Higher algebra of A_{∞}-algebras and the n-multiplihedra

Thibaut Mazuir

IMJ-PRG - Sorbonne Université
Réunion annuelle du GDR de topologie algébrique IRMA, Université de Strasbourg, 28/10/2021

The results presented in this talk are taken from my two recent papers: Higher algebra of A_{∞} and $\Omega B A s$-algebras in Morse theory I (arXiv:2102.06654) and Higher algebra of A_{∞} and $\Omega B A s$-algebras in Morse theory II (arxiv:2102.08996).

The talk will be divided in three parts: quick recollections on A_{∞}-algebras and A_{∞}-morphisms ; definition of higher morphisms between A_{∞}-algebras, or $n-A_{\infty}$-morphisms, and their properties; definition of the n-multiplihedra, which are new families of polytopes generalizing the standard multiplihedra and which encode $n-A_{\infty}$-morphisms between A_{∞}-algebras.
$A_{\infty-\text {-algebras and }} A_{\infty-\text { morphisms }}$
Higher algebra of A_{∞}-algebras
The n-multiplihedra

(1) A_{∞}-algebras and A_{∞}-morphisms

(2) Higher algebra of A_{∞}-algebras

(3) The n-multiplihedra

Suspension : Let A be a graded \mathbb{Z}-module. We denote $s A$, the suspension of A to be the graded \mathbb{Z}-module defined by $(s A)^{i}:=A^{i-1}$. In other words, for $a \in A,|s a|=|a|-1$. For instance, a degree $2-n$ map $A^{\otimes n} \rightarrow A$ is equivalent to a degree $+1 \operatorname{map}(s A)^{\otimes n} \rightarrow s A$.

Cohomological conventions: differentials will have degree +1 .
$A_{\infty-\text {-algebras and }} A_{\infty-\text { morphisms }}$
Higher algebra of A_{∞}-algebras
The n-multiplihedra

A_{∞}-algebras

A_{∞}-morphisms
Homotopy theory of A_{∞}-algebras
(1) A_{∞}-algebras and A_{∞}-morphisms

- A_{∞}-algebras
- A_{∞}-morphisms
- Homotopy theory of A_{∞}-algebras
(2) Higher algebra of A_{∞}-algebras
(3) The n-multiplihedra

Definition

Let A be a dg-module with differential m_{1}. An A_{∞}-algebra structure on A is the data of a collection of maps of degree $2-n$

$$
m_{n}: A^{\otimes n} \longrightarrow A, n \geqslant 1
$$

extending m_{1} and which satisfy

$$
\left[m_{1}, m_{n}\right]=\sum_{\substack{i_{1}+i_{2}+i_{3}=n \\ 2 \leqslant i_{2} \leqslant n-1}} \pm m_{i_{1}+1+i_{3}}\left(\mathrm{id}^{\otimes i_{1}} \otimes m_{i_{2}} \otimes \mathrm{id}^{\otimes i_{3}}\right)
$$

These equations are called the A_{∞}-equations.

Representing m_{n} as
$12{ }^{n}$
these equations can be written as

In particular,

$$
\begin{aligned}
& {\left[m_{1}, m_{2}\right]=0} \\
& {\left[m_{1}, m_{3}\right]=m_{2}\left(\mathrm{id} \otimes m_{2}-m_{2} \otimes \mathrm{id}\right),}
\end{aligned}
$$

implying that m_{2} descends to an associative product on $H^{*}(A)$. An A_{∞}-algebra is thus simply a correct notion of a dg-algebra whose product is associative up to homotopy.

The operations m_{n} are the higher coherent homotopies which keep track of the fact that the product is associative up to homotopy.

Using the universal property of the bar construction, we have the following one-to-one correspondence

A_{∞}-algebras and A_{∞}-morphisms
Higher algebra of A_{∞}-algebras
The n-multiplihedra

A_{∞}-algebras

A_{∞}-morphisms
Homotopy theory of A_{∞}-algebras
(1) A_{∞}-algebras and A_{∞}-morphisms

- A_{∞}-algebras
- A_{∞}-morphisms
- Homotopy theory of A_{∞}-algebras
(2) Higher algebra of A_{∞}-algebras
(3) The n-multiplihedra

Definition

An A_{∞}-morphism between two A_{∞}-algebras A and B is a dg-coalgebra morphism $F:\left(\bar{T}(s A), D_{A}\right) \rightarrow\left(\bar{T}(s B), D_{B}\right)$ between their shifted bar constructions.

As previously, the universal property of the bar construction yields an equivalent definition in terms of operations.

Definition

An A_{∞}-morphism between two A_{∞}-algebras A and B is a family of maps $f_{n}: A^{\otimes n} \rightarrow B$ of degree $1-n$ satisfying

$$
\begin{aligned}
{\left[m_{1}, f_{n}\right]=} & \sum_{\substack{i_{1}+i_{2}+i_{3}=n \\
i_{2} \geqslant 2}} \pm f_{i_{1}+1+i_{3}}\left(\mathrm{id}^{\otimes i_{1}} \otimes m_{i_{2}} \otimes \mathrm{id}^{\otimes i_{3}}\right) \\
& +\sum_{\substack{i_{1}+\cdots+i_{s}=n \\
s \geqslant 2}} \pm m_{s}\left(f_{i_{1}} \otimes \cdots \otimes f_{i_{s}}\right)
\end{aligned}
$$

Representing the operations f_{n} as \mathcal{F}, the operations m_{n}^{B} in red and the operations m_{n}^{A} in blue, these equations read as

We check that $\left[\partial, f_{2}\right]=f_{1} m_{2}^{A}-m_{2}^{B}\left(f_{1} \otimes f_{1}\right)$.
An A_{∞}-morphism between A_{∞}-algebras induces a morphism of associative algebras on the level of cohomology, and is a correct notion of morphism which preserves the product up to homotopy.

Given two coalgebra morphisms $F: \bar{T} V \rightarrow \bar{T} W$ and $G: \bar{T} W \rightarrow \bar{T} Z$, the family of morphisms associated to $G \circ F$ is given by

$$
(G \circ F)_{n}:=\sum_{i_{1}+\cdots+i_{s}=n} \pm g_{s}\left(f_{i_{1}} \otimes \cdots \otimes f_{i_{s}}\right) .
$$

This formula defines the composition of A_{∞}-morphisms. Hence, A_{∞}-algebras together with A_{∞}-morphisms form a category, denoted $A_{\infty}-a l g$. This category can be seen as a full subcategory of dg - Cogc of cocomplete dg-coalgebras, using the shifted bar construction viewpoint.
(1) A_{∞}-algebras and A_{∞}-morphisms

- A_{∞}-algebras
- A_{∞}-morphisms
- Homotopy theory of A_{∞}-algebras
(2) Higher algebra of A_{∞}-algebras
(3) The n-multiplihedra

The category $A_{\infty}-\operatorname{alg}$ provides a framework that behaves well with respect to homotopy-theoretic constructions, when studying homotopy theory of associative algebras. See for instance [LH02] and [Val20].

It is because this category is encoded by the two-colored operad

$$
A_{\infty}^{2}:=\mathcal{F}(Y, Y, \Psi, \cdots, Y, Y, \Psi, \cdots, 十, \Psi, \Psi, \Psi, \cdots)
$$

It is a quasi-free object in the model category of two-colored operads in dg-Z -modules and a fibrant-cofibrant replacement of the two-colored operad $A s^{2}$, which encodes associative algebras with morphisms of algebras,

$$
A_{\infty}^{2} \xrightarrow{\sim} A s^{2}
$$

Theorem (Homotopy transfer theorem)

Let $\left(A, \partial_{A}\right)$ and $\left(H, \partial_{H}\right)$ be two cochain complexes. Suppose that H is a deformation retract of A, that is that they fit into a diagram

where $\operatorname{id}_{A}-i p=[\partial, h]$. Then if $\left(A, \partial_{A}\right)$ is endowed with an A_{∞}-algebra structure, H can be made into an A_{∞}-algebra such that i and p extend to A_{∞}-morphisms.
A_{∞}-homotopies
Higher morphisms between A_{∞}-algebras
The HOM-simplicial sets $\mathrm{HOM}_{\mathrm{A}_{\infty}-\mathrm{alg}}(A, B)$.
A simplicial enrichment of the category $A_{\infty}-a l g$?

(1) A_{∞}-algebras and A_{∞}-morphisms

(2) Higher algebra of A_{∞}-algebras
(3) The n-multiplihedra

Our goal now: study the higher algebra of A_{∞}-algebras.

Considering two A_{∞}-morphisms F, G, we would like first to determine a notion giving a satisfactory meaning to the sentence " F and G are homotopic". Then, A_{∞}-homotopies being defined, what is now a good notion of a homotopy between homotopies ? And of a homotopy between two homotopies between homotopies ? And so on.

(1) A_{∞}-algebras and A_{∞}-morphisms

(2) Higher algebra of A_{∞}-algebras

- A_{∞}-homotopies
- Higher morphisms between A_{∞}-algebras
- The HOM-simplicial sets $\mathrm{HOM}_{\mathrm{A}_{\infty}-\mathrm{alg}}(A, B)$.
- A simplicial enrichment of the category $A_{\infty}-a l g$?
(3) The n-multiplihedra

Start with a notion of homotopy. Drawn from [LH02].
Take C and C^{\prime} two dg-coalgebras, F and G morphisms $C \rightarrow C^{\prime}$ of dg-coalgebras. A (F, G)-coderivation is a map $H: C \rightarrow C^{\prime}$ such that

$$
\Delta_{C^{\prime}} H=(F \otimes H+H \otimes G) \Delta_{C} .
$$

The morphisms F and G are then said to be homotopic if there exists a (F, G)-coderivation H of degree -1 such that

$$
[\partial, H]=G-F .
$$

Define

$$
\Delta^{1}:=\mathbb{Z}[0] \oplus \mathbb{Z}[1] \oplus \mathbb{Z}[0<1]
$$

with differential $\partial^{\text {sing }}$

$$
\partial^{\text {sing }}([0<1])=[1]-[0] \quad \partial^{\text {sing }}([0])=0 \quad \partial^{\text {sing }}([1])=0
$$

and coproduct the Alexander-Whitney coproduct

$$
\begin{aligned}
\Delta_{\Delta^{1}}([0<1]) & =[0] \otimes[0<1]+[0<1] \otimes[1] \\
\Delta_{\boldsymbol{\Delta}^{1}}([0]) & =[0] \otimes[0] \\
\Delta_{\boldsymbol{\Delta}^{1}}([1]) & =[1] \otimes[1] .
\end{aligned}
$$

The elements [0] and [1] have degree 0 , and the element $[0<1$] has degree -1 .

We check that there is a one-to-one correspondence between (F, G)-coderivations and morphisms of dg-coalgebras $\Delta^{1} \otimes C \longrightarrow C^{\prime}$.

Definition

For two A_{∞}-algebras $\left(\bar{T}(s A), D_{A}\right)$ and $\left(\bar{T}(s B), D_{B}\right)$ and two A_{∞}-morphisms $F, G:\left(\bar{T}(s A), D_{A}\right) \rightarrow\left(\bar{T}(s B), D_{B}\right)$, an A_{∞}-homotopy from F to G is defined to be a morphism of dg-coalgebras

$$
H: \Delta^{1} \otimes \bar{T}(s A) \longrightarrow \bar{T}(s B)
$$

whose restriction to the [0] summand is F and whose restriction to the [1] summand is G.

Using the universal property of the bar construction, this definition can be rephrased in terms of operations.

Definition

An A_{∞}-homotopy between two A_{∞}-morphisms $\left(f_{n}\right)_{n \geqslant 1}$ and $\left(g_{n}\right)_{n \geqslant 1}$ is a collection of maps

$$
h_{n}: A^{\otimes n} \longrightarrow B
$$

of degree $-n$, satisfying

$$
\begin{aligned}
{\left[\partial, h_{n}\right]=} & g_{n}-f_{n}+\sum_{\substack{i_{1}+i_{2}+i_{3}=m \\
i_{2} \geqslant 2}} \pm h_{i_{1}+1+i_{3}}\left(\mathrm{id}^{\otimes i_{1}} \otimes m_{i_{2}} \otimes \mathrm{id}^{\otimes i_{3}}\right) \\
& +\sum_{\substack{i_{1}+\cdots+i_{s}+1 \\
+j_{1}+\cdots+j_{t}=n \\
s+1+t \geqslant 2}} \pm m_{s+1+t}\left(f_{i_{1}} \otimes \cdots \otimes f_{i_{s}} \otimes h_{l} \otimes g_{j_{1}} \otimes \cdots \otimes g_{j_{t}}\right)
\end{aligned}
$$

In symbolic formalism,

where we denote
 the f_{n}, the h_{n} and the g_{n}.

The relation being A_{∞}-homotopic on the class of A_{∞}-morphisms is an equivalence relation. It is moreover stable under composition.
(1) A_{∞}-algebras and A_{∞}-morphisms
(2) Higher algebra of A_{∞}-algebras

- A_{∞}-homotopies
- Higher morphisms between A_{∞}-algebras
- The HOM-simplicial sets $\mathrm{HOM}_{\mathrm{A}_{\infty}-\mathrm{alg}}(A, B)$.
- A simplicial enrichment of the category $A_{\infty}-a l g$?
(3) The n-multiplihedra

Move on to n-morphisms between A_{∞}-algebras.
Define Δ^{n} the graded \mathbb{Z}-module generated by the faces of the standard n-simplex Δ^{n},

$$
\Delta^{n}=\bigoplus_{0 \leqslant i_{1}<\cdots<i_{k} \leqslant n} \mathbb{Z}\left[i_{1}<\cdots<i_{k}\right]
$$

The grading is $|I|:=-\operatorname{dim}(I)$ for $I \subset \Delta^{n}$.

It has a dg-coalgebra structure, with differential

$$
\partial_{\Delta^{n}}\left(\left[i_{1}<\cdots<i_{k}\right]\right):=\sum_{j=1}^{k}(-1)^{j}\left[i_{1}<\cdots<\widehat{i_{j}}<\cdots<i_{k}\right],
$$

and coproduct the Alexander-Whitney coproduct

$$
\Delta_{\boldsymbol{\Delta}^{n}}\left(\left[i_{1}<\cdots<i_{k}\right]\right):=\sum_{j=1}^{k}\left[i_{1}<\cdots<i_{j}\right] \otimes\left[i_{j}<\cdots<i_{k}\right]
$$

Definition ([MS03])

Let I be a face of Δ^{n}. An overlapping partition of I to be a sequence of faces $\left(I_{I}\right)_{1 \leqslant \ell \leqslant s}$ of I such that
(i) the union of this sequence of faces is I, i.e. $\cup_{1 \leqslant \ell \leqslant s} I=I$;
(ii) for all $1 \leqslant \ell<s, \max \left(I_{\ell}\right)=\min \left(I_{\ell+1}\right)$.

An overlapping 6-partition for $[0<1<2$] is for instance

$$
[0<1<2]=[0] \cup[0] \cup[0<1] \cup[1] \cup[1<2] \cup[2] .
$$

Overlapping partitions are the collection of faces which naturally arise in the Alexander-Whitney coproduct.

The element $\Delta_{\boldsymbol{\Delta}^{n}}(I)$ corresponds to the sum of all overlapping 2 -partitions of I. Iterating s times $\Delta_{\boldsymbol{\Delta}^{n}}$ yields the sum of all overlapping $(s+1)$-partitions of I.

We have seen that A_{∞}-morphisms correspond to the set

$$
\operatorname{Hom}_{\mathrm{dg}-\operatorname{Cogc}}(\bar{T}(s A), \bar{T}(s B))
$$

and A_{∞}-homotopies correspond to the set

$$
\operatorname{Hom}_{\mathrm{dg}-\operatorname{Cogc}}\left(\Delta^{1} \otimes \bar{T}(s A), \bar{T}(s B)\right),
$$

Definition ([Maz21b])

We define the set of n-morphisms between A and B as

$$
\operatorname{HOM}_{\mathrm{A}_{\infty}-\mathrm{alg}}(A, B)_{n}:=\operatorname{Hom}_{\mathrm{dg}-\operatorname{Cogc}}\left(\Delta^{n} \otimes \bar{T}(s A), \bar{T}(s B)\right) .
$$

Using the universal property of the bar construction, n-morphisms admit a nice combinatorial description in terms of operations.

Definition ([Maz21b])

A n-morphism from A to B is defined to be a collection of maps $f_{l}^{(m)}: A^{\otimes m} \longrightarrow B$ of degree $1-m+|I|$ for $I \subset \Delta^{n}$ and $m \geqslant 1$, that satisfy

$$
\begin{aligned}
{\left[\partial, f_{l}^{(m)}\right]=} & \sum_{j=0}^{\operatorname{dim}(I)}(-1)^{j} f_{\partial_{j} l}^{(m)}+\sum_{\substack{i_{1}+\cdots+i_{s}=m \\
l_{1} \cup \cdots \cup l_{s}=l \\
s \geqslant 2}} \pm m_{s}\left(f_{l_{1}}^{\left(i_{1}\right)} \otimes \cdots \otimes f_{l_{s}}^{\left(i_{s}\right)}\right) \\
& +(-1)^{|/|} \sum_{\substack{i_{1}+i_{2}+i_{3}=m \\
i_{2} \geqslant 2}} \pm f_{l}^{\left(i_{1}+1+i_{3}\right)}\left(\mathrm{id}^{\otimes i_{1}} \otimes m_{i_{2}} \otimes \mathrm{id}^{\otimes i_{3}}\right)
\end{aligned}
$$

Equivalently and more visually, a collection of maps
 satisfying

(1) A_{∞}-algebras and A_{∞}-morphisms
(2) Higher algebra of A_{∞}-algebras

- A_{∞}-homotopies
- Higher morphisms between A_{∞}-algebras
- The HOM-simplicial sets $\mathrm{HOM}_{\mathrm{A}_{\infty}-\mathrm{alg}}(A, B)$.
- A simplicial enrichment of the category $A_{\infty}-a l g$?
(3) The n-multiplihedra

The dg-coalgebras $\boldsymbol{\Delta}^{\bullet}:=\left\{\boldsymbol{\Delta}^{n}\right\}_{n \geqslant 0}$ naturally form a cosimplicial dg-coalgebra.

The sets $\operatorname{HOM}_{\mathrm{A}_{\infty}-\operatorname{alg}}(A, B)_{n}$ then fit into a HOM-simplicial set $\operatorname{HOM}_{\mathrm{A}_{\infty}-\mathrm{alg}}(A, B)$. This HOM-simplicial set provides a satisfactory framework to study the higher algebra of A_{∞}-algebras.

Theorem ([Maz21b])

For A and B two A_{∞}-algebras, the simplicial set $\operatorname{HOM}_{A_{\infty}}(A, B)$. is a Kan complex.
A_{∞}-homotopies
Higher morphisms between A_{∞}-algebras
The HOM-simplicial sets $\mathrm{HOM}_{\mathrm{A}_{\infty}-\operatorname{alg}}(A, B)$ •
A simplicial enrichment of the category $A_{\infty}-a l g$?

Proposition

For every inner horn $\Lambda_{n}^{k} \subset \Delta^{n}$, there is a one-to-one correspondence

An inner horn $\Lambda_{n}^{k} \rightarrow \operatorname{HOM}_{A_{\infty}}(A, B)$ • corresponds to a collection of degree $1-m-\operatorname{dim}(I)$ morphisms $f_{l}^{(m)}: A^{\otimes m} \longrightarrow B$ for $I \subset \Lambda_{n}^{k}$ which satisfy the A_{∞}-equations for higher morphisms.

The previous proposition then states that filling the horn $\Lambda_{n}^{k} \subset \Delta^{n}$ amounts to choosing an arbitrary collection of degree $1-m-n$ morphisms $f_{\Delta^{n}}^{(m)}: A^{\otimes m} \rightarrow B$ and that they completely determine the collection of morphisms for the missing face $f_{[0<\cdots<\hat{k}<\cdots<n]}^{(m)}$.

The simplicial homotopy groups of the Kan complex $\mathrm{HOM}_{A_{\infty}}(A, B)$. can moreover be explicitly computed. We let $F=\left(F^{(m)}:(s A)^{\otimes m} \rightarrow s B\right)_{m \geqslant 1}$ be an A_{∞}-morphism from A to B, i.e. a point of $\operatorname{HOM}_{A_{\infty}}(A, B)$.

The set of path components $\pi_{0}\left(\operatorname{HOM}_{A_{\infty}}(A, B).\right)$ corresponds to the set of equivalence classes of A_{∞}-morphisms from A to B under the equivalence relation "being A_{∞}-homotopic".

For $n \geqslant 1$, the set $\pi_{n}\left(\operatorname{HOM}_{A_{\infty}}(A, B), F\right)$ corresponds to the equivalence classes of collections of degree $-n$ maps $F_{\Delta^{n}}^{(m)}:(s A)^{\otimes m} \rightarrow s B$ satisfying equations

$$
\begin{aligned}
& (-1)^{n} \sum_{\substack{i_{1}+i_{2}+i_{3}=m}} F_{\Delta^{n}}^{\left(i_{1}+1+i_{3}\right)}\left(\mathrm{id}^{\otimes i_{1}} \otimes b_{i_{2}} \otimes \mathrm{id}^{\otimes i_{3}}\right) \\
= & \sum_{\substack{i_{1}+\cdots+i_{s}+l \\
+j_{1}+\cdots+j_{t}=m}} b_{s+1+t}\left(F^{\left(i_{1}\right)} \otimes \cdots \otimes F^{\left(i_{s}\right)} \otimes F_{\Delta^{n}}^{(l)} \otimes F^{\left(j_{1}\right)} \otimes \cdots \otimes F^{\left(j_{t}\right)}\right) .
\end{aligned}
$$

Two such collections of maps $\left(F_{\Delta^{n}}^{(m)}\right)^{m \geqslant 1}$ and $\left(G_{\Delta^{n}}^{(m)}\right)^{m \geqslant 1}$ are equivalent if and only if there exists a collection of degree $-(n+1)$ maps $H^{(m)}:(s A)^{\otimes m} \rightarrow s B$ such that

$$
\begin{aligned}
& G_{\Delta^{n}}^{(m)}-F_{\Delta^{n}}^{(m)}+(-1)^{n+1} \sum_{\substack{i_{1}+i_{2}+i_{3}=m}} H^{\left(i_{1}+1+i_{3}\right)}\left(\mathrm{id}^{\otimes i_{1}} \otimes b_{i_{2}} \otimes \mathrm{id}^{\otimes i_{3}}\right) \\
= & \sum_{\substack{i_{+}+\cdots+i_{s}+1 \\
+j_{1}+\cdots+j_{t}=m}} b_{s+1+t}\left(F^{\left(i_{1}\right)} \otimes \cdots \otimes F^{\left(i_{s}\right)} \otimes H^{(I)} \otimes F^{\left(j_{1}\right)} \otimes \cdots \otimes F^{\left(j_{t}\right)}\right) .
\end{aligned}
$$

(i) The composition law on $\pi_{1}\left(\operatorname{HOM}_{A_{\infty}}(A, B)_{\bullet}, F\right)$ is given by the formula

$$
\begin{aligned}
& G_{\Delta^{1}}^{(m)}+F_{\Delta^{1}}^{(m)}
\end{aligned}
$$

(ii) If $n \geqslant 2$, the composition law on $\pi_{n}\left(\operatorname{HOM}_{A_{\infty}}(A, B)_{\bullet}, F\right)$ is given by the formula

$$
G_{\Delta^{n}}^{(m)}+F_{\Delta^{n}}^{(m)}
$$

A_{∞}-homotopies
Higher morphisms between A_{∞}-algebras
The HOM-simplicial sets $\mathrm{HOM}_{\mathrm{A}_{\infty}-\mathrm{alg}}(A, B)$.
A simplicial enrichment of the category $A_{\infty}-a l g$?
(1) A_{∞}-algebras and A_{∞}-morphisms
(2) Higher algebra of A_{∞}-algebras

- A_{∞}-homotopies
- Higher morphisms between A_{∞}-algebras
- The HOM-simplicial sets $\mathrm{HOM}_{\mathrm{A}_{\infty}-\mathrm{alg}}(A, B)$.
- A simplicial enrichment of the category $A_{\infty}-a l g$?
(3) The n-multiplihedra

We would like to see the simplicial sets $\operatorname{HOM}_{\mathrm{A}_{\infty}-\mathrm{alg}}(A, B)$. as part of a simplicial enrichment of the category $\mathrm{A}_{\infty}-\mathrm{alg}$. In other words, we would like to define simplicial maps
$\operatorname{HOM}_{\mathrm{A}_{\infty}-\mathrm{alg}}(A, B)_{n} \times \operatorname{HOM}_{\mathrm{A}_{\infty}-\mathrm{alg}}(B, C)_{n} \longrightarrow \operatorname{HOM}_{\mathrm{A}_{\infty}-\mathrm{alg}}(A, C)_{n}$,
lifting the composition on the $\mathrm{HOM}_{0}=\mathrm{Hom}$.
This would then endow $A_{\infty}-\operatorname{alg}$ with a structure of ∞-category.

All the natural approaches to lift the composition in $\mathrm{A}_{\infty}-\mathrm{alg}$ to $\operatorname{HOM}_{\mathrm{A}_{\infty}-\mathrm{alg}}(A, B)$. fail to work. Hence, it is still an open question to know whether these HOM-simplicial sets could fit into a simplicial enrichment of the category $\mathrm{A}_{\infty}-\mathrm{alg}$. In fact, it is unclear to the author why such a statement should be true.

(1) A_{∞}-algebras and A_{∞}-morphisms

(2) Higher algebra of A_{∞}-algebras
(3) The n-multiplihedra

The associahedra
The multiplihedra
The n-multiplihedra
Towards Morse and Floer theory

(1) A_{∞}-algebras and A_{∞}-morphisms

(2) Higher algebra of A_{∞}-algebras

(3) The n-multiplihedra

- The associahedra
- The multiplihedra
- The n-multiplihedra
- Towards Morse and Floer theory

The $\mathrm{dg}-\mathbb{Z}$-mod-operad A_{∞} encoding A_{∞}-algebras stems from a Poly-operad. This was fully proven in [MTTV19].

There exists a collection of polytopes, called the associahedra and denoted $\left\{K_{n}\right\}$, endowed with a structure of operad in the category Poly and whose image under the functor $C_{-*}^{c e l l}$ yields the operad A_{∞}.

In particular K_{n} has a unique cell [K_{n}] of dimension $n-2$ and its boundary reads as

$$
\partial K_{n}=\bigcup_{\substack{h+k=n+1 \\ 2 \leqslant \hbar \leqslant n-1}} \bigcup K_{k} \times_{i} K_{h},
$$

where x_{i} is in fact the standard \times cartesian product.
Recall that the A_{∞}-equations read as

Figure: The associahedra K_{2}, K_{3} and K_{4}, with cells labeled by the operations they define in A_{∞}

(1) A_{∞}-algebras and A_{∞}-morphisms

(2) Higher algebra of A_{∞}-algebras
(3) The n-multiplihedra

- The associahedra
- The multiplihedra
- The n-multiplihedra
- Towards Morse and Floer theory

Define A_{∞} - Morph to be quasi-free $\left(A_{\infty}, A_{\infty}\right)$-operadic bimodule encoding A_{∞}-morphisms between A_{∞}-algebras

$$
A_{\infty}-\operatorname{Morph}=\mathcal{F}^{A_{\infty}, A_{\infty}}(十, \Psi, \Psi, \Psi, \cdots)
$$

This operadic bimodule also stems from a Poly-operadic bimodule. Work in progress : [MMLA].

There exists a collection of polytopes, called the multiplihedra and denoted $\left\{J_{n}\right\}$, endowed with a structure of $\left(\left\{K_{n}\right\},\left\{K_{n}\right\}\right)$-operadic bimodule, whose image under the functor $C_{-*}^{\text {cell }}$ yields the $\left(A_{\infty}, A_{\infty}\right)$-operadic bimodule A_{∞} - Morph.

Again, J_{n} has a unique n-1-dimensional cell $\left[J_{n}\right]$ and the boundary of J_{n} is exactly

$$
\partial J_{n}=\bigcup_{\substack{h+k=n+1 \\ h \geqslant 2}} \bigcup_{\substack{1 \leqslant i \leqslant k}} J_{k} \times_{i} K_{h} \cup \bigcup_{\substack{i_{1}+\cdots+i_{s}=n \\ s \geqslant 2}} K_{s} \times J_{i_{1}} \times \cdots \times J_{i_{s}}
$$

where \times_{k} is the standard cartesian product \times.
Recall that the A_{∞}-equations read as

Figure: The multiplihedra J_{1}, J_{2} and J_{3} with cells labeled by the operations they define in $A_{\infty}-$ Morph

(1) A_{∞}-algebras and A_{∞}-morphisms

(2) Higher algebra of A_{∞}-algebras

(3) The n-multiplihedra

- The associahedra
- The multiplihedra
- The n-multiplihedra
- Towards Morse and Floer theory

We would like to define a family of polytopes encoding n-morphisms between A_{∞}-algebras. These polytopes will then be called n-multiplihedra.

We have seen that A_{∞}-morphisms $\bar{T}(s A) \rightarrow \bar{T}(s B)$ are encoded by the multiplihedra. n-morphisms being defined as the set of morphisms $\Delta^{n} \otimes \bar{T}(s A) \rightarrow \bar{T}(s B)$, a natural candidate would thus be $\left\{\Delta^{n} \times J_{m}\right\}_{m \geqslant 1}$.

However, $\Delta^{n} \times J_{m}$ does not fulfill that property as it is. Faces correspond to the data of a face of $I \subset \Delta^{n}$, and of a broken two-colored tree labeling a face of J_{m}. This labeling is too coarse, as it does not contain the trees

that appear in the A_{∞}-equations for n-morphisms.

We thus want to lift the combinatorics of overlapping partitions to the level of the n-simplices Δ^{n}.

Proposition ([Maz21b])

For each $s \geqslant 1$, there exists a polytopal subdivision of the standard n-simplex Δ^{n} whose top-dimensional cells are in one-to-one correspondence with all overlapping s-partitions of Δ^{n}.

Taking the realizations

$$
\begin{aligned}
\Delta^{n} & :=\operatorname{conv}\left\{(1, \ldots, 1,0, \ldots, 0) \in \mathbb{R}^{n}\right\} \\
& =\left\{\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{R}^{n} \mid 1 \geqslant z_{1} \geqslant \cdots \geqslant z_{n} \geqslant 0\right\}
\end{aligned}
$$

this polytopal subdivision can be realized as the subdivision obtained after dividing Δ^{n} by all hyperplanes $z_{i}=(1 / 2)^{k}$, for $1 \leqslant i \leqslant n$ and $1 \leqslant k \leqslant s$.

Figure: The subdivision of Δ^{2} by overlapping 2-partitions

Figure: The subdivision of Δ^{2} by overlapping 3-partitions

The previous issue can then be solved by constructing a refined polytopal subdivision of $\Delta^{n} \times J_{m}$.

Consider a face F of J_{m}, with exactly s unbroken two-colored trees appearing in the two-colored broken tree labeling it. We refine the polytopal subdivision of $\Delta^{n} \times F$ into $\Delta_{s}^{n} \times F$, where Δ_{s}^{n} denotes Δ^{n} endowed with the subdivision encoding s-overlapping partitions.

This refinement process can be done consistently for each face F of J_{m}, in order to obtain a new polytopal subdivision of $\Delta^{n} \times J_{m}$.

Definition ([Maz21b])

The n-multiplihedra are defined to be the polytopes $\Delta^{n} \times J_{m}$ endowed with the previous polytopal subdivision. We denote them $n-J_{m}$.

Figure: The 1-multiplihedron $\Delta^{1} \times J_{2}$

Figure: The 2-multiplihedron $\Delta^{2} \times J_{2}$

Figure: The 1-multiplihedron $\Delta^{1} \times J_{3}$

The polytope $n-J_{m}$ has a unique $(n+m-1)$-dimensional cell $\left[n-J_{m}\right]$, is labeled by $\Delta^{n} Y$. By construction:

Proposition ([Maz21b])

The boundary of the cell $\left[n-J_{m}\right]$ is given by

$$
\partial^{\text {sing }}\left[n-J_{m}\right] \cup \underset{\substack{h+k=m+1 \\ 1 \leq i \leq k \\ h \geqslant 2}}{\bigcup}\left[n-J_{k}\right] \times \times_{i}\left[K_{h}\right] \cup \bigcup_{\substack{i_{1}+\ldots+i_{s}=m \\ l_{1} \cup \ldots I_{s}=\Delta_{n} \\ s \geqslant 2}}\left[K_{s}\right] \times\left[\operatorname{dim}\left(l_{1}\right)-J_{i_{1}}\right] \times \cdots \times\left[\operatorname{dim}\left(I_{s}\right)-J_{i_{s}}\right],
$$

where $I_{1} \cup \cdots \cup I_{s}=\Delta^{n}$ is an overlapping partition of Δ^{n}.

Recall that the $n-A_{\infty}$-equations read as

$$
\begin{aligned}
& +\sum \pm \underset{1}{\text { N }} \text {, }
\end{aligned}
$$

In other words, the n-multiplihedra encode n-morphisms between A_{∞}-algebras.

(1) A_{∞}-algebras and A_{∞}-morphisms

(2) Higher algebra of A_{∞}-algebras

(3) The n-multiplihedra

- The associahedra
- The multiplihedra
- The n-multiplihedra
- Towards Morse and Floer theory

Let M be an oriented closed Riemannian manifold endowed with a Morse function f together with a Morse-Smale metric. The Morse cochains $C^{*}(f)$ form a deformation retract of the singular cochains $C_{\text {sing }}^{*}(M)$ as shown in [Hut08].

The cup product naturally endows the singular cochains $C_{\text {sing }}^{*}(M)$ with a dg-algebra structure. The homotopy transfer theorem ensures that it can be transferred to an A_{∞}-algebra structure on the Morse cochains $C^{*}(f)$.

The differential on the Morse cochains is defined by a count of moduli spaces of gradient trajectories. Is it then possible to define higher multiplications m_{n} on $C^{*}(f)$ by a count of moduli spaces such that they fit in a structure of A_{∞}-algebra?

Question solved for the first time by Abouzaid in [Abo11], drawing from earlier works by Fukaya ([Fuk97] for instance). See also [Mes18] and [AL18]. In [Maz21a] I prove that this A_{∞}-algebra structure actually stems from an $\Omega B A s$-algebra structure, but I will not dwell on that notion today.

We prove in [Maz21a] and [Maz21b] that given two Morse functions f and g, one can in fact construct n-morphisms between their Morse cochain complexes $C^{*}(f)$ and $C^{*}(g)$ through a count of geometric moduli spaces of perturbed Morse gradient trees. This gives a realization of this higher algebra of A_{∞}-algebras in Morse theory.

These constructions stem from the fact that the associahedra can be realized as the compactified moduli spaces of stable metric ribbon trees and the multiplihedra can be realized as the compactified moduli spaces of stable two-colored metric ribbon trees.

Figure: The compactified moduli space $\overline{\mathcal{T}}_{4}$

The compactified moduli space $\overline{\mathcal{C T}}_{3}$

It is also quite clear that given two compact symplectic manifolds M and N, one should be able to construct n-morphisms between their Fukaya categories $\operatorname{Fuk}(M)$ and $\operatorname{Fuk}(N)$ through counts of moduli spaces of quilted disks (under the correct technical assumptions).

Links between the n-multiplihedra and the 2-associahedra of Bottman (see [Bot19a] and [Bot19b] for instance) ? We are currently inspecting this matter with Nate Bottman.
$A_{\infty-\text {－algebras and }} A_{\infty-\text { morphisms }}$

References I

䍰 Mohammed Abouzaid，A topological model for the Fukaya categories of plumbings，J．Differential Geom． 87 （2011）， no．1，1－80．MR 2786590

Rossein Abbaspour and Francois Laudenbach，Morse complexes and multiplicative structures， 2018.

國 Nathaniel Bottman，2－associahedra，Algebr．Geom．Topol． 19 （2019），no．2，743－806．MR 3924177

里
，Moduli spaces of witch curves topologically realize the 2－associahedra，J．Symplectic Geom． 17 （2019），no．6， 1649－1682．MR 4057724

References II

圊 Kenji Fukaya，Morse homotopy and its quantization，Geometric topology（Athens，GA，1993），AMS／IP Stud．Adv．Math．， vol．2，Amer．Math．Soc．，Providence，RI，1997，pp．409－440． MR 1470740
Philip S．Hirschhorn，Model categories and their localizations， Mathematical Surveys and Monographs，vol．99，American Mathematical Society，Providence，RI，2003．MR 1944041
囦 Michael Hutchings，Floer homology of families．I，Algebr． Geom．Topol． 8 （2008），no．1，435－492．MR 2443235
嗇 Kenji Lefevre－Hasegawa，Sur les a_{∞}－catégories，Ph．D．thesis， Ph．D．thesis，Université Paris 7，UFR de Mathématiques， 2003，math．CT／0310337， 2002.
$A_{\infty \text {-algebras and }} A_{\infty-\text { morphisms }}$
Higher algebra of A_{∞}-algebras
The n-multiplihedra

The associahedra
The multiplihedra
The n-multiplihedra
Towards Morse and Floer theory

References III

嗇 Thibaut Mazuir, Higher algebra of A_{∞} and $\Omega B A s$-algebras in Morse theory I, 2021, arXiv:2102.06654.
E. Higher algebra of A_{∞} and $\Omega B A s$-algebras in Morse theory II, arXiv:2102.08996, 2021.

R Stephan Mescher, Perturbed gradient flow trees and A_{∞}-algebra structures in Morse cohomology, Atlantis Studies in Dynamical Systems, vol. 6, Atlantis Press, [Paris]; Springer, Cham, 2018. MR 3791518

嗇 Naruki Masuda, Thibaut Mazuir, and Guillaume
Laplante-Anfossi, The diagonal of the multiplihedra and the product of A_{∞}-categories, In preparation.

References IV

囯 James E. McClure and Jeffrey H. Smith, Multivariable cochain operations and little n-cubes, J. Amer. Math. Soc. 16 (2003), no. 3, 681-704. MR 1969208

Naruki Masuda, Hugh Thomas, Andy Tonks, and Bruno Vallette, The diagonal of the associahedra, 2019, arXiv:1902.08059.
Bruno Vallette, Homotopy theory of homotopy algebras, Ann. Inst. Fourier (Grenoble) 70 (2020), no. 2, 683-738. MR 4105949

Thanks for your attention!

Acknowledgements : Alexandru Oancea, Bruno Vallette, Jean-Michel Fischer, Guillaume Laplante-Anfossi, Florian Bertuol, Thomas Massoni, Amiel Peiffer-Smadja and Victor Roca Lucio.

