Higher algebra of A_{∞}-algebras and the n-multiplihedra

Thibaut Mazuir

IMJ-PRG - Sorbonne Université
Séminaire de Topologie algébrique du LAGA 18 Mars 2021

The results presented in this talk are taken from my two recent papers: Higher algebra of A_{∞} and $\Omega B A s$-algebras in Morse theory I (arXiv:2102.06654) and Higher algebra of A_{∞} and $\Omega B A s$-algebras in Morse theory II (arxiv:2102.08996).

The talk will be divided in three parts : recollections on A_{∞}-algebras and A_{∞}-morphisms ; definition of higher morphisms between A_{∞}-algebras, or $n-A_{\infty}$-morphisms, and their properties; definition of the n-multiplihedra, which are new families of polytopes generalizing the standard multiplihedra and which encode $n-A_{\infty}$-morphisms between A_{∞}-algebras.
A_{∞}-algebras
A_{∞}-morphisms
The operadic viewpoint
Homotopy theory of A_{∞}-algebras
(1) A_{∞}-algebras and A_{∞}-morphisms
(2) Higher algebra of A_{∞}-algebras
(3) The n-multiplihedra

The material presented in this first part is standard and was drawn from [LV12], [Val14] and [LH02].

Suspension : Let A be a graded \mathbb{Z}-module. We denote $s A$, the suspension of A to be the graded \mathbb{Z}-module defined by $(s A)^{i}:=A^{i-1}$. In other words, for $a \in A,|s a|=|a|-1$. For instance, a degree $2-n$ map $A^{\otimes n} \rightarrow A$ is equivalent to a degree +1 map $(s A)^{\otimes n} \rightarrow s A$.

Cohomological conventions: differentials will have degree +1 .
A_{∞}-algebras
A_{∞}-morphisms
The operadic viewpoint
Homotopy theory of A_{∞}-algebras
(1) A_{∞}-algebras and A_{∞}-morphisms

- A_{∞}-algebras
- A_{∞}-morphisms
- The operadic viewpoint
- Homotopy theory of A_{∞}-algebras
(2) Higher algebra of A_{∞}-algebras
(3) The n-multiplihedra
A_{∞}-algebras
A_{∞}-morphisms
The operadic viewpoint
Homotopy theory of A_{∞}-algebras

Definition

Let A be a dg-Z \mathbb{Z}-module with differential m_{1}. An A_{∞}-algebra structure on A is the data of a collection of maps of degree $2-n$

$$
m_{n}: A^{\otimes n} \longrightarrow A, n \geqslant 1
$$

extending m_{1} and which satisfy

$$
\left[m_{1}, m_{n}\right]=\sum_{\substack{i_{1}+i_{2}+i_{3}=n \\ 2 \leqslant i_{2} \leqslant n-1}} \pm m_{i_{1}+1+i_{3}}\left(\mathrm{id}^{\otimes i_{1}} \otimes m_{i_{2}} \otimes \mathrm{id}^{\otimes i_{3}}\right) .
$$

These equations are called the A_{∞}-equations.
A_{∞}-algebras
A_{∞}-morphisms
The operadic viewpoint
Homotopy theory of A_{∞}-algebras

Representing m_{n} as
${ }^{12} \psi^{n}$, these equations can be written as

In particular,

$$
\begin{aligned}
& {\left[m_{1}, m_{2}\right]=0} \\
& {\left[m_{1}, m_{3}\right]=m_{2}\left(\mathrm{id} \otimes m_{2}-m_{2} \otimes \mathrm{id}\right),}
\end{aligned}
$$

implying that m_{2} descends to an associative product on $H^{*}(A)$. An A_{∞}-algebra is thus simply a correct notion of a dg-algebra whose product is associative up to homotopy.

The operations m_{n} are the higher coherent homotopies which keep track of the fact that the product is associative up to homotopy.
A_{∞}-algebras
A_{∞}-morphisms
The operadic viewpoint
Homotopy theory of A_{∞}-algebras
A_{∞}-algebras can also be defined using the shifted bar construction.

The reduced tensor coalgebra, or bar construction, of a graded \mathbb{Z}-module V is defined to be

$$
\bar{T} V:=V \oplus V^{\otimes 2} \oplus \cdots
$$

endowed with the coassociative comultiplication

$$
\Delta_{\bar{T} V}\left(v_{1} \ldots v_{n}\right):=\sum_{i=1}^{n-1} v_{1} \ldots v_{i} \otimes v_{i+1} \ldots v_{n}
$$

Then for a graded \mathbb{Z}-module A, we can check that there is a one-to-one correspondence

Denoting $b_{n}:(s A)^{\otimes n} \rightarrow s A$ the degree +1 maps which determine the coderivation $D: \bar{T}(s A) \rightarrow \bar{T}(s A)$ (universal property of the bar construction), check that the restriction of D to the $(s A)^{\otimes n}$ summand is given by

$$
\sum_{i_{1}+i_{2}+i_{3}=n} \pm \mathrm{id}^{\otimes i_{1}} \otimes b_{i_{2}} \otimes \mathrm{id}^{\otimes i_{3}}
$$

and that the equation $D^{2}=0$ is equivalent to the A_{∞}-equations for the maps b_{n}.

This one-to-one correspondence yields an equivalent definition for A_{∞}-algebras.
A_{∞}-algebras
A_{∞}-morphisms
The operadic viewpoint
Homotopy theory of A_{∞}-algebras
(1) A_{∞}-algebras and A_{∞}-morphisms

- A_{∞}-algebras
- A_{∞}-morphisms
- The operadic viewpoint
- Homotopy theory of A_{∞}-algebras
(2) Higher algebra of A_{∞}-algebras
(3) The n-multiplihedra

Definition

An A_{∞}-morphism between two A_{∞}-algebras A and B is a dg-coalgebra morphism $F:\left(\bar{T}(s A), D_{A}\right) \rightarrow\left(\bar{T}(s B), D_{B}\right)$ between their shifted bar constructions.

As previously, one-to-one correspondence

$$
\begin{aligned}
& \left\{\begin{array}{c}
\text { collections of morphisms of degree } 1-n \\
f_{n}: A^{\otimes n} \rightarrow B, n \geqslant 1
\end{array}\right\} \\
& \longleftrightarrow\left\{\begin{array}{c}
\text { morphisms of graded coalgebras } \\
F: \bar{T}(s A) \rightarrow \bar{T}(s B)
\end{array}\right\}
\end{aligned}
$$

A_{∞}-algebras and A_{∞}-morphisms
Higher algebra of A_{∞}-algebras The n-multiplihedra

A_{∞}-algebras

A_{∞}-morphisms
The operadic viewpoint
Homotopy theory of A_{∞}-algebras

Component of F mapping $(s A)^{\otimes n}$ to $(s B)^{\otimes s}$ given by

$$
\sum_{i_{1}+\cdots+i_{s}=n} \pm f_{i_{1}} \otimes \cdots \otimes f_{i_{s}} .
$$

A coalgebra morphism preserves the differential if and only if

$$
\begin{align*}
& \sum_{i_{1}+i_{2}+i_{3}=n} \pm f_{i_{1}+1+i_{3}}\left(\mathrm{id}^{\otimes i_{1}} \otimes m_{i_{2}}^{A} \otimes \mathrm{id}^{\otimes i_{3}}\right) \\
= & \sum_{i_{1}+\cdots+i_{s}=n} \pm m_{s}^{B}\left(f_{i_{1}} \otimes \cdots \otimes f_{i_{s}}\right)
\end{align*}
$$

This yields an equivalent definition with operations for A_{∞}-morphisms :

Definition

An A_{∞}-morphism between two A_{∞}-algebras A and B is a family of maps $f_{n}: A^{\otimes n} \rightarrow B$ of degree $1-n$ satisfying

$$
\begin{aligned}
{\left[m_{1}, f_{n}\right]=} & \sum_{\substack{i_{1}+i_{2}+i_{3}=n \\
i_{2} \geqslant 2}} \pm f_{i_{1}+1+i_{3}}\left(\mathrm{id}^{\otimes i_{1}} \otimes m_{i_{2}} \otimes \mathrm{id}^{\otimes i_{3}}\right) \\
& +\sum_{\substack{i_{1}+\cdots+i_{s}=n \\
s \geqslant 2}} \pm m_{s}\left(f_{i_{1}} \otimes \cdots \otimes f_{i_{s}}\right)
\end{aligned}
$$

A_{∞}-algebras and A_{∞}-morphisms
Higher algebra of A_{∞}-algebras The n-multiplihedra

A_{∞}-algebras

A_{∞}-morphisms
The operadic viewpoint
Homotopy theory of A_{∞}-algebras

Representing the operations f_{n} as Ψ, the operations m_{n}^{A} in red and the operations m_{n}^{B} in blue, these equations read as

We check that $\left[\partial, f_{2}\right]=f_{1} m_{2}^{A}-m_{2}^{B}\left(f_{1} \otimes f_{1}\right)$.
An A_{∞}-morphism between A_{∞}-algebras induces a morphism of associative algebras on the level of cohomology, and is a correct notion of morphism which preserves the product up to homotopy.

```
A
A\infty-morphisms
The operadic viewpoint
Homotopy theory of }\mp@subsup{A}{\infty}{}\mathrm{ -algebras
```

Given two coalgebra morphisms $F: \bar{T} V \rightarrow \bar{T} W$ and $G: \bar{T} W \rightarrow \bar{T} Z$, the family of morphisms associated to $G \circ F$ is given by

$$
(G \circ F)_{n}:=\sum_{i_{1}+\cdots+i_{s}=n} \pm g_{s}\left(f_{i_{1}} \otimes \cdots \otimes f_{i_{s}}\right) .
$$

This formula defines the composition of A_{∞}-morphisms. Hence, A_{∞}-algebras together with A_{∞}-morphisms form a category, denoted $A_{\infty}-a l g$. This category can be seen as a full subcategory of $\mathrm{dg}-\operatorname{cog}$ using the shifted bar construction viewpoint.
(1) A_{∞}-algebras and A_{∞}-morphisms

- A_{∞}-algebras
- A_{∞}-morphisms
- The operadic viewpoint
- Homotopy theory of A_{∞}-algebras
(2) Higher algebra of A_{∞}-algebras
(3) The n-multiplihedra

Let \mathcal{C} be one the two following monoidal categories: the category ($\mathrm{dg}-\mathbb{Z}-\bmod , \otimes$) or the category of polytopes (Poly, \times).

Definition

A \mathcal{C}-operad P is the data of a collection of objects $\left\{P_{n}\right\}_{n \geqslant 1}$ of \mathcal{C} together with a unit element $e \in P_{1}$ and with compositions

$$
P_{k} \otimes P_{i_{1}} \otimes \cdots \otimes P_{i_{k}} \xrightarrow[c_{i_{1}, \ldots, i_{k}}^{\longrightarrow}]{\longrightarrow} P_{i_{1}+\cdots+i_{k}}
$$

which are unital and associative.
The objects P_{n} are to be thought as spaces encoding arity n operations while the compositions $c_{i_{1}}, \ldots, i_{k}$ define how to compose these operations together.

Let A be a dg- \mathbb{Z}-module and $n \geqslant 1$. The space of graded maps $\operatorname{Hom}\left(A^{\otimes n}, A\right)$ is a graded \mathbb{Z}-module, and the collection of spaces $\operatorname{Hom}(A):=\operatorname{Hom}\left(A^{\otimes n}, A\right)$ can naturally be endowed with an operad structure (compositions are defined as one expects).

For P be a ($\mathrm{dg}-\mathbb{Z}$-mod)-operad, a structure of P-algebra on A is defined to be the datum of a morphism of operads

$$
P \longrightarrow \operatorname{Hom}(A)
$$

In other words, of a way to interpret each operation of P_{n} in $\operatorname{Hom}\left(A^{\otimes n}, A\right)$, such that abstract composition in P coincides with actual composition in $\operatorname{Hom}(A)$.

Consider $\left\{P_{n}\right\}_{n \geqslant 1}$ and $\left\{Q_{n}\right\}_{n \geqslant 1}$ two operads, and $\left\{R_{n}\right\}_{n \geqslant 1}$ a collection of spaces of operations.

Definition

A (P, Q)-operadic bimodule structure on R is the data of action-composition maps

$$
\begin{aligned}
& R_{k} \otimes Q_{i_{1}} \otimes \cdots \otimes Q_{i_{k}} \underset{\mu_{i_{1}, \ldots, i_{k}}^{\longrightarrow}}{\longrightarrow} R_{i_{1}+\cdots+i_{k}}, \\
& P_{h} \otimes R_{j_{1}} \otimes \cdots \otimes R_{j_{h}} \underset{\lambda_{j_{1}, \ldots, j_{h}}^{\longrightarrow}}{ } R_{j_{1}+\cdots+j_{h}},
\end{aligned}
$$

which are compatible with one another, with identities, and with compositions in P and Q.

Let A and B be two dg-Z -modules. We have seen that they each determine an operad, $\operatorname{Hom}(A)$ and $\operatorname{Hom}(B)$ respectively. The collection of spaces $\operatorname{Hom}(A, B):=\left\{\operatorname{Hom}\left(A^{\otimes n}, B\right)\right\}_{n \geqslant 1}$ in dg - \mathbb{Z}-modules is then a $(\operatorname{Hom}(B), \operatorname{Hom}(A))$-operadic bimodule where the action-composition maps are defined as one could expect.

The structure of A_{∞}-algebra is governed by the operad A_{∞} : the quasi-free $\mathrm{dg}-\mathbb{Z}-$ mod-operad

$$
A_{\infty}:=\mathcal{F}(Y, Y, \Psi, \cdots)
$$

generated in arity n by one operation $\Psi^{12}{ }^{n}$ of degree $2-n$ and whose differential is defined by

A_{∞}-morphisms
The operadic viewpoint
Homotopy theory of A_{∞}-algebras
A_{∞}-morphisms between A_{∞}-algebras are encoded by the (A_{∞}, A_{∞})-operadic bimodule A_{∞} - Morph, defined to be the (A_{∞}, A_{∞})-operadic bimodule

$$
A_{\infty}-\operatorname{Morph}=\mathcal{F}^{A_{\infty}, A_{\infty}}(十, \Psi, \Psi, \Psi, \cdots),
$$

generated in arity n by one operation Ψ of degree $1-n$ and \ldots
A_{∞}-algebras and A_{∞}-morphisms
Higher algebra of A_{∞}-algebras
The n-multiplihedra

A_{∞}-algebras

A_{∞}-morphisms
The operadic viewpoint
Homotopy theory of A_{∞}-algebras
... whose differential is defined by

where the generating operations of the operad A_{∞} acting on the right in blue Ψ and the ones of the operad A_{∞} acting on the left in red \qquad
A_{∞}-algebras
A_{∞}-morphisms
The operadic viewpoint
Homotopy theory of A_{∞}-algebras
(1) A_{∞}-algebras and A_{∞}-morphisms

- A_{∞}-algebras
- A_{∞}-morphisms
- The operadic viewpoint
- Homotopy theory of A_{∞}-algebras
(2) Higher algebra of A_{∞}-algebras
(3) The n-multiplihedra

The category $A_{\infty}-\operatorname{alg}$ provides a framework that behaves well with respect to homotopy-theoretic constructions, when studying homotopy theory of associative algebras. See for instance [Val20] and [LH02].
A_{∞}-algebras
A_{∞}-morphisms
The operadic viewpoint
Homotopy theory of A_{∞}-algebras

It is because this category is encoded by the two-colored operad

$$
A_{\infty}^{2}:=\mathcal{F}(Y, Y, \Psi, \cdots, Y, Y, \Psi, \cdots, 十, Y, \Psi, \Psi, \cdots)
$$

It is a quasi-free object in the model category of two-colored operads in dg-Z्Z-modules and a fibrant-cofibrant replacement of the two-colored operad $A s^{2}$, which encodes associative algebras with morphisms of algebras,

$$
A_{\infty}^{2} \xrightarrow{\sim} A s^{2} .
$$

A_{∞}-algebras
A_{∞}-morphisms
The operadic viewpoint
Homotopy theory of $A_{\infty \text {-algebras }}$

Theorem (Homotopy transfer theorem)

Let $\left(A, \partial_{A}\right)$ and $\left(H, \partial_{H}\right)$ be two cochain complexes. Suppose that H is a homotopy retract of A, that is that they fit into a diagram II faut corriger ce théorème

where $\operatorname{id}_{A}-i p=[\partial, h]$ and $p i=\mathrm{id}_{H}$. Then if $\left(A, \partial_{A}\right)$ is endowed with an associative algebra structure, H can be made into an A_{∞}-algebra such that i and p extend to A_{∞}-morphisms, that are then A_{∞}-quasi-isomorphisms.
(1) A_{∞}-algebras and A_{∞}-morphisms
(2) Higher algebra of A_{∞}-algebras
(3) The n-multiplihedra

Our goal now: study the higher algebra of A_{∞}-algebras.

Higher algebra is a general term standing for all problems that involve defining coherent sets of higher homotopies (also called n-morphisms) when starting from a basic homotopy setting.

Considering two A_{∞}-morphisms F, G, we would like first to determine a notion giving a satisfactory meaning to the sentence " F and G are homotopic". Then, A_{∞}-homotopies being defined, what is now a good notion of a homotopy between homotopies ? And of a homotopy between two homotopies between homotopies? And so on.
A_{∞}-algebras and A_{∞}-morphisms Higher algebra of A_{∞}-algebras The n-multiplihedra

A_{∞}-homotopies

Higher morphisms between A_{∞}-algebras
The HOM-simplicial sets $\mathrm{HOM}_{\mathrm{A}_{\infty}-\operatorname{alg}}(A, B)$ •
A simplicial enrichment of the category $A_{\infty}-a l g$?

(1) A_{∞}-algebras and A_{∞}-morphisms

(2) Higher algebra of A_{∞}-algebras

- A_{∞}-homotopies
- Higher morphisms between A_{∞}-algebras
- The HOM-simplicial sets $\mathrm{HOM}_{\mathrm{A}_{\infty}-\mathrm{alg}}(A, B)$.
- A simplicial enrichment of the category $\mathrm{A}_{\infty}-\mathrm{alg}$?
(3) The n-multiplihedra

Start with a notion of homotopy. Drawn from [LH02]. Pas le premier: Guggenheim ? Munkolm ? cité dans LH ?

Take C and C^{\prime} two dg-coalgebras, F and G morphisms $C \rightarrow C^{\prime}$ of dg-coalgebras. A (F, G)-coderivation is a map $H: C \rightarrow C^{\prime}$ such that

$$
\Delta_{C^{\prime}} H=(F \otimes H+H \otimes G) \Delta_{C} .
$$

The morphisms F and G are then said to be homotopic if there exists a (F, G)-coderivation H of degree -1 such that

$$
[\partial, H]=G-F .
$$

Define

$$
\Delta^{1}:=\mathbb{Z}[0] \oplus \mathbb{Z}[1] \oplus \mathbb{Z}[0<1]
$$

with differential $\partial^{\text {sing }}$

$$
\partial^{\text {sing }}([0<1])=[1]-[0] \quad \partial^{\text {sing }}([0])=0 \quad \partial^{\text {sing }}([1])=0,
$$

and coproduct the Alexander-Whitney coproduct

$$
\begin{aligned}
\Delta_{\boldsymbol{\Delta}^{1}}([0<1]) & =[0] \otimes[0<1]+[0<1] \otimes[1] \\
\Delta_{\boldsymbol{\Delta}^{1}}([0]) & =[0] \otimes[0] \\
\Delta_{\boldsymbol{\Delta}^{1}}([1]) & =[1] \otimes[1] .
\end{aligned}
$$

The elements [0] and [1] have degree 0 , and the element $[0<1$] has degree -1 .

We check that there is a one-to-one correspondence between (F, G)-coderivations and morphisms of dg-coalgebras $\Delta^{1} \otimes C \longrightarrow C^{\prime}$.

Definition

For two A_{∞}-algebras $\left(\bar{T}(s A), D_{A}\right)$ and $\left(\bar{T}(s B), D_{B}\right)$ and two A_{∞}-morphisms $F, G:\left(\bar{T}(s A), D_{A}\right) \rightarrow\left(\bar{T}(s B), D_{B}\right)$, an A_{∞}-homotopy from F to G is defined to be a morphism of dg-coalgebras

$$
H: \Delta^{1} \otimes \bar{T}(s A) \longrightarrow \bar{T}(s B)
$$

whose restriction to the [0] summand is F and whose restriction to the [1] summand is G.

Using the universal property of the bar construction, this definition can be rephrased in terms of operations.

Definition

An A_{∞}-homotopy between two A_{∞}-morphisms $\left(f_{n}\right)_{n \geqslant 1}$ and $\left(g_{n}\right)_{n \geqslant 1}$ is a collection of maps

$$
h_{n}: A^{\otimes n} \longrightarrow B
$$

of degree $-n$, satisfying

$$
\begin{aligned}
& {\left[\partial, h_{n}\right]=g_{n}-f_{n}+\sum_{\substack{i_{1}+i_{2}+i_{3}=m \\
i_{2} \geqslant 2}} \pm h_{i_{1}+1+i_{3}}\left(\mathrm{id}^{\otimes i_{1}} \otimes m_{i_{2}} \otimes \mathrm{id}^{\otimes i_{3}}\right)} \\
& \\
& +\sum_{\substack{i_{1}+\cdots+i_{s}+l \\
+j_{1}+\cdots+j_{t}=n \\
s+1+t \geqslant 2}} \pm m_{s+1+t}\left(f_{i_{1}} \otimes \cdots \otimes f_{i_{s}} \otimes h_{l} \otimes g_{j_{1}} \otimes \cdots \otimes g_{j_{t}}\right)
\end{aligned}
$$

A_{∞}-homotopies

Higher morphisms between A_{∞}-algebras
The HOM-simplicial sets $\mathrm{HOM}_{\mathrm{A}_{\infty}-\operatorname{alg}}(A, B)$ •
A simplicial enrichment of the category $A_{\infty}-a l g$?

In symbolic formalism,

where we denote

$\underset{\text { [1] }}{ } \not \approx$ respectively for the f_{n}, the h_{n} and the g_{n}.

The relation being A_{∞}-homotopic on the class of A_{∞}-morphisms is an equivalence relation. It is moreover stable under composition. These results cannot all be proven using naive algebraic tools, some of them require considerations of model categories.

(1) A_{∞}-algebras and A_{∞}-morphisms

(2) Higher algebra of A_{∞}-algebras

- A_{∞}-homotopies
- Higher morphisms between A_{∞}-algebras
- The HOM-simplicial sets $\mathrm{HOM}_{\mathrm{A}_{\infty}-\mathrm{alg}}(A, B)$.
- A simplicial enrichment of the category $A_{\infty}-a l g$?
(3) The n-multiplihedra

Move on to n-morphisms between A_{∞}-algebras.

Define Δ^{n} the graded \mathbb{Z}-module generated by the faces of the standard n-simplex Δ^{n},

$$
\Delta^{n}=\bigoplus_{0 \leqslant i_{1}<\cdots<i_{k} \leqslant n} \mathbb{Z}\left[i_{1}<\cdots<i_{k}\right] .
$$

The grading is $|I|:=-\operatorname{dim}(I)$ for $I \subset \Delta^{n}$.

It has a dg-coalgebra structure, with differential

$$
\partial_{\boldsymbol{\Delta}^{n}}\left(\left[i_{1}<\cdots<i_{k}\right]\right):=\sum_{j=1}^{k}(-1)^{j}\left[i_{1}<\cdots<\widehat{i_{j}}<\cdots<i_{k}\right],
$$

and coproduct the Alexander-Whitney coproduct

$$
\Delta_{\boldsymbol{\Delta}^{n}}\left(\left[i_{1}<\cdots<i_{k}\right]\right):=\sum_{j=1}^{k}\left[i_{1}<\cdots<i_{j}\right] \otimes\left[i_{j}<\cdots<i_{k}\right] .
$$

Definition ([MS03])

Let I be a face of Δ^{n}. An overlapping partition of I to be a sequence of faces $\left(I_{I}\right)_{1 \leqslant \ell \leqslant s}$ of I such that
(i) the union of this sequence of faces is I, i.e. $\cup_{1 \leqslant \ell \leqslant s} I_{I}=I$;
(ii) for all $1 \leqslant \ell<s, \max \left(I_{\ell}\right)=\min \left(I_{\ell+1}\right)$.

An overlapping 6-partition for $[0<1<2$] is for instance

$$
[0<1<2]=[0] \cup[0] \cup[0<1] \cup[1] \cup[1<2] \cup[2] .
$$

Higher morphisms between $A_{\infty \text {-algebras }}$
The HOM-simplicial sets $\mathrm{HOM}_{\mathrm{A}_{\infty}-\operatorname{alg}}(A, B)$ -
A simplicial enrichment of the category $A_{\infty}-a l g$?

Overlapping partitions are the collection of faces which naturally arise in the Alexander-Whitney coproduct.

The element $\Delta_{\boldsymbol{\Delta}^{n}}(I)$ corresponds to the sum of all overlapping 2-partitions of I. Iterating s times $\Delta_{\Delta^{n}}$ yields the sum of all overlapping $(s+1)$-partitions of I.
$A_{\infty \text {-algebras and }} A_{\infty \text {-morphisms }}$ Higher algebra of A_{∞}-algebras The n-multiplihedra

We have seen that A_{∞}-morphisms correspond to the set

$$
\operatorname{Hom}_{\mathrm{dg}-\operatorname{cog}}(\bar{T}(s A), \bar{T}(s B))
$$

and A_{∞}-homotopies correspond to the set

$$
\operatorname{Hom}_{\mathrm{dg}-\operatorname{cog}}\left(\Delta^{1} \otimes \bar{T}(s A), \bar{T}(s B)\right),
$$

Definition ([Maz21b])

We define the set of n-morphisms between A and B as
$\operatorname{HOM}_{\mathrm{A}_{\infty}-\operatorname{alg}}(A, B)_{n}:=\operatorname{Hom}_{\mathrm{dg}-\operatorname{cog}}\left(\Delta^{n} \otimes \bar{T}(s A), \bar{T}(s B)\right)$.

Using the universal property of the bar construction, n-morphisms admit a nice combinatorial description in terms of operations.

Definition ([Maz21b])

A n-morphism from A to B is defined to be a collection of maps $f_{l}^{(m)}: A^{\otimes m} \longrightarrow B$ of degree $1-m+|I|$ for $I \subset \Delta^{n}$ and $m \geqslant 1$, that satisfy

$$
\begin{aligned}
{\left[\partial, f_{l}^{(m)}\right]=} & \sum_{j=0}^{\operatorname{dim}(I)}(-1)^{j} f_{\partial_{j} I}^{(m)}+\sum_{\substack{i_{1}+\cdots+i_{s}=m \\
l_{1} \cup \cdots \cup l_{s}=l \\
s \geqslant 2}} \pm m_{s}\left(f_{l_{1}}^{\left(i_{1}\right)} \otimes \cdots \otimes f_{l_{s}}^{\left(i_{s}\right)}\right) \\
& +(-1)^{|I|} \sum_{\substack{ \\
i_{1}+i_{2}+i_{3}=m \\
i_{2} \geqslant 2}} \pm f_{l}^{\left(i_{1}+1+i_{3}\right)}\left(\mathrm{id}^{\otimes i_{1}} \otimes m_{i_{2}} \otimes \mathrm{id}^{\otimes i_{3}}\right)
\end{aligned}
$$

Higher morphisms between A_{∞}-algebras The HOM-simplicial sets $\mathrm{HOM}_{\mathrm{A}_{\infty}-\operatorname{alg}}(A, B)$ • A simplicial enrichment of the category $A_{\infty}-a l g$?

Equivalently and more visually, a collection of maps

W satisfying

A_{∞}-algebras and A_{∞}-morphisms Higher algebra of A_{∞}-algebras The n-multiplihedra

(1) A_{∞}-algebras and A_{∞}-morphisms

(2) Higher algebra of A_{∞}-algebras

- A_{∞}-homotopies
- Higher morphisms between A_{∞}-algebras
- The HOM-simplicial sets $\mathrm{HOM}_{\mathrm{A}_{\infty}-\mathrm{alg}}(A, B)$.
- A simplicial enrichment of the category $A_{\infty}-a l g$?
(3) The n-multiplihedra

The dg-coalgebras $\boldsymbol{\Delta}^{\bullet}:=\left\{\boldsymbol{\Delta}^{n}\right\}_{n \geqslant 0}$ naturally form a cosimplicial dg-coalgebra.

The sets $\operatorname{HOM}_{\mathrm{A}_{\infty}-\operatorname{alg}}(A, B)_{n}$ then fit into a HOM-simplicial set $\mathrm{HOM}_{\mathrm{A}_{\infty}-\mathrm{alg}}(A, B)$. This HOM-simplicial set provides a satisfactory framework to study the higher algebra of A_{∞}-algebras.

Theorem ([Maz21b])

For A and B two A_{∞}-algebras, the simplicial set $\operatorname{HOM}_{A_{\infty}}(A, B)$. is an ∞-category.

Write Δ^{n} the simplicial set realizing the standard n-simplex Δ^{n}, and Λ_{n}^{k} the simplicial set realizing the simplicial subcomplex obtained from Δ^{n} by removing the faces $[0<\cdots<n]$ and $[0<\cdots<\widehat{k}<\cdots<n]$. The simplicial set Λ_{n}^{k} is called a horn, and if $0<k<n$ it is called an inner horn.

An ∞-category is a simplicial set X which has the left-lifting property with respect to all inner horn inclusions $\Lambda_{n}^{k} \rightarrow \Delta^{n}$.

The vertices of X are then to be seen as objects, and its edges correspond to morphisms.
A_{∞}-homotopies
Higher morphisms between A_{∞}-algebras
The HOM-simplicial sets $\mathrm{HOM}_{\mathrm{A}_{\infty}-\operatorname{alg}}(A, B) \bullet$
A simplicial enrichment of the category $A_{\infty}-a l g$?

Theorem ([Maz21b])

For A and B two A_{∞}-algebras, the simplicial set $\operatorname{HOM}_{A_{\infty}}(A, B)$. is an ∞-category.

Beware that the points of these ∞-categories are the A_{∞}-morphisms, and the arrows between them are the A_{∞}-homotopies. This can be misleading at first sight, but the points are the morphisms and NOT the algebras and the arrows are the homotopies and NOT the morphisms.

Higher morphisms between A_{∞}-algebras
The HOM-simplicial sets $\mathrm{HOM}_{\mathrm{A}_{\infty}-\operatorname{alg}}(A, B) \bullet$
A simplicial enrichment of the category $\mathbb{A}_{\infty}-a \lg$?

Consider an inner horn $\Lambda_{n}^{k} \rightarrow \operatorname{HOM}_{A_{\infty}}(A, B)_{\bullet}$, where $0<k<n$.

We want to complete the diagram

This inner horn corresponds to a collection of degree $1-m+|I|$ morphisms

$$
f_{l}^{(m)}: A^{\otimes m} \longrightarrow B
$$

for $I \subset \Lambda_{n}^{k}$, which satisfy the A_{∞}-equations.
Filling this horn amounts then to defining a collection of operations

$$
f_{[0<\cdots<\widehat{k}<\cdots<n]}^{(m)}: A^{\otimes m} \longrightarrow B \text { and } f_{\Delta^{n}}^{(m)}: A^{\otimes m} \longrightarrow B
$$

of respective degree $1-m-(n-1)$ and $1-m-n$, and satisfying the A_{∞}-equations.

Inspecting the proof in details (which can be reduced to tedious combinatorics) shows that they are in fact algebraic ∞-categories. See also [RNV20]. Pas les premiers : qui était-ce ?

Proposition ([Maz21b])

There is a natural one-to-one correspondence between

and

$$
\left\{\begin{array}{c}
\text { families of maps of degree } 1-m-n \\
U^{(m)}: A^{\otimes m} \rightarrow B, m \geqslant 1
\end{array}\right\} .
$$

A_{∞}-algebras and A_{∞}-morphisms Higher algebra of A_{∞}-algebras The n-multiplihedra

(1) A_{∞}-algebras and A_{∞}-morphisms

(2) Higher algebra of A_{∞}-algebras

- A_{∞}-homotopies
- Higher morphisms between A_{∞}-algebras
- The HOM-simplicial sets $\mathrm{HOM}_{\mathrm{A}_{\infty}-\mathrm{alg}}(A, B)$.
- A simplicial enrichment of the category $A_{\infty}-a l g$?
(3) The n-multiplihedra

We would like to see the simplicial sets $\operatorname{HOM}_{\mathrm{A}_{\infty}-\mathrm{alg}}(A, B)$. as part of a simplicial enrichment of the category $\mathrm{A}_{\infty}-\mathrm{alg}$. In other words, we would like to define simplicial maps
$\operatorname{HOM}_{\mathrm{A}_{\infty}-\mathrm{alg}}(A, B)_{n} \times \operatorname{HOM}_{\mathrm{A}_{\infty}-\mathrm{alg}}(B, C)_{n} \longrightarrow \operatorname{HOM}_{\mathrm{A}_{\infty}-\mathrm{alg}}(A, C)_{n}$,
lifting the composition on the $\mathrm{HOM}_{0}=\mathrm{Hom}$.

This would then endow $A_{\infty}-\operatorname{alg}$ with a structure of ($\infty, 2$)-category.

All the natural approaches to lift the composition in $\mathrm{A}_{\infty}-\mathrm{alg}$ to $\operatorname{HOM}_{\mathrm{A}_{\infty}-\operatorname{alg}}(A, B)$. fail to work. Hence, it is still an open question to know whether these HOM-simplicial sets could fit into a simplicial enrichment of the category $\mathrm{A}_{\infty}-\mathrm{alg}$. In fact, it is unclear to the author why such a statement should be true.

Operadic algebra in the category Poly
The associahedra
The multiplihedra
The n-multiplihedra
Towards Morse and Floer theory
(1) A_{∞}-algebras and A_{∞}-morphisms
(2) Higher algebra of A_{∞}-algebras
(3) The n-multiplihedra

(1) A_{∞}-algebras and A_{∞}-morphisms

(2) Higher algebra of A_{∞}-algebras

(3) The n-multiplihedra

- Operadic algebra in the category Poly
- The associahedra
- The multiplihedra
- The n-multiplihedra
- Towards Morse and Floer theory

Define a polytope to be the convex hull of a finite number of points in a Euclidean space \mathbb{R}^{n}.

Following [MTTV19], polytopes fit into a category Poly. Beware that the morphisms of this category are not the usual affine maps. It forms a monoidal category with product the usual cartesian product, and a monoidal subcategory of CW.

The cellular chain functor $C_{*}^{\text {cell }}:$ Poly $\rightarrow \mathrm{dg}-\mathbb{Z}-\bmod$ then satisfies

$$
C_{*}^{\text {cell }}(P \times Q)=C_{*}^{\text {cell }}(P) \otimes C_{*}^{\text {cell }}(Q)
$$

We will in fact work with the functor

$$
C_{-*}^{\text {cell }}: \mathrm{CW} \longrightarrow \mathrm{dg}-\mathbb{Z}-\bmod ,
$$

where $C_{-*}^{\text {cell }}(P)$ is simply the \mathbb{Z}-module $C_{*}^{\text {cell }}(P)$ taken with its opposite grading.

In particular the functor $C_{-*}^{c e l l}$ takes operads and operadic bimodules in Poly to operads and operadic bimodules in $\mathrm{dg}-\mathbb{Z}-\bmod$.
$A_{\infty \text {-algebras and }} A_{\infty \text {-morphisms }}$ Higher algebra of A_{∞}-algebras The n-multiplihedra

Operadic algebra in the category Poly
The associahedra
The multiplihedra
The n-multiplihedra
Towards Morse and Floer theory
(1) A_{∞}-algebras and A_{∞}-morphisms
(2) Higher algebra of A_{∞}-algebras
(3) The n-multiplihedra

- Operadic algebra in the category Poly
- The associahedra
- The multiplihedra
- The n-multiplihedra
- Towards Morse and Floer theory

The $\mathrm{dg}-\mathbb{Z}$-mod-operad A_{∞} actually stems from a Poly-operad. This was fully proven in [MTTV19].

There exists a collection of polytopes, called the associahedra and denoted $\left\{K_{n}\right\}$, endowed with a structure of operad in the category Poly and whose image under the functor $C_{-*}^{c e l l}$ yields the operad A_{∞}.

In particular K_{n} has a unique cell $\left[K_{n}\right]$ of dimension $n-2$ whose image under $\partial_{\text {cell }}$ is the A_{∞}-equation, that is such that

$$
\partial_{\text {cell }}\left[K_{n}\right]=\sum \pm o_{i}\left(\left[K_{k}\right] \otimes\left[K_{h}\right]\right)
$$

Recall that the A_{∞}-equations read as

Figure: The associahedra K_{2}, K_{3} and K_{4}, with cells labeled by the operations they define in A_{∞}

(1) A_{∞}-algebras and A_{∞}-morphisms

(2) Higher algebra of A_{∞}-algebras
(3) The n-multiplihedra

- Operadic algebra in the category Poly
- The associahedra
- The multiplihedra
- The n-multiplihedra
- Towards Morse and Floer theory

Corriger les dessins en mettant des jauges intersectant les sommets The $\mathrm{dg}-\mathbb{Z}$-mod-operadic bimodule A_{∞} - Morph also stems from a Poly-operadic bimodule. Work in progress : [MMV].

There exists a collection of polytopes, called the multiplihedra and denoted $\left\{J_{n}\right\}$, endowed with a structure of $\left(\left\{K_{n}\right\},\left\{K_{n}\right\}\right)$-operadic bimodule, whose image under the functor $C_{-*}^{\text {cell }}$ yields the (A_{∞}, A_{∞})-operadic bimodule A_{∞} - Morph.

Again, J_{n} has a unique n-1-dimensional cell $\left[J_{n}\right]$ whose image under $\partial_{\text {cell }}$ is the A_{∞}-equation for A_{∞}-morphisms, that is such that

$$
\partial_{\text {cell }}\left[J_{n}\right]=\sum \pm \circ_{i}\left(\left[J_{k}\right] \otimes\left[K_{h}\right]\right)+\sum \pm \mu\left(\left[K_{s}\right] \otimes\left[J_{i_{1}}\right] \otimes \cdots \otimes\left[J_{i_{s}}\right]\right) .
$$

Recall that the A_{∞}-equations read as

Figure: The multiplihedra J_{1}, J_{2} and J_{3} with cells labeled by the operations they define in $A_{\infty}-$ Morph

(1) A_{∞}-algebras and A_{∞}-morphisms

(2) Higher algebra of A_{∞}-algebras
(3) The n-multiplihedra

- Operadic algebra in the category Poly
- The associahedra
- The multiplihedra
- The n-multiplihedra
- Towards Morse and Floer theory

We would like to define a family of polytopes encoding n-morphisms between A_{∞}-algebras. These polytopes will then be called n-multiplihedra.

We have seen that A_{∞}-morphisms $\bar{T}(s A) \rightarrow \bar{T}(s B)$ are encoded by the multiplihedra. n-morphisms being defined as the set of morphisms $\Delta^{n} \otimes \bar{T}(s A) \rightarrow \bar{T}(s B)$, a natural candidate would thus be $\left\{\Delta^{n} \times J_{m}\right\}_{m \geqslant 1}$.

```
The associahedra
The multiplihedra
The n-multiplihedra
Towards Morse and Floer theory
```

However, $\Delta^{n} \times J_{m}$ does not fulfill that property as it is. Faces correspond to the data of a face of $I \subset \Delta^{n}$, and of a broken two-colored tree labeling a face of J_{m}. This labeling is too coarse, as it does not contain the trees

that appear in the A_{∞}-equations for n-morphisms.

We thus want to lift the combinatorics of overlapping partitions to the level of the n-simplices Δ^{n}.

Proposition ([Maz21b])

For each $s \geqslant 1$, there exists a polytopal subdivision of the standard n-simplex Δ^{n} whose top-dimensional cells are in one-to-one correspondence with all s-overlapping partitions of Δ^{n}.

Taking the realizations

$$
\begin{aligned}
\Delta^{n} & :=\operatorname{conv}\left\{(1, \ldots, 1,0, \ldots, 0) \in \mathbb{R}^{n}\right\} \\
& =\left\{\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{R}^{n} \mid 1 \geqslant z_{1} \geqslant \cdots \geqslant z_{n} \geqslant 0\right\}
\end{aligned}
$$

this polytopal subdivision can be realized as the subdivision obtained after dividing Δ^{n} by all hyperplanes $z_{i}=(1 / 2)^{k}$, for $1 \leqslant i \leqslant n$ and $1 \leqslant k \leqslant s$.

Operadic algebra in the category Poly
The associahedra
The multiplihedra
The n-multiplihedra
Towards Morse and Floer theory

Figure: The subdivision of Δ^{2} by overlapping 2-partitions

Figure: The subdivision of Δ^{2} by overlapping 3-partitions

The previous issue can then be solved by constructing a thinner polytopal subdivision of $\Delta^{n} \times J_{m}$.

Consider a face F of J_{m}, with exactly s unbroken two-colored trees appearing in the two-colored broken tree labeling it. We refine the polytopal subdivision of $\Delta^{n} \times F$ into $\Delta_{s}^{n} \times F$, where Δ_{s}^{n} denotes Δ^{n} endowed with the subdivision encoding s-overlapping partitions.

This refinement process can be done consistently for each face F of J_{m}, in order to obtain a new polytopal subdivision of $\Delta^{n} \times J_{m}$.

```
Operadic algebra in the category Poly
The associahedra
The multiplihedra
The n-multiplihedra
Towards Morse and Floer theory
```


Definition ([Maz21b])

The n-multiplihedra are defined to be the polytopes $\Delta^{n} \times J_{m}$ endowed with the previous polytopal subdivision. We denote them $n-J_{m}$.

Figure: The 1-multiplihedron $\Delta^{1} \times J_{2}$

Figure: The 2-multiplihedron $\Delta^{2} \times J_{2}$

Figure: The 1-multiplihedron $\Delta^{1} \times J_{3}$

The polytope $n-J_{m}$ has a unique $(n+m-1)$-dimensional cell $\left[n-J_{m}\right]$, is labeled by $\Delta^{n} Y$. By construction:

Proposition ([Maz21b])

The boundary of the cell $\left[n-J_{m}\right]$ is given by
$\partial^{\text {sing }}\left[n-J_{m}\right] \cup \bigcup_{\substack{h+k=m+1 \\ 1 \leqslant i \leqslant k \\ h \geqslant 2}}\left[n-J_{k}\right] \times{ }_{i}\left[K_{h}\right] \cup \bigcup_{\substack{i_{1}+\ldots+i_{s}=m \\ l_{1} \cup \cdots s_{s}=\Delta^{n} \\ s \geqslant 2}}\left[K_{s}\right] \times\left[\operatorname{dim}\left(I_{1}\right)-J_{i_{1}}\right] \times \cdots \times\left[\operatorname{dim}\left(I_{s}\right)-J_{i_{s}}\right]$,
where $I_{1} \cup \cdots \cup I_{s}=\Delta^{n}$ is an overlapping partition of Δ^{n}.

Recall that the $n-A_{\infty}$-equations read as

$$
\begin{aligned}
& +\sum \pm \underset{1}{ } \text {. }
\end{aligned}
$$

In other words, the n-multiplihedra encode n-morphisms between A_{∞}-algebras.

(1) A_{∞}-algebras and A_{∞}-morphisms

(2) Higher algebra of A_{∞}-algebras
(3) The n-multiplihedra

- Operadic algebra in the category Poly
- The associahedra
- The multiplihedra
- The n-multiplihedra
- Towards Morse and Floer theory

En parler plus - Parler également de $\Omega B A s$
We prove in [Maz21a] and [Maz21b] that given two Morse functions f and g, one can construct n-morphisms between their Morse cochain complexes $C^{*}(f)$ and $C^{*}(g)$ through a count of moduli spaces of perturbed Morse gradient trees. This gives a realization of this higher algebra of A_{∞}-algebras in Morse theory.

It is also quite clear that given two compact symplectic manifolds M and N, one should be able to construct n-morphisms between their Fukaya categories $\operatorname{Fuk}(M)$ and $\operatorname{Fuk}(N)$ through counts of moduli spaces of quilted disks (under the correct technical assumptions).
A_{∞}-algebras and A_{∞}-morphisms
Higher algebra of A_{∞}-algebras The n-multiplihedra

The multiplihedra
The n-multiplihedra
Towards Morse and Floer theory

References I

围 Kenji Lefevre-Hasegawa, Sur les a_{∞}-catégories, Ph.D. thesis, Ph. D. thesis, Université Paris 7, UFR de Mathématiques, 2003, math. CT/0310337, 2002.

Rean-Louis Loday and Bruno Vallette, Algebraic operads, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 346, Springer, Heidelberg, 2012. MR 2954392
(R. Thibaut Mazuir, Higher algebra of A_{∞} and $\Omega B A s$-algebras in Morse theory I, 2021, arXiv:2102.06654.
囯 , Higher algebra of A_{∞} and $\Omega B A s$-algebras in Morse theory II, arXiv:2102.08996, 2021.
$A_{\infty \text {-algebras and }} A_{\infty \text {-morphisms }}$
Higher algebra of A_{∞}-algebras The n-multiplihedra

References II

葍 Naruki Masuda, Thibaut Mazuir, and Bruno Vallette, The diagonal of the multiplihedra and the product of A_{∞}-categories, In preparation.
目 James E. McClure and Jeffrey H. Smith, Multivariable cochain operations and little n-cubes, J. Amer. Math. Soc. 16 (2003), no. 3, 681-704. MR 1969208
Naruki Masuda, Hugh Thomas, Andy Tonks, and Bruno Vallette, The diagonal of the associahedra, 2019, arXiv:1902.08059.
(in Daniel Robert-Nicoud and Bruno Vallette, Higher Lie theory, 2020, arXiv:2010.10485.

References III

囯 Bruno Vallette, Algebra + homotopy =operad, Symplectic, Poisson, and noncommutative geometry, Math. Sci. Res. Inst. Publ., vol. 62, Cambridge Univ. Press, New York, 2014, pp. 229-290. MR 3380678
围 Homotopy theory of homotopy algebras, Ann. Inst. Fourier (Grenoble) 70 (2020), no. 2, 683-738. MR 4105949

Thanks for your attention!

Acknowledgements : Alexandru Oancea, Bruno Vallette, Jean-Michel Fischer, Guillaume Laplante-Anfossi, Florian Bertuol, Thomas Massoni, Amiel Peiffer-Smadja and Victor Roca Lucio.

