LYCEE

PARC _
«VILGENIS

Cours de mathématiques

ECG1

T. MAINGUY






Table des matieres

I Introduction

1 Le language des mathématiques

1

Enoncés, symboles et ensembles de bases . . . . . . ... ... ...
1.1 Symboles courants et énoncés . . . . .. ...
1.2 Les ensembles de base . . . . . . .. ...
1.3 Raisonnements mathématiques . . . . . .. ... ... ...
1.4 Négations . . . . . . . . .
Ensembles . . . . . . ...
2.1 Symboles particuliers . . . . . .. ...
2.2 Opérations sur les ensembles . . . . . . . .. ... ... ...

2 Fonctions et Applications

1
2

1

Fonctions . . . . . . . . . ...
Applications . . . . . . . . ...
2.1 Composition . . . . . . . . ..
Fonctions numériques . . . . . . . .. ..
3.1 Opérations sur les fonctions numériques . . . . . . . . . ..
3.2 Bornes . . . . ...
3.3 Sens de variation . . . ... ... ... L.
3.4 Fonctions paires et impaires . . . . . . . ... ... ... ..
Applications particulieres . . . . . . . .. ..o
4.1 Surjections . . . . ...
4.2 Injections . . . . . .. ..
4.3 Bijections . . . . . ... oo
3 Fonctions usuelles et polyndémes
Fonctions exponentielles et logarithmes . . . . . . . ... ... ...
1.1 Fonction inverse . . . . . . . . . .. ... ... ...
1.2 Logarithme népérien . . . . . .. .. ... ... ... ...
1.3 Exponentielle . . . . . . ... oL
Fonctions puissances . . . . . . . . . . .. ...
2.1 Fonction racine . . . . . . . . ... ... ... ..
2.2 Cas général . . . .. . ... .
Deux dernieres fonctions . . . . . .. ... L 0L
3.1 Valeur absolue . . . . . .. ... ... ... ... .......
3.2 Partie entiere . . . . . . .. ..o
Fonctions polynomiales . . . . . . . . . . ... ... .. ... ...,

11
11
12
12
13
13
13
14
14
15
15
15
15



ii TABLE DES MATIERES
4.1 Généralités . . . . . . .. 24
4.2 Degré d'un polynome . . . . . .. .. ..o 24
4.3 Racines d'un polyndéme . . . . . . .. .. ... 25
5  Trindmes du second degré . . . . . .. ..o 26
5.1 Factorisation des trinomes du second degré et résolution des
systemes du second degré . . . ... 26
5.2 Signe d’un trindéme du second degré, résolution d’inéquations
dusecond degré . . . . .. ... 28
5.3 Fonction carré . . . . . . ... ... 29
5.4 Fonction cube . . . . . . . ... oo 29
5.0 Fonctions x — 2™ . . . . . . .. ..o 29
4 Récurrence, somme et produits 31
1 Le principe de récurrence . . . . . . .. ..o 31
1.1 Enoncé . . . ..., 31
1.2 Exemple de démonstration . . . . . . ... ... 31
1.3 Variantes . . . . . . . . ... 32
2 Sommation . . . . ... 34
2.1 Notation . . . . . . . . . ... 34
2.2 Sommes classiques . . . .. ... oL 34
2.3 Formules de calcul élémentaires . . . . . . ... . ... ... 35
2.4 Sommes doubles . . . . .. ... Lo 36
2.5 Produits, factorielles . . . . . . . .. ... ... .. ... 37
2.6 Combinaisons . . . . . . . . . .. ... 38
II Suites 41
5 Introduction aux suites 43
1 Généralités sur les suites . . . . . . .. .o 43
1.1 Définitions . . . . . . . ..o 43
1.2 Bornes . . . . . .. 44
1.3 Sens de variation . . . ... ... ... 44
2 Suites usuelles . . . . . . . . ... 45
2.1 Suites arithmétiques . . . . . . . . ... 45
2.2 Suites géométriques . . . . . ... 45
2.3 Suites arithmético-géométriques . . . . . . . . .. .. ... 46
2.4 Suites récurrentes linéaires d’ordre 2 . . . . . . ... .. .. 47
6 Convergence des suites 49
1 Convergence . . . . . . . ... 49
1.1 Définitions . . . . . . . ..o 49
1.2 Opérations sur les limites . . . . . . .. ... .. ... ... 50
2 Comportement asymptotique des suites usuelles . . . . . . ... .. 51
2.1 Suites arithmétiques . . . . . . . ... 51
2.2 Suites géométriques . . . . . . ..o 51

2.3 Croissances comparées . . . . . . . . . . . ... 52



TABLE DES MATIERES iii

3 Propriétés des limites . . . . . . .. . ..o 52
3.1 Limites et inégalités . . . . . .. ... ... 52
3.2 Suites adjacentes . . . . . ... ... 53
IIT Probabilités finies 55
7 Fondamentaux de statistique 57
1 Données et séries statistiques . . . . . .. ..o 57
2 Indicateurs statistiques . . . . . . .. ..o oL 58
2.1 Parametres de position . . . . ... ..o 58
2.2 Parametres de dispersion . . . . . .. ... ... 60
3 Représentations graphiques . . . . . . . . ... ... 60
3.1 Diagrammes en batons et histogrammes . . . . . . . . ... 60
3.2 Boites a moustache . . . . . . ... ... 61
8 Probabilités sur un univers fini 63
1 Les événements . . . . . . . . . . ... 63
1.1 Le language des événements . . . . . . . . . ... ... ... 63
1.2 Modélisation mathématique . . . . . ... ... . ... ... 63

1.3 Correspondance entre le langage des ensembles et le langage
des événements . . . . . .. ... 64
2 Probabilités dans un univers fini . . . . . . . . ... ... ... ... 64
2.1 Définition . . . . . ... 64
2.2 Exemple fondamental : I’équiprobabilité . . . . . .. .. .. 65
2.3 Probabilités non uniformes . . . . . . ... ... L. 66
3 Indépendance . . . . . . ... 66
3.1 Indépendance deux a deux . . . . . . ... ... ... 66
3.2 Indépendance mutuelle . . . . . .. ..o 66
4 Conditionnement . . . . . . . . .. ... 68
4.1 Probabilités conditionnelles . . . . . . . .. ... ... ... 68
4.2 Formule des probabilités composées . . . . . . . . . . . ... 68
4.3 Formule des probabilités totales . . . . . . . ... ... ... 69
4.4 Formule de Bayes . . . . . . . ... ... ... ... 69
IV Limites et continuité 71
9 Limites et continuité de fonctions 73
1 Intervalles et voisinages . . . . . . . . . ... 73
2 Limites . . . . . . . . . . 74
2.1 Définitions . . . . . . . ..o 74
2.2 Opérations sur les limites . . . . . . . .. .. .. ... ... 75
2.3 Méthode pour lever les formes indéterminées . . . . . . . .. 76
2.4 Limites et inégalités . . . . . .. .. .. ... L. 7
3 Hors-programme : Asymptotes et branches infinies . . . . . . . . .. 78
4 Continuité . . . . . . . . . . . 79



iv TABLE DES MATIERES

4.1 Continuité en un point . . . . . . .. ... ... 79

4.2 Prolongement par continuité . . . . . . . ... ... .o 80

4.3 Continuité sur un intervalle . . . . . ... ... ... ... .. 80

4.4 Théoreme des Valeurs Intermédiaires . . . . . . ... .. .. 81

V  Matrices 83
10 Systémes linéaires 85
1 Définitions et premieéres études . . . . . . . . . ... ... 85
1.1 Définition . . . . . . . ... 85

1.2 Systemes particuliers . . . . . .. ..o 85

2 Opérations sur les lignes d'un systeme . . . . . . . ... ... ... 86
2.1 Opérations élémentaires sur les lignes . . . . . . . .. .. .. 86

2.2 Résolution par méthode du pivot de Gauss . . . . . . .. .. 87

2.3 Bilan . . . . ... 87

11 Matrices 89
1 Généralités . . . . . . . 89
1.1 Définitions . . . . . . . ..o 89

1.2 Opérations sur les matrices . . . . . .. .. ... ... ... 90

2 Matrices carrées . . . . . . . ... 92
2.1 Définitions et premieres propriétés. . . . . . . . . .. .. .. 92

2.2 Puissances d'une matrice carrée . . . . . . .. .. ... 93

3 Matrices inversibles . . . . . . .. ... Lo 93
3.1 Résultats généraux . . . . . . .. .. ... ... ... ... 93

3.2 Représentation matricielle d'un systeme, calcul de I'inverse . 94

3.3 Cas particuliers . . . . . . . ... ... ... .. 95

3.4 Polynéme annulateur . . . . . . ... ..o 95

12 Graphes 97
1 Définition et vocabulaire . . . . . . . .. ... ... ... 97

1.1 Vocabulaire . . . . ... ... o 97

1.2 Ordre, degré et formule d’Euler . . . . . . . ... ... ... 98

1.3 Chemins et graphes eulériens . . . . .. .. ... ... ... 98

1.4 Algorithme de Dijkstra . . . . . . . .. ... ... ... 99

2 Matrices et Graphes . . . . . . . .. ... L 100
2.1 Matrice d’adjacence . . . . . . .. ..o 100

2.2 Chalnes de Markov . . . . . . .. ... ... ... ...... 101

3 Application aux réseaux sociaux . . . . . . . . ... ... 101
VI Dérivabilité et intégration 103
13 Dérivabilité 105
1 Dérivabilité en un point . . . . .. ..o 105

1.1 Définitions . . . . . . . .. 105



TABLE DES MATIERES v

1.2 Développement limité a l'ordre 1 . . . . . . . .. .. .. .. 107

2 Dérivabilité sur un intervalle . . . . . . . . .. ... .. .. ... .. 107
2.1 Définitions . . . . . . . .. o 107

2.2 Dérivées usuelles et opérations . . . . . . . . ... ... ... 108

2.3 Dérivation et composition . . . . . . ... ... L. 108

2.4 Dérivation et sens de variation . . . . . . .. ... .. .. .. 109

2.5 Inégalités des accroissements finis . . . . . . ... ... ... 109

3 Dérivées successives . . . . . . .. 109
4 Convexité, concavité . . . . . . . . . ... 110
4.1 Définitions . . . . . . . .. 110

4.2 Points d’inflexion . . . . . . . .. ... .o 111

14 Primitives et intégration sur un segment 113
1 Primitives . . . . . . . . 113
1.1 Définitions . . . . . . . ... 113

1.2 Primitives usuelles . . . . . . . ... ..o 114

2 Intégration sur un segment . . . . . ... L 114
2.1 Définition . . . . . . . .. 114

2.2 Fonction définie par une intégrale . . . . . . . . . ... ... 114

3 Propriétés de l'intégrale . . . . .. .. ..o 115
4 Calcul d'intégrales . . . . . ..o 116
4.1 Intégration par partie . . . . . .. ... Lo 116

4.2 Changement de variable . . . . ... ... ... ... ... .. 116

15 Equations différentielles 119
1 Généralités . . . . . . L 119
1.1 Définition générale . . . . . ... ..o 119

1.2 Equations différentielles linéaires . . . . . . . .. ... ... 119

1.3 Principe de superposition et structure des solutions . . . . . 120

2 Equations différentielles particulidres . . . . . . ... .. ... ... 120
2.1 Equations d’ordre 1 . . . . . . . ... ... ... ... 120

2.2 Equations d’ordre 2 . . . . . . .. ... ... 120

3 Trajectoires . . . . . . . . L 121
3.1 Trajectoire et unicité de la solution . . . . . ... ... ... 121

3.2 Trajectoires d’équilibre . . . . . . . . ... o0 121

4 Systemes d’équations différentielles . . . . . . . . ... ... 121

VII Probabilités sur un univers dénombrable, variables

aléatoires 123
16 Introduction aux séries 125
1 Définitions et convergence . . . . . . . ... ... 125

1.1 Définitions . . . . . . . . . .. 125

1.2 Convergence absolue . . . . . .. ... ... ... .. ... 126

1.3 Série des accroissements . . . . .. ... ... 126

1.4 Opérations sur les séries convergentes . . . . . . . . . .. .. 126



vi

TABLE DES MATIERES

2 Séries usuelles . . . . . .. 127
2.1 La série harmonique . . . . . . . .. ... 127

2.2 La série harmonique alternée . . . . . . . . . . ... ... .. 127

2.3 Séries géométriques . . . . . . ... 127

2.4 Série exponentielle . . . . . . ... oL 128

17 Probabilités sur un ensemble dénombrable 129
1 Espaces probabilisés . . . . . . .. ... oL 129
1.1 Probabilité . . . . . ... 129

1.2 Quasi-certitude, quasi-impossibilité . . . . . . .. .. ... 130

1.3 Systemes complets d’événements . . . . .. ... ... ... 130

1.4 Théoremes de la limite monotone . . . . . . . . . ... ... 130

2 Conditionnement . . . . . . . .. ... 131

3 Indépendance . . . . . . . ... 132
3.1 Indépendance deux a deux . . . . . . .. ... 132

3.2 Indépendance mutuelle . . . . . . .. ... ... ... 132

18 Variables aléatoires discréetes 133
1 Variables aléatoires, généralités . . . . . .. . ... ... ... ... 133
1.1 Définition . . . . . . . . . .. 133

1.2 Fonction de répartition . . . . . . . . ... ... 134

2 Variables aléatoires discretes . . . . . . . . . . ... ... .. 134
2.1 Définition . . . . . . . . 134

2.2 Loi d’une v.a. discrete . . . . . . . . .. ... .. 134

2.3 Lien avec la fonction de répartition . . . . . . . ... .. .. 135

2.4 Transformation d'unev.a. . . . . . . . . .. ... ... ... 135

2.5 Indépendance . . . . . . ... 136

3 Moments d’une v.a. discrete . . . . . . . . ... 136
3.1 Espérance . . . . . . . ... 136

3.2 Variance . . . . . . . ... 137

3.3 Moments d’ordre n . . . . . . . ... 138

3.4 Moments et indépendance . . . . . . ... ... ... ... 138

19 Lois usuelles de variables aléatoires discrétes 139
1 Lois usuelles finies . . . . . . . . . . .. ... 139
1.1 Loi uniforme . . . . . . . . . . ... 139

1.2 Loide Bernoulli . . . . . ... .. ... ... ... ...... 140

1.3 Loi binomiale . . . . . . . . . . ... ... ... 140

2 Lois usuelles discretes infinies . . . . . . . . .. ... 141
2.1 Loi géométrique . . . . . . . . ... 141

2.2 Loide Poisson . . . . . . ... .. ... ... ... ... ... 142

VIII Espaces vectoriels et applications linéaires 145
20 Espaces vectoriels 147
1 Espaces vectoriels . . . . . . . .. ... Lo 147



TABLE DES MATIERES vii
1.1 Généralités théoriques (HP) . . . . ... .. ... ... ... 147

1.2 Combinaisons linéaires . . . . . . . ... ... ... ..... 148

1.3 Sous-espaces vectoriels . . . . ... ... 148

1.4 Familles libres, liées, bases . . . . . . ... ... . ... ... 149

1.5 Représentations d’un sous-espace vectoriel . . . . ... . .. 151

2 Applications linéaires . . . . . . . . . ... 153
2.1 Définition . . . . . . ..o 153

2.2 Noyau d’'une application linéaire . . . . . . . . . . ... ... 154

2.3 Image d’'une application linéaire . . . . . . . . . . ... ... 155

2.4 Rang . . . . . . . o 155

2.5 Applications linéaires bijectives . . . . . . . ... .. .. .. 156

IX Informatique 157
21 Introduction a Python 159
1 L’interface de base . . . . . . . . ... ... 159
1.1 Ouverture d’une session python . . . . . ... ... ... .. 159

1.2 Laconsole . . . . . . . . . . .. ... ... 159

1.3 Variables et types . . . . . . . ..o 160

14 Opérations usuelles . . . . . . ... ... .. ... .. .... 160

2 L’éditeur : fonctions et scripts . . . . . . ... 161
2.1 Léditeur . . . . . . . .. 161

2.2 Programmes . . . . . . . ..o o oL 162

3 Programmation . . . . . .. .. oo Lo 164
3.1 Blocs conditionnels . . . . . . ... 164

3.2 Boucles . . . . .. 165

4 Listes . . . . . . . e 166
4.1 Déclaration de listes . . . . . .. .. ... ... ... ... 166

4.2 Manipulation de listes . . . . . . .. ... ... 167

) Import de librairies . . . . . . . . ... oo 167

22 Données statistiques 169
1 Tableaux de données . . . . . . . . .. .. .. ... .. 169

1.1 Letypearray . . . . . . . .. 169

1.2 Opérations sur lesarray . . . . . .. . ... ... ... ... 170

2 Séries statistiques . . . . . . ..o 170
2.1 array vus comme séries statistiques . . . . . .. ... L. 170

2.2 Diagrammes . . . . . . . ... Lo 171

2.3 Import et gestion de base de données . . . . . .. .. .. .. 172

23 Matrices 175
0.1 Matrices et array . . . . . . . . ... 175

0.2 Librairie linalg . . . . . . . . . . . ... ... ... .. .. 175

24 Représentations graphiques 177



viii TABLE DES MATIERES

25 Simulations aléatoires 179






Premiere partie

Introduction






Chapitre 1

Le language des mathématiques

1 Enoncés, symboles et ensembles de bases

1.1 Symboles courants et énoncés

Les mathématiques peuvent étre vues comme une nouvelle “langue vivante”,
avec son vocabulaire, ses regles grammaticales, etc. Cette “langue” a été construite
pour éviter toute ambiguité, et faciliter les raisonnements abstraits, mais il est pos-
sible de tirer des paralleles entre le langage mathématique et les langues naturelles.

Définition 1.1

Les “phrases” mathématiques sont les énoncés, des affirmations qui peuvent
étre soit vraies, soit fausses. Ils sont composés de divers symboles mathéma-
tiques (“mots”), dont I'agencement est régit par des régles de syntaxe particu-
liéres :

— Des symboles de constantes (=~ noms propres), (R, e, w, +o0, ...), subdi-
visés en plusieurs catégories (ensembles, nombres, opérateurs, etc.).

— Des variables (=~ pronoms) (x, a, etc.) qui servent a rétérencer des objets
particuliers.

— Des symboles de relations (= verbes), comme <, >, €, =, etc., qui relient
un ou plusieurs objets de catégories précises pour en faire un énoncé.

— Des connecteurs logiques entre formules (=~ conjonctions de coordina-
tions), qui relient deux énoncés pour en faire un nouveau :

et | ou | implique | est équivalent a | non
N |V — <~ -

— Deux quantificateurs, qui introduisent (“lient”) les variables :

pour tout | il existe
v =
Toute variable doit étre introduite, soit par un de ces quantificateurs,
soit par une phrase préliminaire, comme « Soit n un entier naturel », ou
« Posons f la fonction x + x2 ».

Ces énoncés sont ensuite utilisés dans des raisonnements, qui consistent en une
succession d’énoncés reliés par des liens logiques.
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Remarque. 1l est important de bien faire la différence entre 1’équivalence <=,
I'implication = , et le mot “donc”. Par exemple, Vz,y € R (x = y) <= (2* =
y?) est un énoncé faux, alors que Vo,y € R (z = y) = (2% = y?) est vrai.
Enfin, le raisonnement « pour tous réels x et y, x = y donc 22 = y? » n’est pas un
raisonnement correct.

En revanche, I'affirmation « pour tous réels z et y, si © = y alors 2 = 3% » est
correcte, et dit exactement la méme chose que 'affirmation de ’énoncé précédent
«Vr,y R (z=y) = (2? =y?) (est vrai)* ».

Définition 1.2

Si P est une propriété (cad que P(z) est un énoncé pour tout objet x), I'énoncé

(Elac €E P@)) A (Vx e BV € E ((P(e) A P@)) — o= x’))

signifie qu’il existe un unique élément de E qui vérifie P. Il est noté

dlz € E P(x).

1.2 Les ensembles de base
Définition 1.3 (ensembles numériques)

Les nombres existants en mathématiques sont regroupés en une hiérarchie
d’ensembles, dont :
— Il'ensemble IN des entiers naturels, 0, 1, 2, 3, 4, ...,
— l’ensemble 7, des entiers relatifs, 0, 1, —1, 2, =2, ..,

— D'ensemble Q) des entiers rationnels, ou fractions,

— lensemble R des tous les réels.

Ces ensembles peuvent étre modifiés par des signes divers, comme par exemple
IN* désignant 1’ensemble des entiers naturels non nuls, ou R ’ensemble des réels
positifs ou nuls. On définit aussi les intervalles réels et entiers :

Définition 1.4

— Si a,b sont deux réels, avec a < b,
— Ja,bl ={zr € R,a <z < b},
— Ja,b] ={z € R,a <z < b},
— [a,b) = {r € R,a < x < b}, b ={r e R,z <b},
— [a, b ={r € R,a <z < b}, a,+oo[ ={z € R,a < z},
— Si a,b sont deux entiers, avec a < b, [a,b] = {n € N,a < n < b}.

b ={r e R,z <b},

00
a,+oo[ ={z € R,a < z},
00

-
-1
-
= |

x. Par convention, tout énoncé écrit dans un exposé mathématique est vrai. Il n’est pas
nécessaire de le préciser !
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1.3 Raisonnements mathématiques
Définition 1.5

Un raisonnement (ou démonstration) mathématique est une succession d’énon-
cés reliés par des liens logiques valides, partant d’énoncés vrais (“prémisses”)
et aboutissant a un énoncé (“conclusion”), qui doit, de part la validité du rai-
sonnement, étre lui aussi vrai. Les énoncés sont en général écrits au moyen
du formalisme mathématique, mais peuvent aussi étre (au moins en partie)
paraphrasés en langue naturelle.

Par exemple, le raisonnement suivant constitue une démonstration de 1’énoncé
Ve NdJye Nz <y:

Démonstration. Soit x € IN.

Puisque 0 < 1,

onadoncxr+0<z+17%

ce qui revient, en posant y =x + 1, a ¢ < y.

De plus, comme la somme de deux entiers est encore un entier, y = x+1 € IN.

On a donc bien montré que, quelque soit I'entier naturel x, il existe un entier
naturel y (par exemple x + 1) tel que x < y :

L’énoncé

VeeNdJye Nz <y

« Pour tout entier naturel, il en existe un plus grand » est donc vrai. O

D’autres modes de raisonnements sont possibles. Le raisonnement précédent
est un raisonnement par inférence déductive. Un autre mode de raisonnement, par
exemple, est le raisonnement par équivalence, ou I'on montre que deux énoncés
(dont la véracité n’est pas forcément établie) sont équivalents, c’est-a-dire qu’ils
auront la méme valeur logique : si I'un est vrai, 'autre aussi, et réciproquement.

Le raisonnement suivant constitue une preuve (par équivalence, évidemment)
queVz € R (2*+2>0) < (z>0):

Démonstration. Soit © € R. Les énoncés suivants sont équivalents :

2 +1>0 < z(z®+1) >0 (puisque 2° + v = z(2* + 1))
<= x>0 (puisque 2° + 1 > 0).

]

Remarque. On peut souvent étre tenté d’utiliser un raisonnement par équivalence
pour montrer des résultats ou une démonstration par inférence suffit. Par exemple,
le raisonnement précédent constitue aussi une preuve que Vo € Ry 2° +2 > 0
(puisque le dernier énoncé, x > 0, est vraisi € R, le premier doit nécessairement
I’étre aussi).

Mais une preuve directe est souvent plus simple : si z € R, 2® et x sont
positifs, donc leur somme aussi... et il n’est aucunement nécessaire de montrer de
plus que le résultat est faux pour d’autres valeurs de x (ce qui est inclut dans
I'équivalence).

. conséquence de la propriété de l'addition : Va e RYbe RVz € R (a <b) = (a+z <
b+ x)
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Les raisonnements par équivalence sont bien plus complexes que les raison-
nements par inférence, puisqu’il s’agit en quelque sorte de deux raisonnements
en un (un qui “descend”; et un qui “remonte”). Il importera de les utiliser avec
parcimonie, et a bon escient.

Un autre exemple de raisonnement est le raisonnement par [’absurde, comme
illustré dans cette démonstration que I’'énoncé Vo € N, dy € IN, y < x est faux :

Démonstration. Prenons 'entier naturel z = 0.

Supposons qu’il existe un entier naturel y tel que y < x.

On a donc que y < 0. Or y est un entier naturel, donc y > 0.

Ces deux conclusions sont incompatibles, il y a donc une partie du raisonnement
fausse. Ce ne peut étre que la supposition qu’il existe un entier naturel y tel que
y < x, qui est donc fausse.

Nous avons donc trouvé un entier pour lequel il n’existe pas d’entiers stricte-
ment inférieurs, ce qui contredit I’énoncé Vo € IN, dy € N, y < .

En revanche, nous avons démontré le contraire de cet énoncé, a savoir

Jr e N,Vy € N,y > .
O

Nous verrons, au cours de 'année, d’autres types de raisonnements, comme le
raisonnement par récurrence (chapitre 4). Un dernier raisonnement a cependant
sa place dans cette section : le raisonnement par contraposée, qui repose sur le fait
qu'un énoncé A = B est équivalent a non(B) = non(A). En effet, dire que
« 8’1l pleut, je sors avec un parapluie », dit exactement la méme chose que « si je
n’ai pas de parapluie, c’est qu’il ne pleut pas ». Illustrons ce raisonnement par un
dernier exemple, en montrant que Yz € Ry, (Ve > 0,2 <e) = (z =0) : le seul
réel positif inférieur a tout réel strictement positif est 0*.

Démonstration. Soit x € R,. Montrons la contraposée : (z # 0) = (Je > 0,2 >
£).

Six # 0, c’est que x > 0. En posant € = x, on a bien trouvé un réel strictement
positif, inférieur ou égal a x : ¢ = x < x. O
Remarques.

— Un raisonnement mathématique ne doit affirmer que des énoncés vrais et
justifiés comme tels, (car évidents ou conséquences des énoncés précédents).
Les énoncés dont la véracité est inconnue doivent étre introduits comme tels
(en les supposant, comme dans le cas précédent par exemple), et ce unique-
ment dans des types de raisonnements particulier, comme le raisonnement
par ’absurde.

— Un raisonnement par équivalence, méme si ’on ne connait par la véracité des
énoncés impliqués, respecte toujours cette regle : dans I'exemple précédent,
ce qui est affirmé comme vrai n’est pas I’énoncé 23 +x > 0, mais 1'équivalence
P +12>0 < z(22+1) >0 (qui est aussi un énoncé, et qui est vraie et
justifiée).

*. Les plus sagaces lecteurs auront remarqué que cette paraphrase en dit plus, en ajoutant
que 0 vérifie bien la propriété (comme s’il y avait une équivalence). Mais cette affirmation est
d’une évidence triviale.
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— La convention veut que chaque ligne d’'un raisonnement mathématique soit
une affirmation vraie (& moins qu’elle ne soit introduite par un “montrons
que” ou “supposons que”, évidemment).

Comparer les deux rédactions suivantes :

- Soit x € RY, tel que 2* = z. - Soit € R.
On a donc 2° =z On a :
3 _
=2 —r=0 P=r = —r=0
2
= (2" =1) =0 = z(z*—1)=0
2 __
=2 =1 2 =1louzx=0
—x=1.

<~ r=1,—-10u0.

(Notons que le “vide” a gauche des équivalences contient, par convention, la
méme chose qu’aux lignes précédentes. Pas besoin de le réécrire.)

Ezercice 1.1.
Parmis ces énoncés, lesquels sont vrais, lesquels sont faux, et pourquoi ?

1. VeeZ,y e,y < x,
VeeZ,Nye 2,3z €7, v <z <y,
Vee R,Vye R,3z e R, z < z <y,
JrecQ,2?=2"

JreR,2?=2,1

VieR,(yeR, x=19?) = (z=0).

IR A T Sl S

1.4 Négations

Les deux derniers exemples de raisonnement, par ’absurde et par contraposée,
montrent bien I'importance de savoir considérer la négation d'un énoncé donné.

Propriété 1.1

Le tableau suivant donne les régles de négation des énoncés formés a partir des
symboles logique de base :

E non(E)
Vo P(x) Jz non(P(x))
dz P(z) Yz non(P(x))
Aet B non(A) ou non(B)
A ou B non(A) et non(B)
A= B A et non(B)
A < B | (A et non(B)) ou (non(A) et B)

(la derniére ligne n’est guére utile)

x. Cet énoncé est faux, mais saurez-vous trouver pourquoi? Nous en ferons une preuve en
classe!
1. Celui-ci est vrai, en revanche, et vous devriez pouvoir le démontrer d’ici la fin de ’année!
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2 Ensembles

2.1 Symboles particuliers
Définition 2.1

Soit E/ un ensemble, et a un objet.

— a € F signifie que « a est un élément de E », ou « a appartient a E ».
— a ¢ F signifie que « a n’appartient pas a E ». C’est la négation de a € E.

Soit F' un second ensemble. On dit que « F' est inclu dans E », noté F' C F,
lorsque tout élément de F est aussi un élément de E. On dit aussi que F est
une partie, ou un sous-ensemble, de E.

On appelle cardinal d’un ensemble E, noté Card(FE), le nombre d’éléments
que celui-ci contient (si celui-ci est fini, bien sir).

S’il est possible de lister tous les éléments de l'ensemble E (i.e. s’il existe
une injection de E dans N, cf chapitre 2), méme si cet ensemble n’est pas fini,
il est dit dénombrable.

Remarque. Pour tous ensembles E et F', on a ’équivalence

(FCEet ECF) < E=F.
Définition 2.2

On note @ I'ensemble vide, I'unique ensemble qui ne contient aucun élément.
Si x1,%s,...,x, sont des objets, on note {x1,xs,...,x,} 'ensemble formé
d’exactement ces éléments.
Soit E un ensemble, et P une propriété définie sur E. On note {x € E, P(x)}
le sous-ensemble des éléments de E qui vérifient la propriété P.

Remarque. Un ensemble de la forme {x € E,Ja € F,x = f(a)}, ou f est une
fonction, s’écrira souvent de facon plus simple

{f(a),a € F}.

Cette écriture est appelée représentation paramétrique de I’'ensemble.
Par exemple, 'ensemble des entiers pairs peut s’écrire P = {2n,n € IN}.

Remarques.
— Pour tout ensemble £, @ C E,
— ona @ =},

— sixz € E, alors {z} C E.
Ezercice 1.2.
Soit E' = {x € R, 3¢ € N*, qx € Z}. Montrer que F = Q :
1. Montrer que E C Q.
2. Montrer que Q C E.
3. Conclure.
On pourra adopter la définition suivante :

Q:{Z,aez,beﬂ\l*}.
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2.2 Opérations sur les ensembles

Soit E/ un ensemble.
Définition 2.3 (réunions, intersections, complémentaires d’ensembles)

Soient A et B deux parties de E. On note
— AUB={zx€ E,x € Aoux € B} leur réunion,
— ANB={x € E,z € A et x € B} leur intersection,
— A\ B={x € E,x € Aetx ¢ B} 'ensemble « A privé de B »,
— A= E\ A le complémentaire de A (aussi noté 0).

Si AN B = @, on dit que A et B sont disjoints.

Remarque. On généralise aisément la réunion et l'intersection a une collection
d’ensembles A;, As, ..., A,, et on note

n
AUA U UA =JAiet AANAynN...NA, =) A4.
i=1 i=1
Cette notation s’étend méme a une collection quelconque d’ensembles : si I est
une collection d’indices, et si pour tout ¢ € I, A; est un ensemble, on note leur
réunion | J 4; et leur intersection (] A;.
iel iel
Proposition 2.1

Soient A et B deux parties de E. On a alors

— AUA=E, — AUB=ANBSB,
— ANA=g, — ANB=AUB,
— (A\B)U(ANB) = — B)\ (AN B) = (A\ B) U

A, (AU
— (A\B)N(ANB) =g, (B\ A).

Définition 2.4 (ensemble des parties)

On note & (E) l'ensemble des parties de E, c’est-a-dire I'ensemble des en-

sembles inclus dans E. On a ainsi I’équivalence, vraie pour tout ensemble F,
FeZFE) < FCE.

Proposition 2.2
Pour tout ensemble E, @ € P (E) et E € P (E).

Ezercice 1.3.
Prouvez cette affirmation !
Définition 2.5

Soient A et B ensembles. On définit leur produit cartésien A x B comme étant
I'ensemble des couples (z,y), x € A, y € B.
On note E? = E x E, et plus généralement E" = E x E x ... x E.

n fois
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Chapitre 2

Fonctions et Applications

Dans tout ce qui suit, on considere deux ensembles E et F'. En pratique, on
prendra F = F = R.

1 Fonctions
Définition 1.1 (fonctions)

Une fonction f d’un ensemble E dans un ensemble F' est un procédé qui, a
tout élément de E, associe au plus un élément de F', appelé son image.

Pour tous les éléments x € E ayant une image par f, on note cette image
f(z). z est alors un antécédent de cette image.

L’ensemble E est appelé ensemble de départ de f, F', son ensemble d’arrivée.

L’ensemble des éléments de E qui possédent une image est appelé domaine
de définition de f, noté Z;. L'ensemble des éléments de F' qui possédent (au
moins) un antécédent est I’ensemble image de f, note Im(f).

Si f(x) est une formule donnant I'image d’un objet x par la fonction f, on
note f : x — f(x) (x pouvant étre remplacé par n’importe quelle autre lettre).

L’ensemble des fonctions de E dans F est noté % (E, F).

Remarque. Un élément y de F' peut avoir un, plusieurs, ou aucun antécédents.

Définition 1.2
Le graphe d’une fonction f est le sous-ensemble {(x, f(z)),x € 97} C E X F.

Ezercice 2.1.

Considérons la fonction f : z +— /1 — z2.
. Quel est le domaine de définition de f?

. Déterminer 'image de 0, —1 et 1.

1
2
3. Déterminer les antécédents de 0, % et 1.
4. Déterminer I’ensemble image de f.

5

. Saurez-vous reconnaitre le graphe de f 7

11
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2 Applications

Définition 2.1 (applications)

Une application f d’un ensemble E dans F' est la donnée de deux ensembles
E et F, et d’une fonction de E dans F' telle que chaque élément de E a une
image (E C 9y).

Remarque. Une simple formule ne suffit pas pour définir une application, il faut
aussi donner son ensemble de départ et son ensemble d’arrivée. On peut utiliser
par exemple la notation

F

f: F —
r — f(x).
Définition 2.2

Soit f une application de E dans F', et E' C E. On appelle la restriction de f
a E', notée fip, application

f|E/2 E — F

2.1 Composition

Définition 2.3 (composition d’applications)

Soient f une application de E dans F, et g une application de F' dans GG. On
définit la composée de f par g comme :
gof: FE — G
z — g(f(z)).

Remarque. 11 est bien sir possible de composer deux fonctions f et g entre elles
(définissant ainsi g o f), mais le domaine de définition n’est alors pas forcément le
domaine de définition de la premiere, mais plutot

Doy = 9~ (Zy) ={z € Dy,9(x) € Dy},

appelé image réciproque de Z; par g, qu’il faudra souvent déterminer...

Propriété 2.1

La composition est associative, c¢’est-a-dire que (f o g)oh = fo(goh).

Exercice 2.2.
Sif:xr a?etg:ax— x+1, quelles sont foget go f? Leurs domaines de
définition ? Sont-elles égales ?

Faire de méme avec f: 2 +— 2% et g: x> /7.
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3 Fonctions numériques

Remarque. Dans cette section, on parlera en terme de fonctions. Le méme exposé
est possible en terme d’applications, les quelques différences étant laissées a la
sagacité du lecteur.

Définition 3.1

Un appelle fonction numérique toute fonction de R dans R.

3.1 Opérations sur les fonctions numériques
Définition 3.2

Soient f et g deux fonctions numériques, et « € R. On définit les fonctions
suivantes (addition, produit extérieur, produit et quotient) :

— f+gie= f(z)+9(@), —af rx e af(x),

~ fg:ue f@)gl) - oo gy

Remarque. Attention, si le domaine de définition des trois premieres opérations
reste le domaine de définition des fonctions d’origine (ou leur intersection s’il y en
a deux), pour le quotient, il s’agit du domaine ou la fonction ne s’annule pas, qu’il
importera donc de déterminer.

3.2 Bornes

Définition 3.3 (fonctions bornées)

Une fonction f définie sur une partie A de R est dite :

— majorée sur A lorsqu’il existe un réel M tel que Vx € A f(x) < M, le
réel M est alors un majorant de f,

— minorée sur A lorsqu’il existe un réel m tel que Vx € A f(x) > m, le réel
m est alors un minorant de f,

— bornée si elle est majorée et minorée.

Un majorant qui est atteint est un maximum, un minorant atteint, un mini-
mum, et un supremum est un maximum ou un minimum. Ces derniers sont
uniques, et notés respectivement

max(f(t)) et min(f(¢)).

teA tcA

Remarque. Attention, un minorant (ou un majorant) ne sera jamais unique, et le
minimum (ou le maximum) n’existe pas toujours. La notion générale est 1'infimum
et I’extremum : le plus grand minorant et le plus petit majorant... mais ce sont des
objets complexes a déterminer, et bien au-dela du programme d’ECG.
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3.3 Sens de variation

Définition 3.4 (variations des fonctions)

Une fonction f définie sur une partie A de R est dite :
— constante sur A lorsqu’il existe un réel ¢ tel que Vx € A f(x) = ¢,
— croissante sur A siV(z,2') € A2 x <2/ = f(z) < f(2),
— strictement croissante sur A siV(z,2')? € Az <2’ = f(x) < f(2),
— décroissante sur A siV(z,2') € A2 z <2 = f(z) > f(2)),
— strictement décroissante sur A siV(x,2') € A? z <2’ = f(z) > f(2),

— (strictement) monotone sur A si elle est (strictement) croissante ou (stric-
tement) décroissante.

Remarque. S’il est possible de démontrer qu’une fonction est croissante ou décrois-
sante a partir de ces définitions, il sera en pratique souvent plus simple de calculer
le signe de sa dérivée (cf chapitre 13). La proposition suivante peut aussi permettre
dans certains cas une étude facile :

Propriété 3.1

La composée de deux fonctions monotones est monotone. Si les deux fonctions
ont méme sens de variation, la composée est croissante, sinon, elle est décrois-
sante.

L’addition de deux fonctions de méme monotonie est elle aussi de cette
monotonie. Il en est de méme pour la multiplication, a condition que les deux
fonctions soient positives.

3.4 Fonctions paires et impaires
Définition 3.5 (parité)

Soit f une fonction numérique dont le domaine de définition est centré en 0

(Vl‘ S .@f, —T € .@f)
— On dit que f est paire si Vo € Z; f(—x) = f(x).
— On dit que f est impaire si Vo € Iy f(—x) = —f(z).

Propriété 3.2

Le graphe d’une fonction paire est symétrique par rapport a I'axe (Oy. Celui
d’une fonction impaire est symétrique par rapport a l'origine.

Ezxercice 2.3.

On considere la fonction f : z +— —

1+x2°

1. Montrer que f est définie et paire sur R,
2. Montrer que f est bornée par 0 et 1, mais que seul 1 est un extrémum.

3. Montrer que f est croissante sur R_ et décroissante sur R,.
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4 Applications particulieres

Définition 4.1

On appelle application identité sur un ensemble F, notée Idg, 'application

ldg: E — FE
T > T

4.1 Surjections

Définition 4.2 (surjections)

Une application de E dans F' est surjective si tout élément de F' a au moins
un antécédent.

Remarque. Une application f : E — F est une surjection ssi
Vye Fdz e FE f(x) =y,

ou ssi

Im(f) = F.

4.2 Injections

Définition 4.3 (injections)

Une application de E dans F' est injective si tout élément de F a au plus un
antécédent.

Remarque. Une application f : E — F est une injection ssi

V(z,2) € B (f(z) = f(2) = (x=1).

4.3 Bijections
Définition 4.4 (bijections)

Une application de E dans F' est bijective si elle est injective et surjective.

Remarque. Une application f : F — F est une bijection ssi
Vye FIlz e E f(z) =y.

Théoréme 4.1

Une application f : E — F est une bijection si, et seulement si, il existe une
application g : ' — F telle que

fog:IdE etgof:IdF

Cette fonction est unique, et est appelée la réciproque de f, notée f~1.
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Théoréme 4.2

Sif:E — Fetg: F — G sont deux bijections, alors f o g est une bijection
de E dans G, et

(gof)t=fTlog\

Théoréme 4.3 (de la bijection monotone)

Soit f une application définie sur un intervalle I de R. Si f est continue™* et
strictement monotone sur I, alors f est une bijection de I sur I'intervalle image

de I.

Propriété 4.4

Si f est une bijection strictement monotone d’un intervalle réel I dans I'inter-
valle réel J, alors sa réciproque f~1 est aussi strictement monotone, de méme
variation que f.

FEzercice 2.4 (fonctions trigonométriques hyperboliques).
On définit les fonctions

ef —e* ef +e*
sh:xHTet ch:z— ——m—.

1. (a) Montrer que sh est définie sur R, et donner sa parité.

(b) Montrer que sh est croissante sur R, et en déduire qu’elle définit une
bijection de R sur son intervalle image (on suppose qu’elle est continue,
le cours correspondant viendra plus tard).

(c) Déterminer l'intervalle image de sh, et montrer que sh est une surjection
de R sur R.

(d) Montrer que sh est injective sur R.
(e) En déduire que sh est une bijection de R dans R.
2. (a) Montrer que ch est définie sur R, et donner sa parité.
(b) Montrer que ch est croissante sur R, décroissante sur R_, et en déduire

qu’elle définit une bijection de R sur son intervalle image.

(c) Déterminer l'intervalle image de ch, et montrer que ch est une surjection
de R sur [1, o0l

(d) ch est-elle injective sur R?



Chapitre 3

Fonctions usuelles et polynomes

1 Fonctions exponentielles et logarithmes

1.1 Fonction inverse
Définition 1.1 (fonction inverse)

On appelle la fonction inverse la fonction

fr R — R
T

] |—

Propriétés 1.1

La fonction inverse est dérivable sur R*, de dérivée f': x —x%-

Elle est impaire sur R*, strictement décroissante sur R* et sur RY.

FI1GURE 3.1 — Graphe de la fonction inverse

17
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1.2 Logarithme népérien

Définition 1.2 (fonction logarithme)

On appelle la fonction logarithme népérien la fonction In définie comme I'unique
fonction définie et dérivable sur R telle que

In(1) =0
Ve e Ry, In'(z) = L

C’est donc 'unique primitive de la fonction inverse valant 0 en 1 (plus a ce
sujet au chapitre 14).

Propriétés 1.2

La fonction logarithme est, par définition, dérivable sur R? , et sa dérivée est

In’ :

Ry — R
r — L

xT

La fonction logarithme est strictement croissante sur R, et définit une
bijection de R7 sur R.

FIGURE 3.2 — Graphe de la fonction logarithme

Propriétés 1.3

Pour tous réels a et b strictement positifs, n entier rationnel, on a
In(ab) = In(a) + In(d) In(a™) = nln(a)

In (%) = —1In(a) - In (9) =In(a) — In(b)

b
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1.3 Exponentielle

Définition 1.3 (fonction exponentielle)

On appelle la fonction exponentielle la fonction réciproque de In, c¢’est-a-dire
I'unique fonction exp telle que, pour tout y € R,z € R,

y=In(r) < exp(y) = .

On note souvent, pour x € R, exp(z) = e*.

Propriétés 1.4

La fonction exponentielle est dérivable sur R, et est sa propre dérivée.
La fonction exponentielle est strictement croissante sur R, et définit une
bijection de R sur R}

FIGURE 3.3 — Graphe de la fonction exponentielle (avec celui de z — z et In)

Propriété 1.5

Pour tout réel x, pour tout réel y strictement positif,on a

In(exp(z)) = z et exp(In(y)) = v.

Propriétés 1.6

Pour tous réels a et b strictement positifs, et n un entier rationnel, on a
eaer — eaeb . (ea)n — gna
1 e?
b

—a __ a—b _
(§ = o € =
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2 Fonctions puissances

2.1 Fonction racine
Définition 2.1 (fonction racine)

On appelle la fonction racine carrée la réciproque de la fonction carrée x v+ 2
sur Ry, on note \/x I'image d’un réel positif x par cette fonction.

Propriétés 2.1

La fonction racine carrée est définie sur R, mais seulement dérivable sur RY,
de dérivée x ﬁ

Elle est strictement croissante sur R, et définit une bijection de R, sur
R;.

FIGURE 3.4 — Graphe de la fonction racine (avec celui de x — z et = — x?)

2.2 Cas général
Définition 2.2

Soit « un réel. On appelle la fonction puissance « la fonction

fi R — R

v — o exp(aln(x)).
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Propriétés 2.2

La fonction puissance « est dérivable sur R, de dérivée x — ax®*.

Elle est strictement croissante sur R si o > 0, strictement décroissante si
a < 0, et constante, égale a 1 si a = 0.

La fonction puissance « définit donc, pour tout « non nul, une bijection de
RY sur lui-méme. Sa réciproque est la fonction puissance L

«

O<axl

F1GURE 3.5 — Graphe de fonctions puissances a pour diverses valeurs de «

Propriété 2.3

On a pour tout x réel strictement positif, In(z®) = aIn(x).

Propriétés 2.4

Soient «, § deux réels. Pour tous réels a et b strictement positifs, et n un entier
rationnel, on a

(xy)a _ xaya A l,aJrB — JZQZL"B A <
« a _ LY
() =% - (@) = =

1,

Remarque. Sur R, la fonction racine carrée est la fonction puissance 3
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3 Deux dernieres fonctions

3.1 Valeur absolue
Définition 3.1 (valeur absolue)

On appelle la fonction valeur absolue la fonction f qui a tout réel x associe

T six>=0

f(x) = |x] :{

—x six <0

Propriétés 3.1

La fonction valeur absolue est paire sur R, d’intervalle image R, strictement
décroissante sur R* et strictement croissante sur R7 .

Y
y = |zl
1
} X
0 1
FI1GURE 3.6 — Graphe de la fonction valeur absolue
Propriétés 3.2
Soient x,y deux réels.
jzy| =[]y 2l = Bsiynonnul, - | +y| < |z +y|

(inégalité triangulaire)

Propriété 3.3

La valeur absolue d’un réel peut étre vue comme la distance a 0 de ce réel, ou
plus généralement, si x et y sont deux réels, |x — y| représente la distance entre
T ety.
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3.2 Partie entiére

Définition 3.2 (partie entiére)

On appelle la fonction partie entiere la fonction f qui a tout réel x associe
I'unique entier relatif, noté |z |, qui vérifie

lz] <z < |z]+ 1.

La partie entiére d’un réel est le plus grand entier (relatif) qui lui est inférieur.

8

F1GURE 3.7 — Graphe de la fonction partie entiere

Propriétés 3.4

La fonction partie entiére est constante sur tous les intervalles [n,n+1[, n € Z,
ot elle vaut n.
Pour tout réel x, onaz —1 < |z| < x.

Remarque. Cette fonction est la seule de la liste précédente qui n’est pas continue
sur ses intervalles de définition.
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4 Fonctions polynomiales

4.1 Généralités

Définition 4.1 (polynémes)

On appelle fonction polynomiale (ou simplement polynéme) toute fonction P
définie sur R de la forme

n
P(z) = ap + a7 + asx® + ... a 2" = Zaixi,x eR,neNN,
i=0
ou ag, ay, ..., a, sont des réels fixés.
Sii € N, a; est le ¢ coefficient de P.
Si a, # 0, a, est appelé le coefficient dominant de P.
Le polynéme dont tous les coefficients sont nuls est appelé le polynéme nul.

Notation.
Il est de coutume de noter par la lettre X la fonction identité X : z — =z, et
d’utiliser cette notation pour désigner des polynomes.
Ainsi, plutot que d’écrire P : x +— 2% — 22+ 1, on peut écrire P = X3 —2X +1.
Utilisant cette notation, on note R[X] 'ensemble des polynomes a coefficients
réels. On voit aussi apparaitre la notation R[z], désignant les polyndmes relative-
ment & la variable z. Ainsi P(x) = 22 — 3z + 1 est une expression polynomiale en
z, donc dans R[z], mais pas P(y) = y*> — 3y + 1.
Proposition 4.1

Soient P et () deux polynémes, A un réel. Alors A\P,P+ @, P(Q) sont encore des
polynomes.

Proposition 4.2

Deux polynémes sont égaux si, et seulement si, leurs coefficients sont égaux.

4.2 Degré d’un polynéme
Définition 4.2 (degré d’un polynéme)

Le degré d’un polynéme est la plus haute puissance pour laquelle le coefficient

associé est non nul : si n un entier, tout polynéme P = Z a; X" avec a, # 0,
k=0
est dit de degré n. On note deg(P) le degré du polynéme P.

Par convention, le polynome nul a un degré égal a —oc.
On note R,,[X]| I'ensemble des polynémes de degré inférieur a n.

Proposition 4.3

Soient P et () deux polynomes, et \ un réel non nul. Alors
— deg(AP) = deg(P),
— deg(P + Q) < max(deg(P), deg(Q)),
| — deg(PQ) = deg(P) + deg(Q).
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4.3 Racines d’un polynoéme

Définition 4.3 (racines d’un polyndome)

Soit P un polynéme. On dit qu’un réel « est racine de P si P(a) = 0.

Théoréme 4.4 (factorisation des polyndomes)

Soit P un polynéme de degré entier, et « € R une racine de P. Alors il existe
un polynéme @ tel que
P=(X—-uoQ.

Exemple.
Prenons P = X3 + X2 — 5X + 3, et remarquons que P(1) = 0, donc 1 est une
racine de P. On en déduit qu’il existe un polynéme @ tel que P = (X — 1)Q.
Trouvons ce polynéme. Deux méthodes sont possibles :
i) Observons d’abord que deg((X — 1)Q) = deg(X — 1) + deg(Q) = deg(P)
donc deg(Q) = deg(P) — 1. Le polynéme P étant de degré 3, deg(Q) = 2, et
il existe trois réels a, b, ¢ tels que Q = aX? + bX + ¢, qui doivent vérifier

(X —D(aX*+bX +¢c)=X*+ X*-5X +3
= aX?+bX*+cX —aX?—bX —c= X+ X? —5X +3
= aX?+(b-—a)X?’+(c—b)X —c=X>+X?-5X+3

Ces deux polynome sont égaux, leurs coefficients sont donc les mémes, et

a =1 a =1
b—a =1 b =1+1
c—b =-5 " Ye—b =-5
—c =3 c =-3
a =
<~ b =2
-3—-—2 =-5
c =-3

Le polyndme @ cherché est donc Q = X? +2X —3

ii) Division euclidienne des polynémes : Il est possible, en s’inspirant de
la méthode classique de division “a la main” des entiers, d’appliquer un
algorithme similaire sur les polynomes :

X? +X?2 —5X +3 X —1
—( X -X? ) [X? -Q

2X? —5X +3

-3X +3

0

Quoi qu’il en soit, on a bien factorisé P = (X — 1)(X? +2X — 3).
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Remarque. La factorisation d’'un polyndéme ne s’arréte bien évidemment pas a
une seule factorisation. Une fois une premiere racine trouvée, et la factorisation
correspondante effectuée, on peut (et doit!) continuer a essayer de factoriser le
polynoéme () obtenu, pour continuer la factorisation. Dans I’exemple précédent, on
continue & chercher de factoriser Q = X2 +2X — 3. Remarquant que Q(1) =0, Q
s’écrit Q = (X — 1)R. On cherche R :

X? 42X -3 X -1
—( X? -X ) X +3
3X -3
—( 3X -3 )

0

ce qui donne finalement que @ = (X — 1)(X + 3) et donc la factorisation finale

P=(X-1)(X-1)(X+3) = (X—1)%(X+3) (on dit que 1 est une racine double).
Factoriser un polynome revient a 1’écrire sous la forme d’un produit de poly-

nomes, chaque terme étant soit un polynéme de degré 1, ou un polynéme sans

racine. Par exemple, une factorisation compléte de P = X° + 2X% — 2X — 2 est

P=(X—-1)(X+1)(X+2)(X?*+1).

Proposition 4.5

Soit P un polynome de degré inférieur an, n € IN. Si P admet strictement plus
de n racines, alors P est le polynome nul.

5 Trindmes du second degré

Dans toute cette section, on considére P = aX?+4bX + ¢ un trindéme du second
degré, avec a, b, c réels (a # 0).

5.1 Factorisation des trindomes du second degré et résolu-
tion des systémes du second degré

Menons le calcul suivant, pour x € R :

[ b
ax’+br+c=a xz—l—x—l—cl
I a a
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Posons alors
A =V — 4ac,

ce qui nous amene a considérer 3 possibilités :

NS
. 2a 4a?

>0

1. si A <0, alors pour tout z € R

ax’+br+c=a

Y

2. si A =0, on a alors

b\ 2
ax2+bx+c:a<x+> ,
2a

3. si A > 0, on alors

ar’ +br+c=a x+£+ﬂ£ x+£—y/£
B 2a 4a? 2a 4a?

:a<x—|—b+\/z> <x+b_\/z>-

2a 2a

Ce qui nous conduit au théoréeme suivant :

Théoréme 5.1 (factorisation des trinémes du second degré)

Soit P = aX? + bX + ¢ un polynéme. On a les cas suivants :

1. Sia =0, P=0X + ¢ est un polynéme de degré inférieur a 1. Si b # 0,
son unique racine est —7, si b =0, c’est le polynéme constant c.

2. Sia #0, posons A = b? — 4ac.

(a) si A <0, alors P n’a pas de racine,

(b) si A = 0, P a une racine double, —2, et se met sous la forme

2a
factorisée
b\ 2
P=a <X + > ;
2a
—b+ VA

(c) si A >0, P a deux racines,
a

, et se factorise sous la forme

P:a<X+b+2;/Z> <X+b_2;/z>-

Ezercice 3.1.
Résoudre 1'équation z° — 52 + 6 = 2* — 522 + 6.
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5.2 Signe d’un trinbme du second degré, résolution d’in-
équations du second degré
La forme factorisée d’un polyndéme permet de facilement discuter de son signe :

soit & nouveau P : x +— ax? + bx + ¢ un polyndme du second degré. Notons
A = b? — 4ac son discriminant. On a vu que I'on pouvait distinguer trois cas :

1. si A <0, P ne peut pas se factoriser, et pour tout r € R

+ by _ A 0
x [ —_—
2a 4a? ’
ainsi P(x) est du signe de a.
x ‘ —00 +00
A<O P(z) | signe de a
2. si A =0, P admet une racine double oo = —%, et on a pour tout r € R
2 2
ar"+br+c=a(xr—a),
et donc
A =0 z ‘ —00 o +00
N P(z) | signe de @ 0 signe de a

3. si A > 0, P admet deux racines distinctes a; = % et ap = %.

Supposant que a; < ay (a > 0, inverse si a < 0), on alors pour tout x € R

ar® +br+c=a(r— o) (v — ay)

et donc
x —00 oy (6% +00
A0 (x —aq) — 0 + +
(x — ag) — — 0 +
P(x) signedea 0 signede —a 0 signedea

Exercice 3.2.
La forme factorisée d'un polyndéme permet, entre autre, de faire une étude quasi-
complete de celui-ci : prenons par exemple P = X3 — X? — X + 1.

1. Factoriser P et en déduire son signe,
2. Dériver P et factoriser P, en déduire les variations de P,
3. Dériver P’ et factoriser P”, en déduire la convexité de P,

4. Tracer le graphe de P.
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5.3 Fonction carré
Définition 5.1

On appelle la fonction carrée la fonction f qui a tout réel x associe x>,

Propriétés 5.2

La fonction carrée est dérivable sur R, et sa dérivée est la fonction x — 2z. Elle
est paire, strictement décroissante sur R~ et strictement croissante sur R™.

5.4 Fonction cube
Définition 5.2
3

On appelle la fonction cube la fonction f qui a tout réel x associe x~.

Propriétés 5.3

La fonction cube est dérivable sur R, et sa dérivée est la fonction x — 3x2. Elle
est impaire, strictement croissante sur R.

5.5 Fonctions z — z"
Propriétés 5.4

Pour tout entier n, on a

— x — 2" est paire si n ’est, impaire sinon,

— sa dérivée est x +— na" !,

— x — 2" est strictement croissante sur R si n impair, strictement décrois-
sante sur R~ et strictement croissante sur R* si n est pair.

Yy
Y = 1}2n+1y — ’1‘2"’

FIGURE 3.8 — Graphe des polyndémes puissances
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Chapitre 4

Récurrence, somme et produits

1 Le principe de récurrence

1.1 Enoncé

Théoréme 1.1 (démonstration par récurrence)

Soit P une propriété définie sur IN. Si

— P(0) (est vrai),

— VneN (P(n) — P(n+ 1)) (est vrai),
alors Vn € IN P(n) (est vrai).

FEzercice 4.1 (pour les curieux).
Comment démontrer ce résultat 7 De quelle propriété de IN a-t-on besoin ? (indice :
comment montrer ce résultat par ’absurde ?)

1.2 Exemple de démonstration
Rédaction-type

Montrons par récurrence que

e Initialisation : Montrons P(0) :

Démonstration...

e Hérédité : Soit n un entier naturel tel que P(n).
Montrons P(n + 1) :

Démonstration...

e Conclusion : D’apres le principe de récurrence, on a donc montré que
Vn € IN, P(n).

31
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Exemple

Montrons par récurrence que, pour tout z € R,

Vne N1+x)" > 1+ nx-

P(n)

e Initialisation : Montrons P(0) :

(1+2)°=1>1+0z.

e Hérédité : Soit n un entier naturel tel que P(n).
Montrons P(n+1) :

(1+2)" =1 +2)(1+a)"
> (1+2)(1+nx) d’apres I'hypothese de récurrence
> 1+ nx + z + na?
> 14+ (n+1).

e Conclusion : D’apres le principe de récurrence, on a donc montré que

Vee Ry,Vne N, (1+2)" > 1+ nz.

Remarque. On peut aussi, a la place de « Soit n un entier naturel tel que P(n). »,
écrire « Soit n un entier naturel quelconque fixé, et supposons P(n). ». Les deux
rédactions sont possibles, et signifient évidemment la méme chose... A vous de
choisir celle que vous préférez !

Ezercice 4.2.
Soit x € R. Montrer que, pour tout n € N, |z +n] = |x] + n.

1.3 Variantes

Récurrence qui part a N € N

Proposition 1.2

Soit P une propriété définie sur les entiers plus grands qu’un certain nombre N .
Si

>N, (P(n) = P(n+1)),
alors Vn > NP(n).

Exercice 4.3.
Montrer que le carré de tout nombre entier supérieur a 2 est strictement supérieur
au nombre d’origine.
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Récurrence double
Proposition 1.3

Soit P une propriété définie sur IN. Si

— P(0) et P(1),

— VneN (P(n)et Pn+1)) = P(n+2),
alors Vn € IN P(n).

Ezercice 4.4.
Soit (un)nen la suite définie par
Ug = ]_,
Uy = 3,
Vn € N, upio = 4upi1 — 3uy,.

Montrer par récurrence double que Vn € N, u,, = 3".
(n)
P(n

Récurrence forte (Hors Programme)

Proposition 1.4

Soit P une propriété définie sur IN. Si

— P(0),

— VneN Vke Nk <n = P(k)) = P(n+1),
alors Vn € IN P(n).

Ezercice 4.5.

Une tablette de chocolat possede des rainures qui la décomposent en n carrés.
On veut séparer les carrés de la tablette, et pour ce faire, on la casse selon une
rainure, et on recommence avec les 2 tablettes ainsi formées. Montrer que, quelque
soit 'ordre dans lequel on casse les rainures, on finira toujours en exactement n — 1
coups.

FEzercice 4.6 (Pour les plus curieux...).

Montrer par récurrence le théoreme suivant : Tout entier naturel est divisible par
au moins un nombre premier.
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2 Sommation

2.1 Notation

Définition 2.1 (sommes)

Soit n un entier, et ay, as, . .., a, des réels. On note la quantité
n
a1+...—|—an:Zak.
k=1

On pourra aussi noter cette quantité Z ay ou encore Z ay, et toute
kel1,n] 1<k<n
autre variation sur le méme modéle.

Par convention, ceci dit, une somme Z aj avec p > n sera considérée nulle.
k=p

Remarque. Dans ces notations, la lettre &k (la variable, ou I'indice, de sommation)
est une lettre muette (ou non liée), que I'on peut remplacer par n'importe quelle
autre lettre. C’est évidemment une trés mauvaise pratique d’utiliser un symbole
déja utilisé auparavant pour désigner la variable de sommation.

I est possible de généraliser cette notation de la maniere suivante : Si I est un
ensemble fini quelconque, et (a;);c; est une famille de réels indexés par I, on écrit
>_ai

iel
pour désigner la somme de tous les éléments de cette famille. Cette définition n’est
possible que grace a la commutativité et ’associativité de 'addition.

2.2 Sommes classiques

Proposition 2.1

Soit n un entier non nul quelconque, et x un réel différent de 1.

n n 1
a) Y l=n+1, b)zkzn(n;),
k=0 k=0

) z": 12 _ n(n + 1)6(2n + 1)7 ) 2”: 13 (n(n;— 1)) 7
k=0 k=0
1 — gntt

e) Y ah=—"—siz#1
0 11—

Remargue. On obtient des nouvelles factorisations, si x € R\ {1} :
" —1=(x—-1)1+z+...+2"").
On vérifiera que cette formule est encore valable pour x = 1.

On en déduit (démontrez-le!) que si z et y sont deux réels, on a aussi

n—2

"=yt =y @ T " Py T ).
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FEzercice 4.7 (Pour aller plus loin...).
En considérant un arrangement intelligent de “carrés” d’aire 1, retrouver la formule
pour 37_, k. Saurez-vous trouver un arrangement similaire pour Y7_, k*?

FEzercice 4.8 (factorisation des polynomes cyclotomiques).
On appelle, pour N € N, Py = X¥ — 1 le N¢ polynéme cyclotomique.

1. Déterminer, pour N pair et N impair, les racines de Py.

2. Etablir la factorisation suivante des polyndmes cyclotomiques :
n—1
X" _1=(X-1)(X+1) (Z X%) ,
k=0
2n
Xt = (X —1) (Z X’“) :
k=0

3. Montrer que cette factorisation est maximale, c’est-a dire que les polynomes

n—1 2n
S Xet Y xF
k=0 k=0

n’ont pas de racine.

2.3 Formules de calcul élémentaires

Remarque. Dans tout ce qui suit, les formules sont énoncées pour des sommes entre
0 et n. Elles se généralisent aisément a toutes sommes finies, bien sir.

Propriété 2.2

Soit n un entier non nul, (a;)o<i<n €t (b;)o<i<n deux familles de réels. Alors

X

Zak+bk Zak+Zbk
k=0

n n
Soit A un réel, alors > (Aax) = A ay.
k=0 k=0
Soit enfin m un entier, 0 < m < n, alors

Zak Zak—i- Z Qg .
k=0

k=m-+1

Propriété 2.3 (changement d’indice)

Soient p et n deux entiers relatifs non nul, p < n, m un entier relatif quelconque,
et (a;)icz, une famille de réels. Alors

n n+m
Z Aftm = Z a;, et Z Am—k = Z ;.
k=p i=p+m i=m—n

On dit qu’on a effectué le changement d deCe i=k+m (resp.i =m — k).
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Ezercice 4.9.
Soit m un entier naturel, calculer (d’'un maximum de fagons différentes) les quan-
tités suivantes :

n b

a) Y 2" (z € R), b) > 1 (a<b),

k=1 k=a

n

¢) Y (k+1)* (et retrouver par la méme occasion la formule pour »_ k).
k=1 k=1

2.4 Sommes doubles

Définition 2.2 (sommes doubles)

Soient m et n deux entiers, et (a;;)o<i<n une famille de mn réels. Le produit
0<j<m

de tous les nombres de cette famille est noté Z @ j-

0o<i<n
0<j<m

Propriété 2.4

Soient m et n deux entiers, et (a; ;) o<i<n une famille de mn réels. On a alors

0<j<m

n m m n

DD =) Gig= > i
i=0 j=0 §=0i=0 0<i<n

0jsm

Propriété 2.5 (somme double a indices dépendants)

On peut généraliser intuitivement les notations a

Z Q55 Z Qg5

0<i<jsn 0<i<j<n

On a alors

n n n J
Z %:ZZ%‘:ZZ%>

0<i<j<n i=0 j=i j=0i=0
n n n j—1
Z i = Z Z Qij = Z Qi j-
0<i<j<n i=0 j=i+1 j=14=0

Exercice 4.10.
Montrer que, pour tout entier n et toute famille (z;)o<i<n,

(Z%x)z le 2y

0<i<j<n
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2.5 Produits, factorielles
Définition 2.3 (produits)

Soit n un entier, et ay, as, . .., a, des réels. On note la quantité

ap X a1 X ... X ap, = [] a.

Toutes les variantes et généralisations de notation de la somme s’appliquent
au produit.

Propriété 2.6

Soit n un entier non nul, (a;)1<i<n €t (b;)1<i<n deux familles de réels. Alors

H )\ak —)\"Hak
k=1 k=1

Soit \ un réel, alors

oo (i) 14)

k:l

Soit m un entier, 0 < m < n, alors

o (o) (11 o)

Si, enfin, aucun des b; n’est nul, pour 1 <1 < n,

k=1 H b
k=1
Définition 2.4 (factorielle)
Pour tout entier naturel n, on définit
1 sin =0,
| — n
" H k  sinon.

k=1

Ezercice 4.11.
Calculer le produit des n premiers entier pairs (non nuls!), et en déduire le produit

des n premiers entiers impairs.
Propriété 2.7 (permutations)
' Pour n € N, on définit I’ensemble des permutations sur n éléments, noté G,,,
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comme I'ensemble des bijections de [1,n] sur lui-méme.
Pour tout n € IN, il y a n! permutations de [[1,n] sur lui-méme.

Card(6&,,) = n!

Ezercice 4.12.
Combien y-a-t-il d’anagrammes (qu’ils signifient quelque chose ou non) du mot
« VILGENIS » ?

2.6 Combinaisons

Définition 2.5 (combinaisons)

Pour p € N, on appelle combinaison de p éléments d’un ensemble E toute
partie a p éléments de E.

Propriété 2.8

Le nombre de combinaisons de p éléments d’un ensemble a n éléments vaut, si
O<p<n:

pl(n —p)! p!

_<”> n! nxmn—1)x...(n—p+1)

Remarque. (" est le nombre de parties a p éléments dans un ensemble a n éléments,
ou encore le nombre de fagon de choisir p éléments parmis n. On dit « p parmi n ».

Ezercice 4.13.

Lors d'une réunion de n personnes, combien de poignées de mains seront-elles
échangées ? On pourra calculer ce nombre de deux fagons différentes, et retrouver
la formule d’une somme bien connue...

Théoréme 2.9 (relation de Pascal)

Pour tous entiers 0 < p < n,

=06
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Définition 2.6 (triangle de Pascal)

Les combinaisons (Z) sont souvent présentées dans le tableau de Pascal :
~NPlor 2 03 456
0 |1
1 11
2 |1 2 1
3 |13 3 1
4 |11 4 6 4 1
5 |1 5 10 10 5 1
6 |1 6 15 20 15 6 1

Théoréme 2.10 (formule du binéme)

Pour tout entier n, pour tous réels x,y,

(z+y)" = kzn% (Z) a Ryl =3 (Z) 2y,

k=0

FEzercice 4.14. .

n
Montrer que Z =
im0 \k

cardinal de Z(E).

2" et retrouver ce résultat en calculant de deux fagons le
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Deuxieme partie

Suites

41






Chapitre 5

Introduction aux suites

1 Généralités sur les suites

1.1 Définitions
Définition 1.1 (suites)
On appelle suite réelle toute application u d’une partie A* de N dans R :

u: A — R
n o — U,

En pratique, on note I'application u par (t,)nea, u, ou (quand A est implicite),

Pour n entier, u,, est le terme d’indice n de la suite u. u,, est aussi appelé
terme général de la suite.

Ezemples.
Il existe trois manieres principales de définir une suite :

— explicitement en donnant une formule pour son terme général :
1—n

VneNwuw, =——
14+n

— par récurrence, en donnant ses premiers termes et une relation de récurrence
entre ses termes de différents indices :

Vo = 0
Vn € N, v,11 = 20,.

— gmplicitement comme la solution d’'une équation dépendant d’un parametre
entier :
La suite w est telle que, pour tout entier n, w, est I'unique réel
positif solution de I'équation ™ + In(z) = 0.
Dans ce cas, 'existence d’une telle solution est évidemment a établir en
amont, et fait bien souvent ’objet d’une question préliminaire.

*. En pratique IN ou IN*, parfois {n € N,n > p}, p € IN.
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Définition 1.2

On dit qu’une suite (u,,) vérifie la propriété P a partir d’un certain rang lorsqu’il
existe un entier N tel que

VnelN (n>N) = P(uy).

Définition 1.3

— Deux suites u et v sont égales si Vn € N u,, = v,,
— la somme u+v de deux suites u et v est la suite de terme général u,, + v,
— le produit uv de deux suites u et v est la suite de terme général u,,v,,

— pour A\ réel, on appelle le produit de la suite u par A la suite \u de terme
général \u,,.

1.2 Bornes

Définition 1.4 (suites bornées)

Une suite (uy,) est dite :

— majorée lorsqu’il existe un réel M tel que Vn € N w,, < M, M est alors
un magjorant de la suite,

— minorée lorsqu’il existe un réel m tel que Vn € IN u,, = m, m est alors un
minorant de la suite,

— bornée si elle est majorée et minorée.

1.3 Sens de variation
Définition 1.5 (suites monotones)

Une suite (uy,,) est dite :
— constante lorsqu’il existe un réel C' tel que Vn € N u,, = C,
— stationnaire si elle est constante a partir d’un certain rang,
— croissante si Vn € N u, 11 = Uy,
— décroissante si Vn € N u,11 < Uy,
— monotone si elle est croissante ou décroissante.

(Définitions similaires pour les suites strictement croissantes, etc.)

Méthode (variations d’une suite).
Pour déterminer les variations d’une suite (u,), on peut étudier, pour tout entier
. Up41 ) . . .
n, le signe de u,41 — u, ou comparer le rapport “** a 1 (uniquement si la suite
est positive).
Il est recommandé, dans ce dernier cas, de revenir a une inégalité u, 1 > / < uy,
pour ne pas se tromper.



2. SUITES USUELLES 45

Ezercice 5.1.
Montrer qu'une suite croissante est minorée, et qu'une suite décroissante est ma-
jorée.

2 Suites usuelles

2.1 Suites arithmétiques

Définition 2.1 (suites arithmétiques)

Une suite u est dite arithmétique s’il existe un réel r tel que
Vn € N, upi1 = uy + 7.

Le réel r est alors appelé la raison de la suite.

Exemple.

Si vous recevez un salaire mensuel constant, et dépensez tous les mois la méme
somme, I’argent de votre compte en banque suivra une suite arithmétique. Quelle
sera sa raison ?

Proposition 2.1

Soit u une suite arithmétique de raison r. Alors, pour tout entier n,
Uy = Ug + NT.

De plus, on a, pour tout entier p, u, = u, + (n — p)r.

Proposition 2.2

Soit u une suite arithmétique de raison r. alors, pour tout entier n,

Uy + Uy,

iuk:(nJrl) 5

k=0

Ezercice 5.2.
Quelques propriétés des suites arithmétiques :

1. Montrer qu'une suite arithmétique est toujours monotone, croissante si sa
raison est positive, décroissante sa raison est négative.

2. Montrer qu’une suite arithmétique est bornée ssi sa raison est nulle.

2.2 Suites géométriques

Définition 2.2 (suites géométriques)

Une suite u est dite géométrique s’il existe un réel q tel que
Vn € N, uy1 = qu,.

Le réel q est alors appelé la raison de la suite.
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Exemple.
Si vous placez une certaine somme dans un compte épargne a un taux r%, la
somme sur ce compte suivra une suite géométrique. De quelle raison ?

Proposition 2.3

Soit u une suite géométrique de raison q. Alors, pour tout entier n,
Up = Upq".
De plus, on a, pour tout entier p,

ne
Up = Upq" P

Proposition 2.4

Soit u une suite géométrique de raison q. alors, pour tout entier n,

1_ n+1
i uoiq siqg#1

k=0 up(n+1) sig=1.

Ezercice 5.3.
Quelques propriétés des suites géométriques :

1. Montrer qu’une suite géométrique de raison positive est toujours monotone,
et relier sa monotonie a sa raison et son premier terme. Que peut-on dire si
la raison est négative ?

2. Montrer qu’une suite géométrique est bornée si sa raison est comprise entre
—1 et 1. Est-ce la seule possibilité ?

3. Montrer que le logarithme d’une suite géométrique (positive, évidemment)
est une suite arithmétique. Quelle est sa raison ?

4. Existe-il des suites a la fois arithmétiques et géométriques ?

2.3 Suites arithmético-géométriques

Définition 2.3 (suites arithmético-géométriques)

Une suite u est dite arithmético-géométrique s’il existe deux réels a et b tels
que
Vn € N, upi 1 = au, + b.

Les réels a et b sont les paramétres de la suite, le réel a est parfois appelé la
raison de la suite.

Ezemple.

Le contenu du compte en banque d’un rentier n’ayant aucun salaire, mais vivant
des intéréts de son compte, dépensant tous les ans la méme somme, suit une suite
artimético-géométrique. De quels parametres ?
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Méthode (terme général d’une suite arithmétice-géométrique).
Pour déterminer le terme général d’une suite arithmético-géométrique, pour a # 1 :

1. On détermine le point fixe de I’équation de récurrence, c’est-a-dire le réel ¢
tel que
c=ac—+b.
2. On montre que la suite v = u — ¢ est une suite géométrique de raison a.

3. On en déduit le terme général de la suite v :
v, = (up — c)a”.
4. On en déduit le terme général de la suite u :
Up, = (ug — c)a" + c.

Ezercice 5.4.
Quelques propriétés des suites arithmético-géométriques :

1. Existe-t-il des suites arithmético-géométriques qui sont arithmétiques ? géo-
métriques 7 Dans quels cas ?

2. A quelle condition une suite arithmético-géométrique est-elle bornée ? crois-
sante 7 décroissante ?

3. Montrer que la somme des n premiers termes d’une suite géométrique forme
une suite arithmético-géométrique.

2.4 Suites récurrentes linéaires d’ordre 2
Définition 2.4 (suites récurrentes linéaires d’ordre 2)

Une suite u est récurrente linéaire d’ordre 2 s’il existe deux réels a et b tels que

Vn € N, up10 = a1 + buy,.

Théoréme 2.5 (terme général des suites récurrentes linéaires d’ordre 2)

Pour déterminer I'expression de son terme général, on étudie son équation
associée :

(BE): X*=aX +0b.

— Si (F) posséde deux solutions réelles ry et rq, il existe deux réels A et
tels que
Vnen N u, = Arl + ury.

— Si (F) possede une seule solution réelle r, il existe deux réels A et u tels
que
Vnen N u, = (A +nu)r".

... Tiens... ne manque-t-il pas un cas de figure ?
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Chapitre 6

Convergence des suites

1

Convergence

1.1 Définitions

Définition 1.1 (suites convergentes)

Soit u une suite réelle. On dit que la suite converge vers la limite ¢ € R lorsque
tous les termes de la suite sont aussi proches de { que 'on veut a partir d’un
certain rang.

un — (& Ve€RLANENVREN (n > N) = ([lun — | <e)].
n—-+o0o
Ceci revient a demander que tout intervalle ouvert contenant ¢ (tout voisinage
de ¢, nous y reviendrons), contient les termes u,, pour tous les indices n, hormis
un nombre fini d’entre eux.
On note aussi

u—Llet lim wu, =/.
“+oo n—-+o0o

On dit alors que ¢ est la limite de la suite u.
Une suite qui n’est pas convergente est dite divergente.

Remarque. La seconde lecture de la définition indique bien que la limite d’une suite
ne dépend d’aucun de ses premiers termes.

Proposition 1.1

Une suite convergente est bornée.

Ezercice 6.1 (pour les curieux).
Prouver cette proposition. On pourra par exemple commencer par montrer qu’une
suite convergente est bornée a partir d'un certain rang.

Ezercice 6.2.
La réciproque de cette proposition est fausse : une suite bornée n’est pas forcément
convergente. Pouvez-vous trouver une telle suite (a la fois divergente et bornée) ?

FExercice 6.3.
Montrer que% — 0.

n—-+o0o

49
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Définition 1.2 (limites infinies des suites)

Soit v une suite réelle. On dit que la suite tend vers 400 lorsque tous les termes
de la suite sont aussi grands que I'on veut a partir d’un certain rang.

Up — 400 < VAERINENREN (n>N) = (u, > A4)].

n—-+0o0o

On dit similairement que la suite tend vers —oo lorsque tous les termes de la
suite sont aussi petits que l’'on veut a partir d’un certain rang.

Up — —00 <= [VAERINENVREN (n>N) = (u, < 4).

n—-4o00

On a alors les mémes notations que pour les limites finies.

Remarque. Une suite qui tend vers +o00 n’est pas convergente. Elle diverge, et n’est
pas bornée. Ainsi, une suite divergente peut avoir une limite, qui sera donc infinie.

Propriété 1.2

La limite d’une suite, si elle existe, est unique.

FEzercice 6.4 (pour les curieux...).
Démontrer cette propriété. On pourra effectuer un raisonnement par I’absurde.

1.2 Opérations sur les limites
Propriété 1.3

Soient u et v deux suites possédant une limite (finie ou non). Alors, sauf dans
les cas marqués F'.I., la somme, le produit et l'inverse de ces suites ont une
limite, indiquées dans les tableaux suivants :

— Limite de la somme u + v :
lim v

) —o0 |V eR | +o0
lim w

—00 || —o0 —00 F.I
leR| —oco| 0+ | +00
+o0 || F.L +00 +00

Limite du produit uv :

. hmvll _oleer | 0 | £eR: | 400
lim u

—0 || +00 400 F.I —00 —00

e R || +o00 o 0 o —00

0|l F.L 0 0 0 F.I

teRY || —o0 74 0 o ~+00

400 || —00 —00 F.1 400 400

— Limite de 'inverse % :
llimuH—oo‘EGR* 0~ ‘ 0 ‘ 0r ‘+oo‘

(limg | 0 | § | -oco|FL|+oo| 0 |
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Remarque. Le symbole F.I. signifie “forme indéterminée” : il signifie que, sous
cette forme, il n’est pas possible de déterminer la limite de la suite. Il faut donc
alors modifier la formule étudiée pour “lever la forme indéterminée”.

La plupart du temps, on détermine la limite d’une suite a partir de limites
de suites usuelles (cf section 2), couplées aux formules précédentes. Nul besoin de
montrer les limites “a la main” au moyen de la définition du 1.1.

Proposition 1.4

Si u est une suite et f une fonction continue de R — R, si u —a et f— 1,
oo a

alors f(u) - L.

Proposition 1.5

Si u est une suite et { un réel quelconque. Alors

u—1 <= |u, — | — 0.
o0 n—oo

2 Comportement asymptotique des suites usuelles

2.1 Suites arithmétiques

Proposition 2.1

Soit (u,) une suite arithmétique de raison r.
— Sir >0, la suite (uy,) est croissante, et tend vers +oc.
— Sir <0, la suite (u,) est décroissante, et tend vers —oo.

— Sir =0, la suite (u,) est constante, et tend vers uy.

2.2 Suites géométriques

Proposition 2.2

Soit (u,) une suite géométrique de raison q, de premier terme positif.
— Si g > 1, la suite (u,,) est croissante, et tend vers +00.
— Si g =1, la suite (u,) est constante, et tend vers .
— Si0 < ¢ <1, la suite (u,) est décroissante, et tend vers 0.
— Si ¢ =0, la suite (u,,) est constante a partir du rang 1, et tend vers 0.
— Si —1 < ¢ <0, la suite (u,) tend vers 0.

— Si g < —1, la suite (u,) n’a pas de limite.

Ezercice 6.5.
Que peut-on dire si le premier terme de la suite géométrique est négatif 7 Que
peut-on dire de la limite d'une suite arithmético-géométrique ?
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2.3 Croissances comparées

Proposition 2.3

Pour tous réels strictement positifs a, b, pour tout réel ¢ > 1, on a les croissances
comparées suivantes :

a n n

4q q
ln(n)b njoo o0, na njoo Too et ln<n)b njoo too.

Remarque. On en déduit évidemment que pour tout réels négatifs a, b et tout réel
1 <q,

1 b a 1 b
n(n) — 0, n — Oet n(n) — 0,
na n—-+oo qn n—+o00 qn n—-+o00

ainsi que des limites similaires (mais avec des produits) pour —1 < ¢ < 1.

3 Propriétés des limites

3.1 Limites et inégalités

Proposition 3.1

Soient deux suites u et v, telles que Vn € N u,, < v,,. Si u converge vers {1 et
v converge vers s, alors {1 < (5.

Corollaire 3.2

Si u est une suite qui converge vers {, et qu’il existe un réel M tel que pour
tout n € N, u,, < M, alors { < M. De méme, si pour tout n € IN, u,, > M,
alors ¢ > M.

Théoréeme 3.3 (des gendarmes)

Soient u, v et w trois suites, telles que pour tout entier n on aie u, < v, < W,y,.
Siu et w ont la méme limite ¢, alors v converge aussi vers .

Théoréme 3.4

Soient u, v deux suites, telles que pour tout entier n on aie u, < v,.

— Siu — 400, alors v — 400,
+oo +o0

— siv — —00, alors u —» —00.
+oo —+00

Théoréme 3.5 (limite monotone — suites)

Toute suite u croissante admet une limite. Si u est majorée, cette limite est
finie, sinon, u = ~+00.
oo
Toute suite u décroissante admet une limite. Si u est minorée, cette limite
est finie, sinon, u —» —00.
+00
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3.2 Suites adjacentes

Définition 3.1 (suites adjacentes)

Deux suites u et v sont dites adjacentes si
— u est croissante,
— v décroissante,

—u—v—0.
+o0

Théoréme 3.6 (suites adjacentes)

Deux suites adjacentes convergent et ont la méme limite.
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Chapitre 7

Fondamentaux de statistique

1 Données et séries statistiques

Définition 1.1 (objet d’étude statistique)

Les statistiques s’intéressent aux propriétés des objets d’un ensemble, appelés
individus (méme s’ils ne s’agit pas de personnes). L’ensemble de ces individus
est appelée la population. L’ensemble de la population est souvent noté par la
lettre €1, et un individu, par w.

En général, la totalité de la population n’est pas directement accessible. Ce
peut étre simplement car elle est trop grande, ou pour d’autres raisons. L’étude
statistique se fait alors sur un échantillon, c¢’est-a-dire sur un sous-ensemble fini
de la population.

La taille d’un échantillon est le nombre N d’éléments qu’il contient.

Ezemple.

Le ministere des solidarités et de la santé cherche a mieux comprendre sa popula-
tion : ’ensemble des francais de plus de 18 ans. Il ne peut bien évidemment pas
étudier la totalité des 514 millions d’individus de celle-ci, et demande a 'INSEE
de mener une enquete. Celle-ci va donc interroger un échantillon de 10000 francais.

Définition 1.2 (caractére et variables statistiques)

Les observations faites sur chaque individu sont appelés caractére, ou variables
statistiques X.

Une variable statistique est ainsi une application X : Q — FE, ou E est
appelé le support de la variable, et est noté X ((2).

Si ces observations sont des réels (X () C R), la variable est dite numé-
rique. Dans le cas contraire, elle est dite quantitative.

Dans le cas des variables numériques, on distingue de plus si X () est fini
ou dénombrable, auquel cas la variable est dite discrete, ou non, auquel cas elle
est dite continue.

Ezemple.

Parmis les caractéres qui intéressent le ministere et qui seront analysés dans I’étude
de 'INSEE, on peut compter la taille des individus (une variable statistique quan-
titative et continue), leur dge (une variable quantitative discrete), et leur nom (une

57
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variable qualitative).

Définition 1.3 (modalités, classes)

Les valeurs prisent par une variable statistique discrete sont appelées modalités,
souvent ordonnées dans 'ordre croissant r; < T < ... < x,.

Dans le cas d’une variable continue, on regroupe plutot les valeurs en classes,
des intervalles [x1,xs], [x2, Z3[, ... [Tn, Tni1][. Clest aussi possible dans le cas
d’une variable discréte, bien sir.

Ezxemple.
Les modalités de I'age de 1'étude réalisée sont donc 18 < 19 < ... < 150 (il n’est
pas nécessaire de s’assurer que toutes les modalités sont remplies).

Pour I’étude de la taille, on peut considérer les classes suivantes (en centi-
metres) : [0, 150[, [150, 160[, [160, 170[, [170, 180[, [180, 190[, [190, +o0|.

Définition 1.4 (effectifs, fréquences, série statistique)

Le nombre d’individus d’un échantillon dont le caractére est dans une modalité
(X (w) = z;) ou une classe particuliére (X (w) € [z;, x;41]) est appelé effectif de
celle-ci. Il est souvent désigné par la lettre n;.

L’effectif cumulé d’une modalité ou d’une classe, en revanche, est la somme
des effectifs des modalités ou classes inférieures ou égales.

La fréquence d’une modalité ou d’une classe est le rapport de son effectif

par la taille de I'échantillon : f; = i

Un série statistique est la donnée des différentes modalités ou classes d’un
échantillon, accompagnées de leurs effectifs (ou effectif cumulés). Elle est dite
groupée si les données sont regroupées par classes.

Ezemple.
Nous n’avons évidemment pas la place ici de représenter les effectifs relatifs a 1’age
de I’échantillon des 10000 francais puisqu’il y a bien trop de modalités, mais il est
possible de les représenter pour la taille (d’apres les chiffres ENNS, 2006-2007 *)
| classe [| [0,150] | [150,160] | [160,170] | [170,180] | [180,190] | [190, 4-o0] |

effectif [[ 150 1700 3800 3280 9550 1150
frequence || 1.5% 17% 38% 32.8% 9.55% 1.15%
eff. cum. || 150 1850 5650 8930 9885 10000
freq. cum. || 1.5% | 18.5% 56.5% 89.3% | 98.85% 100%

| | <150 | <160 | <170 | <180 | <190 | |

2 Indicateurs statistiques

2.1 Parametres de position
Définition 2.1 (modes)

On appelle mode (ou classe modale pour les classes) toute modalité ayant le
plus fort effectif (il peut y en avoir plusieurs).

x. Les chiffres sont reconstruits a partir des fréquences cumulées
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Ezxemple.
La classe modale pour la taille dans I'exemple précédent est ainsi [160 — 170].

Définition 2.2 (moyenne)

On appelle moyenne d’une série X ~ (n;, x;) la quantité
N5 i

Dans le cas d’une série groupée X ~» (n;,|x;,x;+1]), on utilise le milieu des

classes : si ¢; = BEIHEL

1
X = Nznzcz = fici.

% %

Ezemple.

Dans 'exemple de la taille précédent, la moyenne groupée (en prenant ¢; = 145
et ¢g = 195), on obtient X = 168.5cm. C’est un peu plus que la moyenne non
groupée fournie par le document, X = 168.05¢m.

Définition 2.3 (quantiles)

On appelle médiane d’une série statistique le réel m, partageant la série en

deux effectifs égaux :
— dans le cas d’une série discrete, c’est la %e valeur ordonnée si la taille N
de I’échantillon est impaire, ou la moyenne entre les Y1 et %e valeurs

2
ordonnées si N est paire.

— dans le cas d’une série continue, c’est la valeur correspondant a 50% de
fréquence cumulée.

On appelle premier (resp. troisieme) quartile la valeur, notée q; (resp. qs) cor-
respondant a la fréquence cumulée de 25% (resp. 75%). On appelle écart inter-
quartile la quantité Q3 — Q1.

On définit de méme le k¢ décile (1 < k < 9) comme la valeur correspondant
a la fréquence cumulée de k - 10%.

Remarque. — Le 5° décile est ainsi la médiane.

— Surtout ne pas confondre moyenne et médiane !

Ezxemple.
Dans le cas de la taille des francais, la médiane est entre 160 et 170cm. On remarque
que dans le cas d’une série statistique groupée, le calcul des quantiles (médiane,
quartiles et déciles) n’est pas forcément possible.

Dans ce cas, on peut émettre I’hypothese que les données sont uniformément
réparties dans la classe identifiée, et interpoler la valeur.

Dans notre cas, la fréquence cumulée avant la classe [160, 170] est de 18.5%. 11
manque donc 31.5% pour atteindre les 50% attendus, sur une amplitude de 38%
pour la classe [160,170[. II est donc raisonnable de penser que la médiane sera
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atteinte & 212 de D'intervalle [160, 170] :

me—160 315 [ 50% — 18.5%
170 — 160 38 \  56.5% — 18.5%

31.5
<= m, = 160 + 10§ = 168.28.

2.2 Parametres de dispersion

Définition 2.4 (variance et écart-type)

On appelle variance (empirique) d’une série statistique la quantité
1 _ _

Dans le cas d’une série statistique groupée, on prend le milieu des classes,
comme pour la moyenne.
On appelle écart-type (empirique) d’une série statistique la racine de la

variance empirique :
x =/ Var(X).

Théoréme 2.1 (formule de Konig-Huygens)

Var(X) =Y fir] - X* = X2 - X

3 Représentations graphiques

3.1 Diagrammes en batons et histogrammes

Définition 3.1 (histogrammes)

Pour représenter une série statistique (n;,x;), il est souvent utile de dresser
le diagramme en batons correspondant, en placant au-dessus de chaque point
d’abscisse x;, un baton de taille n;.

Dans le cas d’une série groupée (n;, [z, x;11]), on privilégie I’histogramme,
correspondant a tracer au-dessus de chaque intervalle [x;, x;11[ un rectangle
d’aire n;.

Remarque. — 1l faut bien prendre garde a tracer des rectangles d’aire n; et pas
de hauteur n; !

— Un diagramme en baton pour une série statistique a valeurs entieres peut
souvent étre vu comme un histogramme avec pour classes [x;, ;1.

Définition 3.2 (diagramme des fréquences cumulées)

Il est aussi possible de tracer le diagramme des fréquences cumulées, en tracant
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le graphe de la fonction correspondant aux fréquences cumulées. Celle-ci étant
en escalier, on choisit souvent de relier les points par des segments de droite.

Exemple.

Voici ci-dessous le diagramme en barre correspondant a I’dge de la population
franaise en 2021 (la “pyramide des 4ges”), ainsi que le diagramme des fréquences
cumulées correspondant.

10 1

800000 - 0.8 1

600000 061

0.4 4
400000 4

0.2 4
200000

0.0
T

FIGURE 7.1 — Pyramide des ages FIGURE 7.2 — Diagramme des fréquences
cumulé

3.2 Boites a moustache
Définition 3.3 (boite a moustache)

Pour tracer la boite a moustache correspondant a une série statistique, on trace
un rectangle entre les deux quartiles, séparé en deux par la médiane. On ajoute
a celui-ci deux “moustaches” qui s’étendent jusqu’au minimum et maximum de
la série.

— |

min Q1 mediane qs max

FIGURE 7.3 — une boite a moustaches
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Chapitre 8

Probabilités sur un univers fini

1 Les événements

1.1 Le language des événements
Définition 1.1

On appelle expérience aléatoire une expérience dont on ne peut prédire le
résultat avant de I'avoir effectuée.

Un événement est une affirmation sur le résultat d’une expérience aléatoire.
A lissue de 'expérience, si cette affirmation est vraie, on dit que I’événement
(s’)est réalisé.

Définition 1.2

Un événement qui ne se réalisera jamais est appelé événement impossible, un
événement qui se réalise toujours est appelé événement certain.

Pour un résultat précis de I'expérience, I’événement « C’est ce résultat qui
est arrivé » est un événement élémentaire.

1.2 Modélisation mathématique

Définition 1.3 (modélisation d’une expérience aléatoire)

L’ensemble de tous les résultats possibles d’une expérience aléatoire, noté €,
est appelé univers de I’'expérience.

Un résultat de I’'expérience est ainsi un élément w de I’ensemble ). Seul I'un
d’entre eux est observé a l’issue de l'expérience.

Un événement est ainsi une partie de €0 (I’ensemble des résultats qui réa-
lisent cet événement), A € P(1).

Ezercice 8.1.
De bon matin, vous piochez deux chaussettes dans votre tiroir au hasard. Vos 10
paires de chaussettes (toutes différentes, bien stir) sont hélas toutes séparées et en
pagaille. Vous espérez bien stir avoir deux chausettes appareillées...

Quel serait I'univers de cette expérience? et I’événement « la paire de chaus-
settes tirée est appareillée 7 ».
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Faire de méme en supposant que vos chausettes sont toutes noires et compa-
tibles entre paires, mais qu’elles sont latéralisées (une chaussette gauche ne va pas
au pied droit!).

1.3 Correspondance entre le langage des ensembles et le
langage des événements

— Un résultat w réalise I’événement A ssi w € A.

— L’événement A implique I'événement B ssi A C B.

— L’événement contraire & A est Q\ A = A.

— L’événement « I'un des deux événements A ou B est réalisé » est modélisé

par AU B.

— L’événement « les événements A et B sont tous deux réalisés » est modélisé
par AN B.

— Si AN B =g, A et B ne peuvent arriver en méme temps, ils sont incompa-
tibles.

Définition 1.4 (systémes complets d’événements)

La famille Ay, ..., A, est un systeme complet d’événements si les Ay sont deux
a deux incompatibles mais I'un d’entre eux est toujours réalisé. Cela revient a
demander a ce qu’ils forment un partition d’(2.

Ezemple.
Lors de I'expérience des chaussettes, les trois événements « avoir deux chausettes
droites », « avoir deux chausettes gauches » et « avoir une paire de chaussette

droite/gauche », forment un systéeme complet d’événement.

2 Probabilités dans un univers fini

On suppose, pour le reste du chapitre, que €2 est fini de cardinal V.

2.1 Définition

Définition 2.1 (probabilités sur un univers fini)

On appelle probabilité sur Z(€)) toute application

P: 2Q) — [0,1]
A — P(A)
qui vérifie
1. P(Q) =1,
2. siANB =g, P(AUB) =P(A) + P(B).
On dit alors que (2, 2(f2),P) est un espace probabilisé fini.

Remarque. Une expérience aléatoire (avant de savoir le résultat) est entierement
définie par la donnée d'un espace probabilisé.
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Propriété 2.1

Si P est une probabilité, on a les résultats suivants :
1. P(@) =0,
2. Pour tout événement A, P(A) =1 — P(A).
3. SiAC B, P(A) < P(B).
4. Pour toute famille (A, ... A,) d’événements incompatibles 2 a 2,

]P(CJA,C>:;]P(A,€).

k=1

5. En particulier, si (Ay, ..., Ay,) est un systéme complet d’événements,

Xn:]P(Ak):l.

k=1

2.2 Exemple fondamental : I’équiprobabilité

Définition 2.2 (équiprobabilité)

On dit qu’on est en situation d’équiprobabilité lorsque chaque résultat a la
méme chance d’étre obtenu, c’est a dire que les probabilités de chaque événe-
ment élémentaire sont toutes égales :

V(w,o) € @ P({w}) = P({w'}).
On montre sans difficulté que ceci revient a dire que

1

Vo € Q P({w}) = —

Proposition 2.2 (formule de l’équiprobabilité)

Si 'on est en situation d’équiprobabilité, alors pour tout événement A,

_ Card(A)
B(4) = Card(Q)'

Cette formule définit bien une probabilité, qui est appellée probabilité uniforme

sur Z(1).

Ezercice 8.2.

Dans votre aventure matinale de recherche de chaussettes, quel est le cardinal
de 'univers (dans les deux cas)? En déduire la probabilité d’avoir une paire de
chaussette assortie ou bien latéralisée.
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2.3 Probabilités non uniformes
Proposition 2.3

N
Soit Q@ = {wi,...,wn}, et (p1,p2,...,PN) € [0,1]N. Si > pr =1 (et uni-
k=1

quement dans ce cas), il existe une unique probabilité P telle que pour tout
i € [1, N], P(w;) = p;. Cette probabilité est donnée par la formule

P(A) = Z Di-
Lw; €A

Proposition 2.4

Soit Q = {w1,...,wn}, et (p1,p2, - ..,pn) € RY. Il existe une unique probabilité
P telle que pour tout i € [1, N], P(w;) o p;. Cette probabilité est donnée par
la formule

Z pi

1w EA

N
> i
=1

P(A) =

3 Indépendance

3.1 Indépendance deux a deux

Définition 3.1 (événements indépendants deur d deux)

Deux événements A et B sont indépendants (pour la probabilité P) lorsque

P(AN B) = P(A)P(B).

Définition 3.2

Soient Ai,..., A, des événements. On dit qu’ils sont deux a deux indépen-
dants (pour la probabilité P) lorsque, pour tout couple i # j, A; et A; sont
indépendants.

Théoréme 3.1

Si deux événements A et B sont indépendants, alors A et B, A et B, A et B
sont aussi indépendants.

3.2 Indépendance mutuelle

Définition 3.3 (événements mutuellement indépendants)

Soient Ay, ..., A, des événements. On dit qu’ils sont mutuellement indépen-
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dants (pour la probabilité P) lorsque, pour toute sous-partie A € P ([1,n]),

P N A= II P(4y.

ket ke

Remarque. L’indépendance mutuelle implique I'indépendance deux a deux, mais
pas l'inverse.

Ezxemple.
On lance deux dés a six faces, 'un rouge, 'autre vert. Les événements

— R : «le dé rouge donne un résultat pair »,
— V@ «le dé vert donne un résultat pair »,

— 5 : « la somme des résultats est pair »,

sont indépendants deux a deux, mais pas mutuellement indépendants.

Ezercice 8.3.

Toujours pas réveillé-e mais avec des chaussettes assorties, vous descendez ’escalier
pour boire votre bassine de café matinale. Hélas, les 12 marches de I'escalier sont
grincantes, et vous avez une chance sur 5 de faire grincer chaque marche et de
réveiller la maisonnée. Quelle est la probabilité que vous parveniez a la cuisine
sans réveiller personne ?

Théoréme 3.2

Si des événements A; sont mutuellement indépendants, il en est de méme avec
toute collection formée de ces événements ou de leurs complémentaires, i.e.
toute collection (B;), avec B; = A; ou A;.

Théoréme 3.3 (des coalitions)

Si des événements sont mutuellement indépendants, tout événement formé avec
certains d’entre eux, est indépendant de tout événement formé a partir d’autres.

Remarque. En général, 'indépendance mutuelle n’est pas a vérifier, mais est im-
pliquée par I’énoncé. Cependant, méme dans le cas d’expériences dont les résultats
sont mutuellement indépendants, tous les événements que l'on peut considérer ne
sont pas mutuellement indépendants.

Par exemple, si 'on lance une piece équilibrée un certain nombre de fois, les
résultats des différents lancés sont mutuellement indépendants. En revanche, les
événements « on obtient pile, puis face aux lancers n et n+ 1 » (relatifs aux paires
de résultats successifs, donc) ne sont pas mutuellement indépendants (ils ne sont
méme pas indépendants deux a deux!).



68 CHAPITRE 8. PROBABILITES SUR UN UNIVERS FINI

4 Conditionnement

4.1 Probabilités conditionnelles
Définition 4.1 (probabilités conditionnelles)

Soient A et B deux événements, tels que P(A) # 0. On appelle « probabilité
de B sachant A » le réel

P(ANB)
Pyu(B) = ——=-
Théoreme 4.1
L’application P 4 est une probabilité.

Propriété 4.2

On a les formules suivantes :
PA(Q
Pa(o

P4(B
PA(BUC

I
H“OH

— PA(B),
Po(B) + P4(C) — PA(BN C).

)
)
)
)

Remarque. On utilise trés souvent la formule "inverse', donnant la probabilité de
I'intersection en fonction de la probabilité conditionnelle

P(AN B)=Pa(B)P(A).
Théoréme 4.3

Deux événements A et B, P(A) # 0, sont indépendants si et seulement si
P4(B) = IP(B) : la probabilité de B ne dépend pas de A.

4.2 Formule des probabilités composées

Théoréme 4.4 (formule des probabilités composées)

Si Ay,..., A, sont des événements tels que P(A;N...N A,) # 0, alors

P (ﬁ Ak> =P(A1)Pa, (A2)P A na,(A3) ... Paynna, , (An).

Ezercice 8.4.

Ouf! vous étes parvenu-e dans la cuisine sans encombre. Pendant que le café per-
cole, vous préparez votre bol de céréales. Parmi les 5 boites de céréales, votre petit
déjeuner préféré en utilise trois particulieres, a verser dans un ordre bien précis. Si
vous prenez trois boites, I'une apres I’autre, au hasard dans le placard et remplissez



4. CONDITIONNEMENT 69

votre bol ainsi (c’est le matin, il ne faut pas demander trop d’effort de réflexion...
surtout que le café n’est toujours pas prét!), quelle est la probabilité que vous
puissiez profiter de votre petit déjeuner préféré ?

4.3 Formule des probabilités totales
Théoréme 4.5 (formule des probabilités totales — 2/2)

Si (Ay,...,A,) est un systéme complet d’événements, chacun de probabilité
non nulle, alors pour tout événement B, on a

Z (Ax) IPAk B).
k=1

Ezercice 8.5.

Enfin, il est temps de partir. Vous prenez au hasard un des trois trousseaux de
clef a la porte... apres tout, ils ont tous la clef de I'appartement. Votre trousseau
contient 4 clefs, alors que les deux autres en contiennent 3. Quelle est la probabilité
que vous trouviez la clef de I'appartement du premier coup ?

4.4 Formule de Bayes
Théoréme 4.6 (formule de Bayes)

Si A et B sont deux événements de probabilité non nulle,

P4(B) = ]PB(A)I];(E’

~— | —

Ezxercice 8.6.

A la pause de 10h, vous vous inquiétez soudain. Vous avez trouvé la clef de Pap-
partement du premier coup, ce matin. C’est rare, et plus probable si vous avez
pris le trousseau d’un de vos colloc’, qui contiennent moins de clefs. Quelle est la
probabilité que vous ayez pris le trousseau d’un de vos colloc’ ?
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Chapitre 9

Limites et continuité de fonctions

1 Intervalles et voisinages

Définition 1.1 (intervalles de R)

Un intervalle de R est une partie de R de la forme :

— [a,b], a < b € R (aussi appelé segment, ou intervalle fermé),
— Ja,b], a € {—o0}UR, be R, a <b,
— [a,b[,a € R, b€ {+x} UR, a <,

— Ja,b[, a € {—o0} UR,b € {+00} UR, a < b (aussi appelé intervalle
ouvert).

Remarque. Les intervalles de R en sont les parties connexes, c’est-a-dire “sans
trous” :

I est un intervalle <= V(a,b) € I’Vc€ R (a <c<b) = (c€ ).

Définition 1.2 (voisinages)

On apelle voisinage d’un réel x, toute partie de R contenant intervalle ouvert
contenant xy. Un voisinage a droite (resp. a gauche) de x( est une partie de R
contenant un intervalle ouvert dont la borne droite (resp. gauche) est xy.

On appelle voisinage de +o00 (resp. —o0) tout intervalle de la forme Ja, 4+o00],
a € {—c0}UR (resp. | — 00,b[, b € {+o0} UR).

Remarque. Attention! un voisinage a droite ou a gauche d’un point ne contient
pas nécessairement ce point !

Définition 1.3

On dit qu’une fonction est définie au voisinage (potentiellement a droite ou a
gauche) de a si son ensemble de définition contient un voisinage (potentielle-
ment a droite ou a gauche) de a.

Dans tout ce qui suit, on note R = R U {—o0, +00}.
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2 Limites

2.1 Définitions

Définition 2.1 (limites d’une fonction)

Soient ¢ € R, et f une fonction numérique définie au voisinage du point a € R.
On dit que la fonction f tend vers la limite ¢ en a lorsque, pour tout voisinage V/
de ¢, il existe un voisinage V,, du point a tel que f(V,) C V;, ou, intuitivement,
si f( ) peut étre rendu aussi proche que I'on veut de ¢, si on prend x assez
proche de a. En termes formels (on adaptera dans le cas —o0),

Ve >0,3a > 0Vr € ZyNa—a,a+ af,|f(x) — ¢ < e (limite finie en un point fini)
Ve >0,dA € RVz € Iy N A, +oo, | f(z) — ¢] < € (limite finie en +00)

VE >0,3a>0Vr € ZyN]a—ao,a+af, f(r) > E (limite +00 en un point fini)
VE >0,3A € RVz € Z;N]A,+oo[, f(z) > E (limite +00 en +00)

On note alors (4 notations possibles)

f@) —louf—1
On dit alors que { est la limite de la fonction f en a, et on note QICILIIII flz) =
{ ou li({n f==¢.
On définit de méme la notion de limite a gauche ou a droite, ot le voisinage
V., est un voisinage a gauche ou a droite. On note alors

flz) — 4, f — ¢, lim f(z)=/{ou lim f = (. (limite & gauche)

r—a— Tr—a—

f(z) — L, f — (, lim f(z) =1 ou lim f = (. (limite a droite)

z—a™t r—a™t

Si la limite ¢ est finie, on dit que f converge en a. Dans tous les autres cas, on
dit que f diverge.

Remarque. Les notations utilisant — et lim ont une légere différence d’utilisation.
Si f(x) —> { signifie bien que f tend vers £ en a, 'objet lim f(z) n’existe que si
la fonction f a bien une limite en a, et ne peut étre utilisé qu’aprés avoir établi
que f avait une limite!

Une fonction divergeant en un point peut avoir une limite (infinie), ou pas de
limite du tout.

Ezercice 9.1.
Au moyen de cette définition, montrer que

1. 22 — 400, 2.1—>+oo 3.%—>0.

r—+00 T z—ot T—+00

Propriété 2.1

La limite d’une fonction en un point, si elle existe, est unique.

Exercice 9.2.
Démontrer ce résultat.
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2.2 Opérations sur les limites

Propriété 2.2

— Limite de la somme f + g :

. fim.g —o0 | 'eR | +0
lim f

—00 || —o0 | —oo | F.L

CeR || —oo | £+ | +0

4+oo || F.I. | 400 | 400

— Limite du produit fg :

lim 7 Imgl _oleer | 0 |¢eR: | +oo
—00 || +o0 400 F.I —00 —00
¢ e R* || +o0 o 0 o —0
0] F.L 0 0 0 F.I
e R || —oo o 0 7 +00
400 || —00 —00 F.I +00 +00

Soient f et g deux fonctions possédant une limite (finie ou non) en un point a.
Alors, sauf dans les cas marqués F.I., la somme, le produit et I'inverse de ces
fonctions ont une limite en a, indiquées dans les tableaux suivants :

— Limite de l'inverse % :

[limf [ —oco[£eR* [ 00 | 0 | 0" [+o00]|
[ limg || 0 | ¢ | —oo|FL|+o0| 0 |

Remarque. La notation F.I. signifie “Forme Indéterminée”. Cela ne veut pas dire
qu’il n’y a pas de limite (la plupart du temps il y en a une), mais que la simple
connaissance des deux limites de f et g ne suffit pas pour déterminer la limite
finale. Il faut alors continuer I’étude, souvent en réécrivant la formule.
Proposition 2.3

Si f et g sont deux fonctions définies au voisinage de a et b respectivement, si
g?betfﬁﬁ, alorsfog7>€.

Proposition 2.4

Si u est une suite et f une fonction R — R, si u — a et f — ¢, alors
flu) — L.
o0

Proposition 2.5 (croissances comparées)

Pour tous réels strictement positifs a, b, pour tout réel ¢ > 1, on a les croissances
comparées suivantes :

a T T
X

—_— — +ooetq— —> +o0 et
hl((L’)b T—+00 xre r—+o0

— 400.
hl(lL')b T—-+00 >

Ceci implique, entre autres, que xIn(x) — 0.
z—07F
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Proposition 2.6

Limites a connaitre (admises pour 'instant) :

r—1 In(1 1
¢ — let 711( +2) — 1 et n(z)
T xz—0 T z—0 x—1 z—1

2.3 Meéthode pour lever les formes indéterminées

Il convient de remarquer qu’il y a en réalité deux grands types de formes indé-
terminées :

1. Les formes indéterminées de type %-

La question est alors de connaitre le signe de la fonction. Par exemple, s’il
s’agit d’un polyndéme au dénominateur, il est souvent pertinent de le facto-
riser.

2. Les formes indéterminées +00 — oo et 0oco (qui sont souvent sous la forme
ou ).
11 s’agit ici d'un “conflit” entre deux parties antagonistes. Il faut alors sou-
vent factoriser par des termes “principaux” : la partie qui tend le plus vite
vers l'infini, ou vers 0 (ce qui revient souvent a factoriser un polynéme). La

formule se simplifie souvent, ou on fait apparaitre une croissance comparée.

Ezemples.
Levons les formes indéterminées suivantes :

1. Type % : 1fm2 en 1. On factorise le polynéme au dénominateur pour trouver
son signe :
r 1
1—22 (1—2)(1+2)
T 00 —1 1 +0oq
(1—x) + + 0 -
(1+ ) - 0 + +
lij - + -
et donc
1 1 .
= OO,
1—22 (1—2)(1+x) a1
1 1

1—22 (1—2)(14+z) 21t

2. Type +00 — o0 : 22—z en +oo : on factorise par le “plus gros morceau”, 2 :

1
xQ—x:x2(1—> — +00.

x Tr——+00
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3. Type % : TQ_;;‘ en 1 : on factorise les deux polynémes par le facteur (z — 1) :
4z z(r—1)
1—22  (1-2)(1+2)
T 1
_ .
14+2 21 2
4. Type 2 : xz””itf(;) en +oo : on factorise au numérateur et dénominateur par

les termes les plus “forts” :

2
22 +e” e 1+ % , , )
TN = 5 Ty . T00. (trois croissances comparées)
2?2 +In(z) 2?2 14 2@ eoioo
x

5. Méthode particuliere dans le cas d'une différence de deux racines : on fait
apparaitre au numérateur et dénominateur la quantité conjuguée :

WA RWETE V)
Vi1V = Ver—1+/x

_\/ng—\/Ez_ r—1—x

C Vr—14+r V- 1+4x
0.

1
= - H
Vi —1+/x z—=+oo

2.4 Limites et inégalités

Ici, a € R.
Proposition 2.7

Soient deux fonctions f et g, telles que, pour x au voisinage de a, f(x) < g(x).
Si f tend vers {1 et g converge vers 5 en a, alors {1 < /5.

Théoréme 2.8 (des gendarmes)

Soient f, g et h trois fonctions, telles que I'on ait au voisinage de a f < g < h.
Si f et h ont la méme limite ¢ en a, alors g tend aussi vers { en a.

Théoréme 2.9

Soient f, g deux fonctions, telles que I'on ait f(z) < g(x) au voisinage de x.

— Sif — +00, alors g — +00,

— si g —» —o0, alors f — —o0.
a a

Théoréme 2.10 (limite monotone — fonctions)

Toute fonction f monotone sur un intervalle de R admet une limite aux bornes
de cet intervalle, et une limite finie a droite et a gauche en tout point de cet
intervalle.
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3 Hors-programme : Asymptotes et branches in-
finies

Définition 3.1 (asymptotes verticales)

Soit f une fonction définie au voisinage d’un réel a. Si la limite (a droite ou a
gauche) de f en a est infinie, alors le graphe Cy de f a une asymptote verticale
en a.

Définition 3.2 (asymptotes horizontales)

Soit f une fonction définie au voisinage de i = +o0o. Si f — ¢ € R, alors le
graphe Cy de f a une asymptote horizontale en i d’équation y = .

Définition 3.3 (directions asymptotiques)

Soit f une fonction définie au voisinage de i = +o00o, de limite infinie.
— Si @ — 0, alors le graphe Cy de f a une branche parabolique en i de
djrectioa}lﬁng.
— Si @ — a € R*, alors le graphe Cy de f a une direction oblique en %
de pentaéi;.
) JEACI +oo0, alors le graphe Cy de f a une branche parabolique en ¢

T i

de direction (Oy.

Définition 3.4 (asymptotes obliques)

Soit f une fonction définie au voisinage de i = +o00. Si f(x) — (ax +b) — 0,
T—1

alors le graphe Cy de f a une asymptote oblique en ¢ d’équation y = ax + b.

U G

FIGURE 9.1 — Asymptote FIGURE 9.2 — Asymptote FIGURE 9.3 — Asymptote
verticale horizontale oblique

~—

FIGURE 9.4 — Direction FIGURE 9.5 — Direction FIGURE 9.6 — Direction
parabolique (Ox parabolique (Oy oblique
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Remarque. Si une fonction a une asymptote oblique, elle a une direction oblique.
L’inverse n’est pas vrai.

Méthode (comportement asymptotique d’une fonction).
Pour étudier le comportement asymptotique (aussi appelé “branches infinies”)
d’une fonction :

1) On identifie les bornes de son intervalle de définition.

2) Pour chaque borne finie, on calcule la limite a gauche et a droite de f,
lorsqu’elles existent.

— Si la limite est finie, f est prolongeable par continuité (cf section 4.2).
— Si la limite est infinie, on a une asymptote verticale.
3) Pour chaque borne infinie, on calcule la limite de f.

(a) Si la limite est finie, on a une asymptote horizontale.
f(=)

x

(b) Si la limite est infinie, on calcule la limite de

B AC RN 0, on a une branche parabolique de direction (Oz.

z)

s

— si — =00, on a une branche parabolique de direction (Oy.

& ‘

~

— si 1% 5 4, on calcule la limite de f(z) — ax.

— 81 f(x) —ar — b € R, on a une asymptote oblique d’équation
y = ax +b.

— si f(x) —ax — %00, la courbe a une direction oblique de pente
a.

Ezercice 9.3.
Etudier le comportement asymptotique des deux fonctions suivantes :

4 Continuité

4.1 Continuité en un point

Définition 4.1 (continuité en un point)

Soit f une fonction définie au voisinage d’un réel a € 9y appartenant a I'en-
semble de définition de f. On dit que f est continue en a si f admet une limite
finie en a. Cette limite vaut alors obligatoirement f(a).

La fonction f est continue a droite en a si lim f(x) = f(a), continue a

z—at
gauche si lim f(x) = f(a).
Tr—a~

Théoréme 4.1

Une fonction est continue en un point si, et seulement si, elle est continue a
gauche et a droite en ce point.
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4.2 Prolongement par continuité

Théoréme 4.2 (prolongement par continuité)

Soit f une fonction définie au voisinage d’un réel a, sauf en a. Si f admet une
limite réelle ¢ en a, alors la fonction g, définie sur Py U {a} par

oz) = {f(x) sixz € Dy

14 siz=a

est continue en a.

Cette fonction est appelée prolongement par continuité de f en a.

On peut de méme parler de prolongement par continuité a droite ou a
gauche.

4.3 Continuité sur un intervalle
Définition 4.2 (continuité sur un intervalle)

On dit qu’une fonction f est continue sur un intervalle I si elle est continue
en tout point de I (potentiellement seulement a droite ou a gauche aux bornes
gauche et droite si elles sont inclues).

Théoréeme 4.3

Les fonctions polynomiales, rationnelles, valeur absolue, logarithme, exponen-
tielle et puissances sont continues sur leurs intervalles de définition.

Remarque. La fonction partie entiere n’est pas continue sur R, mais elle I’est sur
tout intervalle [n,n + 1[, n € Z. Elle est aussi continue & droite sur R.

Théoréme 4.4

Si f et g sont deux fonctions continues sur un intervalle I, alors f 4+ g et fg
sont continues sur I. Si de plus g ne s’annule pas sur I, % est aussi continue

sur I.

Théoréme 4.5

Si f est continue sur I, a valeurs dans .J, et si g est continue sur J, alors g o f
est aussi continue sur I.

Définition 4.3

On dit qu’une fonction f est continue par morceaux sur un segment |[a, b] s’il
existe une subdivision finie a = ay < a1 < ... < a, = b telle que les restricitons
de f a chaque intervalle |a;, a;,1[ admettent un prolongement par continuité a
[ai, aH—l]-

On généralise cette définition sur les intervalles infinis, en demandant qu’elle
soit vraie sur tous les segments de I'intervalle.

Exemple.
La fonction partie entiére est continue par morceaux sur R, mais pas x +> % (méme
si on la prolonge en 0, par f(0) = 0 par exemple).
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4.4 Théoreme des Valeurs Intermédiaires
Théoréme 4.6 (des Valeurs Intermédiaires)

L’image d’un intervalle par une fonction continue est un intervalle.

Théoréme 4.7 (T'VI, version équivalente)

Si f est continue sur le segment |a, b], alors, pour tout réel A compris entre f(a)
et f(b), il existe au moins un réel ¢ € [a,b] tel que f(c) = .

Corollaire 4.8

Toute fonction qui change de signe sur un intervalle s’y annule au moins une
fois.

Théoréme 4.9

Si une fonction f est continue sur un segment, f y est bornée et atteind ses

bornes, notées max f et min f.
[a,b] [a,b]

Corollaire 4.10

L’image d’un segment par une fonction continue est un segment.

Théoréme 4.11 (de la bijection monotone)

Une fonction continue et strictement monotone sur un intervalle I forme une
bijection de I dans l'intervalle f(I).

Remarque. Si f est continue et strictement monotone sur |a, b[, et f — ¢, f - d,
a

alors, pour tout réel A entre ¢ et d, ’équation f(z) = A admet une unique solution
dans ]a, b].
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Chapitre 10

Systemes linéaires

1 Définitions et premiéres études

1.1 Définition

Définition 1.1 (systémes linéaires)

On appelle systeme linéaire de n équations a p inconnues tout systéeme de la

forme
11271+ a12T2 + ... Faipr, =0
2171 + A2 2T2 +...+ Q2 pTp = b2
() .
Ap1%1 + ApoTy + ...+ ppTp = by,

avec (a; j)1<i<ni<j<p €t (bi)1<i<n deux familles de réels.

— Lesy,...,x, sont les inconnues du systéme, les (a; ;)1<i<ni<j<p €t (bi)1<i<n,
les coefficients du systéme.

— La partie gauche s’appelle le premier membre du systéme, celle a droite,
le second membre.

— Résoudre le systéme signifie trouver ’ensemble des solutions (1, .. ., y,)
vérifiant les équations du systéme.

— Deux systémes sont dit équivalents s’ils ont les mémes solutions.

1.2 Systemes particuliers

Définition 1.2 (systémes de Cramer, systémes homogénes)

— Un systéme linéaire est dit de Cramer s’il admet une unique solution. Il
est dit incompatible s’il n’en a aucune.

— Un systéme dont le second membre est nul est dit homogene.

— Un systéme est dit carré s’il a autant de lignes que d’inconnues.

Remarque. Un systéme homogene a toujours au moins une solution : le p-uplet nul
(0,0,...,0).
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Définition 1.3 (systémes triangulaires)

Un systeme est dit triangulaire quand ses coefficients vérifient a;; = 0 pour
tout 1 > 7.
I1 se présente alors sous la forme

Q1171 -+ a12T2 + ... + a1nTn + ... + a1 pTy = bl
A2 22 + ... + A2 nTn + ...+ A pTp = bg
Ty + ... + GnpTp, = by.

Les systemes triangulaires sont faciles a résoudre par substitution. Si les coeffi-
cients diagonaux sont tous non nuls (et qu’il y a moins de lignes que d’inconnues),
il y a toujours des solutions.

Proposition 1.1

Un systeme triangulaire carré (qui a autant d’équations que d’inconnues) est
de Cramer si, et seulement si,tous ses coefficients diagonaux sont non nuls.

2 Opérations sur les lignes d’un systéme

On note L; la teme ligne d’un systéme.

2.1 Opérations élémentaires sur les lignes
Proposition 2.1

Les opérations suivantes peuvent étre effectuées sur un systéme :
1. Echange des deux lignes i et j : L; <+ L,
2. Multiplication d’une ligne par un réel non nul : L; - aL;,
3. Ajout d’un multiple d’une ligne a une autre : L; < L; + \L;.

Sia # 0 et i # j, le systéme obtenu est équivalent au premier.

Ezercice 10.1.
Démontrer cette proposition. On pourra montrer que ces opérations sont réver-
sibles.

Remarque. En utilisant les opérations élémentaires (et uniquement celles-1a), on
s’assure que 1’on garde des systemes équivalents : les solutions trouvées a la fin sont
exactement celles du systeme de départ. Si l'on perd I’équivalence a un moment, on
devra vérifier que les solutions trouvées sont bien solutions du premier systeme...
ce qui est une perte de temps!

Toute résolution de systéme devra s’appuyer sur ces opérations. Pour s’assurer
de ne pas perdre les équivalences, il est conseillé de n’effectuer qu’'une seule opé-
ration a la fois, mais cela peut devenir vite fastidieux... Il est possible de modifier
plusieurs lignes a la fois en utilisant la derniere regle (3), a condition d’utiliser
toujours la méme ligne, qui elle ne sera pas modifiée.
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2.2 Reésolution par méthode du pivot de Gauss

Méthode (Pivot de Gauss).
Pour résoudre un systeme linéaire :

1. (a) On choisit une ligne avec le coefficient de z; non nul le plus simple
(premier pivot), et on I’échange avec la premiére ligne.
L, & L.

(b) On utilise alors cette nouvelle premiere ligne pour éliminer 'inconnue
x1 des toutes les lignes suivantes :

Lj <— aL]’ + )\Ll

(¢) On ne touche plus a la premieére ligne jusqu’a la fin.

2. (a) On recommence en trouvant la ligne (autre que la premiere) qui a le
coefficient de x5 non nul le plus simple (second pivot), et on place cette
ligne en seconde position.

(b) On utilise cette ligne pour éliminer l'inconnue x5 de toutes les lignes
suivantes.

3. On continue jusqu’a ce qu’on obtienne un systeme triangulaire, que 1’on sait

résoudre facilement.
Ezercice 10.2.
Comment montrer rigoureusement que cette méthode finit toujours par donner un
systeme triangulaire équivalent ?

2.3 Bilan
Proposition 2.2

Soit () un systéme linéaire de n équations a p inconnues. Trois cas sont
possibles :

— soit () n’admet aucune solution, il est dit incompatible,
— soit () admet une unique solution, il est dit de Cramer,

— soit () admet une infinité de solutions.

Remarque. Un systéeme homogene n’est jamais incompatible, et est de Cramer ssi
(0,0,...,0) est son unique solution.

L’ensemble des solutions d’un tel systeme peut toujours s’écrire comme une
somme de solutions particulieres, multipliées par des coefficients quelcoonques (une
combinaison linéaire, cf. chapitre 20).

Proposition 2.3

Soit () un systéme linéaire de n équations a n inconnues. Ce systéme est de
Cramer ssi la méthode de Gauss fait apparaitre n pivots non nuls.

Remarque. Le fait qu'un systéme carré soit de Cramer ou non ne dépend que
des coefficients (a; ;). En revanche, ses solutions et leur nombre (s’il n’est pas de
Cramer), dépendent du second membre.
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Théoréme 2.4

Un systéeme carré est de Cramer, si, et seulement si, son systéme homogene
associé est de Cramer.




Chapitre 11

Matrices

1 Généralités

1.1 Définitions

Définition 1.1 (matrices)

Une matrice a n lignes et p colonnes est un tableau de réels de la forme

a1 Ar2 ... A1 ... Qip

Q21 A22 ... Q25 ... Q2p
A=

;1 Qi1 .. Qi ... Q4p

Qp1 Gp2 ... Apj ... Qpp

Les réels a; ; sont appelés les coefficients de la matrice A.

On note aussi la méme matrice A = (a; j)1<i<n.
I<j<p

Définition 1.2

L’ensemble des matrices a n lignes et p colonnes est noté .4, ,(R).

— Sin =1, A est une matrice ligne.
— Sip =1, A est une matrice colonne.

— Sin =p, A est une matrice carrée.

Si les a; j sont tous nuls, A est la matrice nulle de 4, ,(R).

Définition 1.3

Deux matrices sont égales ssi leurs coefficients sont égaux.
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1.2 Opérations sur les matrices

Addition et multiplication par un réel

Définition 1.4 (somme matricielle)

Soient A et B € M, ,(R) deux matrices de méme taille. On apelle somme de
A et B la matrice C € M, ,(R), notée A+ B, dont les coefficients sont :

Vi<i<n,1<j<p, cij=ap;+b

Propriété 1.1

L’addition de matrices a les méme propriétés que I'addition sur R : elle est
associative et commutative. La matrice nulle est I'élément neutre.

Remarque. On ne peut additionner que deux matrices de méme taille!

Définition 1.5 (multiplication scalaire)

Soient A € M, ,(R) un matrice et A un réel. On apelle produit de A par A la
matrice C' € M, ,(R), notée X\.A ou NA, dont les coefficients sont :

Vi<i<n1<j<pey; =N,

Propriété 1.2

La multiplication par un réel est compatible avec la multiplication réelle, dis-
tributive sur I'addition matricielle, et distributive sur I'addition réelle : pour
tous A, u € R, et pour toutes matrices A, B € A4, ,(R)

(M)A = A(pA)
AMA+ B)=)A+ B
(A4 p)A = A+ pA.
Propriété 1.3
Pour toute matrice A, 0.A = A — A =0 (la matrice nulle).

Produit matriciel
Définition 1.6 (produit matriciel)

On peut définir le produit de deux matrices A et B si la seconde a le méme
nombre de lignes que la premiére, de colonnes. Si A € #,, ,(R) et B € 4, ,(R),
on définit le produit de A par B la matrice C € #, ,(R), notée A x B ou AB,
dont les coefficients sont :

p
VISi<n1<j<pe;= by
k=1
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Remarque. Attentiona ne pas confondre le produit, ou multiplication matriciel(le)
avec la multiplication par un scalaire vue précédemment. Il s’agit de deux opéra-
tions tres différentes, qui n’ont en commun que leur nom de multiplication (atten-
tion, le terme “produit scalaire” désigne encore une autre opération!).

Si la multiplication d’une matrice par un réel (le “scalaire”) est toujours bien
défini, le produit de deux matrices ne ’est pas forcément, méme si elles sont méme
taille. Il convient a chaque fois de bien vérifier la compatibilité des lignes et des
colonnes.

Propriété 1.4

Le produit matriciel vérifie toutes les propriété du produit sur R, sauf la com-
mutativité :

1. il est associatif : A(BC') = (AB)C = ABC,

2. il est distributif sur I'addition : (A + B)C' = AC + BC et A(B+ C) =
AB + AC,

3. il commute avec la multiplication scalaire : \(AB) = A(AB).

Remarque. Le produit matriciel n’est PAS commutatif! En général, si A et B
sont deux matrices quelconques, AB # BA (elles peuvent méme avoir des tailles
différentes, voire 'un des produit peut étre possible alors que I'autre ne l'est pas).
Siona AB = BA, on dit que A et B commutent (et elles sont alors nécessairement
carrées, et de méme taille).

Transposée d’une matrice

Définition 1.7 (transposée)

Soit A € M, ,(R), on définit la matrice transposée de A C' € 4, ,(R), notée
A, la matrice dont les coefficients sont :

Vi<i<pl<j<ne;=aj;.

Remarque. Si X,Y sont deux matrices colonnes de méme taille, ‘XY est un réel
(et c’est d’ailleurs ce fameux produit scalaire).

Propriété 1.5

Pour toutes matrices A et B compatibles, et tout réel X,

' (f4) = A
M+B)tA+@
"(AA) =
'(AB) = th
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2 Matrices carrées

2.1 Définitions et premieres propriétés

Définition 2.1 (matrices carrées)

Une matrice carrée est une matrice qui a autant de lignes que de colonnes. Ce
nombre est appelé 'ordre de la matrice.

L’ensemble des matrices carrées d’ordre n est noté #,(R).

Les coefficients diagonaux d’une matrice carrée A sont les a;;, i € [1,n].

Propriété 2.1

L’ensemble des matrices carrées d’ordre n est stable par addition et produit
matriciel, ainsi que par multiplication par un scalaire : si A et B sont carrées de
méme ordre n, et A\ € R, alors A+ B, AA et AB existent et sont aussi carrées
d’ordre n.

Définition 2.2 (matrices particuliéres)

Soit A € M, (R) une matrice carrée. On dit que A est
— triangulaire inférieure si Vi < j a;; = 0,
— triangulaire supérieure si Vi > j a; ; = 0,
— diagonale si Vi # j a;; = 0,

— scalaire si elle est diagonale, et que tous ces coefficients diagonaux sont
égaux,

— symétrique si ‘A = A,

— antisymétrique si ‘A = —A.

Remarque. Attention, une matrice peut tres bien étre a la fois carrée et triangulaire,
méme si cela peut étre curieux la premiere fois qu’on I'entend... Ces deux notions
ne font pas référence au méme phénomene.

Propriété 2.2

Les ensembles des matrices triangulaires supérieures, inférieures, diagonales,
scalaires, symétriques, antisymétriques, sont stables par addition matricielle et
multiplication scalaire. Elles sont aussi stables par produit matriciel, sauf les
symétriques et antisymétriques.

Remarque. Les coefficients diagonaux d’une matrice antisymétrique sont nuls.
Si A est une matrice scalaire d’ordre n, avec A la valeur de ses coefficients
diagonaux, pour toute matrice A € 4, ,(R), A x A= \.A.

Exercice 11.1.
Que dire d’une matrice a la fois symétrique et antisymétrique ?
Définition 2.3

La matrice identité (ou unité) de .#,(R), notée I, (ou simplement I), est la
matrice scalaire dont les coefficients diagonaux sont égaux a 1.
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Propriété 2.3

La matrice identité est neutre pour la multiplication, i.e.

VA € M,(R) IA = Al = A.

Remarque. Les matrices scalaires d’ordre n sont de la forme AI. Ce sont les seules
qui commutent a toutes les matrices (de méme ordre, bien siir).

2.2 Puissances d’une matrice carrée
Définition 2.4

Soit A une matrice carrée d’ordre n. On pose par convention A° = I,,, et , si
p € IN*, on définit par récurrence AP = AP~LA.

Théoréme 2.4 (formule du binéme)

Soient A et B deux matrices qui commutent (AB = BA). Alors

(s my =3 (F)aes

k=0 \P

Remarque. Les puissances d’'une méme matrice commutent entre elles !

Ezemple.
Calculer la puissance 7ieme de

S O W
S W

1
1
3
Calculer plus généralement sa puissance pieme.

3 Matrices inversibles

3.1 Résultats généraux

Définition 3.1 (matrices inversibles)

Un matrice carrée A € M, (R) est dite inversible s’il existe une matrice B €
M, (R) telle que
AB = BA=1,.

La matrice B, si elle existe, est unique, et est appelée inverse de A, notée A",

FEzercice 11.2.
Démontrer 'unicité de l'inverse.

Remarque. Si A est inversible, et AB = AC, alors B = C', de méme si BA = CA...
mais uniquement dans ce cas. On ne peut “simplifier & gauche et a droite” qu’avec
des matrices inversibles.
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Propriété 3.1

— A~ est inversible, et

1

— pour tout p € IN, AP est inversible, et

cet inverse est noté A7P.

— la transposée de A est inversible, et

Théoréme 3.2

Al =B.

Si A et B sont deux matrices carrées inversibles, on a :

(A "= 4,

— pour tout A € R*, AA est inversible, d’inverse

A)TH= AT
( ) )\ ?
— le produit AB est inversible, et

(AB)™' = B4,

(A7t = (a7),

(4)" =" (a7,

Si une matrice carrée A admet une inverse a droite (resp. a gauche), i.e. une
matrice B telle que AB = I, (resp BA = I,), alors elle est inversible, et

3.2 Représentation matricielle d’un systeme, calcul de I’in-

verse

Définition 3.2 (représentation matricielle d’un systéme linéaire)

rl Y1
SiA=(aj;), X=|:|etY=|:[,alors
xp Un

1,121 + a1,2T2 +

AX — Y (12,11’1.4— a2,2%2 +

Ap,1T1 + Ap 2T +

ne s’intéresse ici qu’au premier membre...

R CZLp.’L‘p

R a27p$p

c T anpTy

= by.

La matrice A est appelée la matrice associée au systéme linéaire. Notez qu’on
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Théoréme 3.3

Si A € #,(R) est une matrice, on a équivalence entre :
1. A est inversible,
2. pour tout Y € #,(R), le systéeme AX =Y est de Cramer,
3. le systéeme AX = 0 admet une unique solution, la colonne nulle.

Dans ce cas, pour tout Y € #,(R), le systeme AX =Y a une unique solution,
donnée par X = A'Y.

Remarque. Ceci consitue ue méthode simple pour déterminer si une matrice est
inversible et trouver son inverse : il suffit de résoudre le systeme linéaire associé
avec un second membre quelconque. La solution générale (si elle est unique) donne
le produit de I'inverse de la matrice avec le vecteur du second membre.

Corollaire 3.4

Si A et B deux matrices carrées telles que AB = I,,, alors A et B sont inver-
sibles, et A~! = B.

Ezercice 11.3.
Déterminer si les matrices suivantes sont inversibles, et en donner I'inverse le cas
échéant :

1 2 -1 1 2 3 3 0 4
A=|(2 2 1 |,B=|-1 0 1|,C=[4 -1 4
-1 -1 1 1 11 -2 0 =3
3.3 Cas particuliers
Proposition 3.5
Une matrice diagonale Diag(\y, ..., \,) est inversible ssi ses coefficients diago-
naux sont tous non nuls, et son inverse est alors Diag(/\%, cee i)

Proposition 3.6

Une matrice triangulaire est inversible ssi tous ses coefficients diagonaux sont
non nuls.

Proposition 3.7 (déterminant 2 X 2)

Une matrice 2 X 2 (Z 2) est inversible ssi ad — bc # 0.

3.4 Polynéme annulateur

Définition 3.3 (polynéme annulateur)

On dit qu'un polynéme P € R[X] est un polyndéme annulateur d’une matrice
M si P(M) = 0.
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Proposition 3.8

Soit A une matrice, et P un polynéme annulateur de M tel que P(0) # 0.
Alors A est inversible.

Proposition 3.9

Si A™ =0 (on dit que A est nilpotente), A ne peut pas étre inversible.

Ezercice 11.4.
Démontrer ce résultat.

Ezercice 11.5.
Calculer C? de I'exercice 11.3 et retrouver son inverse.



Chapitre 12

Graphes

1 Définition et vocabulaire

1.1 Vocabulaire
Définition 1.1 (Graphes)

On appelle graphe tout ensemble de sommets reliés par des arétes.

Ces arétes peuvent étre orientées ou non : dans un graphe orienté, une aréte
menant d’'un sommet a a un sommet b sera distincte d’une aréte menant du
sommet b au sommet a.

Un graphe ot tout sommet est relié a tous les autres est dit complet.

Les arétes d’un graphe peuvent aussi comporter un poids (un réel positif).
On dit alors que le graphe est pondéré.

Une aréte reliant un sommet a lui-méme est appelée une boucle.

Deux sommets reliés par une aréte sont dits adjacents. Un sommet qui n’est
relié a aucun autre est dit isolé.

B——D ED 7ooa 3
. RN
1.1\ / 7
d——c¢
A—C F 1
FIGURE 12.1 — un graphe non orienté FIGURE 12.2 — orienté et pondéré
~ 1 N
6 2
| |
5 3
~ 4 e

FIGURE 12.3 — un graphe complet
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1.2 Ordre, degré et formule d’Euler

Définition 1.2 (ordre et degré d’un graphe)

L’ordre d’un graphe est le nombre de sommets qu’il contient.
Le degré d’un sommet est le nombre d’arétes connectées a ce sommet.

Remarque. Une boucle compte donc pour 2 dans le calcul du degré d’un sommet.

Théoréme 1.1 (Formule d’Euler)

Soit ¢ est un graphe d’ordre n, comprenant p arétes et Sy, ... S, sesn sommets.
Notons o; le degré du sommet S;. On a alors

Z o; = 2p.
k=1

1.3 Chemins et graphes eulériens
Définition 1.3

On appelle chemin (ou chaine) dans un graphe, toute suite de sommets si, . . . , Sy,
tels que chaque paire consécutive de sommet est reliée par une aréte (dans le
bon sens si le graphe est orienté).

Si le graphe est pondéré, le poid du chemin est la somme des poids de
chaque aréte le constituant.

Un chemin dont le dernier sommet est le méme que le premier, est dit fermé.

Un chemin fermé dans lequel chaque aréte est visitée une seule fois est
appelé un cycle.

Définition 1.4 (graphe connexe)

Un graphe est dit connexe si n’importe quel sommet est relié a n'importe quel
autre par une chaine.

Définition 1.5 (chaine et graphe eulérien)

Une chaine eulérienne est une chaine qui contient, une et une seule fois, toutes
les arétes d’un graphe. Si elle est fermée, c¢’est un cycle eulérien.

Un graphe eulérien est un graphe pour lequel il existe un cycle eulérien. S’il
n’existe qu’un chemin eulérien, ont dit qu’il est semi-eulérien.

Théoréme 1.2

Soit G un graphe connexe.
— ( est eulérien si, et seulement si, tous ses sommets sont de degré pair.
— ( est semi-eulérien si, et seulement si, tous ses sommets sont de degré
pair, sauf au plus deux.

Deux sommets sont reliés par une chaine eulérienne si, et seulement si,
ce seont les deux seuls sommets de degré impair du graphe.
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Ezercice 12.1.
L’origine du probleme des graphes eulériens est attribuée au mathématicien Leon-
hard Euler (1707-1783), qui aurait répondu a la question suivante : est-il possible
d’effectuer une promenade a Konigsberg en passant exactement une fois sur chaque
pont de la ville ?

Saurez-vous répondre a cette question ?

E 4 v’ 1
| KoNINGSBERGA g |

FIGURE 12.4 — Carte de Konigsberg en 1652

1.4 Algorithme de Dijkstra

Méthode (algorithme de Dijkstra).
Pour trouver le plus court chemin reliant deux sommets s; a s; dans un graphe
pondéré G :
1. Préparer un tableau dont les colonnes sont étiquetées par les sommets de
G, plus une colonne supplémentaire (qui servira a mémoriser le parcours
effectué).

2. Replir la premiere ligne du tableau en indiquant, sous le sommet de départ s;,
le poids 0, et un poids oo sous les autres. Dans la derniere colonne, indiquer
que l'on est au sommet s;, a distance 0.

3. Remplir les colonnes au fur et a mesure selon les regles suivantes :

(a) ajouter, pour chaque sommet accessible depuis le sommet courant indi-
qué dans la derniere colonne, le poids de I'aréte correspondante, plus la
distance déja parcourue pour atteindre le sommet courant. On y figurera
aussi le sommet d’origine.

(b) reporter les distances de la ligne précédente si elles sont inférieures.

(c) griser la colonne du sommet courant.
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(d) choisir pour sommet courant le sommet dont la distance est minimale.

Exemple.

Pour le graphe ci-dessous, la recherche du plus court chemin entre A et F peut
s’effectuer ainsi :

5% p A[B[CID[E]|F[CG] |

3 92 6 9 0]oo|oo| oo | oo | co |00l A0)
/ \ / \ X|3A|1A| 0 | 0 | 0 |TA| C(1)
7 8 X[3A| X | o |10C| o |6C | B(3)

A G F X| X |X|11B|10C| ~ |5B| G(5)
L5 43 X| X | X |11B|9G | < | X || E(9)

X| X |X|11B| X |12E| X | D(11)

c—2 g X x| x| x| x |128| x| F12)

On trouve finalement que F est a distance 12 de A, par le chemin A-B-G-E-F.

2 DMatrices et Graphes

2.1 Matrice d’adjacence

Définition 2.1 (longueur d’un chemin)

On appelle longueur d’un chemin, le nombre d’arétes qui le composent.

La distance entre deux sommets est la longueur du plus court chemin les
reliant. S’ils ne sont reliés par aucun chemin, leur distance est infinie.

Le diametre d’un graphe est la plus longue distance (non infinie) au sein de
ce graphe.

Définition 2.2 (matrice d’adjacence)

La matrice d’adjacence d’un graphe d’ordre n est la matrice carrée d’ordre n
A pour laquelle le coefficient a;; compte le nombre d’arétes reliant (dans cet
ordre) les sommets s; et s;.

Propriété 2.1

La matrice d’adjacence d’un graphe non orienté est symétrique.

Théoréme 2.2

Si A est la matrice d’adjacence d’un graphe G, pour tout d € N, M = A4
compte le nombre de chemins reliant les sommets du graphe. le coefficient m; ;
compte ainsi le nombre de chemins reliant les sommets s; a s; (dans cet ordre
si le graphe est orienté).

Théoréme 2.3

Soit G un graphe orienté d’ordre n. G est connexe si, et seulement si, I + M +
...+ M"! a tous ses coeflicients strictement positifs.
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Remarque. Dans le cas de graphes pondérés, il est possible de définir la matrice
d’adjacence du graphe en faisant figurer dans la matrice les poids des différentes
arétes.

Dans ce cas, les puissances de la matrice ne comptent plus le nombre de che-
mins, mais la somme des poids des chemins possibles entre deux sommets.

2.2 Chaines de Markov
Définition 2.3 (Chatne de Markov)

On appelle chaine de Markov toute expérience aléatoire o1l un systéme change
aléatoirement d’états (les différents états formant un systéme complet d’évé-
nements Fi, ..., E,), lors d’une sucession d’expérience, de sorte que I'état du
systeme a l’issue de I'instant n ne dépende que de son état a l'instant n — 1.

Définition 2.4 (graphe probabiliste)

Considérons une expérience de Markov, d’états A, B, . ... On a ainsi, pour tout
n € N, les événements A,,, B, ... désignant « a I'instant n, le systéme est dans
l'état A, B, ... ».

On peut représenter cette expérience sous la forme d’un graphe orienté et
pondéré, dont les sommets sont les états A, B, .. ., et les arétes entre deux états
étant pondérées par la probabilité de transition entre ces états. L’aréte entre
I'état A et B, par exemple, sera pondérée par P4, (B,11).

On appelle matrice de transition de cette expérience la matrice d’adjacence
(pondérée) du graphe associé.

Théoréme 2.4

Si A, B, ... forment les états d’une chaine de Markov, de matrice de transition
K, le vecteur état

P(Ay)
P, = | P(Bn)
vérifie la relation de récurrence
Pup = "'KP,,
et on a donc, pour tout n €y N
P, ="'K"P,.

3 Application aux réseaux sociaux

Il est souvent utile de représenter un réseau social par un graphe, chaque som-
met étant un utilisateur, et chaque aréte représentant un lien d’amitié, ou d’abon-
nement, par exemple. On remarquera que selon le réseau, le graphe peut étre
orienté ou non.
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Définition 3.1 (centralité)

Soit G un graphe non orienté d’ordre n, de sommets s, ..., s,, de degrés res-
pectifs dy, ..., d,.

On appelle degré de centralité du sommet s; la quantité T
n _—

Dans le cas d’'un graphe orienté, la définition est similaire, mais il faut
distinguer les arétes entrantes et sortants, ce qui donne deux degrés de centralité

(entrant et sortant).

Définition 3.2 (intermédiarité)

Soit G un graphe d’ordre n, de sommets si,...,s,. On appelle degré d’inter-
médiarité du sommet s, le nombre de plus cours chemins entre deux sommets
passant par sy.

Sin; j désigne le nombre de plus court chemin entre les sommets s; et s;, et
n; ;(sx) le nombre de plus courts chemins entre s; et s; passant par sy, le degré
de centralité de s; est ainsi

5 nij(8k)

1<ij<n g
i,5#k

Remarque. Pour calculer le degré d’intermédiarité d'un sommet, le plus pratique
est souvent de renseigner dans un tableau le rapport, pour chaque paire de som-
mets, entre le nombre de plus courts chemins entre ses deux sommets passant par
s; relativement au nombre total.
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Chapitre 13
Dérivabilité

1 Dérivabilité en un point

1.1 Définitions

Définition 1.1 (taux d’accroissement)

Soit f une fonction définie sur un intervalle [a,b]. On appelle taux d’accroisse-
f(b) = fla)
—

ment de f entre a et b le rapport T¢(a,b) = )

Propriété 1.1 (équation de corde)

On appelle corde du graphe d’une fonction f entre deux points a et b la droite
reliant les points (a, f(a)) et (b, f(b)). Son équation est y = Ty(a,b)(x —a) +
f(a).

Définition 1.2 (dérivabilité en un point)

Soit f une fonction définie au voisinage de a. On dit que f est dérivable en a
lorsque le taux d’accroissement entre a et un point x T¢(a, x) a une limite finie
quand x — a. Cette limite est appelée nombre dérivé de f en a, noté f'(a).

Remarques.
— Pour que cette limite soit finie, il faut que f(x)— f(a) — 0, c’est-a-dire que
r—a
f est continue en a. Une fonction dérivable en un point y est nécessairement
continue.

— 11 est souvent judicieux d’écrire le taux d’accroissement sous la forme sui-
vante, et d’en prendre la limite en h — 0 :

fla+h)— f(a)

Ty(a,a+h) = . :

Ezercice 13.1.
Montrer que les fonctions suivantes sont dérivables en 1 : z +— 22, x %, T /T
Sont-elles dérivables en 07

Ezercice 13.2.
Montrer (enfin) les limites de la proposition 2.6 du chapitre 9.
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Définition 1.3

Soit f une fonction définie au voisinage de a. On dit que f est dérivable a
droite (resp a gauche) en a lorsque le taux d’accroissement de f entre a et un
nombre x a une limite a gauche (resp. a droite) finie quand x — a. Cette limite
est appelée nombre dérivé de f a droite (resp. a gauche) en a, noté f)(a) (resp.

fo(a)).
Théoréme 1.2

Une fonction définie au voisinage d’un point a est dérivable en un point a ssi
elle est dérivable a gauche et a droite en a, et que les dérivées coincident.

Théoréme 1.3 (tangente a la courbe)

1. Si f est dérivable en a, la courbe €} de f admet une tangente au point
(a, f(a)) d’équation

y=[f(a)(x —a)+ f(a).

Le coefficient directeur de la tangente est donc f'(a).

2. Si f est simplement dérivable a droite (resp. a gauche) de a, sa courbe
admet une demi-tangente, de la méme équation (en remplagant f' par f},
ou f).

3. Si f n’est pas dérivable en a, mais son taux d’accroissement y admet
une limite infinie, la courbe de f admet une tangente verticale au point

(a, f(a)).

Remarque. Si f est dérivable a droite et a gauche en a, mais ces dérivées ne sont
pas égales, le point (a, f(a)) de la courbe est dit "anguleux".

FIGURE 13.1 — tangente FIGURE 13.2 — tangente verticale

FIGURE 13.3 — point anguleux

Ezercice 13.3.
Soit f : x +— v/1 — 22, Est-elle dérivable en —17 07 17 Quelles y sont les tangentes
de son graphe ? Reconnaissez-vous cette courbe ?
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1.2 Développement limité a ’ordre 1

Théoréme 1.4 (développement limité a l’ordre 1)

Soit f une fonction dérivable sur un intervalle I, et un point xq € I. Alors il
existe une fonction ¢ : I — R vérifiant :

e(zr) — 0

Tr—x0

Vo € 1 f(z) = f(zo) + f'(20)(z — o) + (x — @0) ().

On écrit souvent ce développement limité en xq en écrivant x = xq + h, avec h
au voisinage de 0 :

Vh f(zo+ h) = f(zo) + hf (zo) + he(h).

Remarque. Ce théoreme est une extention du théoreme des tangentes (on reconnait
I'équation de la tangente dans la partie droite de la formule). Ce théoréme donne
simplement un contréle plus fin du terme d’erreur, qui est négligeable* devant
r — Xg-

Théoréme 1.5

Soit f une fonction définie sur un intervalle I, et un point xy € I. S’il existe
une fonction € : I — R et un réel a vérifiant :

e(z) = 0
Vo €1 f(x) = f(xo) + alz — o) + (x — mo)e (),

alors f est dérivable en xqg et f'(xg) = a.

2 Dérivabilité sur un intervalle

2.1 Définitions

Définition 2.1 (fonction dérivée)

Soit f une fonction définie sur un intervalle ouvert I. On dit que f est dérivable
sur [ si elle est dérivable en tous points de I. L’application

fl'e I — R
x — f(z)

est appelée fonction dérivée de f.

x. cf. cours de seconde année.
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Définition 2.2

L’ensemble des points ou une fonction f est dérivable est appelé I'ensemble de
dérivabilité de f.

Théoréme 2.1

Les fonctions polynomiales, rationnelles, exponentielles, logarithme, et puis-
sance sont dérivables sur leurs ensembles de définition.

2.2 Dérivées usuelles et opérations
Théoreme 2.2

Si u, v sont des fonctions dérivables sur I, A € R, alors u + v, A\u, uv sont
dérivables sur I. Si v ne s’annule pas sur I, alors % et  le sont aussi.
On a les formules suivantes :

a 0 z® | az®! v e’
a® | In(a)a” T ﬁ In(z) | <

Ezercice 13.4.
Etudier la dérivablilité de la fonction f : z +— 1 — e V2.

2.3 Dérivation et composition

Théoréme 2.3 (dérivée d’une composée)

Si f est dérivable sur I, a valeurs dans J, et si g est dérivable sur J, go f est
dérivable sur I et

Vo el (go f)(z) = f(z) x g (f(x)).

Théoréme 2.4 (dérivée de la réciproque)

Soit f une fonction bijective de I sur J, et dérivable. Alors, pour tout y € J,

si f’ ne s’annule pas en f~'(y), la fonction réciproque f~! est dérivable en y,

et
1

U)W = mgy

Ezercice 13.5.
Démontrer la formule du théoréeme 2.4 au moyen du théoreme 2.3.
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2.4 Dérivation et sens de variation
Théoréme 2.5 (variations et dérivée)

Soit une fonction f dérivable sur un intervalle I.
— Si pour tout x € I, f'(x) > 0, alors f est croissante sur I.

— Si pour tout x € I, f'(x) <0, alors f est décroissante sur I.

NV

, alors f est strictement décroissante sur I.

(z)
— Si pour tout x € I, f'(z)
— Si pour tout x € I, f'(z)

(z)

0,
0, alors f est strictement croissante sur 1.
0
0

— Si pour tout x € I, f'(x , alors f est constante sur I.

Remarque. Ces résultats restent vrais lorsque les hypotheses sont vérifiées sauf en
un nombre fini de points.

Théoréme 2.6

Soit une fonction f dérivable sur un intervalle ouvert I, et a € I. f admet un
extremum local en a si, et seulement si, f' s’annule et change de signe en a.

2.5 Inégalités des accroissements finis

Théoréme 2.7 (inégalité des accroissements finis)

Soit f une fonction dérivable sur un intervale I. S’il existe un réel k tel que
Ve el, |f'(z)| <k,

alors

(a,b) € I%, [f(b) — f(a)| < K|b —al.

Ezercice 13.6.
L’accélération maximale (i.e. la dérivée de sa vitesse) quun corps humain (non
entrainé) est capable de soutenir pendant une minute est d’environ 50m/s? (a
condition qu’elle ne soit pas vers le haut). Quelle est la vitesse maximale qu’un
individu peut donc atteindre en une minute s’il commence au repos ?

Les pilotes de chasseurs, trés entrainés, peuvent subir pres de 90m/s? d’accé-
lération... quelle est la vitesse maximale qu’ils peuvent espérer atteindre en une
minute ?

3 Dérivées successives
Définition 3.1

Soit f une fonction définie sur un intervalle I. Si f est dérivable k fois sur I,
on note f®) la dérivée kiéme de f. On a

ke N = (f0)',

Par convention, f© = f.
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Définition 3.2 (fonctions de classe C*)

Soit f une fonction définie sur un intervalle I. Si f est dérivable k fois sur I,
et si f*) est continue sur I, on dit que f est de classe C* sur I. On note C*(I)
I’ensemble des fonctions de classe C* sur I.

Une fonction qui est de classe C* pour tout k est dite de classe C*. L’en-
semble de ces fonctions est noté C*°(I). Ce sont les fonctions infiniement déri-
vables sur I.

Remarque. Toute fonction de classe O est de classe C", h < k, et toutes ses
dérivées (jusque la kieme) sont continues.

Théoréme 3.1

Les fonctions polynomiales, rationnelles, exponentielles, logarithme, et puis-
sance sont de classe C*° sur leur domaine de définition.

Théoréme 3.2

Sommes, combinaisons linéaires, produits, quotients (bien définis) et composées
(bien définies) de fonctions de classe C*, sont encore de classe C*.

Théoréme 3.3 (prolongement de la dérivée - (HP))

Soit f une fonction continue sur I, dérivable, et de dérivée continue sur I\ {xzo}.
Si f'(x) — L (avec £ € R), alors f est de classe C* sur I, et f'(xq) = ¢.
T—T0

Exercice 13.7.
Montrer que la fonction

f: R — R

0 siz <0
r _ .
e 2 smon

est de classe C* sur R.
Saurez-vous vous inspirer de cet exemple pour trouver une courbe infiniment
lisse (cad C*°) et nulle partout sauf sur un intervalle |ab|?

4 Convexité, concavité

4.1 Définitions

Définition 4.1 (convexité)

Soit une fonction f définie sur I. La fonction est dite convexe sur I si, pour
tout segment [a,b] C I, et quelque soit t € [0, 1],

flta+ (1 —1)b) <tf(a)+ (1 —1¢)f(b).

La fonction est dite concave sur I si I'inégalité est dans 'autre sens, i.e., pour
tout segment [a,b] C I, et quelque soit t € [0, 1],

flta+ (1 —1)b) > tf(a) + (1 —1)f(b).
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Propriété 4.1 (interprétation graphique)

Une fonction f est convexe si sa courbe est en-dessous de ses cordes. Elle est
concave si elle est au-dessus.

Remarque. Un fonction f est convexe ssi —f est concave.

Théoréme 4.2 (caractérisation pour les fonctions C')

Soit f une fonction de classe C* sur I. Les propositions suivantes sont équiva-
lentes :

1. f est convexe sur I,
2. [’ est croissante sur I,

3. La courbe de f est au-dessus de ses tangentes.

Théoréme 4.3 (caractérisation pour les fonctions C?)

Soit f une fonction de classe C? sur I. f est convexe sur I ssi f” > 0 sur 1.

Remarque. On a évidemment que f est concave ssi f’ est décroissante, la courbe
est sous ses tangentes, ou f” < 0.

Proposition 4.4

On a les inégalités suivantes :

VieR e >z+1
Vee R, In(z)<z-1

FEzercice 13.8.
Montrer ces résultats.

4.2 Points d’inflexion
Définition 4.2 (point d’inflexion)

Soit f une fonction définie au voisinage d’un point a. On dit que (a, f(a)) est
un point d’inflexion de la courbe si f est concave au voisinage gauche de a et
convexe au voisinage droit, ou l'inverse.

Remarque. Un point d’inflexion d’une fonction dérivable est un point ou la courbe
traverse sa tangente.

Théoréme 4.5

Soit f une fonction de classe C* sur I. Les points d’inflexion de f sont exacte-
ment les points ou f” s’annule et change de signe.
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concave

convexe point d’inflexion

FI1GURE 13.4 — point d’inflexion



Chapitre 14

Primitives et intégration sur un
segment

1 Primitives

1.1 Définitions

Définition 1.1 (primitives)

Soit f une fonction définie sur un intervalle I de R. On appelle primitive de f
sur I toute fonction F' dérivable sur I telle que, pour tout x € I,

Théoréme 1.1

Toute fonction continue sur un intervalle I de R admet une primitive sur I.

Théoréme 1.2

Si F est une primitive d’une fonction f sur I, toutes les primitives de f sur I
sont données par la famille F + ¢, ¢ € R.

Ezercice 14.1.
Démontrer le théoreme précédent. On pourra étudier, si F' et G sont deux primi-
tives de la méme fonction, la différence F' — G.

Corollaire 1.3

— Si f est une fonction continue sur I, il existe une unique primitive sur [
de f prenant une certaine valeur y, € R quelconque, en un point xq € [
quelconque.

— Sia et b sont deux points quelconques de I, la quantité F'(b) — F'(a) ne
dépend pas de la primitive considérée.

113
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1.2 Primitives usuelles

Propriété 1.4
Les primitives des fonctions usuelles sont indiquées dans les tableaux suivants

f@)]| Fl@) [[f@)] Flo) [[f@)] F@) |
a | ax+c || z° x::ll +cf 1 In|z|+c
e” e’ +c a® ﬁ +c||ln(z) | zln(z) —z+c
ﬁ 2\/r+c
Si u et v sont des fonctions,
s [ F S F
M oA’ | du+ o+l & | —L+c
u'u® 15: +c \% 2\/u+c
v Injul+c¢ |[ue"| e +¢

2 Intégration sur un segment

2.1 Définition
Définition 2.1 (intégrale sur un segment)
Soit f une fonction continue sur un intervalle I, et soient a et b deux éléments

de I. Soit F' une primitive de f sur I. On définit I'intégrale de f entre a et b

comme la quantité

[ Feat = [F@L = FO) - Fla)

Propriété 2.1
Pour toute fonction continue f,

/abf(t)dt: —/baf(t)dt of /aaf(t)dt:O.

2.2 Fonction définie par une intégrale

Théoreme 2.2
Soit f une fonction continue sur I. Ses primitives sont de classe C* sur I, et,

pour tout a € I, la fonction

F:x|—>/wf(t)dt

est 'unique primitive de f sur I qui s’annule en a.
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Théoréme 2.3

Soient deux fonctions u et v dérivables sur I, a valeurs dans J, et f une fonction
continue sur J. Alors la fonction

v(x)
YT / f(t)de
u(z)
est bien définie, dérivable sur I, et de dérivée

¢'(x) ='(2) f(v(x) — ' (2) f (u(z)).

Démonstration. D’apres la définition de 'intégrale, si F' est une primitive de f, on
a, pour tout z,

¢ est donc la somme de deux composées de fonctions de classe C* (F et v, et —F
et u). Elle est donc de classe C, et sa dérivée est

¢'(z) = (@) f(v(x) — ' (z) f (u(x)).
O

Remarque. Cette démonstration est tellement simple qu’il est en général conseillé
de redémontrer ce théoreme a chaque fois, adapté au cas courant. Cela évite des
erreurs bétes, et rend 'exposé plus lisible.

3 Propriétés de l’intégrale

Propriété 3.1 (linéarité de l’intégrale)

Soient deux fonctions f et g continues sur I, A et p deux réels, a et b deux
points de I. Alors

Lﬁﬂw+w®w:Aéﬁ@@+MEﬂmﬁ

Propriété 3.2 (relation de Chasles)

Soit f une fonction continue sur I, et a, b et ¢ trois points de I. Alors

L%@@:Lﬁ@&+£%@@

Ezercice 14.2.
Calculer I'intégrale suivante, pour a € R :
[

1 4 a2 dz.




116 CHAPITRE 14. PRIMITIVES ET INTEGRATION SUR UN SEGMENT

Propriété 3.3 (positivité de l’intégrale)

Soit f une fonction continue et positive sur I, a < b deux points de I. Alors

/bf(t)dt > 0.

De plus, I'intégrale est nulle ssi f = 0.

Remarque. L’hypotheése que f est positive est bien évidemment cruciale!

Propriété 3.4 (comparaison des intégrales)

Soient deux fonctions f et g continues sur I, telles que f < g, a et b deux
points de I, a < b. Alors

Propriété 3.5 (inégalité triangulaire)

Soit f une fonction continue sur I, a et b deux points de I, a < b. Alors

b
</a (O]t < (b~ a) max .

/abf(t)dt

4 Calcul d’intégrales

4.1 Intégration par partie

Théoréme 4.1 (intégration par partie)

Soient u et v deux fonctions de classe C* sur [a,b]. Alors

4.2 Changement de variable

Théoréme 4.2 (changement de variable)

Soit f une fonction continue sur un intervalle I, et p une fonction de classe C*
sur [a, b], telle que ¢([a,b]) C I. Alors

[ retng = [ par

v(a)




4. CALCUL D’INTEGRALES

117

Remarque. Le théoreme peut se réécrire, si ¢ est une bijection (ce qui sera tres
souvent le cas)

/abf<t> t= 7" fptu) e wdn

Méthode (changement de variable).

1. Calculons I'intégrale suivante :

1 g 1
/0 V2zr+1 g
(a) Changement de variable : (t = p(x) = 2x + 1)

t—1
t=2r+1 < = ——-

2
La fonction ¢ : x — 2x + 1 est bien de classe C! sur [0, 1].
(b) Elément différentiel :

d#z%ﬂzd@ﬁ@<¢¢dx:;&@0fﬂﬁﬂw.

(¢) Nouwvelle fonction a intégrer :

v 5 gL
V2r+1  Vt 2 NG
(d) Nouwelles bornes :
—siz=0,t=1,
—siz=11t=3.
(e) On a donc
1 T 31 111 1
_r g :/ Wi S At == -
/0\/295—1—1x 22[‘/ \/zlz 3

2. Une autre, calculons l'intégrale

2 43 q
—dt
s
au moyen du changement de variable u = ¢2.
(a) Changement de variable :

=1t <= t=+u
La fonction x — 22 est bien de classe C* sur [1,2].
(b) Elément différentiel :

1
dt = ——=du.
2\/ﬂu
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(¢) Nowwelle fonction a intégrer :

Vi© o uu
Vie+1 u+1

(d) Nouwelles bornes :
—sit=1Lu=1,
— sit=2, u=4.
(e) On a donc
/2 t3 dt—/4 uy/u du
1 2+1 S u+ 12
1 4
:—/ Y du=..
21 u+1
1

=5 ([l + (1 +0)]y) =

3 —In(5) +In(2)

Proposition 4.3

Si f est une fonction paire,

| swar=2 [ ra,

—a

et si f est une fonction impaire,




Chapitre 15

Equations différentielles

1 Généralités

1.1 Définition générale

Définition 1.1 (équations différentielles)

On appelle équation différentielle toute équation dont I'inconnue est une fonc-
tion (généralement notée y : t — y(t)) définie sur un intervalle I, et faisant
intervenir les dérivées successives de la fonction y.

Toute fonction de classe suffisante sur I vérifiant I'équation est appelée
solution (particuliére) de I’équation.

Résoudre une équation différentielle, c’est trouver toutes les fonctions y
définies sur I la vérifiant.

Remarque. On ajoute souvent a une équation différentielle des criteres supplémen-
taires, comme par exemple y(0) = 0 et 3/(0) = 1. On parle de conditions initiales
(ou de critere de Cauchy).

1.2 Equations différentielles linéaires

Définition 1.2

Une équation différentielle linéaire d’ordre n est une équation s’écrivant

Say” =aw+ay +...=f,
=0

ot (a;) est une suite de réels, et f une fonction numérique (appelé le second
membre de I'équation). On prendra souvent a,, = 1 pour simplifier.
Si f =0, I'équation est dite homogéne.

Remarque. En pratique, on ne s’intéressera ici qu’aux équations différentielles
d’ordre 1 ou 2.
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1.3 Principe de superposition et structure des solutions

Théoréme 1.1 (principe de superposition)

Si (E) est une équation différentielle linéaire homogéne, et que y; et ys sont
deux solutions de cette équation, et A1 et \y sont deux réels, alors A1y + Aayo
est aussi solution de (E).

Si E(y) = g1 et E(y) = g2 sont deux équations différentielles linéaires
différent uniquement par leur seconde membre g1/gs, et si y; est solution de
E(y) = g1 et ys est solution de E(y) = go, alors \jy; + A2y est solution de
E(y) = Ag1 + A2go.

Théoréme 1.2 (structure des solutions d’une EDL)

Soit E(y) = g une équation différentielle linéaire, et soit y, une solution
particuliére a cette équation.
L’ensemble des solutions a I'équation E(y) = g est y = h + yo, ou h décrit
n’importe quelle solution a I’équation homogéne associée E(y) = 0.

2 Equations différentielles particuliéres

2.1 Equations d’ordre 1

Théoréeme 2.1

Les solutions a I’équation homogéne y' + ay = 0, avec a € R, sont les fonctions
Yyt de .

Remarque. Couplé au théoreme 1.2, ce théoreme ramene la résolution des équations
d’ordre 1 a la recherche d’une solution particuliere.

Propriété 2.2

Si a,b € R*, la fonction constante g est solution particuliere de I’équation
Yy +ay =b.

2.2 Equations d’ordre 2
Théoreme 2.3

Soit I’équation homogéne (E) : y" + ay’ + by = 0, avec a,b € R. On appelle
r?2 + ar + b = 0 I’équation caractéristique associée.

— Si I'équation caractéristique a deux racines réelles distinctes ry et ro, les
solutions a I’équation (E) sont

Yt e ™4 pe ™ (\ p) € R2.

— Si ’équation caractéristique a une seule racine double r, les solutions a
I'équation (E) sont

— y it (A4 pt)e™™ (A 1) € R?.
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Remarque. Tiens, ce théoreme ressemble diablement a celui sur les suites récur-
rentes linéaires d’ordre 2... avec le méme cas manquant. Coincidence ?

Propriété 2.4

Si a,b,c € R (b # 0), la fonction constante ¢ est solution particuliére de

b
I'équation y" + ay’ + by = c.

3 Trajectoires

3.1 Trajectoire et unicité de la solution

Définition 3.1

Soit (E) une équation différentielle. On appelle trajectoire de (E) tout graphe
d’une solution particuliere de (F) (c’est-a-dire un ensemble {(t,y(t)),t € I} C
R?).

Théoréme 3.1 (corollaire restreint de Cauchy-Lipschitz)

Soit ty € I, yo et zy deux réels. Soit g : t — g(t) une fonction continue sur I.
— Il existe une unique solution a I'équation y' + ay = g vérifiant y(ty) = yo.
— 1I existe une unique solution a I’équation y" + ay’ + by = g vérifiant

y(to) = yo et y'(to) = 20

3.2 Trajectoires d’équilibre
Définition 3.2 (trajectoire)

On appelle trajectoire d’équilibre toute trajectoire d’une solution constante a
une équation différentielle.

Définition 3.3

On dit qu’une solution y a une équation différentielle sur un voisinage de +0o0
converge si sa limite en +00 est finie.

Théoréme 3.2 (convergence des trajectoires) (HP, mais utile pour vérifier ses calculs)

Toute trajectoire convergente converge vers une trajectoire d’équilibre.

4 Systemes d’équations différentielles

Les équations différentielles apparaissent souvent avec plusieurs fonctions in-
connues, dont le comportement de chacune dépend des autres. Ces équations sont
alors typiquement exprimées par un systéeme d’équations, une pour chaque fonc-
tion.
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Exemple.

Deux individus, Albertine et Barnabé, se cotoient souvent. On modélise I'opinion
qu’ils ont I'un de 'autre au cours du temps par deux fonctions, y et z. Par exemple,
si y(0) = 3 et 2(0) = —1, c’est qu’Albertine apprécie beaucoup (3) Barnabé, alors
que celui-ci trouve Albertine quelque peu agagante (-1).

On suppose que I’évolution de leur opinion dépend de l'opinion de l'autre :
en effet, Albertine, qui apprécie beaucoup Barnabé, sera sans doute gentille et
agréable avec lui, ce qui ne peut qu’augmenter son opinion. En revanche, Barnabé
se comporte sans doute comme un goujat envers Albertine, ce qui risque de lui
faire réviser son opinion. On propose ainsi le systeme différentiel suivant :

y =z
2 =u.

Dans le cas d’équations linéaires, il peut étre utile de les écrire sous forme

matricielle :
/
(Z,) = (? é) (g) e Y/ =AY (ouY — AY =0),

/

ou l'inconnue Y = (Z,) est ainsi une fonction matricielle.

Ezercice 15.1.

Montrer que les deux fonctions f = y + z et ¢ = y — 2z suivent chacune une
équation différentielle tres simple, et résoudre le systeme. Quel est 'avenir de la
relation entre nos deux protagonistes ?

Remarque. Une équation différentielle linéaire d’ordre 2 peut s’écrire sous la forme
d’un systéme d’équation différentielle d’ordre 1 :

Z=az+by

) — Y' = AY,
Yy =z

y'=ay +by {

(Y _f[a b
avecY-(y) etA-(1 O)'
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Chapitre 16

Introduction aux séries

1 Définitions et convergence

1.1 Définitions

Définition 1.1 (séries)

Soit (u,) une suite réelle. On appelle série de terme général u, la suite (.S,)
définie par :

n
k=0

Pour n € N, le niéme terme de cette suite, S,,, est appelé la niéme somme
partielle de la série.

Cette série est notée Z U
k>0

Définition 1.2 (convergence des séries)

Soit Z uy une série. On dit que la série converge lorsque la suite des sommes
k>0
partielles (S,,) converge. Dans le cas contraire, on dit que la série diverge.
“+o0o
Si la série converge, on appelle ladite limite, somme de la série, notée Z U -
k=0

Remarque. La suite peut n’étre définie qu’a partir du rang 1, voire plus. Il convient

alors de considérer Z U...
k>1

Attention a la différence de vocabulaire entre les suites et les séries : le terme
général d’une série, par exemple, n’est pas la méme chose que le terme général de
cette série vue comme une suite (qui s’appelle la somme partielle).

Il convient aussi de bien distinguer la série Y w, (qui existe toujours) de sa

k>0
+00
somme éventuelle Z uy (qui n’existe que si la série converge).
k=0
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1.2 Convergence absolue

Définition 1.3 (convergence absolue des séries)

La série Y uy, est dite absolument convergente lorsque la série > |uy| est conver-
gente.

Théoréme 1.1

Une série absolument convergente est convergente.

Remarque. La réciproque est fausse.
Théoreme 1.2

Si une série est absolument convergente, on ne change ni sa nature, ni sa somme,
en permutant ses termes.

1.3 Série des accroissements
Définition 1.4
Si (uy,) est une suite, on appelle série de ses accroissements de (u,) la série

U — Ug—1-
k=1

Proposition 1.3

Un suite (u,) a la méme nature de sa série des accroissements, et s’il y a

convergence,
+o0

lim w, = U — Up—1) + Up.

U ;( k k—1) 0

Proposition 1.4

Si la série Y uy, converge, la suite (u,) converge vers 0.

Remarque. La réciproque est fausse!
On utilise souvent la réciproque de ce résultat : si (u,) ne converge pas vers 0,
la série ne converge pas (on dit que la série est grossierement divergente).

Ezercice 16.1.
En quoi cette proposition est une conséquence du résultat sur les séries des ac-
croissements 7 On pourra considérer la suite des sommes partielles de la série...

1.4 Opérations sur les séries convergentes

Proposition 1.5

Soit A un réel non nul. les séries > u et > Aug ont méme nature, et si elles

“+o00 —+00
convergent, Z Auy, = A Z Uy .
k=0 k=0
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Proposition 1.6

Si Y up et Y vy sont deux séries convergentes, alors Y. up + v l'est aussi, et

+oo +oo +oo
Zuk+vk = Zuk—i—ka
k=0 k=0 k=0

Proposition 1.7

Si (uy) et (v,) sont deux suites positives, telles que Vn € IN u,, < vy,
— si Y. u, diverge, alors Y- v, diverge,

— si Y. v, converge, alors > u, converge.

2 Séries usuelles

2.1 La série harmonique

Définition 2.1 (série harmonique)

On appelle série harmonique la série Z A
k>1

Proposition 2.1

La série harmonique diverge.

2.2 La série harmonique alternée

Définition 2.2 (série harmonique alternée)

(=D
k

On appelle série harmonique alternée la série Z
k=1

Proposition 2.2

La série harmonique alternée converge, mais pas absolument.

2.3 Séries géométriques

Proposition 2.3 (séries géométriques)

La série » q" converge ssi |q| < 1. On a dans ce cas

S —
q _ .
k=0 l—gq

Proposition 2.4 (séries géométriques dérivées)

Les séries Z kg" 1 et Z k(k — 1)¢"2 converge ssi |q| < 1. On a dans ce cas

*f ko1 1
k"t = ———
k=0 (1—4q)?

kz:%k'(k' - 1)qk_2 = 7(1 - q)3.
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2.4 Série exponentielle

Proposition 2.5 (séries exponentielles)

k 400 xk

. . x
Pour tout réel x, la série Z o est convergente, et o v
! = k!




Chapitre 17

Probabilités sur un ensemble
dénombrable

L’objet de ce chapitre est de généraliser le formalisme vu au chapitre 8 a des
expériences dont I'univers n’est pas fini (mais tout de méme dénombrable, le cas
continu sera vu en seconde année). Pour ces expériences, le nombre d’événements
dans (1) est bien plus grand que nécessaire en pratique. Il est donc de coutume
d’introduire un ensemble d’événements, noté <7 ou .7, appelé tribu, plus restreint
que Z(12), contenant les événements utiles a 1’étude du probléme. Le seul critere
demandé a ces tibus est d’étre stable par les opérations courantes : intersection,
réunion, et complémentaire.

Le couple (€, .7), auquel il ne manque plus qu’'une probabilité pour avoir une
modélisation complete, est appelé un espace probabilisable. On supposera toujours
avoir acces a un tel espace lors des exercices, sans chercher a expliciter la tribu.

1 Espaces probabilisés

1.1 Probabilité

Définition 1.1 (probabilité sur un espace probabilisable)

On appelle probabilité définie sur I'espace probabilisable (), ) toute appli-
cation

qui vérifie
1. P(Q) =1,

2. si I C N, et (Ag)rer une suite d’événements deux a deux incompatibles
(U] -
kel kel

On dit que P est o-additive.
Le triplet (€2, 7, P) est un espace probabilisé.
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Propriété 1.1

Les formules usuelles de calcul de probabilités restent valables avec cette défi-
nition : si A et B sont deux événements,

1. Si A et B sont incompatibles, P(AU B) = P(A) + P(B),

2. P(@) =0,

3. P(A) =1-P(A),

4. P(A\ B)=P(ANB)=P(A) —P(AN B),
5. P(AUB) =P(A)+P(B) - P(ANB),

6. si AC B, P(A) < P(B).

1.2 Quasi-certitude, quasi-impossibilité

Définition 1.2 (quasi-certitude)

Un événement A tel que P(A) = 1 est dit « quasi-certain », ou « presque sir ».
A I'inverse, un événement A tel que P(A) = 0 est dit « quasi-impossible »,
ou « négligeable ».
Si P est une propriété sur 2, et P({w, P(w)}) =1 (resp. 0), on dit que P
est vraie (resp. fausse) presque-siirement.

Remarque. Un événement négligeable n’est pas forcément impossible, mais seule-
ment extremement improbable. Par exemple, la probabilité, en lancant une flé-
chette, qu’elle tombe au centre exact de la cible (ou n’importe quel autre point
précis), est nulle. L’événement n’est pas pour autant impossible.

1.3 Systemes complets d’événements

Définition 1.3 (systéme complet d’événements, v2)

On appelle systeme complet d’événements toute famille dénombrable d’événe-
ments deux a deux incompatibles et dont la réunion est égale a ).

Remarque. 11 est souvent suffisant (et bien plus simple) de relacher le critére de la
réunion égale a 1'univers pour demander simplement qu’elle soit quasi-certaine.

1.4 Théoremes de la limite monotone
Corollaire 1.2 (théoréme de la limite monotone, probabilités)

Si (Ay) est une suite d’événements,

P (U Ak) :nETOOIP<O Ak>7

k>0

P (ﬂ Ak) = lim P (:ﬁAk) .

k>0
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Ezercice 17.1.

On lance indéfiniment une piece de monnaie. Montrer qu’il est presque certain
d’obtenir au moins une face, et qu’il est presque impossible de n’obtenir que des
piles.

2 Conditionnement

Définition 2.1 (probabilité conditionnelle)

Soient A et B deux événements d’un espace probabilisé (Q2, 7, P), tels que
P(A) # 0. On appelle probabilité de B sachant/conditionnellement a A la
quantité

B P(ANB)
P4(B) = TPA)
Théoréme 2.1

L’application définie par P 4 est une probabilité sur (2, 7).

Théoréme 2.2 (formule des probabilités totales)

Soit I une partie de IN, et (Ag)ker un systéme complet d’événements. Alors
pour tout événement B,

P(B) =S P(BNA) =Y P(A)P4, (B).

kel kel

Théoréme 2.3 (formule des probabilités composées)

n

Soit Ag,...,A,,... une famille d’événements, tels que P (ﬂ Ak> % 0 pour
k=0
tout n.

+o0o +o0o
P (m Ak> I Prs, ().
k=0 k=0 =0

(comprendre bien siir la limite des produits partiels dans cette notation!)

Théoréme 2.4 (formule de Bayes)

Si A et B sont deux événements de probabilité non nulle,

Théoréme 2.5 (formule de Bayes généralisée)

Soit I une partie de IN, et (Ay)rer un systéeme complet d’événements. Alors
pour tout événement B de probabilité non nulle,

 PL(BP(A)
Peld) =& b, (B)P(A)
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3 Indépendance

3.1 Indépendance deux a deux

Définition 3.1 (événements indépendants deur d deux)

Deux événements A et B sont indépendants (pour la probabilité P) lorsque

P(AN B) = P(A)P(B).

Définition 3.2

Soit (Ag)rer une famille d’événements. On dit qu’ils sont deux a deux indépen-
dants (pour la probabilité P) lorsque, pour tout couple i # j, A; et A; sont
indépendants.

Théoréme 3.1

Si deux événements A et B sont indépendants, alors A et B, A et B, A et B
sont aussi indépendants.

3.2 Indépendance mutuelle

Définition 3.3 (événements mutuellement indépendants)

Soit (Ag)ker une famille d’événements. On dit qu’ils sont mutuellement indé-
pendants (pour la probabilité IP) lorsque, pour tout sous-partie A € P(1),

P ( N Ak) = [ P(Ap).

ke ke

Remarque. L’indépendance mutuelle implique 'indépendance deux a deux, mais
pas l'inverse.

Théoreme 3.2
Si des événements A; sont mutuellement indépendants, il en est de méme avec

toute collection formée de ces événements ou de leurs complémentaires, i.e. tout
collection (B;), avec B;, B; = A; ou A;.

Théoréme 3.3 (des coalitions)

Si des événements sont mutuellement indépendants, tout événement formé avec
certains d’entre eux, est indépendant de tout événement formé a partir d’autres.




Chapitre 18

Variables aléatoires discretes

Dans tout ce chapitre, on se place sur un espace probabilisé (2, 7, P).

1 Variables aléatoires, généralités

1.1 Définition

Définition 1.1 (variables aléatoires)

On appelle variable aléatoire (v.a.) réelle toute application

X: Q — R
w — X(w)

telle que, pour tout réel x I'ensemble
{w,X(w) <z} e T

est un événement.
L’ensemble des valeurs que peut prendre la variable aléatoire, X (), est

appelé son support.

Remarque. Dans beaucoup d’expériences aléatoires, le résultat de I’expérience peut
étre décrit en terme d’une seule variable aléatoire. Dans ce cas, son support joue
le méme réle que 'univers de I'expérience.

Proposition 1.1

Si X est une variable aléatoire, et x,y € R, les ensembles

(X <z2] ={weQ X(w) <z} , [X>12] ={we X(w) >z},
(X=1] ={weQ X =a} , [X£1] ={weX(w) £}
X <z2] ={we, X(w)<z} , [X>z] ={weQ,X(w) >z}
sont des événements.
Plus généralement, si I est un intervalle de R,

(X ell={weQ, X(w) eI}

est un événement.
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Proposition 1.2

Soient X,Y deux variables aléatoires, A\ un réel. Alors
— X +Y, XY, AX sont des variables aléatoires,

— max(X,Y), (parfois noté sup(X,Y')), min(X,Y), (parfois noté inf(X,Y")),
| X| sont des v.a..

— Si g est une fonction définie sur le support de X (continue si ce support
contient des intervalles), g(X) est une variable aléatoire.

1.2 Fonction de répartition

Définition 1.2 (fonction de répartition)

Soit X une variable aléatoire, on appelle fonction de répartition de X Ila fonction
Fx définie pour tout réel x, par

Propriété 1.3

Toute fonction de répartition est croissante sur R, continue a droite en tout
point, et vérifie F'x — 0 et Fx +—> 1.
—0o0 o0

Proposition 1.4
Pour tout a < b, P(a < X <b) = Fx(b) — Fx(a).

2 Variables aléatoires discretes

2.1 Définition

Définition 2.1 (variables aléatoires discrétes)

Une variable aléatoire est dite discrete si son support X (§2) est fini ou dénom-
brable. Dans le premier cas, on dit que la v.a. est finie.

2.2 Loi d’une v.a. discrete
Définition 2.2 (loi discréte)

La loi d’une variable aléatoire X est la donnée de I'application

Z: X(Q) — [0,1]
r — P(X =ux)

Remarque. — Déterminer la loi d'une v.a., ¢’est donc d’abord déterminer son
support X (€2), puis, pour tout z € X (), déterminer P(X = z).
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— On prendra garde a ne pas confondre X, [X =z et P(X =z)!
Proposition 2.1

Si X est une v.a. discréte, la famille {[X = z],x € X(Q)} est un systéme
complet d’événements. En particulier, 3 ¢ x o) P(X = z) = 1.
Cette famille est appelée systéme complet d’événement associé a la v.a. X.

Proposition 2.2

Soit (u,) une suite positive, telle que Y, - u,, converge vers 1. Alors cette suite
définit une loi de probabilité, c’est-a-dire qu’il existe un espace probabilisé
(Q,.7,P) et une v.a. sur cet espace, tel que X(2) = {n € N,u, > 0} et
Vn e N, P(X =n) = u,.

2.3 Lien avec la fonction de répartition
Proposition 2.3

Si X est une v.a. discréete, sa fonction de répartition est donnée par la formule

Fa)= ) PX=y).
yeEX ()
y<zT

Proposition 2.4

Si X est une v.a. discréte a valeurs entiéres, sa loi est donnée par la formule

P(X = k) = Fx(k) — Fx(k — 1).

Proposition 2.5

La loi d’une v.a. est uniquement déterminée par sa fonction de répartition, et
inversement.

2.4 Transformation d’une v.a.
Théoréme 2.6

Soit X une v.a. discréte, et g une application de X(2) dans R. L’application
Y définie par Y (w) = g(X(w)), est aussi une v.a. discréte, que 'on note g(X).

Propriété 2.7

Soit X une v.a., et g une application de X(2) dans R. Posons Y = g(X).
Alors Y (Q2) = {g(x),x € X(Q)}, et

PY =y = > PX=u).
z€X(Q)
g9(z)=y
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2.5 Indépendance

Définition 2.3 (indépendance de v.a.)

On dit que deux v.a. X et Y sont indépendantes si pour tout (i,7) € X () x
Y(Q)
P([X =dn[y =j]) =P(X =i)P([Y =)

Remarque. On a de méme la notion d’indépendance mutuelle, etc.
Théoreme 2.8

Si X et Y sont indépendantes, pour toutes fonctions f et g, f(X) et g(Y') sont
indépendantes.

3 Moments d’une v.a. discrete

3.1 Espérance

Définition 3.1 (espérance, cas d’une v.a. finie)

Soit X une variable aléatoire définie sur (§2, 7, P), telle que X (Q) = {z1, ..., .}
soit fini. L’espérance de X est définie par

Définition 3.2 (espérance d’une v.a. discréte)

Soit X une variable aléatoire discréte, infinie, définie sur (2, 7 ,P), et telle
que X(Q) ={xy1,...,z,,...}. On dit que X admet une espérance si la série de
terme général x;IP(X = z;) est absolument convergente, auquel cas on définit

E(X) = ijinP(X =z;)= Y zP(X=u).

zeX(Q)

Propriété 3.1

Soient X, Y deux v.a. admettant une espérance, et \ un réel.
1. Si X = A ps., E(X) =\,
2. E(X +2)Y) =E(X) + AE(Y),
3. Si X <Y ps., alors E(X) < E(Y).

Définition 3.3 (variable aléatoire centrée)
Un v.a. X telle que E(X) = 0 est dite centrée.

Remarque. Si X admet une espérance, Y = X — E(X) admet aussi une espérance,
et est centrée.
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Théoréme 3.2 (théoréme de transfert)

Soit X une v.a. discréte, g une application de X (Q2) dans R. La v.a. g(X) pos-
sede une espérance ssi la série de terme général g(xy)P(X = xy,) est absolument
convergente, et on a alors

E(g(X) = > g9@PX =)

z€X(Q)

3.2 Variance

Définition 3.4 (variance d’une v.a. discréte)

Soit X une variable aléatoire discréte définie sur (2, 7,P), admettant une
espérance. On appelle variance de X la quantité, si elle existe,

Var(X) = E[(X —E(X))’] = Y (z - E(X))’P(X = 1)

z€X(Q)

Remarque. La variance mesure la facon dont les valeurs se dispersent autour de la
moyenne.

— La variance est toujours positive,
— On utilise aussi parfois I'écart-type, o(X) = y/Var(X) (et on note ainsi
souvent la variance o?),

Propriété 3.3

Une variable aléatoire est constante p.s. ssi sa variance est nulle.

Définition 3.5 (variable aléatoire réduite)

Une v.a. de variance 1 est dite réduite.

Propriété 3.4 (formule de Konig-Huygens)

Soit X est une v.a. discréte. X admet une variance ssi IE(X?) existe, et on a
alors
Var(X) = E(X?) — (E(X))>.

Propriété 3.5

Soient a,b deux réels, et X une v.a.d. admettant une variance. Alors aX + b
admet une variance, et

Var(aX + b) = a* Var(X).

Remarque. Attention, il est totalement faux de dire que Var(X +Y') = Var(X) +
Var(Y) ou tout autre formule!
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Exemple.
X — E(X)

\/ Var(X)

réduite, appelée variable centrée réduite associée a X.

Si X admet une variance non nulle, la v.a. X = est une variable centrée

3.3 Moments d’ordre n
Définition 3.6

Soit X une variable aléatoire discréte définie sur (2, 7, IP). On appelle moment
d’ordre n de X la quantité, si elle existe,

E[X"] = Y a"P(X =)

zeX ()

3.4 Moments et indépendance

Propriété 3.6

Soient X et Y deux variables aléatoires discrétes indépendantes. Alors, si elles
existent,

E(XY)=EX)E(Y) et Var(X +Y) = Var(X) + Var(Y).




Chapitre 19

Lois usuelles de variables
aléatoires discretes

1 Lois usuelles finies

1.1 Loi uniforme

Définition 1.1 (loi uniforme discréte)

On dit que la variable aléatoire X suit la loi uniforme sur [1,n] si, pour tout
ke [1,n],

On note X — 7/ ([1,n]).

Ezxemples.
Cette loi est souvent trouvée lors de lancers de dés, de tirage de boules (toutes
différentes), et plus généralement dans tous les cas d’équiprobabilité.

Propriété 1.1 (propriétés des lois uniformes)

Soit X une variable aléatoire suivant la loi uniforme sur [1,n], 7 ([1,n]). Alors
X admet une espérance et une variance, et

n+1 n?—1

E(X) = 5 et Var(X)= D

Exemple.
Lors d’une partie de dés, le prix d’entrée est de 4€, et le gain est égal au résultat
du lancer. Le jeu est-il intéressant ?

Exercice 19.1.
On définit de méme les lois uniformes sur les intervalles entiers [a, b]. Quelle en
est I'espérance et la variance ?
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1.2 Loi de Bernoulli
Définition 1.2 (loi de Bernoulli)

On dit que la variable aléatoire X suit la loi de Bernoulli de parameétre p € [0, 1]
si,

X(Q) ={0,1} et P(X = 1) = p.

On note X — A(p).

Remarque. On a bien sir P(X =0) =1 —p.

Ezxemples.
Cette loi représente une expérience qui peut réussir ou non, la probabilité de succes
étant p. Par exemple, lancer une piece de monnaie et demander si elle tombe sur

pile (p = %), ou tirer une boule d’une couleur particuliére dans une urne (p = %)

Remarque. La loi de Bernoulli de parametre % est aussi la loi uniforme sur [0, 1].

Propriété 1.2 (propriétés des lois de Bernoulli)

Soit X une variable aléatoire suivant la loi de Bernoulli de paramétre p, B(p).
Alors X admet une espérance et une variance, et

E(X)=p et Var(X)=p(l-—p).

Ezxemple.

Au casino, une autre table propose de piocher une carte dans un jeu de 52 cartes,
pour un prix d’entrée de 1€. Si vous piochez un as, le croupier vous verse 15€ (et
rien dans le cas contraire). Le jeu en vaut-il la chandelle ?

1.3 Loi binomiale
Définition 1.3 (loi binomiale)

On dit que qu’une variable aléatoire X suit la loi binomiale de paramétres
(n.p) € N x [0,1] si

X(Q2) =1[0,n] et Vk € [0,n] P(X =k) = <n>pk(1 —p)" k.

On note X — A(n,p).

Théoréme 1.3

Cette loi représente le nombre de succes obtenus lors d’une succession de n
épreuves indépendantes, chacune ayant une probabilité p de réussir : si (X;)
est une suite de variables aléatoires indépendantes, suivant toutes une loi de
Bernoulli de parameétre p,

Z X; = B(n,p).
k=1
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Remarque. La notation %(p) de la loi de Bernoulli correspond bien a #(1,p), la
loi binomiale de parametres (1,p)!

Ezxemples.
Le nombre de piles obtenus lors de n lancers d’une piece suit une loi binomiale
Propriété 1.4 (propriétés des lois binomiales)

Soit X une variable aléatoire suivant la loi binomiale de parameétres (n,p),
PB(n,p). Alors X admet une espérance et une variance, et

E(X)=np et Var(X)=np(l—p).

Exemple.

Toujours au casino, une troisieme table propose de piocher un jeton dans une urne
contenant un jeton blanc et vingt jetons noirs. Si vous piochez le jeton blanc, vous
repartez avec 1€, sinon, les poches vides. Le casino propose un forfait : dix tirages
pour 1€, vingt pour 2€, cinquante pour 3€. On vous informe de plus que vous
pouvez acheter la carte VIP pour 10€ (payé une seule fois), qui donne acces au
tarif préférentiel de cent tirages pour 4€. Que faites-vous?

Exercice 19.2.
On tire de fagon répétée, avec remise, des boules d'une urne contenant a boules
blanches et b boules noires. Retrouver le fait que le nombre de boules blanches

a
tirées suit une loi binomiale de parametres (n, ?), et en utilisant le fait que
a

Y P(X = k) = 1, retrouver la formule du bindéme

AL

k=0
2 Lois usuelles discretes infinies

2.1 Loi géométrique

Définition 2.1 (loi géométrique)

On dit qu’une v.a. X suit la loi géométrique de parametre p € [0, 1] si,
X(Q)=N"etVke N* P(X =k) =p(1 _p)k—l.
On note X — ¥ (p).

Théoréme 2.1

Cette loi représente le temps d’attente du premier succes lors d’une succession
d’épreuves indépendantes, chacune ayant une probabilité p de réussir.

Ezemples.
Le temps d’attente du premier pile obtenus lors de lancers successifs d'une piece
suit une loi géométrique ¥(3).
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Propriété 2.2 (propriétés des lois géométriques)

Soit X une variable aléatoire suivant la loi géométrique de paramétre p, 4 (p).
Alors X admet une espérance et une variance, et

1 1—0p
E(X)=- e Var(X)= .
(X) , (X) pe

On a aussi la fonction de répartition associée a cette loi :

P(X <HK)=1-(1-p)".

Exemple.
Vous sortez du casino avec vos gains en poche, et cherchez & rentrer en train...
Hélas, la RATP est en greve, et seulement un train sur trois circule! Les trains
étant supposés passer tous les quarts d’heure, combien de temps vous préparez-vous
a attendre? Un ami propose de vous ramener en voiture, mais le trajet prendra
une bonne heure de plus que le trajet en train (temps de greves : les routes sont
embouteillées). Que faites-vous?

Il n’y a plus que 5 trains (officiellement) avant la nuit. Quelle est la probabilité
que vous ne puissiez pas rentrer si vous déclinez l'offre de votre ami?

Propriété 2.3 (loi géométrique sans mémoire)

La loi géométrique est une loi sans mémoire, c’est-a-dire que pour tous réels
s,t € R, si T — 9 (p),

Pirsy ([T > t + s]) = P(T > 1)),

Exercice 19.3.
Montrer ce résultat.

2.2 Loi de Poisson
Définition 2.2 (loi de Poisson)

On dit que la variable aléatoire X suit la loi de Poisson de paramétre \ > 0 si,

_ A —k

X(Q):lNeth:E]NIP(X:k)—He

On note X — ().

Exemples.
Il n’y a pas d’exemple classique (a votre niveau) de v.a. suivant ue loi de Poisson.
Celle-ci est systématiquement donnée.

Pour la culture, cependant, cette loi fut publiée par Siméon Denis Poisson en
1837, dans son ouvrage Recherches sur la probabilité des jugements en matiére
criminelle et en matiére civile, ou il I'utilise pour mesurer le nombre de condam-
nations injustifiées dans un pays durant une certaine période.
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Plus généralement, cette loi est utilisée pour compter le nombre d’occurences
d’un certain événement lors d’un laps de temps donné, ces événements arrivant
indépendemment les uns les autres. Typiquement, le nombre de clients qui se
présentent a un guichet un jour donné est souvent modélisé par une loi de Poisson.

Propriété 2.4 (propriétés des lois de Poisson)

Soit X une variable aléatoire suivant la loi de Poisson de paramétre A\, Z2(\).
Alors X admet une espérance et une variance, et

E(X)=X e Var(X)=A

Remarque. Le parametre A désigne ainsi le nombre moyen d’arrivées lors de I'in-
tervalle de temps considéré, avec l'interprétation précédente.

Ezemple.

Toujours coincé a la gare, vous vous souvenez d’'une étude indiquant que le nombre
moyen d’arrivés a la gare en une heure était de 20 personnes. Un bus a la capacité
de 55 personnes arrivant toutes les heures, majorer la probabilité que le bus soit
plein en repartant ?

On donne 227 ~ 0.030 (la réponse est fait 9.10711).

Théoréme 2.5

Si X et Y sont deux variables aléatoires indépendantes suivant deux loi de
Poisson de paramétres \ et i, alors la variable aléatoire X +Y suit une loi de
Poisson de paramétre \ + pu.

Ezercice 19.4.
Démontrer ce résultat.
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Huitieme partie

Espaces vectoriels et applications
linéaires
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Chapitre 20

Espaces vectoriels

1 Espaces vectoriels

1.1 Généralités théoriques (HP)

Définition 1.1 (espace vectoriel)

On appelle espace vectoriel (réel) toute structure (E,+,.) ou
1. E est un ensemble, dont les éléments sont appelés vecteurs,
2. + est une loi interne sur F,
(a) commutative : V(u,v) € E* u+v=1v+u,
(b) associative : V(u,v,w) € E3, (u+v) +w=u+ (v+w),
(c) posséde un élément neutre, 0 tel que Vu € E, 0+u =u+0 = u,
(d) tout élément de E posséde un opposé :Yu € E;, v € E, u+v = 0.
3. . est une loi externe de R sur F,

(a) compatible avec la multiplication réelle : V(\, i) € R?, Vu € E, (Ax

f)-u = A(p.u),

(b) distributive sur + (vectoriel) : VA € R,V(u,v) € E? A(u+v) =
AU+ Ao,

(c) distributive sur + (réel) : V(A n) € R*,Vu € E, (A4 p).u = Au +
-,

(d) 1 € R est neutre pour . : Vu € E, 1.u = u.

Les éléments de R, utilisées pour la loi externe, sont appelés scalaires.

Remarque. L’opposé défini en 2d n’est autre que (—1).u = —u... saurez-vous le
démontrer 7 Et montrer qu’il est unique ?

Ezxemples.

La structure d’espace vectoriel (et plus généralement les autres structures algé-
briques) ne sont pas tant de nouveaux objets, qu'une autre fagon de voir des
objets déja existants. Un espace vectoriel, ainsi, est n'importe quel ensemble dans
lequel on peut additionner les éléments entre eux, et les multiplier par un réel.
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Nous avons, au cours des chapitres précédents, manipulé sans le dire un tres grand
nombre d’espaces vectoriels :

— (R, +, x) Tespace réel, évidemment,

+,.) le plan euclidien,

]R?’, +,.) P'espace naturel,

My (R),+,.) Pespace des matrices de taille fixée,
R™, +,.) vu comme l'espace des matrices colonnes,
ZF(R,R),+,.) I'espace des fonctions numériques,
C°(R,R), +,.) I'espace des fonctions continues sur R,

R[X ] +,.) 'espace des polynomes,

(R?
(
(
(
(
(
(
(

RY, +,.) I'espace des suites numériques..

Ainsi, tout ce qui sera dit dans ce chapitre, sera vrai dans tous les espaces précé-
dents...

1.2 Combinaisons linéaires

Définition 1.2 (combinaisons linéaires)

Soit p un entier non nul. On appelle famille de vecteurs de E (a p éléments)
tout p-uplet . = (ey,...,e,) € EP.

On dit qu’un vecteur u € E est une combinaison linéaire des vecteurs de la
famille .7 s'il existe p réels (A, ..., \,) tels que

Aer + .o+ Ae, = .

Les coefficients ()\;) sont appelés les coefficients de la combinaison linéaire.

Remarques. Les éléments d’une famille de vecteurs sont combinaisons linéaires des
vecteurs de cette méme famille, et le vecteur nul est c.l. de toute famille.
Par définition, I’ensemble R3 (par exemple) peut étre vu comme I’ensemble des

1 0 0
combinaisons linéaires des vecteurs [0 |, | 1], [0 |. Ceci fonctionne avec tous les
0 0 1

espaces R", et I'on verra que l'on peut trouver des structures analogues pour tout
espace vectoriel...

1.3 Sous-espaces vectoriels

Définition 1.3 (sous-espace vectoriel)

On appelle sous-espace vectoriel (ssev) de E toute partie non vide F' de E telle
que

1. Y(z,y) € F? v +y € F (F est stable par addition),
2. Vx € FVX € R A\x € F (F est stable par multiplication scalaire).
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Théoréme 1.1

Une partie F' de E est un ssev ssi elle est non nulle, et stable par combinaisons
linéaires.

Propriété 1.2

Tout sous-espace vectoriel, est lui-méme un espace vectoriel, et continent 0.

Propriété 1.3

L’intersection de deux sous-espaces vectoriels, est un sous-espace vectoriel.

Théoréme 1.4 (sous-espace engendré, famille génératrice)

Soit F = (ey,...,ep) une famille de vecteurs. L’ensemble des combinaisons
linéaires de vecteurs de cette famille est un sous-espace vectoriel, appelé le sous-
espace vectoriel engendré par cette famille. Il est noté F' = Vect (eq, ..., ep).
La famille .% est alors appelée famille génératrice de F.
Tout espace vectoriel est I’espace engendré par une certaine famille de vec-
teurs (loin d’étre unique!).

Remarque. L’ensemble des solutions d’un systeme linéaire est ainsi un sous-espace
vectoriel de R™, ou n est le nombre d’inconnues.

Propriété 1.5

Soit .F = (e1,...,e,) une famille de vecteurs, (a,...,q,) des réels non nuls,
u un vecteur.

1. Vect(ayey, ..., ape,) = Vect(eq, ..., ep,),

2. Vect(ey, ..., ey, u) = Vect(ey, ..., e,) ssiu € Vect(ey,...,ep).

Propriété 1.6

Les opérations suivantes transforment une famille génératrice, en une autre
famille génératrice :

Echanger I'ordre des éléments,
Enlever un élément nul, ou qui revient deux fois,
Enlever un élément qui est combinaison linéaire des autres,

Multiplier un élément par un scalaire non nul,

SAN N e

Ajouter a un élément une combinaison linéaire des autres.

1.4 Familles libres, liées, bases

Définition 1.4 (familles libres, familles liées)

Une famille de vecteurs (eq, . . ., e,) est dite libre si la seule combinaison linéaire
donnant le vecteur nul est la combinaison triviale :

p
V(M) € RP, Y Ne; =0 < Vie[1,p] N =0.

i=1
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A linverse, une famille qui ne vérifie pas cette équivalence est dite liée.
2

Remarque. Une famille de plus de n vecteurs de R"™ est forcément liée.

Définition 1.5 (base d’un (sous-)espace vectoriel)

Une famille de vecteurs (ey, ..., e,) est une base d’un (sous-)espace vectoriel £
si ¢’est une famille libre, et génératrice de E, c¢’est-a-dire si pour tout vecteur
u de F, il existe une unique collection de coefficients \; tels que

Les \; sont les coeflicients de u dans cette base.

Proposition 1.7 (dimension)

Toutes les bases d’un (sous-)espace vectoriel ont toujours le méme nombre de
vecteurs (si ce nombre est fini), appelé la dimension de cet espace.

Remarques. Soient n, m des entiers.

— (R™, +,.) est un espace vectoriel de dimension n. La famille

1 0 0
0 1 0
0 0 1

en forme une base, appelée la base canonique.

— (M p(R), +,.) est un espace vectoriel de dimension nm. On définit de méme
sa base canonique.
— (R[X],+,.) est de dimension infinie, mais (R,[X],+,.) est de dimension
n + 1. La famille
1LX,... X"
en forme une base, appelée la base canonique.
Propriété 1.8

Soit E un espace vectoriel de dimension n.
— Une famille libre de n vecteurs de FE forme une base de F,

— Une famille génératrice de n vecteurs de E forme une base de FE.

Définition 1.6

Si (uq,...,u,) est une famille de vecteurs, on appelle rang de cette famille la
dimension de l’espace vectoriel engendré :

rg(ug, ..., u,) = dim(Vect(uyg, . .., uy,)).

Remarque. Le rang d’une famille de n vecteurs sera toujours inférieure a n, et égale
a n ssi les vecteurs sont libres.
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1.5 Représentations d’un sous-espace vectoriel
Un sous-espace vectoriel peut étre décrit sous trois formes différentes :
— Une représentation par un systeme d’équations, par exemple :

x
A= y| R} 2+y+2=0
Z

— Un représentation paramétrique, par exemple :

a—>b
B={|b—c], (a,bc) €R?
c—a

— Une famille génératrice (idéalement une base), par exemple :

1 1
2
C = Vect 01],]-1
1
1 :
Il est important de pouvoir passer d’une représentation a une autre. Illustrons
la méthode avec les exemples précédents :

1. Passage d’un systéme d’équation a une représentation paramé-

trique.
x
Soit u € R3. Notons u = |y
2
T
ueA <= |yled
2

—zr+y+z=0
xr +y + z =0

— 0 =0
0 =0
a r +y + z =0
= 3 ( b) € R? Yy = (résolution du systeme)
z = b
x = —a —b
— 3 (CL) c R? y = a
b
z = b
x —a—>
=3 (CL) eR*|y| = a
b
z b
Ainsi
—a—0b
A= a , (a,b) € R?



152 CHAPITRE 20. ESPACES VECTORIELS

2. Passage d’une représentation paramétrique a une famille généra-

trice.
Soit u € R3.
a—>
u€ B <= J(a,b,c) ER*u=|b—c
c—a
a T 1 —1 0
—3J|b|leR|y|=a|l 0 |+b]| 1 |+c]|-1
c z —1 0 1
Ainsi
1 —1 0
B = Vect 01,1 11],]-1
—1 0 1

Remarque. 1l n’y a aucune garantie que la famille génératrice obtenue soit
libre. Il faut donc étudier la liberté, et, si elle ne 'est pas, la rendre libre. Si la
représentation paramétrique provient de la résolution d’'un systéme (comme
au point précédent), la famille sera toujours libre (méme s’il faut le vérifier).

Remonter a un systeme d’équation (comme illustré plus bas) avant de “re-
descendre” a une famille génératrice peut ainsi étre une bonne stratégie.

3. Passage d’une famille génératrice a une représentation paramé-

trique.
Soit u € R3.
LY (3
u € C <= u € Vect 01,|—-1
-1 %
1 >
< Fa,b) eR*u=a| 0 | +b| -1
-1 %
a+b/2
<= J(a,b) € R*u = —b
b/2 —a
Ainsi
a+b/2
C = —b |, (a,b) € R?
b/2 —a

Remarque. La représentation paramétrique n’a en réalité guere d’intérét,
hormi servir de transition entre famille génératrice et systeme d’équation.
Le point le plus technique est le suivant, ou 1'on cherche a “remonter” au
systeme d’équation.



2. APPLICATIONS LINEAIRES 153

4. Passage d’une représentation paramétrique a un systeme d’équa-

tion.
T

Soit u € R3. Notons u = |y

u€ B <= 3(a,b,c) € R®

(résolution du systeme

3
<= J(a,b,c) € R relativement a a, b, c)

L3« L3+1Lq

<
Il
S8
|
o

<~ J(a,b,c) € R?
L3<Ls+Lo

<
Il
S8
|
o

x = a — b
<:>E|(a,b,c)€]R3{ Yy = b —

< ao+y+z=0
Ainsi

A

y|l eR3z+y+2=0
z

Ezercice 20.1.
On remarque finalement que A = B. Saurez-vous montrer que C' est aussi le méme
espace ?

2 Applications linéaires

Dans tout ce qui suit, &/ et I’ sont deux espaces vectoriels.

2.1 Définition

Définition 2.1 (applications linéaires)

Une application f : E — F est dite linéaire si

Va,y € B\ p € R, f(Az + py) = A (x) + pnf (y).

Propriété 2.1

Si f est une application linéaire, I'image du vecteur nul, est le vecteur nul, et
I'image d’une c.l. est la combinaison linéaire des images :

1. f(0) =0,
L2 2 ) = X N ().
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Propriété 2.2

Une application linéaire f est uniquement déterminée par l'image d’une base
de son ensemble de départ :

Soit (eq,...,e,) une base de E. Si u est un vecteur de E, u s’écrit

n
u=> \e;,
=1

et donc

Propriété 2.3

Pour toute matrice M € ., ,(R), application

fu: R* — R?
X — MX

est une application linéaire.
Inversement, pour toute application linéaire f de R"™ dans RP?, il existe une
matrice M telle que f = fy;. Cette matrice est appelée matrice de f dans la

base canonique, notée Maty(f) (avec A la base canonique, évidemment). Les
colonnes de cette matrice sont les images de la base canonique.

Propriété 2.4 (structure des applications linéaires)

L’ensemble des applications linéaires de FE dans F', muni de ’addition usuelle
est application et la multiplication scalaire réelle, forme un espace vectoriel.
L’ensemble des applications linéaires de E dans F' est noté £ (E, F).

Théoréme 2.5

Soient f € L(E,F),g € L (F,G) deux applications linéaires. Alors g o f est
une application linéaire, et sa matrice dans la base canonique est le produit des
matrices de f et g :

Mat(f o g) = Mat(f)Mat(g).

2.2 Noyau d’une application linéaire
Définition 2.2 (noyau)

Soit f une application linéaire de E dans F'. On appelle noyau de f,
Ker(f) ={z € E, f(z) = 0}.

On définit de méme le noyau d’une matrice M € #,, ,(R) comme le noyau de
lapplication linéaire associée X — MX.

Ker(M) ={X e R®¥, MX =0} .
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Propriété 2.6
Ker(f) est un sous-ev de E.

Proposition 2.7

Une application linéaire est injective ssi son noyau est {0}.

Remarque. Le noyau d’une matrice peut étre vu comme ’ensemble des solutions
du systeme linéaire homogene associé M X = 0. Ainsi, une application linéaire ne
peut étre injective si la dimension de ’ensemble de départ est supérieure a celle
de 'ensemble d’arrivée (le systéme homogene ayant alors plus d’inconnues que de
lignes).

2.3 Image d’une application linéaire

Définition 2.3 (image)

Soit f une application linéaire de E dans F'. On appelle (ensemble) image de

f
Im(f) = {f(z),z € E}.

On définit de méme l'image d’une matrice M € M4, ,(R) comme I'image de
Papplication linéaire associée X — M X.

Im(M) = {MX, X € R'}.

Propriété 2.8

Im(f) est un sous-espace vetoriel de F'. C’est I’ensemble vectoriel engendré par
I'image d’une base quelconque de E.

En particulier, I'image d’une matrice est I’espace vectoriel engendré par ses
vecteurs colonnes.

Proposition 2.9

Une application linéaire est surjective ssi son image est F'.

Remarque. Une application linéaire ne peut donc pas étre surjective si la dimension
de 'espace de départ est inférieure a celle de ’espace d’arrivée.

2.4 Rang
Définition 2.4

On appelle rang d’une application linéaire f la dimension de son ensemble
image :

rg(f) = dim(Im(f)).

On définit de méme le rang d’une matrice M € M, ,(R) comme le rang de
lapplication linéaire associée X + M X.
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Propriété 2.10

Le rang d’une matrice est ainsi le rang de ses vecteurs colonnes.

Théoréme 2.11
SifeZ(E,F), alors

dim(ker(f)) +rg(f) = dim(E).

Si M e M, ,(R),
dim(ker(M)) +rg(M) = p.

Propriété 2.12 (admis)
Si A€ M,,(R), rg(*A) =1rg(A).

2.5 Applications linéaires bijectives

Définition 2.5 (isomorphismes)

Soit f : E — F une application linéaire.
1. Si f est bijective, on dit que f est un isomorphisme.
2. Si F = F, on dit que f est un endomorphisme de E.

3. Un endomorphisme bijectif est un automorphisme.

Propriété 2.13
Soit f une application linéaire de FE dans F. Les affirmations suivantes sont
équivalentes :

1. f est un isomorphisme,
2. son noyau est {0}, et son image F,
3. I'image d’une base de E par f, est une base de F,

4. dim(F) = dim(F) et ker(f) = {0} ou Im(f) = F (I'un des deux suffit
pour avoir l'autre).

Remarque. En particulier, deux espaces vectoriels ne peuvent étre isomorphes (cad
qu’il existe une bijection entre les deux) que s’ils sont de méme dimension... et c’est
une condition suffisante.

(Bonus : saurez-vous trouver une bijection entre deux ev quelconques de méme
dimension ? Par exemple entre R, [X] et R"*!?)
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Chapitre 21

Introduction a Python

Python

Python est un langage de programmation sous licence libre. Il peut ainsi étre
utilisé comme un logiciel de calcul, avec toutes les fonctionnalités d'une calcula-
trice, mais permet aussi d’aller plus loin dans la programmation et I'algorithmique.

Il est disponible gratuitement a ’adresse http://www.python.org, ou en ver-
sion “pré-packagée” pour une utilisation plus scientifique, via I’environnement ana-
conda, disponible ici https://www.anaconda.com/

S’il est possible de programmer directement via l'interface de python, il est
utile de passer par un IDE (Integrated Development Environment), qui regroupe
plusieurs outils aidant a la programmation et facilite la communication entre le
programmeur et python. De mombreux IDE sont disponibles pour python, parmi
lesquels pyzo, que I'on peut trouver ici https://pyzo.org/.

1 L’interface de base

1.1 Owuverture d’une session python

Pour démarrer une session python, il suffit de lancer I'application, par exemple
en double-cliquant sur son icone sur le bureau. Vous étes alors accueillis par plu-
sieurs fenétres (parfois une seule...). Celle qui nous intéresse est la console, qui
affiche, entre autre, un symbole, >>> (ou In[#]:, selon les versions). Ce symbole
indique que python attend que vous entriez une commande.

1.2 La console

La console (ou shell) est la fenétre de communication entre python et 1'utilisa-
teur. C’est ici que vous entrerez les diverses commandes, et que python affichera les
réponses aux calculs demandés. Elle s’utilise comme une calculatrice scientifique :
il faut taper tous les opérateurs, et bien parenthéser la formule. Une fois la formule
correctement entrée, reste a appuyer sur la touche “entrée” et le résultat s’affiche.
Par exemple :
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>>> 141
2

Il est possible de rentrer plusieurs commandes en une seule ligne, en séparant
celles-ci par le symbole ;.

1.3 Variables et types

Définition 1.1 (variables)

Python permet de stocker, manipuler et récupérer des valeurs. Ces valeurs sont
stockées dans des variables, désignées par un nom, et qui possédent un contenu
(qui renfermera ainsi la valeur souhaitée). Le nom d’une variable peut étre
n’importe quelle chaine de lettres et de chiffres, mais doit toujours commencer
par une lettre.

Syntaxe 1.1 (assignation de variables)

Pour créer et /ou donner une certaine valeur a une variable, on utilise 'opérateur

‘>>>nom = contenu

La commande a=9, par exemple, permet a python de créer une variable de nom
a (si elle n’existe pas déja), et de stocker dans celle-ci la valeur 9.

Définition 1.2 (types)
Python est un language typé, c’est-a-dire que le contenu de chaque variable
correspond a un certain type. Il faudra prendre garde a ne pas mélanger les

différents types.
Voici une liste des types que nous utiliserons cette année :

— int (integer) : un entier,
— float (floating point number) : un réel (nombre décimal,

— str (string) : une chaine de caractére (en général entourées de '..." ou

de"..."),
— bool (boolean) : un booléen (vrai ou faux),
— list : une liste,

— array : un tableau.

Remarque. 11 est parfois utile de vider la mémoire de I'ordinateur. Pour ce faire,
on utilise la commande reset. La commande clear, quant a elle, permet de vider
la console.

1.4 Opérations usuelles

Syntaxe 1.2 (opérateurs de calcul)

‘ Python connait bien évidemment les opérations de calcul classiques sur les
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entiers (int) et les réels (float) :
addition soustraction multiplication division puissance
atb a-b a*b a/b ax*b

Remarque. Ne pas oublier le * pour les multiplications! méme si on ne I’écrit pas
forcément sur papier.

Ezercice 21.1.
Ecrire une ligne de code (et une seule!) permettant de calculer la moyenne har-
2ab

monique de deux nombres a, b, valant h(a,b) = =y poura=1,b=1 puisa=3

et b = 6. On n’aura besoin de ne changer que 2 symboles entre les deux calculs.
Bonus : montrer que cette “moyenne” mérite son nom, a savoir que h(a,a) = a

et que h(a,b) € [a,b].
Syntaxe 1.3 (tests logiques)

Python utilise les commandes suivantes, qui renvoient un booléen (vrai ou faux)
a==b  (égalité de contenu) al=b (différence de contenu)
a<b (inférieur strict)a>b (supérieur strict)
a<=b (inférieur ou égal)a>=b | (supérieur ou égal)
11 est aussi possible d’effectuer les opérations suivantes sur les booléens :
— ...and... pour savoir si les deux booléens sont vrais,
— ...or... pour savoir si I'un des deux booléens est vrai (voire les deux),

— not... pour savoir si le booléen est faux.

Ezxercice 21.2.
Utiliser python pour vérifier, pour deux valeurs particulieres de a et b, que leur
moyenne géométrique est bien comprise entre les deux : a < h(a,b) < bou b <

h(a,b) < a.

2 L’éditeur : fonctions et scripts

2.1 L’éditeur

Il est souvent utile de lancer plusieurs instructions d'un bloc dans python. Ceci
peux étre fait a partir d’'un programme informatique, via un éditeur de texte. La
plupart des installations de python fournissent un éditeur intégré, mais n’importe
quel logiciel fait I'affaire (& condition de savoir dire & python d’exécuter le fichier
apres!).

Le fichier contenant les différentes instructions pourra ainsi étre enregistré sur
la machine (ou une clef usb) dans un fichier . py, et partagé avec d’autres personnes,
machines, etc.

Attention, les instructions écrites dans un tel fichier ne sont pas connues par
python. Pour demander a l'ordinateur de faire les calculs demandés, il faut exzécuter
le script.

Quelques remarques :
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— revenez souvent a la ligne entre les instructions, plutét que d’utiliser des
virgules,

— nommez vos fichiers en rapport avec leur contenu (et pas codel, code2, etc.),
— n’hésitez pas a commenter votre code au moyen de la commande #,

— d’ iere géné z votre code lisible, par vous et par autrui.

2.2 Programmes

Définition 2.1 (programme)

Un programme est une succession d’instructions permettant d’obtenir un ré-
sultat particulier, la sortie, a partir de certaines informations fournies par I'uti-
lisateur du programme, les entrées.

Remarque. Lorsque ’on souhaite écrire un programme, il importe de se poser trois
)
questions fondamentales, avant toute réflexion :

1. Quelle est ma sortie? Quel est le but de mon programme ?

2. Quelles sont mes entrées ? De quelles informations le programme va-t-il avoir
besoin pour mener a bien ce but, mais que je ne connais pas encore ?

3. Et enfin (c’est la question principale!), quelles sont les différentes étapes a
réaliser pour obtenir le résultat escompté?

Ezxemple.
Si je veux construire un programme calculant le carré d’un nombre,

1. ma sortie est ainsi le carré ¢ que je veux calculer,
2. mon entrée est le nombre de départ z,
3. pour calculer son carré, il faut donc calculer ¢ = 2-
Cette étude dégage ainsi la structure du programme, en pseudo-code pour l'instant :
1. Demander une valeur pour z,
2. Calculer la quantité ¢ = 22,
3. Répondre finalement par la quantité ¢ calculée.

Nous allons voir a présent comment construire des programmes en python.
Deux méthodes principales sont disponibles,les scripts et les fonctions, chacune
avec ses avantages et ses inconvénients.

Scripts

Les scripts sont des programmes contenus dans un fichier .py, qui devront étre
exécutés a chaque fois que I'on veut avoir une réponse.

Syntaxe 2.1 (gestion des entrées : input)

Pour demander a I'utilisateur une information, on utilise la commande
‘nom_variable:type(input('message'))

Le message (purement cosmétique) sera alors affiché dans la console, et I'exé-
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cution du programme sera mise en pause jusqu’a ce que l'utilisateur y rentre
une réponse, et appuie sur entrée.

Par défaut, la réponse de I'utilisateur sera comprise comme une chaine de
caractéres (de type str). Si I'on veut que python le comprenne sous forme d’un
autre type, il faut le préciser : par exemple, si I'on veut que la réponse soit
interprétée comme un entier, il faudra écrire int(input(...)).

Syntaxe 2.2 (gestion de la sortie : print)

Pour afficher quelque chose (la sortie, typiquement), on utilise la commande
|print(message)

Le contenu du message peut étre n’importe quelle suite de variables ou de
quantités, de n’importe quel type, séparés par des ,.

Ezemple.
Voici, en python, un programme calculant le carré d’'un nombre réel :

x=float(input('x=? '))
C=X*%2
print('le carré de ',x,' vaut ',c,'.")

Ezercice 21.3.
Quel est l'effet du script suivant ?

print("Bonjour!")

nom=input ("comment vous appelez-vous? ")
print(”"Ravi de faire votre connaissance, ",nom,"”.")
print(”"Je suis un simple petit programme python!")

n

Ezxercice 21.4.
Ecrire un script calculant la moyenne géométrique de deux nombres a et b.

Fonctions

Il est aussi possible de définir des fonctions, qui sont des programmes inté-
grés dans python une fois définies. Elles peuvent étre définies directement dans la
console, ou dans un fichier texte (comme un script), qui devra alors étre exécuté
une fois. Une fois exécuté, la fonction sera alors connue de python, et réutilisée
librement, dans la console, ou dans d’autres programmes.

Syntaxe 2.3 (fonction)

Pour définir une fonction, on utilise la syntaxe suivante :

def fonction(entrées):
[instructions permettant le calcul du résultat]
return sortie

fonction étant le nom que I'on veut donner a la fonction.
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Remarque. Attention! python est sensible aux indentations (des espaces, typique-
ment 4, en début de ligne), qui lui permettent de savoir ot commence et termine un
bloc d’instructions. Pour la définition d’une fonction, par exemple, les instructions
jusqu’au return inclu doivent étre indenté par rapport au def

Ezxemple.
Voici la fonction carrée définie dans python :

def carre(x):
C=X*%2
return c

Ezxercice 21.5.
Définir une fonction python calculant la moyenne géométrique de deux nombres.

3 Programmation

3.1 Blocs conditionnels
Syntaxe 3.1 (bloc de condition)

La commande

if condition :
instructions

effectue les instructions identées si la condition est vraie, et les ignore si elle
est fausse.
Il est possible d’indiquer des instructions a réaliser si la condition est fausse :

if condition :
instructions si VRAI
else :
instructions si FAUX

Les blocs conditionnels peuvent étre librement imbriqués les uns dans les autres,
et il y a méme une commande particuliere pour simplifier la syntaxe : les deux
codes suivants ont le méme effet

if condition 1 : if condition 1
instructions A instructions A
else : elif condition 2 :
if condition 2 : instructions B
instructions B else :
else : instructions C
instructions C

Il est méme possible d’enchainer plusieurs blocs elif.

Ezercice 21.6.
Quel est I'effet du code suivant ?
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date=input("En quelle année est-on? ")
n=input(”Quel age a python? ")
if date-n<1939 :
print(”"N'exagérons pas!")
print(”"les ordinateurs n'existaient méme pas a 1'époque!")
elif date-n>1991
print("Ouhla! bien plus ancien!")
elif date-n<1989 :
print(”"Non, ce n'est pas si vieux...")
else :
print("C'est juste!")
print(”Le développement de python a commencé en 1989,")
print(”et la premiére version a été publiée en 1991.")

Ezercice 21.7.
Proposer une fonction python, nommée maxi, calculant le maximum entre deux
nombres.

3.2 DBoucles
Syntaxe 3.2 (boucle for)

La boucle for :

for k in liste :
instructions

permet de répéter les instructions indentées, une fois pour chaque entier k
énuméré dans la liste.

La liste sera tres souvent définie par la syntaxe suivante :

Syntaxe 3.3 (commande range)

La commande
|range(a,b,p)

énumere les nombres commencant a a, augmentant de p en p, et s’arrétant juste
avant b (qui est donc exclu).

Les paramétres p et a sont optionnels : s’ils ne sont pas renseignés, python
consideére par défaut que p = 1, puis que a = 0.

Ezercice 21.8.
Quel est I'effet du script suivant ?

n=input("n=? ")

s=0

for i in range(1,n+1)
s=s+i

print(s)
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Syntaxe 3.4 (boucle while)

La boucle while :

while condition :
instructions

permet de répéter les instructions indentées tant que la condition reste vérifiée.

Remarque. Attention! il est crucial, lorsque ’on utilise une boucle while, de s’as-
surer que la condition finira forcément par étre fausse & un moment (en incrémen-
tant une variable a chaque étape, qui doit rester inférieure a un certain seuil, par
exemple). Dans le cas contraire, le programme ne s’arrétera jamais...

Ezercice 21.9.
Quel est I'effet du script suivant ?

n=input("n=? ")

s=0

i=1

while i<=n
s=s+i

print(s)

4 Listes

4.1 Déclaration de listes
Définition 4.1 (listes)

Une liste est une série de valeurs, non nécessairement de méme type. Elles
peuvent étre définies de facon exhaustive en listant leurs éléments entre cro-
chets, séparés par des virgules.

Syntaxe 4.1 (liste et range)

La commande range n’est techniquement pas une liste, mais peut tres aisé-
ment étre convertie en ce type d’objet par la commande list(range(...)),
évidemment.

Syntaxe 4.2 (autres déclaration de listes)

Les deux syntaxes suivantes permettent de définir des listes :

[f(x) for x in liste]
[x for x in liste if condition]

La premiére syntaxe correspond a une représentation paramétrique, correspon-
dant a la notation mathématique {f(x),z € E} (avec f une fonction, donc),
et la seconde, par un systeme de condition : seuls les éléments x vérifiant la
condition spécifiée seront dans la liste.
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Exercice 21.10.
Quelles sont les listes définies par les commandes suivantes ?

u=list(range(10))
v=[x for x in u if x>0]
w=[y*x2 for y in v]

4.2 Manipulation de listes

Syntaxe 4.3 (concaténation)

Les commandes

utv
u.append(a)

permettent respectivement de concaténer (i.e. mettre bout a bout) les listes u
et v, et d’ajouter la valeur a a la liste u.
Pour concaténer une méme liste n fois avec elle-méme, ont peut utiliser la

syntaxe

\ u*n

Syntaxe 4.4 (accés aur valeurs)

Une liste est indexée, la premiére valeur possédant I'index 0 et la derniére, —1.
Ainsi, u[@] renvoie le premier terme de la liste u, u[1], le second, u[-1], le
dernier, u[-2], I'avant-dernier, etc.

Ces notations sont considérées comme des variables a part entiére, et peuvent
étre librement modifiées.

La commande

| del uli]
permet de retirer I'élément d’indice i de la liste u.

Syntaxe 4.5 (autres commandes sur les listes)

Les commandes
— len(u) renvoie le nombre d’éléments de u,
— X 1in u teste si la valeur x est dans la liste u,

— u.count(x) compte combien de fois la valeur x est dans la liste u.

5 Import de librairies

Python, par défaut, est uniquement un langage de programmation, et n’est pas
spécialisé. Ainsi, beaucoup d’outils spécialisés ne sont pas directement accessibles,
mais sont regroupés en librairies qu’il faudra importer dans le code au préalable.
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Ces librairies ne sont pas installées par défaut dans python, mais auront été
installées si 'on a installé anaconda, par exemple.

Syntaxe 5.1 (import de librairie)

La syntaxe pour importer une librairie est
| from librairie import

Il est souvent utile de donner un nom raccourci aux objets définis dans une
librairie :

|import librairie as raccourci
Une fois importée, les objets seront disponibles en écrivant

‘raccourci.objet

Une librairie qui sera bien pratique pour les mathématiques sera la librairie
numpy, qui permet de définir les commandes suivantes :

Syntaxe 5.2 (commandes numpy)

Aprés avoir importé la librairie
|import numpy as np

les commandes suivantes sont disponibles :

np.pi T np.e e

np.log In np.exp exp

np.abs T |z np.floor r— |z]
np.sqrt T T np.sum somme d’une liste
np.min | minimum d’une liste np.max | maximum d’une liste




Chapitre 22

Données statistiques

1 Tableaux de données

1.1 Le type array
Syntaxe 1.1 (arrays)

La librairie numpy permet de manipuler des tableaux de nombres, de type array.
Aprés avoir importé la librairie

‘import numpy as np

on peut ainsi construire des tableaux, avec une syntaxe trés proche de celle
pour les listes (la commande np.array convertissant simplement une liste en
tableau) :

np.array([a,b,...]) #déclaration explicite
np.array([f(x) for x in array]) #déclaration paramétrique
np.array([x for x in array if condition]) #déclaration implicite

Pour rentrer un tableau a plusieurs entrées (par exemple, avec plusieurs lignes
et colonnes), il suffit de rentrer au départ une liste de liste :

Inp.array([[all,al2,...1,[a21,a22,...1,...1)

La commande range a sa propre version, ainsi qu’une nouvelle commande,
linspace

np.arange(début,fin,pas) #plage de données: écart entre les valeurs
np.linspace(début,fin,nb) #plage de données: nombre de terme

Les deux renvoient un tableau de valeurs entre début et fin (exclus dans le
cas de range), mais le pas de range désigne I'écart entre les valeurs, alors que
le nb de linspace, le nombre total de valeurs dans le tableau.
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Exercice 22.1. 1. Quel sera la taille, et le contenu, de
\np.array([[x+y for y in np.arange(6)] for x in np.arange(6)1])

2. Proposer une ligne de code définissant un tableau tab a 11 lignes et 11
colonnes comportant les valeurs de % pour z et y dans [1,2].

1.2 Opérations sur les array

Syntaxe 1.2 (opérations sur array)

Les commandes +, -, x, /, *x, sont bien définies sur les array, et effectuent les
opérations correspondantes termes a termes sur des tableaux de méme taille.
De méme, si f est une fonction de la librairie numpy, np.f(A) applique la
fonction a chaque terme de A.
Les opérateurs de comparaison ==, !=, <=, >= < >, fonctionnent de la méme
facon, et renvoient un tableau de booléens, en effectuant les comparaisons
termes a termes.

Syntaxe 1.3 (accés auxr données dans array)

L’accés aux données dans un tableau s’effectue comme pour une liste (et le pre-
mier indice est toujours 0!), mais dans le cas d’un tableau a plusieurs entrées,
il est aussi possible de donner les indices séparés par des virgules. Les deux
commandes ALi]1[j] et A[i,j] ont ainsi le méme effet.

Il est aussi possible d’accéder a des sous-parties d’un tableau :

Ali,:] #i-ieme ligne
Al:,j] #j-ieme colonne
A[i1:12,j1:j2]#sous-matrice

2 Séries statistiques

2.1 array vus comme séries statistiques

Syntaxe 2.1 (calculs statistiques sur array)

Si A est un array, les commandes suivantes sont disponibles :

np.sum(A) somme np.cumsum(A) somme cumulée
np.min(A) minimum np.max(A) maximum
np.mean(A) | moyenne empirique || np.median(A) | médiane empirique
np.var(A) | variance empirique np.std(A) écart-type empirique

1l est possible d’ajouter une option a ces commandes, permettant de faire le
calcul colonne par colonne (avec (A,0) ), et ligne par ligne (avec (A,1) ), comme
par exemple np.sum(A,Q) pour la somme colonne par colonne.
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2.2 Diagrammes

Syntaxe 2.2 (graphes : librairie matplotlib.pyplot)

La librairie permettant de tracer des graphiques est matplotlib.pyplot, que
l'on pourra importer via

‘import matplotlib.pyplot as plt

Syntaxe 2.3 (diagrammes en barres)

Pour tracer le diagramme en barre correspondant a une série statistique de
modalités x= (x;) et d’effectifs e= (n;), on peut utiliser la commande

‘plt.bar(x,e)

Syntaxe 2.4 (histogramme)

Pour tracer I’histogramme d’une série statistique donnée par la liste d= (x;)
des données d’un échantillon, on peut utiliser les commandes

plt.hist(x,n) #classes automatiques
plt.hist(x,c) #classes manuelles

Les classes utilisées peuvent soit étre indiquées par la liste c= (¢1,¢o,...,cn + 1
) ) )
contenant les “bords” des classes [c;, ¢;11[, ou bien par un simple entier n, au-
quel cas les classes sont automatiquement crées en découpant 'amplitude de
échantillon (entre son maximum et son minimum) en n classes de taille égale.
I'échantill t t ] de taill I

Remarque. On remarquera que ces deux commandes ne prennent pas la série sta-
tistique sous la méme forme : pour plt.bar, il faut avoir calculé les effectifs de
chaque classe, alors que pour plt.hist, I’échantillon complet, avant toute analyse,
est requis.

Syntaxe 2.5 (fréquences cumulées)

Astuce : pour tracer la courbe des fréquences cumulées d’une série statistique
donnée par la liste Data= (x;) des données d’un échantillon, on peut tracer les
valeurs 1,2,..., N (ot N est la taille de I'échantillon) contre celles des données
dans I'ordre croissant au moyen de la commande plt.plot (cf ??7) :

|plt.plot(range(1,N+1),Data.sort())

Syntaxe 2.6 (boite ¢ moustache)

Pour tracer la boite a moustache d’une série statistique donnée par la liste
d= (z;) des données d’un échantillon, on peut utiliser la commande

\plt.boxplot(x)
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2.3 Import et gestion de base de données

Syntaxe 2.7 (import de donnée : librairie pandas)

La librairie permettant d’importer de fichiers extérieurs des banques de données
est la librairie pandas, que I'on pourra importer via la commande

‘import pandas as pd

Syntaxe 2.8 (importation d’une banque de donnée)

Pour importer dans python une banque de donnée a partir d’'un fichier.csv
(csv : comma-separated-values), présent dans le répertoire de travail de python,
on utilisera la commande

|df=pd.read_csv(fichier.csv)

La variable df, de type data frame, contiendra I’ensemble des données conte-
nues dans le fichier, sous forme d’un tableau dont les lignes correspondent aux
différents individus, et les colonnes, aux différents caracteéres.

Remarque. Cette commande ne permet de lire que des fichiers .csv, avec une
virgule pour séparateur. Il est possible de changer le séparateur lors de I'import
en passant en option sep=";"' (par exemple, pour citer un séparateur courant).
Les fichiers tableurs .x1ls, .ods etc. ne sont pas lisibles par cette commande,
mais il est aisé de les convertir a partir de votre logiciel de tableur préféré lors de
I'enregistrement du fichier (en choisissant de l'enregistrer... sous format .csv!).

Syntaxe 2.9 (affichage d’un data frame)

On suppose la variable df définie via I'import d’un fichier comme précédem-
ment. Les commandes suivantes permettent sa manipulation :

print(df) #affiche 1'intégralité de la table (déconseillé)
df.head() #affiche les 5 premiéres lignes.

Il est aussi possible d’obtenir le nombre de lignes et de colonnes par la com-
mande

| df . shape

La taille de I’échantillon peut ainsi étre obtenue par la commande df . shape[0]

Syntaxe 2.10 (éndicateurs statistiques d’un data frame)

Les indicateurs statistiques classiques sont disponibles via la commande
| df.describe()

qui renverra, dans l'ordre, pour chaque colonne, la moyenne (mean ), I'écart-type
(std), le minimum (min), les premiers, second (médiane) et troisiémes quartiles
(25%, 50%, 75%), et le maximum (max).
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Syntaxe 2.11 (accés aux données d’un data frame)

II est possible d’accéder directement a un certain caractére caracteére (corres-
pondant a I'en-téte d’une colonne) par la commande

‘df['caractére']

L’objet correspondant est en tout point semblable a un array numpy, et pourra
étre utilisé comme tel (pour tracer des histogrammes, par exemple).

Syntaxe 2.12 (tri et sélection dans un data frame)

Pour afficher la table triée suivant un certain caractére, on peut utiliser la
commande

‘df.sort_values('caractére')

L’option ascending==False permet de faire le tri dans le sens décroissant.
On peut aussi sélectionner les lignes vérifiant une certaine condition (un
booléen portant sur un caractere df['caractére']) par la commande

\ df[condition]
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Chapitre 23

Matrices

0.1 Matrices et array

Syntaxe 0.1 (matrices prédéfinies)

La librairie numpy donne accés au type array, qui peut étre trés facilement
utilisé pour des matrices. Certaines matrices communes sont d’ailleurs déja

prédéfinies :
np.ones(n) #vecteur-ligne rempli de 1
np.ones(n,p) #matrice (n,p) remplie de 1
np.zeros(n) #tvecteur-ligne rempli de @

np.zeros((n,p)) #matrice (n,p) remplie de 0
np.eyes(n,p) #matrice "~“identité'' (n,p)

Syntaxe 0.2 (opérations numpy sur les matrices)

Les opérations d’addition, de soustraction, de multiplication et de division
terme a terme de tableaux sont définis par la librairie numpy. Pour I'addition
et la soustraction, les opérations sont identiques a celles sur les matrices, et
peuvent étre utilisées telles qu’elles.

La multiplication, en revanche, nécessite une commande spéciale.

A+B #addition

A-B #soustraction

C*A #multiplication par un réel
np.dot(A,B)  #multiplication matricielle
np.transpose(A) #transposée

0.2 Librairie linalg

Définition 0.1 (librairie l’algébre linéaire : numpy.linalg)

Pour avoir acces aux opérations plus spécifiques de manipulation de matrice,
il faut charger de plus la librairie numpy.linalg :

|import numpy.linalg as al
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Syntaxe 0.3 (opérations linalg sur les matrices)

La librairie numpy . linalg fournit les commandes pour la puissance et I'inverse
(s’il existe) d’une matrice :

al.matrix_power(A,n) #puissance
al.inv(A) #inverse
al.solve(A,b) #résolution de AX=b

Attention, la commande solve ne fonctionne que si la matrice est inversible...

Syntaxe 0.4 (rang d’une matrice)

On peut aussi obtenir le rang d’une matrice par la commande

|al.matrix_rank(A)




Chapitre 24

Représentations graphiques

On a déja vu les commandes de la libraire matplotlib.pyplot pour tracer des
histogrammes et diagrammes. Cette librairie permet aussi de tracer des graphes :

Syntaxe 0.1 (représentations graphiques)

SiX= (xg,x1,...,T,) €t Y= (Yo, Y1, - - -, Yn) sont deux listes (ou array) de méme
taille, correspondant a une liste d’abscisses et d’ordonnées respectivement, la
commande

|plt.plot(X,Y);plt.show()

permet de tracer la ligne brisée reliant les points (z;,y;).
Par exemple, si np.f définit une fonction f, les trois commandes

X=np.linspace(a,b,n)
Y=np. f(X)
plt.plot(X,Y);plt.show()

permettra de tracer le graphe de f entre a et b (a condition de prendre n assez
grand).

Remarques. L’instruction plt.show(), qui permet d’afficher le graphique, n’est pas
toujours nécessaire en fonction des distributions de python.

La commande-sceur, permettant quant a elle d’effecer le contenu de la fenétre
graphique, est plt.clf().

Il existe une ribambelle d’options qui peuvent étre données a python pour
modifier les axes, la couleur ou le style des graphes, etc... toutes ces options sortent
du programme d’ECG. Le lecteur intéressé est renvoyé vers la documentation de
la librairie pour les découvrir.
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Chapitre 25
Simulations aléatoires

Syntaxe 0.1 (simulation aléatoires : libraire numpy.random)

La librairie numpy.random permet d’effectuer des simulations aléatoires. Elle
pourra étre importée par la commande

|import numpy.random as rd

Syntaxe 0.2 (simulation de lois usuelles)

Les lois usuelles sont définies dans la librairie numpy . random par les commandes

suivantes :
rd.random() #uniforme sur [0,1[
rd.randint(n) #uniforme sur [[0,n-1]] (entiers)
rd.binomial(n,p) #binomiale
rd.geometric(p) #géométrique
rd.poisson(l) #Poisson
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