INTRODUCTION TO ALGEBRAIC OPERADS

Exercise sheet 4: Twisting morphisms

EXERCISE 1 (The augmented bar construction is acyclic). Let A be an augmented dg algebra. Our goal is to prove that the twisted tensor product $B A \otimes_{\pi} A$ is acyclic. We denote an element of $B A \otimes A$ as

$$
a_{1}|\ldots| a_{n} \mid a_{n+1}:=s a_{1} \otimes \cdots \otimes s a_{n} \otimes a_{n+1}
$$

where $a_{i} \in \bar{A}$ for $1 \leqslant i \leqslant n$ and $a_{n+1} \in A$.

1. Compute the twisted differential on $B A \otimes_{\pi} A$.
2. Prove that $B A \otimes_{\pi} A$ is contractible and conclude the proof.

Exercise 2 (Hochschild homology and bar construction). Let C_{*} be a chain complex. We define a chain subcomplex $D_{*} \subset C_{*}$ to be a collection of vector spaces $D_{n} \subset C_{n}$ such that $\partial_{n}^{C}\left(D_{n}\right) \subset$ D_{n-1} for all $n \in \mathbb{Z}$.

1. Prove that if D_{*} is acyclic then the projection map $C_{*} \rightarrow C_{*} / D_{*}$ is a quasi-isomorphism.

Let A be a unital dg algebra and M be an A-bimodule. We set $\bar{A}:=A / \mathbb{K} 1_{A}$. Consider the Hochschild complex $C_{n}(A, M):=M \otimes A^{\otimes n}$ and define D_{n} the subspace of $C_{n}(A, M)$ generated by all elements $m\left|a_{1}\right| \ldots \mid a_{n}$ such that at least one of the a_{i} is equal to 1_{A}.
2. Prove that $D_{*} \subset C_{*}(A, M)$ is a chain subcomplex which is acyclic.

We define the normalized Hochschild chains as

$$
\bar{C}_{*}(A, M):=C_{*}(A, M) / D_{*} .
$$

Following question 1. we then have that $\bar{H}_{*}(M, A) \simeq H_{*}(M, A)$.
3. Let A be an augmented associative algebra seen as an augmented dg algebra concentrated in degree 0 . Prove that the Hochschild homology of A with coefficients in \mathbb{K} is isomorphic to the homology of its bar construction $B A$.

Exercise 3 (The d_{2} differential). Let s be an element of degree $|s|=1$. We introduce the degree -1 map $\mu_{s}: \mathbb{K} s \otimes \mathbb{K} s \rightarrow \mathbb{K} s$ defined as $\mu_{s}(s \otimes s)=s$. We also point out that the suspension $s V$ of a dg vector space V then corresponds to the dg tensor product $\mathbb{K} s \otimes V$.

1. Let A be an augmented dg algebra A. Prove that the differential d_{2} on $B A$ can be equivalently defined as the unique extension of the degree -1 composite linear map

$$
T^{c}(s A) \rightarrow s \bar{A} \otimes s \bar{A}=\mathbb{K} s \otimes \bar{A} \otimes \mathbb{K} s \otimes \bar{A} \simeq \mathbb{K} s \otimes \mathbb{K} s \otimes \bar{A} \otimes \bar{A} \xrightarrow{\mu_{s} \otimes \mu_{A}} \mathbb{K} s \otimes \bar{A}=s \bar{A} .
$$

We also introduce the degree -1 linear map $\Delta_{s}: \mathbb{K} s^{-1} \rightarrow \mathbb{K} s^{-1} \otimes \mathbb{K} s^{-1}$.
2. Let C be a coaugmented $d g$ coalgebra. Prove that the differential d_{2} on ΩC can be equivalently defined as the unique extension of the degree -1 composite linear map
$s^{-1} C=\mathbb{K} s^{-1} \otimes C \xrightarrow{\Delta_{s} \otimes \Delta_{C}} \mathbb{K} s^{-1} \otimes \mathbb{K} s^{-1} \otimes C \otimes C \simeq \mathbb{K} s^{-1} \otimes C \otimes \mathbb{K} s^{-1} \otimes C=s^{-1} C \otimes s^{-1} C \hookrightarrow \Omega C$.
3. Let \mathscr{P} be an operad. Compute an explicit formula (with signs) for the differential d_{2} on the bar construction $B \mathscr{P}$.
4. Let \mathscr{C} be a cooperad. Compute an explicit formula (with signs) for the differential d_{2} on the cobar construction $\Omega \mathscr{C}$.

Exercise 4 (Schur lemma). Let \mathbb{K} be a field with $\operatorname{char}(\mathbb{K})=0$.
Prove that for every natural transformation $\lambda_{V}: V^{\otimes n} \rightarrow V^{\otimes n}$ there exists an element $\lambda \in \mathbb{K}\left[\mathbb{\Im}_{n}\right]$ such that $\lambda_{V}\left(v_{1}, \ldots, v_{n}\right)=\lambda \cdot\left(v_{1} \otimes \cdots \otimes v_{n}\right)$ for $v_{1}, \ldots, v_{n} \in V$.

ExERCISE 5 (Derivation). For an operad \mathscr{P} in Vect and a $\mathscr{P}^{\text {-algebra } A \text {, we define a derivation }}$ $d: A \rightarrow A$ to be a linear map such that for every $\mu \in \mathscr{P}(n)$,

$$
d\left(\mu\left(a_{1}, \ldots, a_{n}\right)\right)=\sum_{i=1}^{n} \mu\left(a_{1}, \ldots, d\left(a_{i}\right), \ldots, a_{n}\right)
$$

Prove that for a vector space V, any derivation on the free \mathscr{P}-algebra $d: S_{\mathscr{P}}(V) \rightarrow S_{\mathscr{P}}(V)$ is completely determined by its restriction $V \rightarrow S_{\mathscr{P}}(V)$.

EXERCISE 6 (bar-cobar resolution).
Prove that the resolution $\Omega B A s s \rightarrow$ Ass is not minimal.

ExERCISE 7 (dg pre-Lie algebra).

Let \mathscr{P} be an operad in Vect with $\mathscr{P}(0)=0$. For $v \in \mathscr{P}(n), \mu \in \mathscr{P}(m)$, we define

$$
\{\mu, v\}:=\sum_{i=1}^{n} v \circ_{i} \mu
$$

1. Prove that this bracket defines a dg pre-Lie algebra structure on the dg vector space $\prod_{n \geqslant 1} \mathscr{P}(n)$.
2. Prove that for a dg cooperad \mathscr{C} and a dg operad \mathscr{P} such that $\mathscr{P}(0)=0$ and $\mathscr{C}(0)=0$, the dg pre-Lie algebra associated to the the convolution operad of \mathscr{C} and \mathscr{P} is exactly the operadic convolution pre-Lie algebra.

ExERCISE 8 (Coderivation).

Prove that there is a correspondence between coderivations of the cofree cooperad $\mathscr{T}^{c}(\mathcal{M})$ and morphisms of \mathfrak{S}-modules $\mathscr{T}^{c}(\mathcal{M}) \rightarrow \mathcal{M}$.

Exercise 9 (Hurewicz fibration). Let $p: E \rightarrow B$ be a Hurewicz fibration and assume that B is connected.

1. Prove that for $b_{0}, b_{1} \in B$, the fibers $p^{-1}\left(b_{0}\right)$ and $p^{-1}\left(b_{1}\right)$ are homotopy equivalent.
2. Prove that there exists a lifting function for p.
