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The results presented in this talk are taken from my two recent
papers : Higher algebra of A∞ and ΩBAs-algebras in Morse theory

I (arXiv:2102.06654) and Higher algebra of A∞ and ΩBAs-algebras
in Morse theory II (arxiv:2102.08996).

The talk will be divided in two parts. First I will de�ne the notion
of higher morphisms between A∞-algebras, or n − A∞-morphisms,
and explain how they are encoded by new families of polytopes
called the n-multiplihedra. Then I will show how these higher
morphisms can be realized in Morse theory, by counting moduli
spaces of perturbed Morse gradient trees.
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De�nition

Let A be a cochain complex with di�erential m1. An A∞-algebra
structure on A is the data of a collection of maps of degree 2− n

mn : A⊗n −→ A , n > 1,

extending m1 and which satisfy

[m1,mn] =
∑

i1+i2+i3=n
26i26n−1

±mi1+1+i3(id⊗i1 ⊗mi2 ⊗ id
⊗i3).
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Representing mn as
12 n

, these equations can be written as

[m1,
1 2 n

] =
∑

h+k=n+1

26h6n−1
16i6k

± 1 d1
k

1 d2

.

These equations are called the A∞-equations.
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In particular,

[m1,m2] = 0 ,

[m1,m3] = m2(id⊗m2 −m2 ⊗ id) ,

implying that m2 descends to an associative product on H∗(A). An
A∞-algebra is thus simply a correct notion of a dg-algebra whose
product is associative up to homotopy.

The operations mn are the higher coherent homotopies which keep
track of the fact that the product is associative up to homotopy.
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De�nition

An A∞-morphism between two A∞-algebras A and B is a family of
maps fn : A⊗n → B of degree 1− n satisfying

[m1, fn] =
∑

i1+i2+i3=n
i2>2

±fi1+1+i3(id⊗i1 ⊗mi2 ⊗ id
⊗i3)

+
∑

i1+···+is=n
s>2

±ms(fi1 ⊗ · · · ⊗ fis ) .
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Representing the operations fn as , the operations mA
n in red

and the operations mB
n in blue, these equations read as

[
∂,

]
=

∑
h+k=n+1

16i6k
h>2

± 1 k
i

1 h

+
∑

i1+···+is=n
s>2

±

1 isi11

.
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We check that

[m1, f1] = 0 ,

[m1, f2] = f1m
A
2 −mB

2 (f1 ⊗ f1) .

An A∞-morphism between A∞-algebras induces a morphism of
associative algebras on the level of cohomology, and is a correct
notion of morphism which preserves the product up to homotopy.
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Given two A∞-morphisms F : A→ B and G : B → C , we de�ne
the composition G ◦ F : A→ C as the family of morphisms

(G ◦ F )n :=
∑

i1+···+is=n

±gs(fi1 ⊗ · · · ⊗ fis ) .

This composition is in fact associative. Hence, A∞-algebras
together with A∞-morphisms form a category, denoted A∞ − alg.
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The category A∞ − alg provides a framework that behaves well
with respect to homotopy-theoretic constructions, when studying
homotopy theory of associative algebras. See for instance [Val20]
and [LH02].

We illustrate this fact with two fundamental theorems.
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Theorem (Homotopy transfer theorem [Kad80])

Let (A, ∂A) and (H, ∂H) be two cochain complexes. Suppose that

H is a deformation retract of A, that is that they �t into a diagram

(A, ∂A) (H, ∂H) ,h
p

i

where idA − ip = [∂, h] and pi = idH . Then if (A, ∂A) is endowed

with an associative algebra structure, H can be made into an

A∞-algebra such that i and p extend to A∞-morphisms, that are

then A∞-quasi-isomorphisms.
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Theorem (Fundamental theorem of A∞-quasi-isomorphisms [LH02])

For every A∞-quasi-isomorphism f : A→ B there exists an

A∞-quasi-isomorphism B → A which inverts f on the level of

cohomology.
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Our goal now : study the higher algebra of A∞-algebras.

Higher algebra is a general term standing for all problems that
involve de�ning coherent sets of higher homotopies (also called
n-morphisms) when starting from a basic homotopy setting.

Considering two A∞-morphisms F ,G , we would like �rst to
determine a notion giving a satisfactory meaning to the sentence
"F and G are homotopic". Then, A∞-homotopies being de�ned,
what is now a good notion of a homotopy between homotopies ?
And of a homotopy between two homotopies between homotopies ?
And so on.
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De�nition

An A∞-homotopy between two A∞-morphisms (fn)n>1 and (gn)n>1
is a collection of maps

hn : A⊗n −→ B ,

of degree −n, satisfying

[∂, hn] =gn − fn +
∑

i1+i2+i3=m
i2>2

±hi1+1+i3(id⊗i1 ⊗mi2 ⊗ id
⊗i3)

+
∑

i1+···+is+l
+j1+···+jt=n
s+1+t>2

±ms+1+t(fi1 ⊗ · · · ⊗ fis ⊗ hl ⊗ gj1 ⊗ · · · ⊗ gjt ) .
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In symbolic formalism,

[∂,
[0 < 1]

] =
[1]

−
[0]

+
∑
±

[0 < 1]

+
∑
± [1][1][0 < 1][0][0]

[0] [1]

,

where we denote
[0]

,
[0 < 1]

and
[1]

respectively for

the fn, the hn and the gn.
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The relation being A∞-homotopic on the class of A∞-morphisms is
an equivalence relation. It is moreover stable under composition.
These results cannot all be proven using naive algebraic tools, some
of them require considerations of model categories.
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De�nition ([MS03])

Let I be a face of ∆n. An overlapping partition of I is a sequence
of faces (Il)16`6s of I such that

(i) the union of this sequence of faces is I , i.e. ∪16`6s Il = I ;

(ii) for all 1 6 ` < s, max(I`) = min(I`+1).

An overlapping 6-partition for [0 < 1 < 2] is for instance

[0 < 1 < 2] = [0] ∪ [0] ∪ [0 < 1] ∪ [1] ∪ [1 < 2] ∪ [2] .
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De�nition ([Maz21b])

A n-morphism from A to B is de�ned to be a collection of maps

f
(m)
I : A⊗m −→ B of degree 1−m + |I | for I ⊂ ∆n and m > 1,
that satisfy

[
∂, f

(m)
I

]
=

dim(I )∑
j=0

(−1)j f
(m)
∂j I

+
∑

i1+···+is=m
I1∪···∪Is=I

s>2

±ms(f
(i1)
I1
⊗ · · · ⊗ f

(is)
Is

)

+ (−1)|I |
∑

i1+i2+i3=m
i2>2

±f (i1+1+i3)
I (id⊗i1 ⊗mi2 ⊗ id

⊗i3) .

Here we have set |I | := −dim(I ).
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Equivalently and more visually, a collection of maps I satisfying

[∂, I ] =
k∑

j=1

(−1)j
∂
sing
j I

+
∑

I1∪···∪Is=I

±
IsI1

+
∑
±

I

.

We check that 0-morphisms then correspond to A∞-morphisms and
1-morphisms correspond to A∞-homotopies.
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We mention that the correct way to de�ne higher morphisms
between A∞-algebras is by using the suspended bar construction
T (sA). We have the following one-to-one correspondences :

collections of morphisms of degree 2− n
mn : A⊗n → A , n > 1,

satisfying the A∞-equations


l{

coderivations D of degree +1 of T (sA)
such that D2 = 0

} ,
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collections of morphisms of degree 1− n

fn : A⊗n → B , n > 1,
satisfying the A∞-equations


l{

morphisms of dg-coalgebras

F : T (sA)→ T (sB)

} ,
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collections of morphisms of degree 1−m + |I |

f
(m)
I : A⊗m → B , m > 1, I ⊂ ∆n,

satisfying the A∞-equations


l{

morphisms of dg-coalgebras

F : ∆∆∆n ⊗ T (sA)→ T (sB)

} .

where ∆∆∆n denotes the cellular chains coalgebra C cell
−∗ (∆n) with

coproduct the Alexander-Whitney coproduct.
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The sets HOMA∞−alg(A,B)n of n-morphisms between two
A∞-algebras A and B �t into a simplicial set HOMA∞−alg(A,B)•.
It provides a satisfactory framework to study the higher algebra of
A∞-algebras.

Theorem ([Maz21b])

For A and B two A∞-algebras, the simplicial set HOMA∞(A,B)• is
an ∞-groupoid.
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Write ∆n the simplicial set realizing the standard n-simplex ∆n,
and Λk

n the simplicial set realizing the simplicial subcomplex
obtained from ∆n by removing the faces [0 < · · · < n] and
[0 < · · · < k̂ < · · · < n]. The simplicial set Λk

n is called a horn, and
if 0 < k < n it is called an inner horn.

0 1

2

⊂

0 1

2

⊂

The inner horns Λ1

2
⊂ ∆2 and Λ2

3
⊂ ∆3
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An ∞-groupoid is a simplicial set X which has the left-lifting
property with respect to all horn inclusions Λk

n → ∆n.

Λk
n X

∆n

u

∃ u

If X has the left-lifting property with respect to all inner horn
inclusions one speaks about an ∞-category. The vertices of X are
then to be seen as objects, and its edges correspond to morphisms.
If X is an ∞-groupoid, these morphisms are to be thought as being
all invertible up to homotopy.
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Theorem ([Maz21b])

For A and B two A∞-algebras, the simplicial set HOMA∞(A,B)• is
an ∞-groupoid.

Beware that the points of these ∞-groupoids are the
A∞-morphisms, and the arrows between them are the
A∞-homotopies. This can be misleading at �rst sight, but the
points are the morphisms and NOT the algebras and the arrows are

the homotopies and NOT the morphisms.
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We point out that the simplicial set HOMA∞(A,B)• being an
∞-groupoid, it comes in particular with simplicial homotopy groups

(which are exactly the standard homotopy groups of its geometric
realization). The simplicial homotopy groups of HOMA∞(A,B)•
are in fact easily computable and admit a nice combinatorial
description.

Moreover, I can explicitly describe all the �llers for any inner horn
Λk
n → HOMA∞(A,B)•, 0 < k < n. Beware this is not true for

outer horns. This makes in particular HOMA∞(A,B)• into an
algebraic ∞-category.
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Recall that the A∞-equations for A∞-algebras read as

[m1,
1 2 n

] =
∑

h+k=n+1

26h6n−1
16i6k

± 1 d1
k

1 d2

.

These equations are encoded by a collection of polytopes, called
the associahedra and denoted Kn. In particular, the boundary of Kn

is given by

∂Kn =
⋃

h+k=n+1

26h6n−1

⋃
16i6k

Kk ×i Kh .
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We point out that A∞-algebras are in fact encoded by an operad,
called the operad A∞. The collection of associahedra {Kn} are then
in fact endowed with a structure of operad in the category Poly

whose image under the functor C cell
−∗ yields the operad A∞.
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The associahedra K2, K3 and K4, with cells labeled by the operations
they de�ne in A∞
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The A∞-equations for A∞-morphisms read as

∂( ) =
∑

h+k=n+1

16i6k
h>2

± 1 k
i

1 h

+
∑

i1+···+is=n
s>2

±

1 isi11

.

These equations are again encoded by a collection of polytopes,
called the multiplihedra and denoted Jn. In particular the boundary
of Jn is given by

∂Jn =
⋃

h+k=n+1

h>2

⋃
16i6k

Jk ×i Kh ∪
⋃

i1+···+is=n
s>2

Ks × Ji1 × · · · × Jis .
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The multiplihedra J1, J2 and J3 with cells labeled by the operations they
de�ne in A∞ −Morph
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We would like to de�ne a family of polytopes encoding
n-morphisms between A∞-algebras. These polytopes will then be
called n-multiplihedra.

We have seen that A∞-morphisms T (sA)→ T (sB) are encoded by
the multiplihedra. n-morphisms being de�ned as the set of
morphisms ∆∆∆n ⊗ T (sA)→ T (sB), a natural candidate would thus
be {∆n × Jm}m>1.
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However, ∆n × Jm does not ful�ll that property as it is. Faces
correspond to the data of a face of I ⊂ ∆n, and of a broken
two-colored tree labeling a face of Jm. This labeling is too coarse,
as it does not contain the trees

IsI1

,

that appear in the A∞-equations for n-morphisms.

We thus want to lift the combinatorics of overlapping partitions to
the level of the n-simplices ∆n.
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Recall that the n − A∞-equations read as

∂( I ) =
k∑

j=1

(−1)j
∂
sing
j I

+
∑

I1∪···∪Is=I

±
IsI1

+
∑
±

I

.
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Proposition ([Maz21b])

There exists a polytopal subdivision of n − Jm := ∆n × Jm such

that the boundary of the inner cell [n − Jm] is given by

∂sing [n − Jm] ∪
⋃

h+k=m+1

16i6k
h>2

[n − Jk ]×i [Kh] ∪
⋃

i1+···+is=m
I1∪···∪Is=∆n

s>2

[Ks ]× [dim(I1)− Ji1 ]× · · · × [dim(Is)− Jis ] ,

where I1 ∪ · · · ∪ Is = ∆n is an overlapping partition of ∆n.
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De�nition ([Maz21b])

The n-multiplihedra are de�ned to be the polytopes ∆n × Jm
endowed with the previous polytopal subdivision. We denote them
n − Jm.

In other words, the n-multiplihedra are the polytopes encoding

n-morphisms between A∞-algebras.
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Figure: The 1-multiplihedron ∆1 × J2
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Figure: The 2-multiplihedron ∆2 × J2
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Figure: The 1-multiplihedron ∆1 × J3
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Let M be an oriented closed Riemannian manifold endowed with a
Morse function f together with a Morse-Smale metric. The Morse
cochains C ∗(f ) form a deformation retract of the singular cochains
C ∗sing (M) as shown in [Hut08].

(C ∗sing , ∂sing ) (C ∗(f ), ∂Morse) .h
p

i

The cup product naturally endows the singular cochains C ∗sing (M)
with a dg-algebra structure. The homotopy transfer theorem
ensures that it can be transferred to an A∞-algebra structure on
the Morse cochains C ∗(f ).
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The di�erential on the Morse cochains is de�ned by a count of
moduli spaces of gradient trajectories. Is it then possible to de�ne
higher multiplications mn on C ∗(f ) by a count of moduli spaces
such that they �t in a structure of A∞-algebra ?

Question solved for the �rst time by Abouzaid in [Abo11], drawing
from earlier works by Fukaya ([Fuk97] for instance). See
also [Mes18] and [AL18]. In [Maz21a] I prove that this A∞-algebra
structure actually stems from an ΩBAs-algebra structure, but I will
not dwell on that notion today.
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A ribbon tree

l1 l2

A metric ribbon

tree

l1 l2

A stable metric

ribbon tree
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De�nition

De�ne Tn to be moduli space of stable metric ribbon trees with n
incoming edges. For each stable ribbon tree type t, we de�ne
moreover Tn(t) ⊂ Tn to be the moduli space

Tn(t) := {stable metric ribbon trees of type t} .

We then have that
Tn =

⋃
t∈SRTn

Tn(t) .
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Allowing lengths of internal edges to go to +∞, this moduli space
can be compacti�ed into a (n − 2)-dimensional CW-complex T n,
where Tn is seen as its unique (n − 2)-dimensional stratum.

Theorem

The compacti�ed moduli space T n is isomorphic as a CW-complex

to the associahedron Kn.

This was �rst noticed in section 1.4. of Boardman-Vogt [BV73].
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l l

Figure: The compacti�ed moduli space T 3
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l1
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l1

l2

l1
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Figure: The compacti�ed moduli space T 4
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The goal is now to realize these moduli spaces of stable metric
ribbon trees in Morse theory.

x1

−∇f

−∇f

x3

−∇f

y

−∇f

x2

−∇f

Perturbing the gradient vector �eld

around each vertex of the tree

x1

−∇f

−∇f

x3

−∇f

y

−∇f

x2

−∇f

−∇f + X

−∇f + X
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De�nition

T := (t, {le}e∈E(t)) where {le}e∈E(t) are the lengths of its internal
edges of the tree t. Choice of perturbation data on T consists of
the following data :

(i) a vector �eld [0, le ]×M −→
Xe

TM, that vanishes on [1, le − 1],

for every internal edge e of t ;

(ii) a vector �eld [0,+∞[×M −→
Xe0

TM, that vanishes away from

[0, 1], for the outgoing edge e0 of t ;

(iii) a vector �eld ]−∞, 0]×M −→
Xei

TM, that vanishes away from

[−1, 0], for every incoming edge ei (1 6 i 6 n) of t.
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We will write De for all segments [0, le ] as well as for all
semi-in�nite segments ]−∞, 0] and [0,+∞[ in the rest of the talk.

De�nition ([Abo11])

A perturbed Morse gradient tree TMorse associated to (T ,X) is the
data for each edge e of t of a smooth map γe : De → M such that
γe is a trajectory of the perturbed negative gradient −∇f + Xe , i.e.

γ̇e(s) = −∇f (γe(s)) + Xe(s, γe(s)) ,

and such that the endpoints of these trajectories coincide as
prescribed by the edges of the tree T .
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De�nition

Let Xn be a smooth choice of perturbation data on Tn. For critical
points y and x1, . . . , xn, we de�ne the moduli space

T Xn
n (y ; x1, . . . , xn) :={
perturbed Morse gradient trees associated to (T ,XT )

and connecting x1, . . . , xn to y , for T ∈ Tn

}
.
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Proposition

Given a generic choice of perturbation data Xn, the moduli space

T Xn
n (y ; x1, . . . , xn) is an orientable manifold of dimension

dim (Tn(y ; x1, . . . , xn)) = n − 2 + |y | −
n∑

i=1

|xi | .
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Choose perturbation data Xn on each moduli space Tn for n > 2.
By assuming some gluing-compatibility conditions on (Xn)n>2, the
1-dimensional moduli spaces Tn(y ; x1, . . . , xn) can be compacti�ed
to manifolds with boundary whose boundary is given by the spaces

(i) corresponding to an internal edge breaking :

T Xi1+1+i3
i1+1+i3

(y ; x1, . . . , xi1 , z , xi1+i2+1, . . . , xn)×T Xi2
i2

(z ; xi1+1, . . . , xi1+i2),

wherei1 + i2 + i3 = n and the trees of arity i2 are seen to lie
above the i1 + 1-incoming edge of the trees of arity i1 + 1+ i3 ;

(ii) corresponding to an external edge breaking :

T (y ; z)×T Xn
n (z ; x1, . . . , xn) and T Xn

n (y ; x1, . . . , z , . . . , xn)×T (z ; xi ) .
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x1 x3

y

z

x2

z x3

y

x1 x2

Two examples of perturbed Morse gradient trees breaking at a critical
point
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Theorem ([Abo11])

For an admissible choice of perturbation data X := (Xn)n>2,
de�ning for every n the operation mn as

mn : C ∗(f )⊗ · · · ⊗ C ∗(f ) −→ C ∗(f )

x1 ⊗ · · · ⊗ xn 7−→
∑

|y |=
∑n

i=1 |xi |+2−n

#T X
n (y ; x1, · · · , xn) · y ,

they endow the Morse cochains C ∗(f ) with an A∞-algebra
structure.
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Indeed, the boundary of the previous compacti�cation is modeled
on the A∞-equations for A∞-algebras :

[∂Morse ,
1 2 n

] =
∑

h+k=n+1

26h6n−1
16i6k

± 1 d1
k

1 d2

.
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Consider an additional Morse function g on the manifold M. Our
goal is now to construct an A∞-morphism from the Morse cochains
C ∗(f ) to the Morse cochains C ∗(g), through a count of moduli
spaces of perturbed Morse trees. While we considered stable metric
ribbon trees to construct and A∞-algebra structure, we will this
time consider stable two-colored metric ribbon trees to de�ne our
A∞-morphism.
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De�nition

A stable two-colored metric ribbon tree or stable gauged metric

ribbon tree is de�ned to be a stable metric ribbon tree together
with a length λ ∈ R. This length is to be thought of as a gauge
drawn over the metric tree, at distance λ from its root, where the
positive direction is pointing down.

λl

l2

l1 l3

l1 = l3
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De�nition

For n > 2, we de�ne CT n to be the moduli space of stable

two-colored metric ribbon trees. It has a cell decomposition by
stable two-colored ribbon tree type,

CT n =
⋃

tc∈SCRTn

CT n(tc) .

We also denote CT 1 := { } the space whose only element is the
unique two-colored ribbon tree of arity 1.
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Allowing again internal edges of metric trees to go to +∞, this
moduli space CT n can be compacti�ed into a (n − 1)-dimensional
CW-complex CT n.

l2

l1 l3 l2 −→ +∞ l1 l3
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l2

l1 l3 l1 = l3 −→ +∞

l2

Theorem ([MW10])

The compacti�ed moduli space CT n is isomorphic as a

CW-complex to the multiplihedron Jn.
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λ

λ

The compacti�ed moduli space CT 2 with its cell decomposition by stable
two-colored ribbon tree type
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λ
l

λl

λ
l

λ
l

λl

λ
l

The compacti�ed moduli space CT 3 with its cell decomposition by stable
two-colored ribbon tree type
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De�nition

A two-colored perturbed Morse gradient tree TMorse
g associated to

a pair two-colored metric ribbon tree and perturbation data (Tg ,Y)
is the data

(i) for each edge fc of tc which is above the gauge, of a smooth
map

Dfc −→γfc
M ,

such that γfc is a trajectory of the perturbed negative gradient
−∇f + Yfc ,
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De�nition

(ii) for each edge fc of tc which is below the gauge, of a smooth
map

Dfc −→γfc
M ,

such that γfc is a trajectory of the perturbed negative gradient
−∇g + Yfc ,

and such that the endpoints of these trajectories coincide as
prescribed by the edges of the two-colored tree type.

Thibaut Mazuir Higher algebra of A∞-algebras in Morse theory



Higher algebra of A∞-algebras ...
... in Morse theory
Further directions

References

A∞-algebra structure on the Morse cochains
A∞-morphisms between Morse cochain complexes
n-morphisms between Morse cochain complexes

−∇f −∇f −∇f −∇f

−∇f + Y −∇f + Y

−∇f −∇f−∇f + Y

−∇g + Y
−∇g −∇g

−∇g + Y

−∇g

x1 x2 x3 x4

y

An example of a perturbed two-colored Morse gradient tree, where the xi
are critical points of f and y is a critical point of g
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De�nition

Let Yn be a smooth choice of perturbation data on the moduli
space CT n. Given y ∈ Crit(g) and x1, . . . , xn ∈ Crit(f ), we de�ne
the moduli spaces

CT Yn
n (y ; x1, . . . , xn) :={
two-colored perturbed Morse gradient trees associated to
(Tg ,YTg ) and connecting x1, . . . , xn to y for Tg ∈ CT n

}
.
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Proposition

Given a generic choice of perturbation data Yn, the moduli spaces

CT Yn
n (y ; x1, . . . , xn) are orientable manifolds of dimension

dim (CT n(y ; x1, . . . , xn)) = |y | −
n∑

i=1

|xi |+ n − 1 .
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Given perturbation data Xf and Xg for the functions f and g , by
assuming some gluing-compatibility conditions for a choice of
perturbation data Yn for all n > 1, the 1-dimensional moduli spaces
CT Yn

n (y ; x1, . . . , xn) can be compacti�ed into manifolds with
boundary whose boundary is modeled on the A∞-equations for
A∞-morphisms :

[
∂Morse ,

]
=

∑
h+k=n+1

16i6k
h>2

± 1 k
i

1 h

+
∑

i1+···+is=n
s>2

±

1 isi11

.
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tg t2g

t1

(above-break)
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Theorem ([Maz21a])

Let Xf , Xg and (Yn)n>1 be generic choices of perturbation data.

De�ning for every n the operation µn as

µYn : C ∗(f )⊗ · · · ⊗ C ∗(f ) −→ C ∗(g)

x1 ⊗ · · · ⊗ xn 7−→ ∑
|y |=

∑n
i=1 |xi |+1−n

#CT Y
n (y ; x1, · · · , xn) · y .

they �t into an A∞-morphism µY : (C ∗(f ),mXf

n )→ (C ∗(g),mXg

n ).

Thibaut Mazuir Higher algebra of A∞-algebras in Morse theory



Higher algebra of A∞-algebras ...
... in Morse theory
Further directions

References

A∞-algebra structure on the Morse cochains
A∞-morphisms between Morse cochain complexes
n-morphisms between Morse cochain complexes

Again, I prove in [Maz21a] that this A∞-morphism actually stems
from an ΩBAs-morphism between the ΩBAs-algebras C ∗(f ) and
C ∗(g).

Thibaut Mazuir Higher algebra of A∞-algebras in Morse theory



Higher algebra of A∞-algebras ...
... in Morse theory
Further directions

References

A∞-algebra structure on the Morse cochains
A∞-morphisms between Morse cochain complexes
n-morphisms between Morse cochain complexes

1 Higher algebra of A∞-algebras ...

2 ... in Morse theory
A∞-algebra structure on the Morse cochains
A∞-morphisms between Morse cochain complexes
n-morphisms between Morse cochain complexes

3 Further directions

4 References

Thibaut Mazuir Higher algebra of A∞-algebras in Morse theory



Higher algebra of A∞-algebras ...
... in Morse theory
Further directions

References

A∞-algebra structure on the Morse cochains
A∞-morphisms between Morse cochain complexes
n-morphisms between Morse cochain complexes

Endowing the Morse cochains C ∗(f ) and C ∗(g) with their
A∞-algebra structures, we now prove that one can always construct
n-A∞-morphisms between C ∗(f ) and C ∗(g) by counting suitable
moduli spaces of perturbed Morse gradient trees.

While the spaces parametrizing the perturbation data were the Tm
(a model for the associahedra Km) and the CT m (a model for the
multiplihedra Jm), perturbation data will now be parametrized by
the n-multiplihedra ∆n × CT m.
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De�nition

A n-simplex of perturbation data for a two-colored metric ribbon
tree Tg is de�ned to be a choice of perturbation data Yδ,Tg for

every δ ∈ ∆̊n. We will denote it as Y∆n,Tg := {Yδ,Tg }δ∈∆̊n .
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De�nition

Let Y∆n,m be a n-simplex of perturbation data on CT m. Given
y ∈ Crit(g) and x1, . . . , xm ∈ Crit(f ), we de�ne the moduli spaces

CT Y∆n,m

∆n,m (y ; x1, . . . , xm) :=
⋃
δ∈∆̊n

CT Yδ,m
m (y ; x1, . . . , xm) .
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Proposition ([Maz21b])

Under a generic choice of n-simplex of perturbation data Y∆n,m,

the moduli space CT ∆n,m(y ; x1, . . . , xm) is an orientable manifold

of dimension

dim (CT ∆n,m(y ; x1, . . . , xm)) = n + m − 1 + |y | −
m∑
i=1

|xi | .
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Choose perturbation data Xf and Xg for the functions f and g
together with perturbation data (YI ,m)m>1

I⊂∆n . By assuming some

gluing-compatibility conditions on (YI ,m)m>1
I⊂∆n modeling the

combinatorics of overlapping partitions, the 1-dimensional moduli

spaces CT YI ,m

I ,m (y ; x1, . . . , xm) can be compacti�ed into manifolds
with boundary whose boundary is modeled on the A∞-equations for
n-morphisms :

[∂, I ] =
k∑

j=1

(−1)j
∂
sing
j I

+
∑

I1∪···∪Is=I

±
IsI1

+
∑
±

I

.
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Theorem ([Maz21b])

Let Xf , Xg and (YI ,m)m>1
I⊂∆n be generic choices of perturbation

data. De�ning for every m the operation µ
(m)
I as

C ∗(f )⊗ · · · ⊗ C ∗(f )
µ

(m)
I−→ C ∗(g)

x1 ⊗ · · · ⊗ xm 7−→ ∑
|y |=

∑m
i=1 |xi |+1−m+|I |

#CT YI ,m

I ,m (y ; x1, · · · , xm) · y ,

they �t into a n-morphism µYI : (C ∗(f ),mXf

n )→ (C ∗(g),mXg

n ),
I ⊂ ∆n.
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Again, I prove in [Maz21b] that this n-A∞-morphism actually stems
from a n-ΩBAs-morphism between the ΩBAs-algebras C ∗(f ) and
C ∗(g).
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Theorem ([Maz21b])

For every admissible choice of perturbation data YS parametrized

by a simplicial subcomplex S ⊂ ∆n, there exists an admissible

n-simplex of perturbation data Y∆n extending YS .
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The simplicial set HOMA∞(C ∗(f ),C ∗(g))• being an ∞-groupoid,
we know that every horn Λk

n → HOMA∞(C ∗(f ),C ∗(g))• admits an
algebraic �ller

Λk
n HOMA∞(C ∗(f ),C ∗(g))•

∆n

µ

µ

.

The previous theorem tells us that when µ stems from a choice of
perturbation data, this diagram can always be �lled geometrically,
by directly �lling the horn of perturbation data.
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Corollary ([Maz21b])

Let Y and Y′ be two admissible choices of perturbation data on the

moduli spaces CT m. The A∞-morphisms µY and µY
′
are then

A∞-homotopic

C ∗(f ) C ∗(g)

µY

µY
′

.

Indeed, these two choices of perturbation data correspond to a
choice of perturbation data parametrized by the simplicial
subcomplex of ∆1 consisting of its two vertices.

Thibaut Mazuir Higher algebra of A∞-algebras in Morse theory



Higher algebra of A∞-algebras ...
... in Morse theory
Further directions

References

1 Higher algebra of A∞-algebras ...

2 ... in Morse theory

3 Further directions

4 References

Thibaut Mazuir Higher algebra of A∞-algebras in Morse theory



Higher algebra of A∞-algebras ...
... in Morse theory
Further directions

References

1. It is quite clear that given two compact symplectic manifolds M
and N, one should be able to construct n-morphisms between their
Fukaya categories Fuk(M) and Fuk(N) through counts of moduli
spaces of quilted disks (see [MWW18] for the n = 0 case).

z3

z2

z1

z0

C

xn
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y
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2. Given three Morse functions f0, f1, f2, choices of perturbation
data Xi , and choices of perturbation data Yij de�ning morphisms

µY
01

: (C ∗(f0),mX0

n ) −→ (C ∗(f1),mX1

n ) ,

µY
12

: (C ∗(f1),mX1

n ) −→ (C ∗(f2),mX2

n ) ,

µY
02

: (C ∗(f0),mX0

n ) −→ (C ∗(f2),mX2

n ) ,

can we construct an A∞-homotopy such that µY
12 ◦ µY01 ' µY02

through this homotopy ? (work in progress ; see also [MWW18] for
a similar question)
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That is, can the following cone be �lled in the A∞ realm

C ∗(f0) C ∗(f1)

C ∗(f2)

µY
02

µY
01

µY
12 ?
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3. Links between the n-multiplihedra and the 2-associahedra of
Bottman (see [Bot19a] and [Bot19b] for instance) ? We are
currently inspecting this matter with Nate Bottman.
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4. We would like to see the simplicial sets HOMA∞−alg(A,B)• as
part of a simplicial enrichment of the category A∞ − alg. In other
words, we would like to de�ne simplicial maps

HOMA∞−alg(A,B)n×HOMA∞−alg(B,C )n −→ HOMA∞−alg(A,C )n ,

lifting the composition on the HOM0 = Hom.

This would then endow A∞ − alg with a structure of ∞-category.
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Thanks for your attention !
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