Higher algebra of A_{∞}-algebras in Morse theory

Thibaut Mazuir

IMJ-PRG - Sorbonne Université

Séminaire de topologie, géométrie et algèbre Laboratoire de Mathématiques Jean Leray, Nantes 20 mai 2021

The results presented in this talk are taken from my two recent papers : Higher algebra of A_{∞} and $\Omega B A s$-algebras in Morse theory I (arXiv:2102.06654) and Higher algebra of A_{∞} and $\Omega B A s$-algebras in Morse theory II (arxiv:2102.08996).

The talk will be divided in two parts. First I will define the notion of higher morphisms between A_{∞}-algebras, or $n-A_{\infty}$-morphisms, and explain how they are encoded by new families of polytopes called the n-multiplihedra. Then I will show how these higher morphisms can be realized in Morse theory, by counting moduli spaces of perturbed Morse gradient trees.

Higher algebra of A_{∞}-algebras
A_{∞}-algebras and A_{∞}-morphisms Higher morphisms between A_{∞}-algebras The HOM-simplicial sets $\mathrm{HOM}_{\mathrm{A}}^{\infty}$-alg (A, B). The associahedra and the multiplihedra The n-multiplihedra
(1) Higher algebra of A_{∞}-algebras ...
(2) ... in Morse theory
(3) Further directions

4 References

Higher algebra of A_{∞}-algebras
A_{∞}-algebras and A_{∞}-morphisms Higher morphisms between A_{∞}-algebras The HOM-simplicial sets $\mathrm{HOM}_{\mathrm{A}}^{\infty}-\operatorname{alg}(A, B)$ • The associahedra and the multiplihedra The n-multiplihedra
(1) Higher algebra of A_{∞}-algebras ...

- A_{∞}-algebras and A_{∞}-morphisms
- Higher morphisms between A_{∞}-algebras
- The HOM-simplicial sets $\mathrm{HOM}_{\mathrm{A}_{\infty}-\mathrm{alg}}(A, B)$.
- The associahedra and the multiplihedra
- The n-multiplihedra
(2) ... in Morse theory
(3) Further directions

4 References

Definition

Let A be a cochain complex with differential m_{1}. An A_{∞}-algebra structure on A is the data of a collection of maps of degree $2-n$

$$
m_{n}: A^{\otimes n} \longrightarrow A, n \geqslant 1
$$

extending m_{1} and which satisfy

$$
\left[m_{1}, m_{n}\right]=\sum_{\substack{i_{1}+i_{2}+i_{3}=n \\ 2 \leqslant i_{2} \leqslant n-1}} \pm m_{i_{1}+1+i_{3}}\left(\mathrm{id}^{\otimes i_{1}} \otimes m_{i_{2}} \otimes \mathrm{id}^{\otimes i_{3}}\right)
$$

Representing m_{n} as

These equations are called the A_{∞}-equations.

In particular,

$$
\begin{aligned}
& {\left[m_{1}, m_{2}\right]=0} \\
& {\left[m_{1}, m_{3}\right]=m_{2}\left(\mathrm{id} \otimes m_{2}-m_{2} \otimes \mathrm{id}\right),}
\end{aligned}
$$

implying that m_{2} descends to an associative product on $H^{*}(A)$. An A_{∞}-algebra is thus simply a correct notion of a dg-algebra whose product is associative up to homotopy.

The operations m_{n} are the higher coherent homotopies which keep track of the fact that the product is associative up to homotopy.

Definition

An A_{∞}-morphism between two A_{∞}-algebras A and B is a family of maps $f_{n}: A^{\otimes n} \rightarrow B$ of degree $1-n$ satisfying

$$
\begin{aligned}
{\left[m_{1}, f_{n}\right]=} & \sum_{\substack{i_{1}+i_{2}+i_{3}=n \\
i_{2} \geqslant 2}} \pm f_{i_{1}+1+i_{3}}\left(\mathrm{id}^{\otimes i_{1}} \otimes m_{i_{2}} \otimes \mathrm{id}^{\otimes i_{3}}\right) \\
& +\sum_{\substack{i_{1}+\cdots+i_{s}=n \\
s \geqslant 2}} \pm m_{s}\left(f_{i_{1}} \otimes \cdots \otimes f_{i_{s}}\right)
\end{aligned}
$$

Representing the operations f_{n} as Ψ, the operations m_{n}^{A} in red and the operations m_{n}^{B} in blue, these equations read as

We check that

$$
\begin{aligned}
{\left[m_{1}, f_{1}\right] } & =0 \\
{\left[m_{1}, f_{2}\right] } & =f_{1} m_{2}^{A}-m_{2}^{B}\left(f_{1} \otimes f_{1}\right)
\end{aligned}
$$

An A_{∞}-morphism between A_{∞}-algebras induces a morphism of associative algebras on the level of cohomology, and is a correct notion of morphism which preserves the product up to homotopy.

Given two A_{∞}-morphisms $F: A \rightarrow B$ and $G: B \rightarrow C$, we define the composition $G \circ F: A \rightarrow C$ as the family of morphisms

$$
(G \circ F)_{n}:=\sum_{i_{1}+\cdots+i_{s}=n} \pm g_{s}\left(f_{i_{1}} \otimes \cdots \otimes f_{i_{s}}\right) .
$$

This composition is in fact associative. Hence, A_{∞}-algebras together with A_{∞}-morphisms form a category, denoted $\mathrm{A}_{\infty}-\mathrm{alg}$.

The category $A_{\infty}-\operatorname{alg}$ provides a framework that behaves well with respect to homotopy-theoretic constructions, when studying homotopy theory of associative algebras. See for instance [Val20] and [LHO2].

We illustrate this fact with two fundamental theorems.

Theorem (Homotopy transfer theorem [Kad80])

Let $\left(A, \partial_{A}\right)$ and $\left(H, \partial_{H}\right)$ be two cochain complexes. Suppose that H is a deformation retract of A, that is that they fit into a diagram

where $\mathrm{id}_{A}-i p=[\partial, h]$ and $p i=\mathrm{id}_{H}$. Then if $\left(A, \partial_{A}\right)$ is endowed with an associative algebra structure, H can be made into an A_{∞}-algebra such that i and p extend to A_{∞}-morphisms, that are then A_{∞}-quasi-isomorphisms.

Theorem (Fundamental theorem of A_{∞}-quasi-isomorphisms [LH02])

For every A_{∞}-quasi-isomorphism $f: A \rightarrow B$ there exists an A_{∞}-quasi-isomorphism $B \rightarrow A$ which inverts f on the level of cohomology.
(1) Higher algebra of A_{∞}-algebras ...

- A_{∞}-algebras and A_{∞}-morphisms
- Higher morphisms between A_{∞}-algebras
- The HOM-simplicial sets $\mathrm{HOM}_{\mathrm{A}_{\infty}-\mathrm{alg}}(A, B)$.
- The associahedra and the multiplihedra
- The n-multiplihedra

2 \ldots in Morse theory
(3) Further directions

4 References

Our goal now: study the higher algebra of A_{∞}-algebras.

Higher algebra is a general term standing for all problems that involve defining coherent sets of higher homotopies (also called n-morphisms) when starting from a basic homotopy setting.

Considering two A_{∞}-morphisms F, G, we would like first to determine a notion giving a satisfactory meaning to the sentence " F and G are homotopic". Then, A_{∞}-homotopies being defined, what is now a good notion of a homotopy between homotopies ? And of a homotopy between two homotopies between homotopies ? And so on.

Definition

An A_{∞}-homotopy between two A_{∞}-morphisms $\left(f_{n}\right)_{n \geqslant 1}$ and $\left(g_{n}\right)_{n \geqslant 1}$ is a collection of maps

$$
h_{n}: A^{\otimes n} \longrightarrow B
$$

of degree $-n$, satisfying

$$
\begin{aligned}
{\left[\partial, h_{n}\right]=} & g_{n}-f_{n}+\sum_{\substack{i_{1}+i_{2}+i_{3}=m \\
i_{2} \geqslant 2}} \pm h_{i_{1}+1+i_{3}}\left(\mathrm{id}^{\otimes i_{1}} \otimes m_{i_{2}} \otimes \mathrm{id}^{\otimes i_{3}}\right) \\
& +\sum_{\substack{i_{1}+\cdots+i_{s}+l \\
+j_{1}+\cdots+j_{t}=n \\
s+1+t \geqslant 2}} \pm m_{s+1+t}\left(f_{i_{1}} \otimes \cdots \otimes f_{i_{s}} \otimes h_{l} \otimes g_{j_{1}} \otimes \cdots \otimes g_{j_{t}}\right)
\end{aligned}
$$

In symbolic formalism,
where we denote

$\underset{[1]}{\perp \cdots}$ respectively for the f_{n}, the h_{n} and the g_{n}.

The relation being A_{∞}-homotopic on the class of A_{∞}-morphisms is an equivalence relation. It is moreover stable under composition. These results cannot all be proven using naive algebraic tools, some of them require considerations of model categories.

Definition ([MS03])

Let I be a face of Δ^{n}. An overlapping partition of I is a sequence of faces $\left(I_{I}\right)_{1 \leqslant \ell \leqslant s}$ of I such that
(i) the union of this sequence of faces is I, i.e. $\cup_{1 \leqslant \ell \leqslant s} I_{I}=I$;
(ii) for all $1 \leqslant \ell<s, \max \left(I_{\ell}\right)=\min \left(I_{\ell+1}\right)$.

An overlapping 6-partition for $[0<1<2$] is for instance

$$
[0<1<2]=[0] \cup[0] \cup[0<1] \cup[1] \cup[1<2] \cup[2] .
$$

Definition ([Maz21b])

A n-morphism from A to B is defined to be a collection of maps $f_{l}^{(m)}: A^{\otimes m} \longrightarrow B$ of degree $1-m+|I|$ for $I \subset \Delta^{n}$ and $m \geqslant 1$, that satisfy

$$
\begin{aligned}
{\left[\partial, f_{l}^{(m)}\right]=} & \sum_{j=0}^{\operatorname{dim}(I)}(-1)^{j} f_{\partial_{j} l}^{(m)}+\sum_{\substack{i_{1}+\cdots+i_{s}=m \\
I_{1} \cup \cdots \cup I_{s}=l \\
s \geqslant 2}} \pm m_{s}\left(f_{l_{1}}^{\left(i_{1}\right)} \otimes \cdots \otimes f_{l_{s}}^{\left(i_{s}\right)}\right) \\
& +(-1)^{|/|} \sum_{\substack{i_{1}+i_{2}+i_{3}=m \\
i_{2} \geqslant 2}} \pm f_{l}^{\left(i_{1}+1+i_{3}\right)}\left(\mathrm{id}^{\otimes i_{1}} \otimes m_{i_{2}} \otimes \mathrm{id}^{\otimes i_{3}}\right) .
\end{aligned}
$$

Here we have set $|I|:=-\operatorname{dim}(I)$.

Equivalently and more visually, a collection of maps
, * satisfying

$$
\begin{aligned}
& +\sum \pm \text {, }
\end{aligned}
$$

We check that 0-morphisms then correspond to A_{∞}-morphisms and 1-morphisms correspond to A_{∞}-homotopies.

We mention that the correct way to define higher morphisms between A_{∞}-algebras is by using the suspended bar construction $\bar{T}(s A)$. We have the following one-to-one correspondences :

$$
\left.\begin{array}{c}
\left\{\begin{array}{c}
\text { collections of morphisms of degree } 2-n \\
m_{n}: A^{\otimes n} \rightarrow A, n \geqslant 1, \\
\text { satisfying the } A_{\infty} \text {-equations }
\end{array}\right\} \\
\downarrow
\end{array}\right\}
$$

$\left\{\begin{array}{c}\text { collections of morphisms of degree } 1-n \\ f_{n}: A^{\otimes n} \rightarrow B, n \geqslant 1, \\ \text { satisfying the } A_{\infty} \text {-equations } \\ \downarrow\end{array}\right\}$
$\left\{\begin{array}{c}\text { morphisms of dg-coalgebras } \\ F: \bar{T}(s A) \rightarrow \bar{T}(s B)\end{array}\right\}$

$$
\begin{gathered}
\left\{\begin{array}{c}
\text { collections of morphisms of degree } 1-m+|I| \\
f_{l}^{(m)}: A^{\otimes m} \rightarrow B, m \geqslant 1, I \subset \Delta^{n}, \\
\text { satisfying the } A_{\infty} \text {-equations }
\end{array}\right\} \\
\left\{\begin{array}{c}
\text { morphisms of dg-coalgebras } \\
F: \Delta^{n} \otimes \bar{T}(s A) \rightarrow \bar{T}(s B)
\end{array}\right\}
\end{gathered}
$$

where Δ^{n} denotes the cellular chains coalgebra $C_{-*}^{c e l l}\left(\Delta^{n}\right)$ with coproduct the Alexander-Whitney coproduct.
(1) Higher algebra of A_{∞}-algebras ...

- A_{∞}-algebras and A_{∞}-morphisms
- Higher morphisms between A_{∞}-algebras
- The HOM-simplicial sets $\mathrm{HOM}_{\mathrm{A}_{\infty}-\mathrm{alg}}(A, B)$.
- The associahedra and the multiplihedra
- The n-multiplihedra
(2) ... in Morse theory
(3) Further directions
(4) References

The sets $\operatorname{HOM}_{\mathrm{A}_{\infty}-\operatorname{alg}}(A, B)_{n}$ of n-morphisms between two A_{∞}-algebras A and B fit into a simplicial set $\operatorname{HOM}_{\mathrm{A}_{\infty}-\mathrm{alg}}(A, B)_{\text {. }}$. It provides a satisfactory framework to study the higher algebra of A_{∞}-algebras.

Theorem ([Maz21b])

For A and B two A_{∞}-algebras, the simplicial set $\operatorname{HOM}_{A_{\infty}}(A, B)$. is an ∞-groupoid.

Write Δ^{n} the simplicial set realizing the standard n-simplex Δ^{n}, and Λ_{n}^{k} the simplicial set realizing the simplicial subcomplex obtained from Δ^{n} by removing the faces $[0<\cdots<n]$ and $[0<\cdots<\widehat{k}<\cdots<n]$. The simplicial set Λ_{n}^{k} is called a horn, and if $0<k<n$ it is called an inner horn.

The inner horns $\Lambda_{2}^{1} \subset \Delta^{2}$ and $\Lambda_{3}^{2} \subset \Delta^{3}$

An ∞-groupoid is a simplicial set X which has the left-lifting property with respect to all horn inclusions $\Lambda_{n}^{k} \rightarrow \Delta^{n}$.

If X has the left-lifting property with respect to all inner horn inclusions one speaks about an ∞-category. The vertices of X are then to be seen as objects, and its edges correspond to morphisms. If X is an ∞-groupoid, these morphisms are to be thought as being all invertible up to homotopy.

Theorem ([Maz21b])

For A and B two A_{∞}-algebras, the simplicial set $\operatorname{HOM}_{A_{\infty}}(A, B)$. is an ∞-groupoid.

Beware that the points of these ∞-groupoids are the A_{∞}-morphisms, and the arrows between them are the A_{∞}-homotopies. This can be misleading at first sight, but the points are the morphisms and NOT the algebras and the arrows are the homotopies and NOT the morphisms.

We point out that the simplicial set $\operatorname{HOM}_{A_{\infty}}(A, B)$. being an ∞-groupoid, it comes in particular with simplicial homotopy groups (which are exactly the standard homotopy groups of its geometric realization). The simplicial homotopy groups of $\mathrm{HOM}_{A_{\infty}}(A, B)$. are in fact easily computable and admit a nice combinatorial description.

Moreover, I can explicitly describe all the fillers for any inner horn $\Lambda_{n}^{k} \rightarrow \operatorname{HOM}_{A_{\infty}}(A, B)_{\bullet}, 0<k<n$. Beware this is not true for outer horns. This makes in particular $\operatorname{HOM}_{A_{\infty}}(A, B)$ • into an algebraic ∞-category.
(1) Higher algebra of A_{∞}-algebras ...

- A_{∞}-algebras and A_{∞}-morphisms
- Higher morphisms between A_{∞}-algebras
- The HOM-simplicial sets $\mathrm{HOM}_{\mathrm{A}_{\infty}-\operatorname{alg}}(A, B)$ 。
- The associahedra and the multiplihedra
- The n-multiplihedra
(2) \ldots in Morse theory
(3) Further directions
(4) References

Recall that the A_{∞}-equations for A_{∞}-algebras read as

These equations are encoded by a collection of polytopes, called the associahedra and denoted K_{n}. In particular, the boundary of K_{n} is given by

$$
\partial K_{n}=\bigcup_{\substack{h+k=n+1 \\ 2 \leqslant h \leqslant n-1}} \bigcup_{1 \leqslant i \leqslant k} K_{k} \times_{i} K_{h} .
$$

We point out that A_{∞}-algebras are in fact encoded by an operad, called the operad A_{∞}. The collection of associahedra $\left\{K_{n}\right\}$ are then in fact endowed with a structure of operad in the category Poly whose image under the functor $C_{-*}^{\text {cell }}$ yields the operad A_{∞}.

The associahedra K_{2}, K_{3} and K_{4}, with cells labeled by the operations they define in A_{∞}

The A_{∞}-equations for A_{∞}-morphisms read as

These equations are again encoded by a collection of polytopes, called the multiplihedra and denoted J_{n}. In particular the boundary of J_{n} is given by

$$
\partial J_{n}=\bigcup_{\substack{h+k=n+1 \\ h \geqslant 2}} \bigcup_{\substack{1 \leqslant i \leqslant k}} J_{k} \times_{i} K_{h} \cup \bigcup_{\substack{i_{1}+\cdots+i_{s}=n \\ s \geqslant 2}} K_{s} \times J_{i_{1}} \times \cdots \times J_{i_{s}}
$$

The multiplihedra J_{1}, J_{2} and J_{3} with cells labeled by the operations they define in $A_{\infty}-$ Morph

Higher algebra of A_{∞}-algebras
A_{∞}-algebras and A_{∞}-morphisms Higher morphisms between A_{∞}-algebras
The HOM-simplicial sets $\mathrm{HOM}_{\mathrm{A}_{\infty}-\operatorname{alg}}(A, B)$ •
The associahedra and the multiplihedra
The n-multiplihedra
(1) Higher algebra of A_{∞}-algebras ...

- A_{∞}-algebras and A_{∞}-morphisms
- Higher morphisms between A_{∞}-algebras
- The HOM-simplicial sets $\mathrm{HOM}_{\mathrm{A}_{\infty}-\mathrm{alg}}(A, B)$ 。
- The associahedra and the multiplihedra
- The n-multiplihedra
(2) ... in Morse theory
(3) Further directions

4 References

We would like to define a family of polytopes encoding n-morphisms between A_{∞}-algebras. These polytopes will then be called n-multiplihedra.

We have seen that A_{∞}-morphisms $\bar{T}(s A) \rightarrow \bar{T}(s B)$ are encoded by the multiplihedra. n-morphisms being defined as the set of morphisms $\Delta^{n} \otimes \bar{T}(s A) \rightarrow \bar{T}(s B)$, a natural candidate would thus be $\left\{\Delta^{n} \times J_{m}\right\}_{m \geqslant 1}$.

However, $\Delta^{n} \times J_{m}$ does not fulfill that property as it is. Faces correspond to the data of a face of $I \subset \Delta^{n}$, and of a broken two-colored tree labeling a face of J_{m}. This labeling is too coarse, as it does not contain the trees

that appear in the A_{∞}-equations for n-morphisms.

We thus want to lift the combinatorics of overlapping partitions to the level of the n-simplices Δ^{n}.

Recall that the $n-A_{\infty}$-equations read as

$$
\begin{aligned}
& \partial\left({ }_{l} \mu \mathrm{M}\right)=\sum_{j=1}^{k}(-1)^{j} \xrightarrow[\partial_{j}^{\text {sing }},]{ }+\ldots \ldots \ldots \\
& +\sum \pm \underset{1}{\infty}
\end{aligned}
$$

Proposition ([Maz21b])

There exists a polytopal subdivision of $n-J_{m}:=\Delta^{n} \times J_{m}$ such that the boundary of the inner cell $\left[n-J_{m}\right]$ is given by

$$
\partial^{\text {sing }}\left[n-J_{m}\right] \cup \bigcup_{\substack{h+k=m+1 \\ 1 \leq i \leq k \\ h \geqslant 2}}\left[n-J_{k}\right] \times x_{i}\left[K_{h}\right] \cup \bigcup_{\substack{i_{1}+\ldots+i_{s}=m \\ l_{1} \cup \ldots \cup s \\ s \geqslant 2}}\left[K_{s}\right] \times\left[\operatorname{dim}\left(l_{1}\right)-J_{i_{1}}\right] \times \cdots \times\left[\operatorname{dim}\left(I_{s}\right)-J_{i_{s}}\right],
$$

where $I_{1} \cup \cdots \cup I_{s}=\Delta^{n}$ is an overlapping partition of Δ^{n}.

Definition ([Maz21b])

The n-multiplihedra are defined to be the polytopes $\Delta^{n} \times J_{m}$ endowed with the previous polytopal subdivision. We denote them $n-J_{m}$.

In other words, the n-multiplihedra are the polytopes encoding n-morphisms between A_{∞}-algebras.

Higher algebra of A_{∞}-algebras in Morse theory Further directions

References
A_{∞}-algebras and A_{∞}-morphisms Higher morphisms between A_{∞}-algebras The HOM-simplicial sets $\mathrm{HOM}_{\mathrm{A}_{\infty}-\text {-alg }}(A, B)$.
The associahedra and the multiplihedra
The n-multiplihedra

Figure: The 1-multiplihedron $\Delta^{1} \times J_{2}$

Figure: The 2-multiplihedron $\Delta^{2} \times J_{2}$

Figure: The 1-multiplihedron $\Delta^{1} \times J_{3}$

Higher algebra of A_{∞}-algebras

References
A_{∞}-algebra structure on the Morse cochains A_{∞}-morphisms between Morse cochain complexes n-morphisms between Morse cochain complexes

(1) Higher algebra of A_{∞}-algebras ...

(2) ... in Morse theory
(3) Further directions
(4) References
(1) Higher algebra of A_{∞}-algebras
(2) ... in Morse theory

- A_{∞}-algebra structure on the Morse cochains
- A_{∞}-morphisms between Morse cochain complexes
- n-morphisms between Morse cochain complexes
(3) Further directions

4 References

Let M be an oriented closed Riemannian manifold endowed with a Morse function f together with a Morse-Smale metric. The Morse cochains $C^{*}(f)$ form a deformation retract of the singular cochains $C_{\text {sing }}^{*}(M)$ as shown in [Hut08].

The cup product naturally endows the singular cochains $C_{\text {sing }}^{*}(M)$ with a dg-algebra structure. The homotopy transfer theorem ensures that it can be transferred to an A_{∞}-algebra structure on the Morse cochains $C^{*}(f)$.

The differential on the Morse cochains is defined by a count of moduli spaces of gradient trajectories. Is it then possible to define higher multiplications m_{n} on $C^{*}(f)$ by a count of moduli spaces such that they fit in a structure of A_{∞}-algebra ?

Question solved for the first time by Abouzaid in [Abo11], drawing from earlier works by Fukaya ([Fuk97] for instance). See also [Mes18] and [AL18]. In [Maz21a] I prove that this A_{∞}-algebra structure actually stems from an $\Omega B A s$-algebra structure, but I will not dwell on that notion today.

A ribbon tree
A metric ribbon tree

A stable metric ribbon tree

Definition

Define \mathcal{T}_{n} to be moduli space of stable metric ribbon trees with n incoming edges. For each stable ribbon tree type t, we define moreover $\mathcal{T}_{n}(t) \subset \mathcal{T}_{n}$ to be the moduli space
$\mathcal{T}_{n}(t):=\{$ stable metric ribbon trees of type $t\}$.
We then have that

$$
\mathcal{T}_{n}=\bigcup_{t \in S R T_{n}} \mathcal{T}_{n}(t)
$$

Allowing lengths of internal edges to go to $+\infty$, this moduli space can be compactified into a $(n-2)$-dimensional CW-complex $\overline{\mathcal{T}}_{n}$, where \mathcal{T}_{n} is seen as its unique $(n-2)$-dimensional stratum.

Theorem

The compactified moduli space $\overline{\mathcal{T}}_{n}$ is isomorphic as a CW-complex to the associahedron K_{n}.

This was first noticed in section 1.4. of Boardman-Vogt [BV73].

Higher algebra of A_{∞}-algebras Further directions References
$A_{\infty \text {-algebra }}$ structure on the Morse cochains A_{∞}-morphisms between Morse cochain complexes n-morphisms between Morse cochain complexes

Figure: The compactified moduli space $\overline{\mathcal{T}}_{3}$

Figure: The compactified moduli space $\overline{\mathcal{T}}_{4}$

The goal is now to realize these moduli spaces of stable metric ribbon trees in Morse theory.

Definition

$T:=\left(t,\left\{I_{e}\right\}_{e \in E(t)}\right)$ where $\left\{I_{e}\right\}_{e \in E(t)}$ are the lengths of its internal edges of the tree t. Choice of perturbation data on T consists of the following data :
(i) a vector field $\left[0, l_{e}\right] \times M \underset{\mathbb{X}_{e}}{\longrightarrow} T M$, that vanishes on $\left[1, l_{e}-1\right]$, for every internal edge e of t;
(ii) a vector field $\left[0,+\infty\left[\times M \underset{\mathbb{X}_{e_{0}}}{\longrightarrow} T M\right.\right.$, that vanishes away from $[0,1]$, for the outgoing edge e_{0} of t;
(iii) a vector field $]-\infty, 0] \times M \underset{\mathbb{X}_{e_{i}}}{\longrightarrow} T M$, that vanishes away from [$-1,0$], for every incoming edge $e_{i}(1 \leqslant i \leqslant n)$ of t.

We will write D_{e} for all segments $\left[0, I_{e}\right]$ as well as for all semi-infinite segments $]-\infty, 0]$ and $[0,+\infty[$ in the rest of the talk.

Definition ([Abo11])

A perturbed Morse gradient tree $T^{\text {Morse }}$ associated to (T, \mathbb{X}) is the data for each edge e of t of a smooth map $\gamma_{e}: D_{e} \rightarrow M$ such that γ_{e} is a trajectory of the perturbed negative gradient $-\nabla f+\mathbb{X}_{e}$, i.e.

$$
\dot{\gamma}_{e}(s)=-\nabla f\left(\gamma_{e}(s)\right)+\mathbb{X}_{e}\left(s, \gamma_{e}(s)\right),
$$

and such that the endpoints of these trajectories coincide as prescribed by the edges of the tree T.

Definition

Let \mathbb{X}_{n} be a smooth choice of perturbation data on \mathcal{T}_{n}. For critical points y and x_{1}, \ldots, x_{n}, we define the moduli space

$$
\begin{aligned}
& \mathcal{T}_{n}^{\mathbb{X}_{n}}\left(y ; x_{1}, \ldots, x_{n}\right):= \\
& \left\{\begin{array}{c}
\text { perturbed Morse gradient trees associated to }\left(T, \mathbb{X}_{T}\right) \\
\text { and connecting } x_{1}, \ldots, x_{n} \text { to } y, \text { for } T \in \mathcal{T}_{n}
\end{array}\right\} .
\end{aligned}
$$

Proposition

Given a generic choice of perturbation data \mathbb{X}_{n}, the moduli space $\mathcal{T}_{n}^{\mathbb{X}_{n}}\left(y ; x_{1}, \ldots, x_{n}\right)$ is an orientable manifold of dimension

$$
\operatorname{dim}\left(\mathcal{T}_{n}\left(y ; x_{1}, \ldots, x_{n}\right)\right)=n-2+|y|-\sum_{i=1}^{n}\left|x_{i}\right|
$$

Choose perturbation data \mathbb{X}_{n} on each moduli space \mathcal{T}_{n} for $n \geqslant 2$. By assuming some gluing-compatibility conditions on $\left(\mathbb{X}_{n}\right)_{n \geqslant 2}$, the 1-dimensional moduli spaces $\mathcal{T}_{n}\left(y ; x_{1}, \ldots, x_{n}\right)$ can be compactified to manifolds with boundary whose boundary is given by the spaces
(i) corresponding to an internal edge breaking :

$$
\mathcal{T}_{i_{1}+1+i_{3}}^{\mathbb{X}_{i_{1}+1+i_{3}}}\left(y ; x_{1}, \ldots, x_{i_{1}}, z, x_{i_{1}+i_{2}+1}, \ldots, x_{n}\right) \times \mathcal{T}_{i_{2}}^{\mathbb{X}_{i_{2}}}\left(z ; x_{i_{1}+1}, \ldots, x_{i_{1}+i_{2}}\right),
$$

where $i_{1}+i_{2}+i_{3}=n$ and the trees of arity i_{2} are seen to lie above the $i_{1}+1$-incoming edge of the trees of arity $i_{1}+1+i_{3}$;
(ii) corresponding to an external edge breaking :

$$
\mathcal{T}(y ; z) \times \mathcal{T}_{n}^{\mathbb{X}_{n}}\left(z ; x_{1}, \ldots, x_{n}\right) \text { and } \mathcal{T}_{n}^{\mathbb{X}_{n}}\left(y ; x_{1}, \ldots, z, \ldots, x_{n}\right) \times \mathcal{T}\left(z ; x_{i}\right)
$$

Two examples of perturbed Morse gradient trees breaking at a critical point

Theorem ([Abo11])

For an admissible choice of perturbation data $\mathbb{X}:=\left(\mathbb{X}_{n}\right)_{n \geqslant 2}$, defining for every n the operation m_{n} as

$$
\begin{aligned}
& m_{n}: C^{*}(f) \otimes \cdots \otimes C^{*}(f) \longrightarrow C^{*}(f) \\
& x_{1} \otimes \cdots \otimes x_{n} \longmapsto \sum_{|y|=\sum_{i=1}^{n}\left|x_{i}\right|+2-n} \# \mathcal{T}_{n}^{\mathbb{X}}\left(y ; x_{1}, \cdots, x_{n}\right) \cdot y,
\end{aligned}
$$

they endow the Morse cochains $C^{*}(f)$ with an A_{∞}-algebra structure.

Indeed, the boundary of the previous compactification is modeled on the A_{∞}-equations for A_{∞}-algebras :

(1) Higher algebra of A_{∞}-algebras
(2) ... in Morse theory

- A_{∞}-algebra structure on the Morse cochains
- A_{∞}-morphisms between Morse cochain complexes
- n-morphisms between Morse cochain complexes
(3) Further directions

4 References

Consider an additional Morse function g on the manifold M. Our goal is now to construct an A_{∞}-morphism from the Morse cochains $C^{*}(f)$ to the Morse cochains $C^{*}(g)$, through a count of moduli spaces of perturbed Morse trees. While we considered stable metric ribbon trees to construct and A_{∞}-algebra structure, we will this time consider stable two-colored metric ribbon trees to define our A_{∞}-morphism.

Definition

A stable two-colored metric ribbon tree or stable gauged metric ribbon tree is defined to be a stable metric ribbon tree together with a length $\lambda \in \mathbb{R}$. This length is to be thought of as a gauge drawn over the metric tree, at distance λ from its root, where the positive direction is pointing down.

Definition

For $n \geqslant 2$, we define $\mathcal{C} \mathcal{T}_{n}$ to be the moduli space of stable two-colored metric ribbon trees. It has a cell decomposition by stable two-colored ribbon tree type,

$$
\mathcal{C} \mathcal{T}_{n}=\bigcup_{t_{c} \in S C R T_{n}} \mathcal{C} \mathcal{T}_{n}\left(t_{c}\right)
$$

We also denote $\mathcal{C} \mathcal{T}_{1}:=\{十\}$ the space whose only element is the unique two-colored ribbon tree of arity 1.

Allowing again internal edges of metric trees to go to $+\infty$, this moduli space $\mathcal{C} \mathcal{T}_{n}$ can be compactified into a ($n-1$)-dimensional CW-complex $\overline{\mathcal{C T}}_{n}$.

$$
\longrightarrow \overrightarrow{l_{1}=l_{3} \longrightarrow+\infty}
$$

Theorem ([MW10])

The compactified moduli space $\overline{\mathcal{C T}}_{n}$ is isomorphic as a CW-complex to the multiplihedron J_{n}.

The compactified moduli space $\overline{\mathcal{C T}}_{2}$ with its cell decomposition by stable two-colored ribbon tree type

The compactified moduli space $\overline{\mathcal{C}}_{3}$ with its cell decomposition by stable two-colored ribbon tree type

Definition

A two-colored perturbed Morse gradient tree $T_{g}^{\text {Morse }}$ associated to a pair two-colored metric ribbon tree and perturbation data (T_{g}, \mathbb{Y}) is the data
(i) for each edge f_{c} of t_{c} which is above the gauge, of a smooth map

$$
D_{f_{c}} \underset{\gamma_{f_{c}}}{\longrightarrow} M
$$

such that $\gamma_{f_{c}}$ is a trajectory of the perturbed negative gradient $-\nabla f+\mathbb{Y}_{f_{c}}$,

Definition

(ii) for each edge f_{c} of t_{c} which is below the gauge, of a smooth map

$$
D_{f_{c}} \underset{\gamma_{f_{c}}}{\longrightarrow} M
$$

such that $\gamma_{f_{c}}$ is a trajectory of the perturbed negative gradient $-\nabla g+\mathbb{Y}_{f_{c}}$,
and such that the endpoints of these trajectories coincide as prescribed by the edges of the two-colored tree type.

An example of a perturbed two-colored Morse gradient tree, where the x_{i} are critical points of f and y is a critical point of g

Definition

Let \mathbb{Y}_{n} be a smooth choice of perturbation data on the moduli space $\mathcal{C} \mathcal{T}_{n}$. Given $y \in \operatorname{Crit}(g)$ and $x_{1}, \ldots, x_{n} \in \operatorname{Crit}(f)$, we define the moduli spaces
$\mathcal{C} \mathcal{T}_{n}^{\mathbb{Y}_{n}}\left(y ; x_{1}, \ldots, x_{n}\right):=$
$\left\{\begin{array}{c}\text { two-colored perturbed Morse gradient trees associated to } \\ \left(T_{g}, \mathbb{Y}_{T_{g}}\right) \text { and connecting } x_{1}, \ldots, x_{n} \text { to } \text { y for } T_{g} \in \mathcal{C} \mathcal{T}_{n}\end{array}\right\}$.

Proposition

Given a generic choice of perturbation data \mathbb{Y}_{n}, the moduli spaces $\mathcal{C} \mathcal{T}_{n}^{\mathbb{Y}_{n}}\left(y ; x_{1}, \ldots, x_{n}\right)$ are orientable manifolds of dimension

$$
\operatorname{dim}\left(\mathcal{C} \mathcal{T}_{n}\left(y ; x_{1}, \ldots, x_{n}\right)\right)=|y|-\sum_{i=1}^{n}\left|x_{i}\right|+n-1
$$

Given perturbation data \mathbb{X}^{f} and \mathbb{X}^{g} for the functions f and g, by assuming some gluing-compatibility conditions for a choice of perturbation data \mathbb{Y}_{n} for all $n \geqslant 1$, the 1-dimensional moduli spaces $\mathcal{C} \mathcal{T}_{n}^{\mathbb{Y}_{n}}\left(y ; x_{1}, \ldots, x_{n}\right)$ can be compactified into manifolds with boundary whose boundary is modeled on the A_{∞}-equations for A_{∞}-morphisms:

Higher algebra of A_{∞}-algebras
A_{∞}-algebra structure on the Morse cochains A_{∞}-morphisms between Morse cochain complexes n-morphisms between Morse cochain complexes

(above-break)

Higher algebra of A_{∞}-algebras
A_{∞}-algebra structure on the Morse cochains A_{∞}-morphisms between Morse cochain complexes n-morphisms between Morse cochain complexes

(below-break)

Theorem ([Maz21a])

Let $\mathbb{X}^{f}, \mathbb{X}^{g}$ and $\left(\mathbb{Y}_{n}\right)_{n \geqslant 1}$ be generic choices of perturbation data.
Defining for every n the operation μ_{n} as

$$
\begin{aligned}
& \mu_{n}^{\mathbb{Y}}: C^{*}(f) \otimes \cdots \otimes C^{*}(f) \longrightarrow C^{*}(g) \\
& x_{1} \otimes \cdots \otimes x_{n} \longmapsto \\
& \sum_{|y|=\sum_{i=1}^{n}\left|x_{i}\right|+1-n} \# \mathcal{C} T_{n}^{\mathbb{Y}}\left(y ; x_{1}, \cdots, x_{n}\right) \cdot y .
\end{aligned}
$$

they fit into an A_{∞}-morphism $\mu^{\mathbb{Y}}:\left(C^{*}(f), m_{n}^{\mathbb{X}^{f}}\right) \rightarrow\left(C^{*}(g), m_{n}^{\mathbb{X} g}\right)$.

Again, I prove in [Maz21a] that this A_{∞}-morphism actually stems from an $\Omega B A s$-morphism between the $\Omega B A s$-algebras $C^{*}(f)$ and $C^{*}(g)$.
(1) Higher algebra of A_{∞}-algebras
(2) ... in Morse theory

- A_{∞}-algebra structure on the Morse cochains
- A_{∞}-morphisms between Morse cochain complexes
- n-morphisms between Morse cochain complexes
(3) Further directions

4 References

Endowing the Morse cochains $C^{*}(f)$ and $C^{*}(g)$ with their A_{∞}-algebra structures, we now prove that one can always construct n - A_{∞}-morphisms between $C^{*}(f)$ and $C^{*}(g)$ by counting suitable moduli spaces of perturbed Morse gradient trees.

While the spaces parametrizing the perturbation data were the \mathcal{T}_{m} (a model for the associahedra K_{m}) and the $\mathcal{C} \mathcal{T}_{m}$ (a model for the multiplihedra J_{m}), perturbation data will now be parametrized by the n-multiplihedra $\Delta^{n} \times \mathcal{C} \mathcal{T}_{m}$.

Definition

A n-simplex of perturbation data for a two-colored metric ribbon tree T_{g} is defined to be a choice of perturbation data $\mathbb{Y}_{\delta, T_{g}}$ for every $\delta \in \grave{\Delta}^{n}$. We will denote it as $\mathbb{Y}_{\Delta^{n}, T_{g}}:=\left\{\mathbb{Y}_{\delta, T_{g}}\right\}_{\delta \in \Delta^{n}}$.

Definition

Let $\mathbb{Y}_{\Delta^{n}, m}$ be a n-simplex of perturbation data on $\mathcal{C} \mathcal{T}_{m}$. Given $y \in \operatorname{Crit}(g)$ and $x_{1}, \ldots, x_{m} \in \operatorname{Crit}(f)$, we define the moduli spaces

$$
\mathcal{C} \mathcal{T}_{\Delta^{n}, m}^{\mathbb{Y}_{\Delta^{n}, m}}\left(y ; x_{1}, \ldots, x_{m}\right):=\bigcup_{\delta \in \grave{\Delta}^{n}} \mathcal{C} \mathcal{T}_{m}^{\mathbb{Y}_{\delta, m}}\left(y ; x_{1}, \ldots, x_{m}\right)
$$

Proposition ([Maz21b])

Under a generic choice of n-simplex of perturbation data $\mathbb{Y}_{\Delta^{n}, m}$, the moduli space $\mathcal{C} \mathcal{T}_{\Delta^{n}, m}\left(y ; x_{1}, \ldots, x_{m}\right)$ is an orientable manifold of dimension

$$
\operatorname{dim}\left(\mathcal{C} \mathcal{T}_{\Delta^{n}, m}\left(y ; x_{1}, \ldots, x_{m}\right)\right)=n+m-1+|y|-\sum_{i=1}^{m}\left|x_{i}\right|
$$

Choose perturbation data \mathbb{X}^{f} and \mathbb{X}^{g} for the functions f and g together with perturbation data $\left(\mathbb{Y}_{I, m}\right)_{I \subset \Delta^{n}}^{m \geqslant 1}$. By assuming some gluing-compatibility conditions on $\left(\mathbb{Y}_{l, m}\right)_{l \subset \Delta^{n}}^{m \geqslant 1}$ modeling the combinatorics of overlapping partitions, the 1-dimensional moduli spaces $\mathcal{C} \mathcal{I}_{l, m}^{\mathbb{Y}, m}\left(y ; x_{1}, \ldots, x_{m}\right)$ can be compactified into manifolds with boundary whose boundary is modeled on the A_{∞}-equations for n-morphisms :

$$
+\sum \pm \underset{,}{\infty}
$$

Theorem ([Maz21b])

Let $\mathbb{X}^{f}, \mathbb{X}^{g}$ and $\left(\mathbb{Y}_{I, m}\right)_{I \subset \Delta^{n}}^{m \geqslant 1}$ be generic choices of perturbation data. Defining for every m the operation $\mu_{l}^{(m)}$ as

$$
\begin{aligned}
C^{*}(f) \otimes \cdots \otimes C^{*}(f) & \xrightarrow{\mu_{l}^{(m)}} C^{*}(g) \\
x_{1} \otimes \cdots \otimes x_{m} & \longmapsto \\
& \sum_{|y|=\sum_{i=1}^{m}\left|x_{i}\right|+1-m+|I|} \# C \mathcal{T}_{I, m}^{\mathbb{Y}_{I, m}}\left(y ; x_{1}, \cdots, x_{m}\right) \cdot y
\end{aligned}
$$

they fit into a n-morphism $\mu_{I}^{\mathbb{Y}}:\left(C^{*}(f), m_{n}^{\mathbb{X}^{f}}\right) \rightarrow\left(C^{*}(g), m_{n}^{\mathbb{X} g}\right)$, $l \subset \Delta^{n}$.

Again, I prove in [Maz21b] that this n - A_{∞}-morphism actually stems from a n - $\Omega B A s$-morphism between the $\Omega B A s$-algebras $C^{*}(f)$ and $C^{*}(g)$.

Theorem ([Maz21b])

For every admissible choice of perturbation data \mathbb{Y}_{S} parametrized by a simplicial subcomplex $S \subset \Delta^{n}$, there exists an admissible n-simplex of perturbation data $\mathbb{Y}_{\Delta^{n}}$ extending \mathbb{Y}_{S}.

The simplicial set $\operatorname{HOM}_{A_{\infty}}\left(C^{*}(f), C^{*}(g)\right)$ • being an ∞-groupoid, we know that every horn $\Lambda_{n}^{k} \rightarrow \operatorname{HOM}_{A_{\infty}}\left(C^{*}(f), C^{*}(g)\right)$. admits an algebraic filler

The previous theorem tells us that when μ stems from a choice of perturbation data, this diagram can always be filled geometrically, by directly filling the horn of perturbation data.

Corollary ([Maz21b])

Let \mathbb{Y} and \mathbb{Y}^{\prime} be two admissible choices of perturbation data on the moduli spaces $\mathcal{C} \mathcal{T}_{m}$. The A_{∞}-morphisms $\mu^{\mathbb{Y}}$ and $\mu^{\mathbb{Y}^{\prime}}$ are then A_{∞}-homotopic

Indeed, these two choices of perturbation data correspond to a choice of perturbation data parametrized by the simplicial subcomplex of Δ^{1} consisting of its two vertices.

(1) Higher algebra of A_{∞}-algebras

(2) ... in Morse theory
(3) Further directions

4 References

1. It is quite clear that given two compact symplectic manifolds M and N, one should be able to construct n-morphisms between their Fukaya categories $\operatorname{Fuk}(M)$ and $\operatorname{Fuk}(N)$ through counts of moduli spaces of quilted disks (see [MWW18] for the $n=0$ case).

2. Given three Morse functions f_{0}, f_{1}, f_{2}, choices of perturbation data \mathbb{X}^{i}, and choices of perturbation data $\mathbb{Y}^{i j}$ defining morphisms

$$
\begin{aligned}
& \mu^{\mathbb{Y}^{\mathbb{0 1}_{1}^{2}}}:\left(C^{*}\left(f_{0}\right), m_{n}^{\mathbb{X}^{0}}\right) \longrightarrow\left(C^{*}\left(f_{1}\right), m_{n}^{\mathbb{X}^{1}}\right), \\
& \mu^{\mathbb{Y}^{12}}:\left(C^{*}\left(f_{1}\right), m_{n}^{\mathbb{X}^{1}}\right) \longrightarrow\left(C^{*}\left(f_{2}\right), m_{n}^{\mathbb{X}^{2}}\right), \\
& \mu^{\mathbb{Y}^{02}}:\left(C^{*}\left(f_{0}\right), m_{n}^{\mathbb{X}^{0}}\right) \longrightarrow\left(C^{*}\left(f_{2}\right), m_{n}^{\mathbb{X}^{2}}\right),
\end{aligned}
$$

can we construct an A_{∞}-homotopy such that $\mu^{\mathbb{Y}^{12}} \circ \mu^{\mathbb{Y}^{01}} \simeq \mu^{\mathbb{Y}^{02}}$ through this homotopy? (work in progress ; see also [MWW18] for a similar question)

```
Higher algebra of }\mp@subsup{A}{\infty}{}\mathrm{ -algebras

That is, can the following cone be filled in the \(A_{\infty}\) realm

3. Links between the \(n\)-multiplihedra and the 2-associahedra of Bottman (see [Bot19a] and [Bot19b] for instance) ? We are currently inspecting this matter with Nate Bottman.
4. We would like to see the simplicial sets \(\operatorname{HOM}_{\mathrm{A}_{\infty}-\mathrm{alg}}(A, B)\). as part of a simplicial enrichment of the category \(A_{\infty}-a l g\). In other words, we would like to define simplicial maps
\(\operatorname{HOM}_{\mathrm{A}_{\infty}-\mathrm{alg}}(A, B)_{n} \times \operatorname{HOM}_{\mathrm{A}_{\infty}-\mathrm{alg}}(B, C)_{n} \longrightarrow \operatorname{HOM}_{\mathrm{A}_{\infty}-\mathrm{alg}}(A, C)_{n}\),
lifting the composition on the \(\mathrm{HOM}_{0}=\mathrm{Hom}\).
This would then endow \(A_{\infty}-\operatorname{alg}\) with a structure of \(\infty\)-category.
(1) Mohammed Abouzaid, A topological model for the Fukaya categories of plumbings, J. Differential Geom. 87 (2011), no. 1, 1-80. MR 2786590

囯 Hossein Abbaspour and Francois Laudenbach, Morse complexes and multiplicative structures, 2018.

Nathaniel Bottman, 2-associahedra, Algebr. Geom. Topol. 19 (2019), no. 2, 743-806. MR 3924177

围
__ Moduli spaces of witch curves topologically realize the 2-associahedra, J. Symplectic Geom. 17 (2019), no. 6, 1649-1682. MR 4057724

䍰 J．M．Boardman and R．M．Vogt，Homotopy invariant algebraic structures on topological spaces，Lecture Notes in Mathematics，Vol．347，Springer－Verlag，Berlin－New York， 1973．MR 0420609

囯 Kenji Fukaya，Morse homotopy and its quantization，Geometric topology（Athens，GA，1993），AMS／IP Stud．Adv．Math．， vol．2，Amer．Math．Soc．，Providence，RI，1997，pp．409－440． MR 1470740

围 Michael Hutchings，Floer homology of families．I，Algebr． Geom．Topol． 8 （2008），no．1，435－492．MR 2443235

圕 T．V．Kadeišvili，On the theory of homology of fiber spaces， Uspekhi Mat．Nauk 35 （1980），no．3（213），183－188， International Topology Conference（Moscow State Univ．， Moscow，1979）．MR 580645

囯 Kenji Lefevre－Hasegawa，Sur les \(a_{\infty}\)－Catégories，Ph．D．thesis， Ph．D．thesis，Université Paris 7，UFR de Mathématiques， 2003，math．CT／0310337， 2002.

囲 Thibaut Mazuir，Higher algebra of \(a_{\infty}\)－algebras in morse theory i，2021，arXiv：2102．06654．

目 ，Higher algebra of \(A_{\infty}\) and \(\Omega B A s\)－algebras in Morse theory II，arXiv：2102．08996， 2021.

嗇 Stephan Mescher，Perturbed gradient flow trees and \(A_{\infty}\)－algebra structures in Morse cohomology，Atlantis Studies in Dynamical Systems，vol．6，Atlantis Press，［Paris］；Springer， Cham，2018．MR 3791518

围 James E．McClure and Jeffrey H．Smith，Multivariable cochain operations and little n－cubes，J．Amer．Math．Soc． 16 （2003）， no．3，681－704．MR 1969208

R．Ma＇u and C．Woodward，Geometric realizations of the multiplihedra，Compos．Math． 146 （2010），no．4，1002－1028． MR 2660682
围 S．Ma＇u，K．Wehrheim，and C．Woodward，\(A_{\infty}\) functors for Lagrangian correspondences，Selecta Math．（N．S．） 24 （2018）， no．3，1913－2002．MR 3816496

國 Bruno Vallette，Homotopy theory of homotopy algebras，Ann． Inst．Fourier（Grenoble） 70 （2020），no．2，683－738．MR 4105949

Thanks for your attention!

Acknowledgements : Alexandru Oancea, Bruno Vallette, Jean-Michel Fischer, Guillaume Laplante-Anfossi, Brice Le Grignou, Geoffroy Horel, Florian Bertuol, Thomas Massoni, Amiel Peiffer-Smadja, Victor Roca Lucio and the members of the Roberta B. seminar.```

