The A_{∞} -algebra structure on the Morse cochains A_{∞} -morphisms between the Morse cochains Higher morphisms between A_{∞} -algebras and their realization in Morse theory Further directions

Higher algebra of A_{∞} -algebras in Morse theory

Thibaut Mazuir

IMJ-PRG - Sorbonne Université

Uppsala University, 05/05/2022

The A_{∞} -algebra structure on the Morse cochains A_{∞} -morphisms between the Morse cochains Higher morphisms between A_{∞} -algebras and their realization in Morse theory Further directions

The results presented in this talk are taken from my two recent papers : Higher algebra of A_{∞} and ΩBAs -algebras in Morse theory I (arXiv:2102.06654) and Higher algebra of A_{∞} and ΩBAs -algebras in Morse theory II (arxiv:2102.08996).

- 1 The A_{∞} -algebra structure on the Morse cochains
- 2 A_{∞} -morphisms between the Morse cochains
- 3 Higher morphisms between A_{∞} -algebras ...
- 4 ... and their realization in Morse theory
- 5 Further directions

- 1 The A_{∞} -algebra structure on the Morse cochains
 - A_{∞} -algebras
 - The associahedra
 - A_{∞} -algebra structure on the Morse cochains
- \bigcirc A_{∞} -morphisms between the Morse cochains
- 3 Higher morphisms between A_{∞} -algebras ...
- 4 ... and their realization in Morse theory
- 5 Further directions

Definition

Let A be a cochain complex with differential m_1 . An A_{∞} -algebra structure on A is the data of a collection of maps of degree 2-n

$$m_n:A^{\otimes n}\longrightarrow A\ ,\ n\geqslant 1,$$

extending m_1 and which satisfy

$$[m_1,m_n] = \sum_{\substack{i_1+i_2+i_3=n\\2\leqslant i_2\leqslant n-1}} \pm m_{i_1+1+i_3} (\mathrm{id}^{\otimes i_1} \otimes m_{i_2} \otimes \mathrm{id}^{\otimes i_3}).$$

These equations are called the A_{∞} -equations.

A_{∞} -algebras

The associahedra

 A_{∞} -algebra structure on the Morse cochains

Recall for instance that for n = 2,

$$[m_1, m_2] := m_1 m_2 - m_2 (\mathrm{id} \otimes m_1) - m_2 (m_1 \otimes \mathrm{id})$$
.

Representing m_n as $\stackrel{12}{\smile}^n$, these equations can be written as

$$[m_1, \ \ \ \] = \sum_{\substack{i_1+i_2+i_3=n\\2\leqslant i_2\leqslant n-1}} \pm \sum_{\substack{i_1\\i_3\\i_4\\i_5\\i_5\\i_5}$$

In particular,

$$[m_1, m_2] = 0$$
,
 $[m_1, m_3] = m_2(\mathrm{id} \otimes m_2 - m_2 \otimes \mathrm{id})$,

implying that m_2 descends to an associative product on $H^*(A)$. An A_{∞} -algebra is thus simply a correct notion of a dg-algebra whose product is associative up to homotopy.

The operations m_n are the higher coherent homotopies which keep track of the fact that the product is associative up to homotopy.

A_{∞} -algebras

The associahedra

 A_{∞} -algebra structure on the Morse cochains

Theorem (Homotopy transfer theorem)

Let (A, ∂_A) and (H, ∂_H) be two cochain complexes. Suppose that H is a deformation retract of A, that is that they fit into a diagram

$$h \longrightarrow (A, \partial_A) \stackrel{p}{\longleftrightarrow} (H, \partial_H)$$
,

where $\mathrm{id}_A - ip = [\partial, h]$. Then if (A, ∂_A) is endowed with an A_∞ -algebra structure, H can be made into an A_∞ -algebra such that i and p extend to A_∞ -morphisms.

- 1 The A_{∞} -algebra structure on the Morse cochains
 - A_{∞} -algebras
 - The associahedra
 - A_{∞} -algebra structure on the Morse cochains
- \bigcirc A_{∞} -morphisms between the Morse cochains
- 3 Higher morphisms between A_{∞} -algebras ...
- 4 ... and their realization in Morse theory
- 5 Further directions

There exists a collection of polytopes, called the associahedra and denoted $\{K_n\}$, which encode the A_{∞} -equations between A_{∞} -algebras. This means that K_n has a unique cell $[K_n]$ of dimension n-2 and that its boundary reads as

$$\partial K_n = \bigcup_{\substack{i_1 + i_2 + i_3 = n \\ 2 \le i_2 \le n - 1}} K_{i_1 + 1 + i_3} \times K_{i_2} ,$$

where \times is the standard cartesian product.

Recall that the A_{∞} -equations read as

$$[m_1, \ \ \ \] = \sum_{\substack{i_1+i_2+i_3=n\\2\leqslant i_2\leqslant n-1}} \pm \underbrace{\ \ \ \ \ \ \ \ \ \ \ \ \ }_{i_1}^{i_2}$$

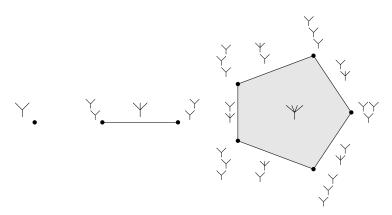


Figure: The associahedra K_2 , K_3 and K_4 , with cells labeled by the operations they define

- 1 The A_{∞} -algebra structure on the Morse cochains
 - A_{∞} -algebras
 - The associahedra
 - A_{∞} -algebra structure on the Morse cochains
- \bigcirc A_{∞} -morphisms between the Morse cochains
- 3 Higher morphisms between A_{∞} -algebras ...
- 4 ... and their realization in Morse theory
- 5 Further directions

Let M be an oriented closed Riemannian manifold endowed with a Morse function f together with a Morse-Smale metric. The Morse cochains $C^*(f)$ form a deformation retract of the singular cochains $C^*_{sing}(M)$ as shown in [Hut08].

$$h \longrightarrow (C^*_{sing}, \partial_{sing}) \xrightarrow[i]{p} (C^*(f), \partial_{Morse}).$$

The cup product naturally endows the singular cochains $C^*_{sing}(M)$ with a dg-algebra structure. The homotopy transfer theorem ensures that it can be transferred to an A_{∞} -algebra structure on the Morse cochains $C^*(f)$.

The differential on the Morse cochains is defined by a count of moduli spaces of gradient trajectories. Is it then possible to define higher multiplications m_n on $C^*(f)$ by a count of moduli spaces such that they fit in a structure of A_{∞} -algebra ?

Question solved by Abouzaid in [Abo11], drawing from earlier works by Fukaya ([Fuk97] for instance). See also [Ekh07], [Mes18] and [AL18].

Terminology:

A ribbon tree

A metric ribbon tree

A stable metric ribbon tree

Definition

Define \mathcal{T}_n to be moduli space of stable metric ribbon trees with n incoming edges. For each stable ribbon tree type t, we define moreover $\mathcal{T}_n(t) \subset \mathcal{T}_n$ to be the moduli space

$$\mathcal{T}_{\it n}(t) := \{ {\sf stable metric ribbon trees of type} \ t \}$$
 .

We then have the following cell decomposition

$$\mathcal{T}_n = \bigcup_{t \in SRT_n} \mathcal{T}_n(t)$$
.

Allowing lengths of internal edges to go to $+\infty$, this moduli space can be compactified into a (n-2)-dimensional CW-complex $\overline{\mathcal{T}}_n$, where \mathcal{T}_n is seen as its unique (n-2)-dimensional stratum.

Theorem

The compactified moduli space $\overline{\mathcal{T}}_n$ is isomorphic as a CW-complex to the associahedron K_n .

This was first noticed in section 1.4. of Boardman-Vogt [BV73].

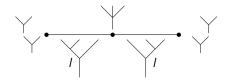


Figure: The compactified moduli space $\overline{\mathcal{T}}_3$

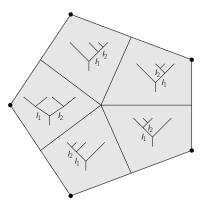
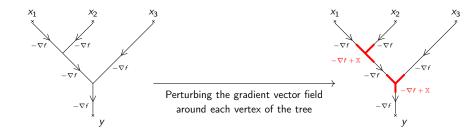


Figure: The compactified moduli space $\overline{\mathcal{T}}_4$

The goal is now to realize these moduli spaces of stable metric ribbon trees in Morse theory.



Definition

 $T:=(t,\{l_e\}_{e\in E(t)})$ where $\{l_e\}_{e\in E(t)}$ are the lengths of its internal edges of the tree t. Choice of perturbation data on T consists of the following data :

- (i) a vector field $[0, l_e] \times M \xrightarrow{\mathbb{X}_e} TM$, that vanishes on $[1, l_e 1]$, for every internal edge e of t;
- (ii) a vector field $[0,+\infty[\times M \xrightarrow{\mathbb{X}_{e_0}} TM]$, that vanishes away from [0,1], for the outgoing edge e_0 of t;
- (iii) a vector field $]-\infty,0]\times M \xrightarrow{\mathbb{X}_{e_i}} TM$, that vanishes away from [-1,0], for every incoming edge e_i $(1\leqslant i\leqslant n)$ of t.

We will write D_e for all segments $[0, I_e]$ as well as for all semi-infinite segments $]-\infty,0]$ and $[0,+\infty[$ in the rest of the talk.

Definition ([Abo11])

A perturbed Morse gradient tree T^{Morse} associated to (T,\mathbb{X}) is the data for each edge e of t of a smooth map $\gamma_e:D_e\to M$ such that γ_e is a trajectory of the perturbed negative gradient $-\nabla f+\mathbb{X}_e$, i.e.

$$\dot{\gamma}_e(s) = -\nabla f(\gamma_e(s)) + \mathbb{X}_e(s, \gamma_e(s))$$
,

and such that the endpoints of these trajectories coincide as prescribed by the edges of the tree T.

Definition

Let X_n be a smooth choice of perturbation data on \mathcal{T}_n . For critical points y and x_1, \ldots, x_n , we define the moduli space

$$\mathcal{T}_n^{\mathbb{X}_n}(y;x_1,\ldots,x_n) := \\ \left\{ \begin{array}{l} \text{perturbed Morse gradient trees associated to } (\mathcal{T},\mathbb{X}_{\mathcal{T}}) \\ \text{and connecting } x_1,\ldots,x_n \text{ to } y, \text{ for } \mathcal{T} \in \mathcal{T}_n \end{array} \right\}.$$

Proposition

Given a generic choice of perturbation data \mathbb{X}_n , the moduli space $\mathcal{T}_n^{\mathbb{X}_n}(y; x_1, \dots, x_n)$ is an orientable manifold of dimension

$$\dim (\mathcal{T}_n(y; x_1, \ldots, x_n)) = n - 2 + |y| - \sum_{i=1}^n |x_i|,$$

where
$$|x| := \dim(W^S(x))$$
.

Choose perturbation data \mathbb{X}_n on each moduli space \mathcal{T}_n for $n \geq 2$. By assuming some gluing-compatibility conditions on $(\mathbb{X}_n)_{n\geq 2}$, the 1-dimensional moduli spaces $\mathcal{T}_n(y;x_1,\ldots,x_n)$ can be compactified to manifolds with boundary whose boundary is given by the spaces

(i) corresponding to an internal edge breaking :

$$\mathcal{T}_{i_1+1+i_3}^{\mathbb{X}_{i_1+1+i_3}}(y;x_1,\ldots,x_{i_1},z,x_{i_1+i_2+1},\ldots,x_n)\times\mathcal{T}_{i_2}^{\mathbb{X}_{i_2}}(z;x_{i_1+1},\ldots,x_{i_1+i_2});$$

(ii) corresponding to an external edge breaking :

$$\mathcal{T}(y;z) \times \mathcal{T}_n^{\mathbb{X}_n}(z;x_1,\ldots,x_n)$$
 and $\mathcal{T}_n^{\mathbb{X}_n}(y;x_1,\ldots,z,\ldots,x_n) \times \mathcal{T}(z;x_i)$

$$x_1$$
 x_2
 x_3
 x_4
 x_4
 x_5
 x_4
 x_5
 x_7
 x_8
 x_8
 x_9
 x_9
 x_9

Two examples of perturbed Morse gradient trees breaking at a critical point

Theorem ([Abo11])

For an admissible choice of perturbation data $\mathbb{X} := (\mathbb{X}_n)_{n \geq 2}$, defining for every n the operation m_n as

$$m_n: C^*(f) \otimes \cdots \otimes C^*(f) \longrightarrow C^*(f)$$

$$x_1 \otimes \cdots \otimes x_n \longmapsto \sum_{|y|=\sum_{i=1}^n |x_i|+2-n} \# \mathcal{T}_n^{\mathbb{X}}(y; x_1, \cdots, x_n) \cdot y ,$$

they endow the Morse cochains $C^*(f)$ with an A_{∞} -algebra structure.

Indeed, the boundary of the previous compactification is modeled on the A_{∞} -equations for A_{∞} -algebras :

$$[\partial_{Morse}, \bigvee_{\substack{1 \ 2 \\ 2 \leqslant i_2 \leqslant n-1}}^{n}] = \sum_{\substack{i_1 + i_2 + i_3 = n \\ 2 \leqslant i_2 \leqslant n-1}} \pm \bigvee_{\substack{i_1 \\ i_2 \\ i_3 \\ i_4 \\ i_5 \\ i_7 \\ i_8 \\ i_8 \\ i_8 \\ i_9 \\ i_$$

In fact, we construct in [Maz21a] a refined algebraic structure on $C^*(f)$, called an ΩBAs -algebra structure. It corresponds to associating to each stable ribbon tree t of arity n an operation $C^*(f)^{\otimes n} \to C^*(f)$, and the differential for such an operation is then encoded by the codimension 1 boundary of the corresponding cell in \mathcal{T}_n . For instance,

The A_{∞} -algebra structure on the Morse cochains then stems from this ΩBAs -algebra structure by purely algebraic arguments.

Working on the ΩBAs and not on the A_{∞} level is also more rigorous for the analysis involved in these constructions.

- 1 The A_{∞} -algebra structure on the Morse cochains
- 2 A_{∞} -morphisms between the Morse cochains
 - A_{∞} -morphisms
 - The multiplihedra
 - A_{∞} -morphisms between the Morse cochains
- ③ Higher morphisms between A_{∞} -algebras ...
- 4 ... and their realization in Morse theory
- 5 Further directions

Further directions

 A_{∞} -morphisms The multiplihedra A_{∞} -morphisms between the Morse cochains

Definition

An A_∞ -morphism between two A_∞ -algebras A and B is a family of maps $f_n:A^{\otimes n}\to B$ of degree 1-n satisfying

$$\begin{split} [m_1,f_n] &= \sum_{\substack{i_1+i_2+i_3=n\\i_2\geqslant 2}} \pm f_{i_1+1+i_3} \big(\mathrm{id}^{\otimes i_1} \otimes m_{i_2} \otimes \mathrm{id}^{\otimes i_3} \big) \\ &+ \sum_{\substack{i_1+\cdots+i_s=n\\s\geqslant 2}} \pm m_s \big(f_{i_1} \otimes \cdots \otimes f_{i_s} \big) \;. \end{split}$$

Representing the operations f_n as $\begin{subarray}{l} \end{subarray}$, the operations m_n^B in red and the operations m_n^A in blue, these equations read as

Further directions

 A_{∞} -morphisms The multiplihedra A_{∞} -morphisms between the Morse cochains

We check that
$$[\partial, \mathit{f}_2] = \mathit{f}_1\mathit{m}_2^{A} - \mathit{m}_2^{B}(\mathit{f}_1 \otimes \mathit{f}_1)$$
 .

Further directions

An A_{∞} -morphism between A_{∞} -algebras induces a morphism of associative algebras on the level of cohomology, and is a correct notion of morphism which preserves the product up to homotopy.

- 1 The A_{∞} -algebra structure on the Morse cochains
- 2 A_{∞} -morphisms between the Morse cochains
 - A_{∞} -morphisms
 - The multiplihedra
 - A_{∞} -morphisms between the Morse cochains
- ③ Higher morphisms between A_{∞} -algebras ...
- 4 ... and their realization in Morse theory
- 5 Further directions

There exists a collection of polytopes, called the *multiplihedra* and denoted $\{J_n\}$, which encode the A_{∞} -equations for A_{∞} -morphisms. Again, J_n has a unique n-1-dimensional cell $[J_n]$ and the boundary of J_n is exactly

$$\partial J_n = \bigcup_{\substack{i_1+i_2+i_3=n\\i_2\geqslant 2}} J_{i_1+1+i_3} \times K_{i_2} \cup \bigcup_{\substack{i_1+\cdots+i_s=n\\s\geqslant 2}} K_s \times J_{i_1} \times \cdots \times J_{i_s},$$

where \times is the standard cartesian product \times .

Recall that the A_{∞} -equations for A_{∞} -morphisms are

$$\left[\partial, \frac{i_1}{i_2}\right] = \sum_{\substack{i_1 + i_2 + i_3 = n \\ i_2 \ge 2}} \pm \underbrace{\sum_{\substack{i_1 \\ i_2 \ge 2}}^{i_1}}_{i_3} + \sum_{\substack{i_1 + \dots + i_s = n \\ s \ge 2}} \pm \underbrace{\sum_{\substack{i_1 \\ i_2 \ge 2}}^{i_1}}_{i_3}$$

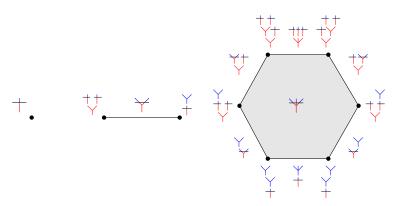


Figure: The multiplihedra J_1 , J_2 and J_3 with cells labeled by the operations they define in $A_{\infty} - \text{Morph}$

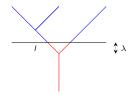
- 1 The A_{∞} -algebra structure on the Morse cochains
- 2 A_{∞} -morphisms between the Morse cochains
 - A_{∞} -morphisms
 - The multiplihedra
 - ullet A_{∞} -morphisms between the Morse cochains
- 3 Higher morphisms between A_{∞} -algebras ...
- 4 ... and their realization in Morse theory
- 5 Further directions

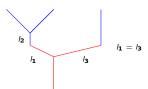
Consider an additional Morse function g on the manifold M.

Our goal is now to construct an A_{∞} -morphism from the Morse cochains $C^*(f)$ to the Morse cochains $C^*(g)$, through a count of moduli spaces of perturbed Morse trees.

Definition

A stable two-colored metric ribbon tree or stable gauged metric ribbon tree is defined to be a stable metric ribbon tree together with a length $\lambda \in \mathbb{R}$, which is to be thought of as a gauge drawn over the metric tree, at distance λ from its root, where the positive direction is pointing down.



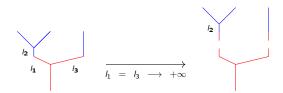


Definition

For $n \geqslant 1$, \mathcal{CT}_n is the moduli space of stable two-colored metric ribbon trees. It has a cell decomposition by stable two-colored ribbon tree type,

$$\mathcal{CT}_n = \bigcup_{t_c \in SCRT_n} \mathcal{CT}_n(t_c) \ .$$

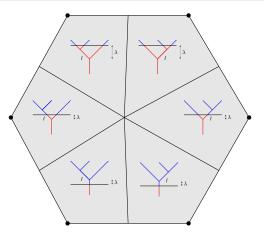
Allowing again internal edges of metric trees to go to $+\infty$, this moduli space \mathcal{CT}_n can be compactified into a (n-1)-dimensional CW-complex $\overline{\mathcal{CT}}_n$.



Theorem ([MW10])

The compactified moduli space $\overline{\mathcal{CT}}_n$ is isomorphic as a CW-complex to the multiplihedron J_n .

The compactified moduli space $\overline{\mathcal{CT}}_2$ with its cell decomposition by stable two-colored ribbon tree type



The compactified moduli space $\overline{\mathcal{CT}}_3$ with its cell decomposition by stable two-colored ribbon tree type

Definition

A two-colored perturbed Morse gradient tree T_g^{Morse} associated to a pair two-colored metric ribbon tree and perturbation data (T_g, \mathbb{Y}) is the data

(i) for each edge f_c of t_c which is above the gauge, of a smooth map

$$D_{f_c} \xrightarrow{\gamma_{f_c}} M$$
,

such that γ_{f_c} is a trajectory of the perturbed negative gradient $-\nabla f + \mathbb{Y}_{f_c}$

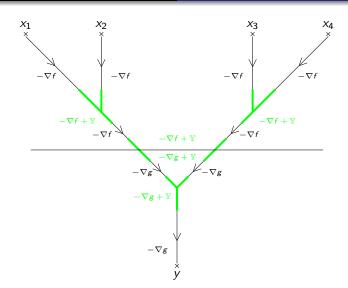
Definition

(ii) for each edge f_c of t_c which is below the gauge, of a smooth map

$$D_{f_c} \xrightarrow{\gamma_{f_c}} M$$
,

such that γ_{f_c} is a trajectory of the perturbed negative gradient $-\nabla g + \mathbb{Y}_{f_c}$,

and such that the endpoints of these trajectories coincide as prescribed by the edges of the two-colored tree type.



Further directions

 A_{∞} -morphisms The multiplihedra A_{∞} -morphisms between the Morse cochains

Definition

Let \mathbb{Y}_n be a smooth choice of perturbation data on the moduli space \mathcal{CT}_n . Given $y \in \operatorname{Crit}(g)$ and $x_1, \ldots, x_n \in \operatorname{Crit}(f)$, we define the moduli spaces

$$\begin{split} \mathcal{CT}_n^{\mathbb{Y}_n}(y;x_1,\ldots,x_n) := \\ \left\{ \begin{array}{l} \text{two-colored perturbed Morse gradient trees associated to} \\ \left(\mathcal{T}_g,\mathbb{Y}_{\mathcal{T}_g} \right) \text{ and connecting } x_1,\ldots,x_n \text{ to } y \text{ for } \mathcal{T}_g \in \mathcal{CT}_n \end{array} \right\}. \end{aligned}$$

Proposition

Given a generic choice of perturbation data \mathbb{Y}_n , the moduli spaces $\mathcal{CT}_n^{\mathbb{Y}_n}(y; x_1, \dots, x_n)$ are orientable manifolds of dimension

$$\dim (\mathcal{CT}_n(y; x_1, \dots, x_n)) = |y| - \sum_{i=1}^n |x_i| + n - 1.$$

Given perturbation data \mathbb{X}^f and \mathbb{X}^g for the functions f and g, by assuming some gluing-compatibility conditions for a choice of perturbation data \mathbb{Y}_n for all $n \geq 1$, the 1-dimensional moduli spaces $\mathcal{CT}_n^{\mathbb{Y}_n}(y;x_1,\ldots,x_n)$ can be compactified into manifolds with boundary whose boundary is modeled on the A_∞ -equations for A_∞ -morphisms :

Theorem ([Maz21a])

Let \mathbb{X}^f , \mathbb{X}^g and $(\mathbb{Y}_n)_{n\geqslant 1}$ be admissible choices of perturbation data. Defining for every n the operation μ_n as

Further directions

$$\mu_n^{\mathbb{Y}}: C^*(f) \otimes \cdots \otimes C^*(f) \longrightarrow C^*(g)$$

$$x_1 \otimes \cdots \otimes x_n \longmapsto \sum_{|y| = \sum_{i=1}^n |x_i| + 1 - n} \# \mathcal{CT}_n^{\mathbb{Y}}(y; x_1, \cdots, x_n) \cdot y.$$

they fit into an A_{∞} -morphism $\mu^{\mathbb{Y}}: (C^*(f), m_n^{\mathbb{X}^f}) \to (C^*(g), m_n^{\mathbb{X}^g}).$

Again, we prove in [Maz21a] that this A_{∞} -morphism actually stems from an ΩBAs -morphism between the ΩBAs -algebras $C^*(f)$ and $C^*(g)$.

We can moreover prove that this A_{∞} -morphism induces an isomorphism between the Morse cohomologies.

- 1 The A_{∞} -algebra structure on the Morse cochains
- 2 A_{∞} -morphisms between the Morse cochains
- 3 Higher morphisms between A_{∞} -algebras ...
- 4 ... and their realization in Morse theory
- 5 Further directions

 A_{∞} -homotopies Higher morphisms between A_{∞} -algebras The HOM-simplicial sets $\mathrm{HOM}_{\mathrm{A}_{\infty}-\mathrm{alg}}(A,B)_{\bullet}$ The n-multiplihedra

Considering two A_{∞} -morphisms F,G, we would like first to determine a notion giving a satisfactory meaning to the sentence "F and G are homotopic". Then, A_{∞} -homotopies being defined, what is now a good notion of a homotopy between homotopies ? And of a homotopy between two homotopies between homotopies ? And so on.

- 1 The A_{∞} -algebra structure on the Morse cochains
- 2 A_{∞} -morphisms between the Morse cochains
- 3 Higher morphisms between A_{∞} -algebras ...
 - A_{∞} -homotopies
 - Higher morphisms between A_{∞} -algebras
 - The HOM-simplicial sets $HOM_{A_{\infty}-alg}(A, B)_{\bullet}$
 - The *n*-multiplihedra
- 4 ... and their realization in Morse theory
- 5 Further directions

Definition

An A_{∞} -homotopy between two A_{∞} -morphisms $(f_n)_{n\geqslant 1}$ and $(g_n)_{n\geqslant 1}$ is a collection of maps

$$h_n:A^{\otimes n}\longrightarrow B$$
,

of degree -n, satisfying

$$\begin{aligned} [\partial, h_n] = & g_n - f_n + \sum_{\substack{i_1 + i_2 + i_3 = m \\ i_2 \geqslant 2}} \pm h_{i_1 + 1 + i_3} (\operatorname{id}^{\otimes i_1} \otimes m_{i_2} \otimes \operatorname{id}^{\otimes i_3}) \\ + \sum_{\substack{i_1 + \dots + i_s + l \\ + j_1 + \dots + j_t = n \\ s + 1 + t \geqslant 2}} \pm m_{s+1+t} (f_{i_1} \otimes \dots \otimes f_{i_s} \otimes h_l \otimes g_{j_1} \otimes \dots \otimes g_{j_t}) .\end{aligned}$$

In symbolic formalism,

$$[\partial, [0 < 1]] = [1] - [0] + \sum_{[0]} \pm [0 < 1] + \sum_{[0]} [1] + \sum_{[0]} \pm [0] + \sum_{[0]} [1] + \sum_{[1]} [1] + \sum_{[1]}$$

where we denote [0], [0 < 1] and [1] respectively for the f_n , the h_n and the g_n .

- 1 The A_{∞} -algebra structure on the Morse cochains
- 2 A_{∞} -morphisms between the Morse cochains
- 3 Higher morphisms between A_{∞} -algebras ...
 - A_{∞} -homotopies
 - ullet Higher morphisms between A_{∞} -algebras
 - The HOM-simplicial sets $HOM_{A_{\infty}-alg}(A, B)$.
 - The *n*-multiplihedra
- 4 ... and their realization in Morse theory
- 5 Further directions

Notation : the top-dimensional face of the *n*-simplex Δ^n will be written as $[0 < \cdots < n]$ and its subfaces $I \subset \Delta^n$ as $[i_1 < \cdots < i_k]$.

Definition ([MS03])

Let I be a face of Δ^n . An overlapping partition of I is a sequence of faces $(I_I)_{1 \le \ell \le s}$ of I such that

- (i) the union of this sequence of faces is I, i.e. $\bigcup_{1\leqslant \ell\leqslant s}I_I=I$;
- (ii) for all $1 \leqslant \ell < s$, $\max(I_{\ell}) = \min(I_{\ell+1})$.

An overlapping 6-partition for [0 < 1 < 2] is for instance

$$[0<1<2]=[0]\cup[0]\cup[0<1]\cup[1]\cup[1<2]\cup[2]\ .$$

Definition ([Maz21b])

A *n-morphism* from A to B is defined to be a collection of maps $f_I^{(m)}:A^{\otimes m}\longrightarrow B$ of degree $1-m-\dim(I)$ for $I\subset\Delta^n$ and $m\geqslant 1$, that satisfy

$$\left[\partial, f_{I}^{(m)}\right] = \sum_{j=0}^{\dim(I)} (-1)^{j} f_{\partial_{j}I}^{(m)} + \sum_{\substack{i_{1}+\dots+i_{s}=m\\l_{1}\cup\dots\cup l_{s}=I\\s\geqslant 2}} \pm m_{s} (f_{l_{1}}^{(i_{1})} \otimes \dots \otimes f_{l_{s}}^{(i_{s})})
+ (-1)^{|I|} \sum_{\substack{i_{1}+i_{2}+i_{3}=m\\i_{2}\geqslant 2}} \pm f_{I}^{(i_{1}+1+i_{3})} (\operatorname{id}^{\otimes i_{1}} \otimes m_{i_{2}} \otimes \operatorname{id}^{\otimes i_{3}}) .$$

Equivalently and more visually, a collection of maps satisfying

$$[\partial, i] = \sum_{j=1}^{k} (-1)^{j} \int_{\partial_{j}^{\text{dist}}} dt + \sum_{l_{1} \cup \dots \cup l_{s} = l} \pm \int_{l_{s}}^{l_{s}} dt$$

$$+ \sum_{l} \pm \int_{l_{s}} dt \cdot \int_{l_{s}$$

It is straightforward that 0-morphisms then correspond to A_{∞} -morphisms and 1-morphisms correspond to A_{∞} -homotopies.

Overlapping partitions are the collection of faces which naturally arise in the Alexander-Whitney coproduct.

The element $\Delta_{\Delta^n}(I)$ corresponds to the sum of all overlapping 2-partitions of I. Iterating s times Δ_{Δ^n} yields the sum of all overlapping (s+1)-partitions of I.

We point out that these equations naturally stem from the shifted bar construction viewpoint. An A_{∞} -algebra structure on A is equivalent to a coderivation D_A on $\overline{T}(sA)$ such that $D_A^2=0$. A n-morphism between A_{∞} -algebras can then be defined as a morphism of dg-coalgebras $\mathbf{\Delta}^n\otimes \overline{T}(sA)\to \overline{T}(sB)$, where $\mathbf{\Delta}^n$ is a dg-coalgebra model for the n-simplex $\mathbf{\Delta}^n$.

- 1 The A_{∞} -algebra structure on the Morse cochains
- \bigcirc A_{∞} -morphisms between the Morse cochains
- 3 Higher morphisms between A_{∞} -algebras ...
 - A_{∞} -homotopies
 - Higher morphisms between A_{∞} -algebras
 - The HOM-simplicial sets $HOM_{A_{\infty}-alg}(A, B)_{\bullet}$
 - The *n*-multiplihedra
- 4 ... and their realization in Morse theory
- 5 Further directions

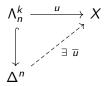
The sets of n-morphisms between two A_{∞} -algebras A and B define in fact a simplicial set $\mathrm{HOM}_{A_{\infty}-\mathrm{alg}}(A,B)_{\bullet}$, which provides a satisfactory framework to study the higher algebra of A_{∞} -algebras.

Theorem ([Maz21b])

For A and B two A_{∞} -algebras, the simplicial set $\mathrm{HOM}_{A_{\infty}}(A,B)_{\bullet}$ is a Kan complex.

Write Δ^n the simplicial set realizing the standard n-simplex Δ^n , and Λ_n^k the simplicial set realizing the simplicial subcomplex obtained from Δ^n by removing the faces $[0 < \cdots < n]$ and $[0 < \cdots < \hat{k} < \cdots < n]$. The simplicial set Λ_n^k is called a *horn*, and if 0 < k < n it is called an *inner horn*.

A Kan complex/an ∞ -groupoid is a simplicial set X which has the left-lifting property with respect to all horn inclusions $\Lambda_n^k \to \Delta^n$.



The vertices of X are then to be seen as objects, and its edges correspond to morphisms.

Theorem ([Maz21b])

For A and B two A_{∞} -algebras, the simplicial set $\mathrm{HOM}_{A_{\infty}}(A,B)_{\bullet}$ is a Kan complex.

Beware that the points of these Kan complexes are the A_{∞} -morphisms, and the arrows between them are the A_{∞} -homotopies. This can be misleading at first sight, but the points are the morphisms and NOT the algebras and the arrows are the homotopies and NOT the morphisms.

Given an inner horn $\Lambda_n^k \to \mathrm{HOM}_{A_\infty}(A,B)_{\bullet}$ where 0 < k < n, it is in fact to explictly describe all the fillers

$$\Lambda_n^k \longrightarrow \operatorname{HOM}_{A_\infty}(A, B)_{\bullet}$$

$$\downarrow$$

$$\Delta^n$$

The simplicial homotopy groups of the Kan complex $\mathrm{HOM}_{A_\infty}(A,B)_{\bullet}$ can moreover be explicitly computed.

- 1 The A_{∞} -algebra structure on the Morse cochains
- 2 A_{∞} -morphisms between the Morse cochains
- $oxed{3}$ Higher morphisms between A_{∞} -algebras ...
 - A_{∞} -homotopies
 - Higher morphisms between A_{∞} -algebras
 - The HOM-simplicial sets $HOM_{A_{\infty}-alg}(A, B)$.
 - The *n*-multiplihedra
- 4 ... and their realization in Morse theory
- 5 Further directions

We would like to define a family of polytopes encoding n-morphisms between A_{∞} -algebras. These polytopes will then be called n-multiplihedra.

We have seen that A_{∞} -morphisms are encoded by the multiplihedra. A natural candidate for *n*-morphisms would thus be $\{\Delta^n \times J_m\}_{m\geqslant 1}$.

However, $\Delta^n \times J_m$ does not fulfill that property as it is. Faces correspond to the data of a face of $I \subset \Delta^n$, and of a broken two-colored tree labeling a face of J_m . This labeling is too coarse, as it does not contain the trees

that appear in the A_{∞} -equations for *n*-morphisms.

We prove in [Maz21b] that there exists a refined polytopal subdivision of $\Delta^n \times J_m$ encoding the A_∞ -equations for n-morphisms between A_∞ -algebras. We define the n-multiplihedra to be the polytopes $\Delta^n \times J_m$ endowed with this polytopal subdivision and denote them $n-J_m$.

This refined polytopal subdivision is obtained by lifting the combinatorics of overlapping partitions to the level of the polytopes Δ^n .

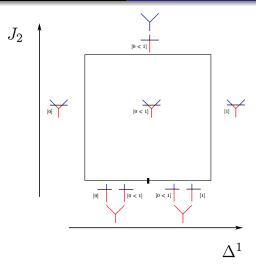


Figure: The 1-multiplihedron $\Delta^1 \times J_2$

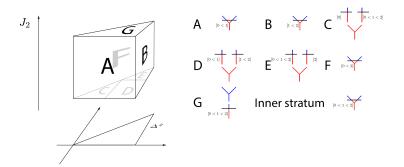


Figure: The 2-multiplihedron $\Delta^2 \times J_2$

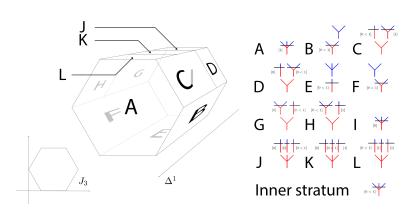
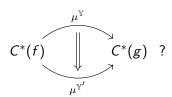


Figure: The 1-multiplihedron $\Delta^1 \times J_3$

- 1 The A_{∞} -algebra structure on the Morse cochains
- 2 A_{∞} -morphisms between the Morse cochains
- 3 Higher morphisms between A_{∞} -algebras ...
- 4 ... and their realization in Morse theory
 - Motivating question
 - *n*-morphisms between the Morse cochains
 - Filling properties in Morse theory
- 5 Further directions

Given two Morse functions f,g, choices of perturbation data \mathbb{X}^f and \mathbb{X}^g , and choices of perturbation data \mathbb{Y} and \mathbb{Y}' , is $\mu^{\mathbb{Y}}$ always A_{∞} -homotopic to $\mu^{\mathbb{Y}'}$? I.e., when can the following diagram be filled in the A_{∞} world



- 1 The A_{∞} -algebra structure on the Morse cochains
- 2 A_{∞} -morphisms between the Morse cochains
- 3 Higher morphisms between A_{∞} -algebras ...
- 4 ... and their realization in Morse theory
 - Motivating question
 - *n*-morphisms between the Morse cochains
 - Filling properties in Morse theory
- 5 Further directions

Motivating question *n*-morphisms between the Morse cochains Filling properties in Morse theory

While the spaces parametrizing the perturbation data were the \mathcal{T}_m (a model for the associahedra K_m) and the \mathcal{CT}_m (a model for the multiplihedra J_m), perturbation data will now be parametrized by the n-multiplihedra $\Delta^n \times \mathcal{CT}_m$.

The previous pattern can then be repeated. We consider a n-simplex of perturbation data $\mathbb{Y}_{\Delta^n,m} = \{\mathbb{Y}_{\delta,m}\}_{\delta \in \mathring{\Delta}^n}$ on \mathcal{CT}_m . Given $y \in \mathrm{Crit}(g)$ and $x_1,\ldots,x_m \in \mathrm{Crit}(f)$, we define the moduli spaces

$$\mathcal{CT}^{\mathbb{Y}_{\Delta^n,m}}_{\Delta^n,m}(y;x_1,\ldots,x_m) := \bigcup_{\delta \in \mathring{\Delta}^n} \mathcal{CT}^{\mathbb{Y}_{\delta,m}}_m(y;x_1,\ldots,x_m) .$$

Under some generic assumptions on $\mathbb{Y}_{\Delta^n,m}$, the moduli space $\mathcal{CT}_{\Delta^n,m}(y;x_1,\ldots,x_m)$ is then an orientable manifold of dimension

$$\dim \left(\mathcal{CT}_{\Delta^n,m}(y;x_1,\ldots,x_m)\right)=n+m-1+|y|-\sum_{i=1}^m|x_i|.$$

Choose perturbation data \mathbb{X}^f and \mathbb{X}^g for the functions f and g together with perturbation data $(\mathbb{Y}_{I,m})_{I\subset\Delta^n}^{m\geqslant 1}$. By assuming some gluing-compatibility conditions on $(\mathbb{Y}_{I,m})_{I\subset\Delta^n}^{m\geqslant 1}$ modeling the combinatorics of overlapping partitions, the 1-dimensional moduli spaces $\mathcal{CT}_{I,m}^{\mathbb{Y}_{I,m}}(y;x_1,\ldots,x_m)$ can be compactified into manifolds with boundary whose boundary is modeled on the A_{∞} -equations for n-morphisms.

Theorem ([Maz21b])

Let \mathbb{X}^f , \mathbb{X}^g and $(\mathbb{Y}_{I,m})_{I\subset\Delta^n}^{m\geqslant 1}$ be generic choices of perturbation data. Defining for every m the operation $\mu_I^{(m)}$ as

$$C^*(f) \otimes \cdots \otimes C^*(f) \xrightarrow{\mu_I^{(m)}} C^*(g)$$

$$x_1 \otimes \cdots \otimes x_m \longmapsto \sum_{|y| = \sum_{i=1}^m |x_i| + 1 - m + |I|} \#\mathcal{CT}_{I,m}^{\mathbb{Y}_{I,m}}(y; x_1, \cdots, x_m) \cdot y$$

they fit into a n-morphism $\mu_I^{\mathbb{Y}}: (C^*(f), m_n^{\mathbb{X}^f}) \to (C^*(g), m_n^{\mathbb{X}^g}), I \subset \Delta^n$.

- 1 The A_{∞} -algebra structure on the Morse cochains
- 2 A_{∞} -morphisms between the Morse cochains
- 3 Higher morphisms between A_{∞} -algebras ...
- 4 ... and their realization in Morse theory
 - Motivating question
 - *n*-morphisms between the Morse cochains
 - Filling properties in Morse theory
- 5 Further directions

We define for every $n \ge 0$,

$$\mathrm{HOM}_{A_{\infty}}^{geom}(C^*(f),C^*(g))_n \subset \mathrm{HOM}_{A_{\infty}}(C^*(f),C^*(g))_n$$

to be the set of *n*-morphisms μ from $C^*(f)$ to $C^*(g)$ for which there exists an admissible *n*-simplex of perturbation data \mathbb{Y}_{Δ^n} such that $\mu = \mu^{\mathbb{Y}_{\Delta^n}}$.

Theorem

The sets $\mathrm{HOM}_{A_\infty}^{\mathrm{geom}}(C^*(f),C^*(g))_n$ define a simplicial subset of the simplicial set $\mathrm{HOM}_{A_\infty}(C^*(f),C^*(g))_{\bullet}$. The simplicial set $\mathrm{HOM}_{A_\infty}^{\mathrm{geom}}(C^*(f),C^*(g))_{\bullet}$ has the property of being a Kan complex which is contractible.

Motivating question n-morphisms between the Morse cochains Filling properties in Morse theory

This theorem gives a higher categorical meaning to the fact that continuation morphisms in Morse theory are well-defined up to homotopy at chain level.

It also solves the motivating question to this section.

Corollary ([Maz21b])

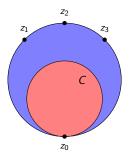
Let $\mathbb Y$ and $\mathbb Y'$ be two admissible choices of perturbation data on the moduli spaces \mathcal{CT}_m . The A_∞ -morphisms $\mu^\mathbb Y$ and $\mu^{\mathbb Y'}$ are then A_∞ -homotopic

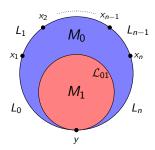
$$C^*(f) \xrightarrow[\mu^{\mathbb{Y}}]{} C^*(g)$$

The A_{∞} -algebra structure on the Morse cochains A_{∞} -morphisms between the Morse cochains Higher morphisms between A_{∞} -algebras and their realization in Morse theory Further directions

- 1 The A_{∞} -algebra structure on the Morse cochains
- 2 A_{∞} -morphisms between the Morse cochains
- 3 Higher morphisms between A_{∞} -algebras ...
- 4 ... and their realization in Morse theory
- 5 Further directions

1. It is quite clear that given two compact symplectic manifolds M and N, one should be able to construct n-morphisms between their Fukaya categories $\operatorname{Fuk}(M)$ and $\operatorname{Fuk}(N)$ through counts of moduli spaces of quilted disks (see [MWW18] for the n=0 case).





2. Given three Morse functions f_0 , f_1 , f_2 , choices of perturbation data \mathbb{X}^i , and choices of perturbation data \mathbb{Y}^{ij} defining morphisms

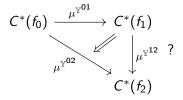
$$\mu^{\mathbb{Y}^{01}}: (C^{*}(f_{0}), m_{n}^{\mathbb{X}^{0}}) \longrightarrow (C^{*}(f_{1}), m_{n}^{\mathbb{X}^{1}}) ,$$

$$\mu^{\mathbb{Y}^{12}}: (C^{*}(f_{1}), m_{n}^{\mathbb{X}^{1}}) \longrightarrow (C^{*}(f_{2}), m_{n}^{\mathbb{X}^{2}}) ,$$

$$\mu^{\mathbb{Y}^{02}}: (C^{*}(f_{0}), m_{n}^{\mathbb{X}^{0}}) \longrightarrow (C^{*}(f_{2}), m_{n}^{\mathbb{X}^{2}}) ,$$

can we construct an A_{∞} -homotopy such that $\mu^{\mathbb{Y}^{12}} \circ \mu^{\mathbb{Y}^{01}} \simeq \mu^{\mathbb{Y}^{02}}$ through this homotopy ?

That is, can the following diagram be filled in the A_{∞} realm



Inspected in a future work, see also [MWW18] for a similar question.

The A_{∞} -algebra structure on the Morse cochains A_{∞} -morphisms between the Morse cochains Higher morphisms between A_{∞} -algebras and their realization in Morse theory Further directions

3. Links between the *n*-multiplihedra and the 2-associahedra of Bottman (see [Bot19a] and [Bot19b] for instance)? This will also be inspected in a future work, and is linked to the previous problem.

The A_{∞} -algebra structure on the Morse cochains A_{∞} -morphisms between the Morse cochains Higher morphisms between A_{∞} -algebras and their realization in Morse theory Further directions

Thanks for your attention!

Acknowledgements: Alexandru Oancea, Bruno Vallette, Jean-Michel Fischer, Guillaume Laplante-Anfossi, Brice Le Grignou, Geoffroy Horel, Florian Bertuol, Thomas Massoni, Amiel Peiffer-Smadja and Victor Roca Lucio.

References I

- Mohammed Abouzaid, *A topological model for the Fukaya categories of plumbings*, J. Differential Geom. **87** (2011), no. 1, 1–80. MR 2786590
- Hossein Abbaspour and Francois Laudenbach, *Morse complexes* and multiplicative structures, 2018.
- Nathaniel Bottman, *2-associahedra*, Algebr. Geom. Topol. **19** (2019), no. 2, 743–806. MR 3924177
- Moduli spaces of witch curves topologically realize the 2-associahedra, J. Symplectic Geom. 17 (2019), no. 6, 1649–1682. MR 4057724

References II

- J. M. Boardman and R. M. Vogt, *Homotopy invariant algebraic structures on topological spaces*, Lecture Notes in Mathematics, Vol. 347, Springer-Verlag, Berlin-New York, 1973. MR 0420609
- Tobias Ekholm, *Morse flow trees and Legendrian contact homology in 1-jet spaces*, Geom. Topol. **11** (2007), 1083–1224 (English).
- Kenji Fukaya, *Morse homotopy and its quantization*, Geometric topology (Athens, GA, 1993), AMS/IP Stud. Adv. Math., vol. 2, Amer. Math. Soc., Providence, RI, 1997, pp. 409–440. MR 1470740

References III

- Michael Hutchings, *Floer homology of families. I*, Algebr. Geom. Topol. **8** (2008), no. 1, 435–492. MR 2443235
- Thibaut Mazuir, Higher algebra of A_{∞} and ΩBAs -algebras in Morse theory I, 2021, arXiv:2102.06654.
- \blacksquare _____, Higher algebra of A_{∞} and ΩBAs -algebras in Morse theory II, arXiv:2102.08996, 2021.
- Stephan Mescher, Perturbed gradient flow trees and A_{∞} -algebra structures in Morse cohomology, Atlantis Studies in Dynamical Systems, vol. 6, Atlantis Press, [Paris]; Springer, Cham, 2018. MR 3791518

References IV

- James E. McClure and Jeffrey H. Smith, *Multivariable cochain operations and little n-cubes*, J. Amer. Math. Soc. **16** (2003), no. 3, 681–704. MR 1969208
- S. Ma'u and C. Woodward, *Geometric realizations of the multiplihedra*, Compos. Math. **146** (2010), no. 4, 1002–1028. MR 2660682
- S. Ma'u, K. Wehrheim, and C. Woodward, A_{∞} functors for Lagrangian correspondences, Selecta Math. (N.S.) **24** (2018), no. 3, 1913–2002. MR 3816496