H, ∂H) ,h
p

i

where idA − ip = [∂, h]. Then if (A, ∂A) is endowed with an
A∞-algebra structure, H can be made into an A∞-algebra such
that i and p extend to A∞-morphisms.
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Our goal now : study the higher algebra of A∞-algebras.

Considering two A∞-morphisms F ,G , we would like first to
determine a notion giving a satisfactory meaning to the sentence
"F and G are homotopic". Then, A∞-homotopies being defined,
what is now a good notion of a homotopy between homotopies ?
And of a homotopy between two homotopies between homotopies ?
And so on.
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Start with a notion of homotopy. Drawn from [LH02].

Take C and C ′ two dg-coalgebras, F and G morphisms C → C ′ of
dg-coalgebras. A (F ,G )-coderivation is a map H : C → C ′ such
that

∆C ′H = (F ⊗ H + H ⊗ G )∆C .

The morphisms F and G are then said to be homotopic if there
exists a (F ,G )-coderivation H of degree -1 such that

[∂,H] = G − F .
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Define
∆∆∆1 := Z[0]⊕ Z[1]⊕ Z[0 < 1] ,

with differential ∂sing

∂sing ([0 < 1]) = [1]− [0] ∂sing ([0]) = 0 ∂sing ([1]) = 0 ,

and coproduct the Alexander-Whitney coproduct

∆∆∆∆1([0 < 1]) = [0]⊗ [0 < 1] + [0 < 1]⊗ [1]
∆∆∆∆1([0]) = [0]⊗ [0]
∆∆∆∆1([1]) = [1]⊗ [1] .

The elements [0] and [1] have degree 0, and the element [0 < 1]
has degree −1.
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We check that there is a one-to-one correspondence between
(F ,G )-coderivations and morphisms of dg-coalgebras
∆∆∆1 ⊗ C −→ C ′.
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Definition

For two A∞-algebras (T (sA),DA) and (T (sB),DB) and two
A∞-morphisms F ,G : (T (sA),DA)→ (T (sB),DB), an
A∞-homotopy from F to G is defined to be a morphism of
dg-coalgebras

H : ∆∆∆1 ⊗ T (sA) −→ T (sB) ,

whose restriction to the [0] summand is F and whose restriction to
the [1] summand is G .
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Definition
An A∞-homotopy between two A∞-morphisms (fn)n⩾1 and (gn)n⩾1
is a collection of maps

hn : A⊗n −→ B ,

of degree −n, satisfying

[∂, hn] =gn − fn +
∑

i1+i2+i3=m
i2⩾2

±hi1+1+i3(id
⊗i1 ⊗mi2 ⊗ id⊗i3)

+
∑

i1+···+is+l
+j1+···+jt=n
s+1+t⩾2

±ms+1+t(fi1 ⊗ · · · ⊗ fis ⊗ hl ⊗ gj1 ⊗ · · · ⊗ gjt ) .
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In symbolic formalism,

[∂,
[0 < 1]

] =
[1]

−
[0]

+
∑
±

[0 < 1]

+
∑
± [1][1][0 < 1][0][0]

[0] [1]

,

where we denote
[0] ,

[0 < 1] and
[1] respectively for

the fn, the hn and the gn.

Thibaut Mazuir Higher algebra of A∞-algebras and the n-multiplihedra



A∞-algebras and A∞-morphisms
Higher algebra of A∞-algebras

The n-multiplihedra
Higher morphisms in Morse theory

A∞-homotopies
Higher morphisms between A∞-algebras
The HOM-simplicial sets HOMA∞−alg(A, B)•
A simplicial enrichment of the category A∞ − alg ?

The relation being A∞-homotopic on the class of A∞-morphisms is
an equivalence relation. It is moreover stable under composition.
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Define ∆∆∆n the graded module generated by the faces of the
standard n-simplex ∆n,

∆∆∆n =
⊕

0⩽i1<···<ik⩽n

Z[i1 < · · · < ik ] .

The grading is |I | := −dim(I ) for I ⊂ ∆n.
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It has a dg-coalgebra structure, with differential

∂∆∆∆n([i1 < · · · < ik ]) :=
k∑

j=1

(−1)j [i1 < · · · < îj < · · · < ik ] ,

and coproduct the Alexander-Whitney coproduct

∆∆∆∆n([i1 < · · · < ik ]) :=
k∑

j=1

[i1 < · · · < ij ]⊗ [ij < · · · < ik ] .
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Definition ([MS03])

Let I be a face of ∆n. An overlapping partition of I to be a
sequence of faces (Il)1⩽ℓ⩽s of I such that
(i) the union of this sequence of faces is I , i.e. ∪1⩽ℓ⩽s Il = I ;
(ii) for all 1 ⩽ ℓ < s, max(Iℓ) = min(Iℓ+1).

An overlapping 6-partition for [0 < 1 < 2] is for instance

[0 < 1 < 2] = [0] ∪ [0] ∪ [0 < 1] ∪ [1] ∪ [1 < 2] ∪ [2] .
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Overlapping partitions are the collection of faces which naturally
arise in the Alexander-Whitney coproduct.

The element ∆∆∆∆n(I ) corresponds to the sum of all overlapping
2-partitions of I . Iterating s times ∆∆∆∆n yields the sum of all
overlapping (s + 1)-partitions of I .
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We have seen that A∞-morphisms correspond to the set

Homdg−Cogc(T (sA),T (sB))

and A∞-homotopies correspond to the set

Homdg−Cogc(∆∆∆
1 ⊗ T (sA),T (sB)) ,
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Definition ([Maz21b])

We define the set of n-morphisms between A and B as

HOMA∞−alg(A,B)n := Homdg−Cogc(∆∆∆
n ⊗ T (sA),T (sB)) .
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Definition ([Maz21b])

A n-morphism from A to B is defined to be a collection of maps
f
(m)
I : A⊗m −→ B of degree 1−m + |I | for I ⊂ ∆n and m ⩾ 1,
that satisfy

[
∂, f

(m)
I

]
=

dim(I )∑
j=0

(−1)j f (m)
∂j I

+
∑

i1+···+is=m
I1∪···∪Is=I

s⩾2

±ms(f
(i1)
I1
⊗ · · · ⊗ f

(is)
Is

)

+ (−1)|I |
∑

i1+i2+i3=m
i2⩾2

±f (i1+1+i3)
I (id⊗i1 ⊗mi2 ⊗ id⊗i3) .
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Equivalently and more visually, a collection of maps I satisfying

[∂, I ] =
k∑

j=1

(−1)j
∂
sing
j I

+
∑

I1∪···∪Is=I

±
IsI1

+
∑
±

I

.

Thibaut Mazuir Higher algebra of A∞-algebras and the n-multiplihedra



A∞-algebras and A∞-morphisms
Higher algebra of A∞-algebras

The n-multiplihedra
Higher morphisms in Morse theory

A∞-homotopies
Higher morphisms between A∞-algebras
The HOM-simplicial sets HOMA∞−alg(A, B)•
A simplicial enrichment of the category A∞ − alg ?

1 A∞-algebras and A∞-morphisms

2 Higher algebra of A∞-algebras
A∞-homotopies
Higher morphisms between A∞-algebras
The HOM-simplicial sets HOMA∞−alg(A,B)•
A simplicial enrichment of the category A∞ − alg ?

3 The n-multiplihedra

4 Higher morphisms in Morse theory

Thibaut Mazuir Higher algebra of A∞-algebras and the n-multiplihedra



A∞-algebras and A∞-morphisms
Higher algebra of A∞-algebras

The n-multiplihedra
Higher morphisms in Morse theory

A∞-homotopies
Higher morphisms between A∞-algebras
The HOM-simplicial sets HOMA∞−alg(A, B)•
A simplicial enrichment of the category A∞ − alg ?

The dg-coalgebras ∆∆∆• := {∆∆∆n}n⩾0 naturally form a cosimplicial
dg-coalgebra.

The sets HOMA∞−alg(A,B)n then fit into a HOM-simplicial set
HOMA∞−alg(A,B)•. This HOM-simplicial set provides a
satisfactory framework to study the higher algebra of A∞-algebras.
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Theorem ([Maz21b])

For A and B two A∞-algebras, the simplicial set HOMA∞(A,B)• is
a Kan complex.
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Proof.
This theorem stems from the fact that the cosimplicial cocomplete
dg-coalgebra CCC := {∆∆∆n ⊗ T (sA)}n⩾0 is a cosimplicial replacement
of T (sA) in the model category dg − Cogc defined in [LH02].
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Proposition

For every inner horn Λk
n ⊂ ∆n, there is a one-to-one correspondence

fillers

Λk
n HOMA∞(A,B)•

∆n


←→

{
families of maps of degree 1−m − n

f
(m)
∆n : A⊗m → B, m ⩾ 1

}
.
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An inner horn Λk
n → HOMA∞(A,B)• corresponds to a collection of

degree 1−m − dim(I ) morphisms f
(m)
I : A⊗m −→ B for I ⊂ Λk

n

which satisfy the A∞-equations for higher morphisms.

The previous proposition then states that filling the horn Λk
n ⊂ ∆n

amounts to choosing an arbitrary collection of degree 1−m − n

morphisms f
(m)
∆n : A⊗m → B and that they completely determine

the collection of morphisms for the missing face f
(m)

[0<···<k̂<···<n]
.
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The simplicial homotopy groups of the Kan complex
HOMA∞(A,B)• can moreover be explicitly computed.

Beware that the points of these Kan complexes are the
A∞-morphisms, and the arrows between them are the
A∞-homotopies. This can be misleading at first sight, but the
points are the morphisms and NOT the algebras and the arrows are
the homotopies and NOT the morphisms.
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We would like to see the simplicial sets HOMA∞−alg(A,B)• as part
of a simplicial enrichment of the category A∞ − alg. In other
words, we would like to define simplicial maps

HOMA∞−alg(A,B)n×HOMA∞−alg(B,C )n −→ HOMA∞−alg(A,C )n ,

lifting the composition on the HOM0 = Hom.

This would then endow A∞ − alg with a structure of ∞-category.
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All the natural approaches to lift the composition in A∞ − alg to
HOMA∞−alg(A,B)• fail to work. Hence, it is still an open question
to know whether these HOM-simplicial sets could fit into a
simplicial enrichment of the category A∞ − alg.
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There exists a collection of polytopes, called the associahedra and
denoted {Kn}, which encode the A∞-equations between
A∞-algebras. This means that Kn has a unique cell [Kn] of
dimension n − 2 and that its boundary reads as

∂Kn =
⋃

i1+i2+i3=n
2⩽i2⩽n−1

Ki1+1+i3 × Ki2 ,

where × is the standard cartesian product.
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Recall that the A∞-equations read as

[m1, ] =
∑

i1+i2+i3=n
2⩽i2⩽n−1

± i1

i2

i3 .
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Figure: The associahedra K2, K3 and K4, with cells labeled by the
operations they define
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The polytopes Kn fit in fact into an operad in polytopes, whose
image under the cellular chains functor yields the operad A∞, as
proven in [MTTV19].
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There exists a collection of polytopes, called the multiplihedra and
denoted {Jn}, which encode the A∞-equations for A∞-morphisms.
Again, Jn has a unique n − 1-dimensional cell [Jn] and the
boundary of Jn is exactly

∂Jn =
⋃

i1+i2+i3=n
i2⩾2

Ji1+1+i3 × Ki2 ∪
⋃

i1+···+is=n
s⩾2

Ks × Ji1 × · · · × Jis ,

where × is the standard cartesian product ×.
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Recall that the A∞-equations for A∞-morphisms are

[
∂,

]
=

∑
i1+i2+i3=n

i2⩾2

± i1

i2

i3 +
∑

i1+···+is=n
s⩾2

±

i1 is

.
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Figure: The multiplihedra J1, J2 and J3 with cells labeled by the
operations they define in A∞ −Morph
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The polytopes Jn fit in fact into an operadic bimodule in polytopes,
whose image under the cellular chains functor yields the operad
M∞ encoding A∞-morphisms, as proven in [MLA].
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We would like to define a family of polytopes encoding
n-morphisms between A∞-algebras. These polytopes will then be
called n-multiplihedra.

We have seen that A∞-morphisms T (sA)→ T (sB) are encoded by
the multiplihedra. n-morphisms being defined as the set of
morphisms ∆∆∆n ⊗ T (sA)→ T (sB), a natural candidate would thus
be {∆n × Jm}m⩾1.
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However, ∆n × Jm does not fulfill that property as it is. Faces
correspond to the data of a face of I ⊂ ∆n, and of a broken
two-colored tree labeling a face of Jm. This labeling is too coarse,
as it does not contain the trees

IsI1

,

that appear in the A∞-equations for n-morphisms.
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We thus want to lift the combinatorics of overlapping partitions to
the level of the n-simplices ∆n.

Proposition ([Maz21b])

For each s ⩾ 1, there exists a polytopal subdivision of the standard
n-simplex ∆n whose top-dimensional cells are in one-to-one
correspondence with all s-overlapping partitions of ∆n.
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Taking the realizations

∆n := conv{(1, . . . , 1, 0, . . . , 0) ∈ Rn}
= {(z1, . . . , zn) ∈ Rn|1 ⩾ z1 ⩾ · · · ⩾ zn ⩾ 0} ,

this polytopal subdivision can be realized as the subdivision
obtained after dividing ∆n by all hyperplanes zi = (1/2)k , for
1 ⩽ i ⩽ n and 1 ⩽ k ⩽ s.
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Figure: The subdivision of ∆2 by overlapping 2-partitions
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Figure: The subdivision of ∆2 by overlapping 3-partitions
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The previous issue can then be solved by constructing a thinner
polytopal subdivision of ∆n × Jm.

Consider a face F of Jm, with exactly s unbroken two-colored trees
appearing in the two-colored broken tree labeling it. We refine the
polytopal subdivision of ∆n × F into ∆n

s × F , where ∆n
s denotes

∆n endowed with the subdivision encoding s-overlapping partitions.

Thibaut Mazuir Higher algebra of A∞-algebras and the n-multiplihedra



A∞-algebras and A∞-morphisms
Higher algebra of A∞-algebras

The n-multiplihedra
Higher morphisms in Morse theory

The associahedra
The multiplihedra
The n-multiplihedra

This refinement process can be done consistently for each face F of
Jm, in order to obtain a new polytopal subdivision of ∆n × Jm.

Definition ([Maz21b])

The n-multiplihedra are defined to be the polytopes ∆n × Jm
endowed with the previous polytopal subdivision. We denote them
n − Jm.
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Figure: The 1-multiplihedron ∆1 × J2

Thibaut Mazuir Higher algebra of A∞-algebras and the n-multiplihedra



A∞-algebras and A∞-morphisms
Higher algebra of A∞-algebras

The n-multiplihedra
Higher morphisms in Morse theory

The associahedra
The multiplihedra
The n-multiplihedra

Figure: The 2-multiplihedron ∆2 × J2
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Figure: The 1-multiplihedron ∆1 × J3
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By construction, the boundary of the cell [n − Jm] is given by

∂sing [n − Jm] ∪
⋃

h+k=m+1
1⩽i⩽k
h⩾2

[n − Jk ]×i [Kh] ∪
⋃

i1+···+is=m
I1∪···∪Is=∆n

s⩾2

[Ks ]× [dim(I1)− Ji1 ]× · · · × [dim(Is)− Jis ] ,

where I1 ∪ · · · ∪ Is = ∆n is an overlapping partition of ∆n.
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Recall that the n − A∞-equations read as

[∂, I ] =
k∑

j=1

(−1)j
∂
sing
j I

+
∑

I1∪···∪Is=I

±
IsI1

+
∑
±

I

.

In other words, the n-multiplihedra encode n-morphisms between
A∞-algebras.
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Let M be an oriented closed Riemannian manifold endowed with a
Morse function f together with a Morse-Smale metric. The Morse
cochains C ∗(f ) form a deformation retract of the singular cochains
C ∗
sing (M) as shown in [Hut08].

(C ∗
sing , ∂sing ) (C ∗(f ), ∂Morse) .h

p

i
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The cup product naturally endows the singular cochains C ∗
sing (M)

with a dg-algebra structure. The homotopy transfer theorem
ensures that it can be transferred to an A∞-algebra structure on
the Morse cochains C ∗(f ).

The differential on the Morse cochains is defined by a count of
moduli spaces of gradient trajectories. Is it then possible to define
higher multiplications mn on C ∗(f ) by a count of moduli spaces
such that they fit in a structure of A∞-algebra ?
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Question solved for the first time by Abouzaid in [Abo11], drawing
from earlier works by Fukaya ([Fuk97] for instance). See
also [Mes18] and [AL18].
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Terminology :

A ribbon tree

l1 l2

A metric ribbon tree

l1 l2

A stable metric
ribbon tree
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Define Tn to be moduli space of stable metric ribbon trees with n
incoming edges.

Allowing lengths of internal edges to go to +∞, this moduli space
can be compactified into a (n − 2)-dimensional CW-complex T n,
where Tn is seen as its unique (n − 2)-dimensional stratum.
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Theorem

The compactified moduli space T n is isomorphic as a CW-complex
to the associahedron Kn.

This was first noticed in section 1.4. of Boardman-Vogt [BV73].
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Figure: The compactified moduli space T 3
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Figure: The compactified moduli space T 4
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Definition
A stable two-colored metric ribbon tree or stable gauged metric
ribbon tree is defined to be a stable metric ribbon tree together
with a length λ ∈ R, which is to be thought of as a gauge drawn
over the metric tree, at distance λ from its root, where the positive
direction is pointing down.

λl

l2

l1 l3

l1 = l3
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For n ⩾ 1, denote CT n the moduli space of stable two-colored
metric ribbon trees.

Allowing again internal edges of metric trees to go to +∞, this
moduli space CT n can be compactified into a (n − 1)-dimensional
CW-complex CT n.

l2

l1 l3 l2 −→ +∞ l1 l3
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l2

l1 l3 l1 = l3 −→ +∞

l2

Theorem ([MW10])

The compactified moduli space CT n is isomorphic as a
CW-complex to the multiplihedron Jn.
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λ

λ

The compactified moduli space CT 2 with its cell decomposition by stable
two-colored ribbon tree type
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The compactified moduli space CT 3 with its cell decomposition by stable
two-colored ribbon tree type
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These moduli spaces of metric trees can be realized in Morse
theory, as moduli spaces of perturbed Morse gradient trees.

x1

−∇f

−∇f

x3

−∇f

y

−∇f

x2

−∇f

Perturbing the gradient vector field
around each vertex of the tree

x1

−∇f

−∇f

x3

−∇f

y

−∇f

x2

−∇f

−∇f + X

−∇f + X
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A generic choice of perturbation data on the moduli spaces Tm
defines an A∞-algebra structure on the Morse cochains C ∗(f ),
whose operation of arity n is defined by counting the points of
0-dimensional moduli spaces of perturbed Morse trees of arity n.
([Maz21a])

In a similar fashion, a generic choice of perturbation data on the
moduli spaces CT m defines an A∞-morphism between the Morse
cochains C ∗(f ) and C ∗(g), whose operations are defined by
counting the points of 0-dimensional moduli spaces of perturbed
2-colored Morse trees. ([Maz21a])
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Finally, a generic choice of perturbation data on ∆n × CT m, i.e. a
n-simplex of perturbation data on the moduli spaces CT m, defines
a n-morphism between the Morse cochains C ∗(f ) and C ∗(g),
whose operations are again defined by counting perturbed Morse
trees. ([Maz21b])

These higher morphisms between Morse cochain complexes will be
called geometric.
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Theorem ([Maz21b])

The geometric n-morphisms fit into a simplicial set

HOMgeom
A∞

(C ∗(f ),C ∗(g))• ⊂ HOMA∞(C ∗(f ),C ∗(g))• ,

which is a Kan complex and is moreover contractible.
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Corollary ([Maz21b])

Two geometric A∞-morphisms between Morse cochain complexes
are always A∞-homotopic.

The previous theorem gives in fact a higher categorical meaning to
the fact that continuation morphisms in Morse theory are
well-defined up to homotopy at chain level.
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1. It is also quite clear that given two compact symplectic
manifolds M and N, one should be able to construct n-morphisms
between their Fukaya categories Fuk(M) and Fuk(N) through
counts of moduli spaces of quilted disks (under the correct
technical assumptions).
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2. Another interesting question would be to know which higher
algebra arises from realizing moduli spaces of multigauged metric
trees in Morse theory.

This question might in fact exhibit some links between the
n-multiplihedra and the 2-associahedra of Bottman (see [Bot19a]
and [Bot19b] for instance).
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Thanks for your attention !
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