
ECG 1 TD d'informatique no 3 Résolution d'équations

1 Méthode par dichotomie

Exercice 1
a) i. Justi�er que l'équation x+ x2 + x3 = 1 a une unique solution dans [0, 1].

ii. Dé�nir dans python la fonction f : x 7→ x+ x2 + x3 − 1 (qui aura le nom f).

iii. En utilisant une méthode par dichotomie, compléter la fonction python suivante pour qu'elle
calcule l'unique solution de l'équation précédente, à une précision donnée par l'utilisateur.

def resolve(p):
a=___
b=___
_____ (b-a___p):

if (___):
a=___
b=___

else:
a=___
b=___

return ___

b) Mêmes questions pour l'équation
∑n
k=1 x

k = 1, avec n ∈ N∗ quelconque (qui devra ainsi faire
partie des arguments des fonctions).

c) En reprenant les programmes précédents, proposer un fonction python utilisant une méthode par
dichotomie qui calcule, lorsque l'utilisateur donne :
� une fonction continue f ,
� un réel α,
� un intervalle [a, b] tel que f(a) < α < f(b) ou f(a) > α > f(b) (le programme pourra véri�er

cette condition),
� une précision ε,
une valeur approchée d'une solution de l'équation f(x) = α, à ε près.

Exercice 2
On s'intéresse à l'équation (E) :

1

ex
= ln

(
1

x

)
.

a) Étude mathématique

On pose g : x 7→ e−x + ln(x).

i. Justi�er que la fonction g est dérivable sur R∗+, et calculer sa dérivée.

ii. En utilisant le fait que pour tout x ∈ R, ex > x, montrer que g est strictement croissante
sur R∗+.

iii. Calculer les limites de g en 0 et +∞.

iv. En déduire que g s'annule une, et une seule fois sur R∗+, en un point que l'on appellera α.

v. Montrer que α est l'unique solution de (E).

vi. Montrer que 1
e < α < 1.

b) Programmation

Compléter la fonction python suivante pour qu'elle calcule, au moyen d'une méthode par dicho-
tomie, une valeur approchée de α à n chi�res après la virgule.

import numpy as np

def alpha(n):

___:

c=___
if np.___<np.___:

a=___
else:

b=___
return (a+b)/2

1

ECG 1 TD d'informatique no 3 Résolution d'équations

2 Par des suites récurrentes

2.1 Version TLM
Exercice 3
On veut ici résoudre l'équation (E) : x = 1 +

√
x.

a) Existence de la solution :

i. Étudier la fonction f : x 7→ 1 +
√
x− x, et justi�er que l'équation (E) a une unique solution

strictement positive, que l'on notera r.

ii. Justi�er que 1 6 r 6 4.

b) Suites récurrentes :

On considère les suites (un) et (vn) dé�nies comme suit :{
u0 = 1

∀n ∈ N un+1 = 1 +
√
(un)

et

{
v0 = 4

∀n ∈ N vn+1 = 1 +
√
vn

i. a. Montrer par récurrence que pour tout n ∈ N, un < r < vn.

b. Montrer que (un) est croissante et (vn) est décroissante.

c. En déduire que (un) et (vn) convergent toutes les deux vers r.

c) Programmation :

i. Dé�nir dans python la fonction g : x 7→ 1 +
√
x.

ii. Compléter le programme suivant pour qu'il calcule, pour une précision p donnée, un enca-
drement de r de cette précision.

def solution(p):
u=___
v=___
while (___):

u=___
v=___

return [u,v]

Exercice 4
On s'intéresse aux solutions de l'équation (E) : x = 2 ln(1 + x).

a) Existence de la solution :

i. Étudier la fonction f : x 7→ 2 ln(1 + x) − x, et justi�er que l'équation (E) a une unique
solution strictement positive, que l'on notera r.

ii. Justi�er que 2 6 r 6 4.

b) Suites récurrentes :

On considère les suites (un) et (vn) dé�nies comme suit :{
u0 = 2

∀n ∈ N un+1 = 2 ln(1 + un)
et

{
v0 = 4

∀n ∈ N vn+1 = 2 ln(1 + vn)

i. Montrer par récurrence que ces deux suites sont bien dé�nies, que (un) est croissante, (vn)
décroissante, et que pour tout n ∈ N, un 6 r 6 vn.

ii. Montrer que les deux suites (un) et (vn) convergent, et que leur limite vaut r.

c) Programmation :

i. Dé�nir dans python la fonction g : x 7→ ln(1 + x).

ii. Écrire un programme en python qui calcule un et vn pour n donné.

iii. Écrire un programme en python qui calcule une valeur approchée de r à une précision ε
donnée.

2

ECG 1 TD d'informatique no 3 Résolution d'équations

2.2 Version IAF
Exercice 5
Cette fois-ci, c'est l'équation (E) : x = 1√

1+x
que l'on veut résoudre sur R+.

On pose f : x 7→ 1√
1+x

.

a) Existence de la solution :

i. Montrer que f est dérivable sur R+, et en donner la dérivée.

ii. Montrer que pour tout x ∈ R+, |f ′(x)| < 1
2 .

iii. En déduire que la fonction g : x 7→ f(x)−x est strictement décroissante sur R+, et en donner
les limites en 0 et +∞.

iv. En déduire que l'équation (E) a une unique solution positive, que l'on notera ϕ.

v. Montrer que 0 < ϕ < 1.

b) Suite récurrente :

On considère à nouveau une suite (un) dé�nie par{
u0 = 0

∀n ∈ N un+1 = f(un)

i. Montrer que pour tout n ∈ N

|un+1 − ϕ| <
|un − ϕ|

2

ii. En déduire que pour tout n ∈ N
|un − ϕ| <

1

2n

iii. En déduire que un −→
n→+∞

ϕ.

c) Programmation :

i. Compléter le programme suivant pour qu'il calcule, pour une précision p donnée, un enca-
drement de ϕ de cette précision.

def solution(p):
n=0
u=___
___:

u=___
n=n+1

return u

d) Bonus : Était-il possible d'utiliser le TLM dans cette situation (voir 3) ?

Exercice 6
Cette fois-ci, c'est l'équation (E) : x = e−

x2

2 que l'on veut résoudre sur R+.

On pose f : x 7→ e−
x2

2 .

a) Existence de la solution :

i. Montrer que f est dérivable deux fois sur R+, et en donner la dérivée, ainsi que sa dérivée
seconde.

ii. Étudier la convexité de f .

iii. En déduire que pour tout x ∈ R+, |f ′(x)| < 1√
e
.

iv. En déduire que la fonction g : x 7→ f(x)−x est strictement décroissante sur R+, et en donner
les limites en 0 et +∞.

v. En déduire que l'équation (E) a une unique solution positive, que l'on notera ϕ.

vi. Montrer que 0 < ϕ < 1.

b) Suite récurrente :

On considère à nouveau une suite (un) dé�nie par{
u0 = 0

∀n ∈ N un+1 = f(un)

3

ECG 1 TD d'informatique no 3 Résolution d'équations

i. Montrer que pour tout n ∈ N

|un+1 − ϕ| <
|un − ϕ|√

e

ii. En déduire que pour tout n ∈ N
|un − ϕ| < e−

n
2

iii. En déduire que un −→
n→+∞

ϕ.

c) Programmation :

i. Proposer un programme python qui calcule, pour une précision p donnée, un encadrement
de ϕ de cette précision.

3 Pour aller plus loin...

3.1 Généralité de la méthode �IAF�
Exercice 7
On suppose ici qu'on a a�aire à une fonction f contractante sur un intervalle I, c'est-à-dire que :

� I est stable par f (c'est-à-dire que si x ∈ I, f(x) ∈ I),
� f est dérivable sur I,
� il existe une constante k telle que ∀x ∈ I, |f ′(x)| 6 k < 1.

a) Montrer tout d'abord que, quelque soit x, y ∈ I, |f(x)−f(y)| 6 k|x−y| < |x−y| (d'où l'appellation
de �contractante�).

b) Montrer que la fonction g : x 7→ f(x)− x est strictement décroissante sur I.

c) En déduire que f a un unique point �xe sur I, que l'on notera ϕ. On pourra passer par les étapes
suivantes :
� Si l'intervalle I = [a, b] est un segment, considérer le signe de f(x)− x en a et en b.
� Si l'intervalle I est �ni (mais pas forcément fermé), considérer le signe des limites à la place,
� Si l'intervalle I est in�ni, montrer que

f(x)− x 6 (k − 1)x− ky + f(y)

(où y est un point quelconque de I) et en déduire que f tend vers −∞ en +∞. (on pourra
utiliser l'autre version de l'IAF, et adapter le résultat pour une limite en −∞)

d) Prenons une suite un véri�ant l'équation un+1 = f(un), de premier terme u0 ∈ I.
i. Montrer que ∀n ∈ N, un ∈ I.
ii. Montrer que ∀n ∈ N, |un+1 − ϕ| 6 k|un − ϕ|.
iii. En déduire que ∀n ∈ N, |un − ϕ| 6 kn|u0 − ϕ|.
iv. En déduire le théorème suivant :

Théorème 3.1
Soit f une fonction contractante sur I. Toute suite (un) véri�ant pour tout n ∈ N un+1 =
f(un), de premier terme dans I, converge vers l'unique point �xe de f sur I.

e) Véri�er que les fonctions suivantes sont contractantes, et tester au moyen du programme créé au
3.2 le théorème précédent :
� x 7→

√
x, I =

]
1
2 ,+∞

[
,

� x 7→ e−x, I =]ε,+∞[(dès que ε > 0),
� x 7→ 1

1+ex , I = R,

� x 7→ e−x
2

, I = R.

4

ECG 1 TD d'informatique no 3 Résolution d'équations

3.2 Étude graphique des suites un+1 = f(un)

Il est possible de représenter graphiquement l'évolution d'une telle suite :

u0

u1

u0

u1

u1 u0

u1

u1 u2 …

Figure 1 � Représentation graphique d'une suite récurrente

Pour tracer un tel graphe, il su�t (outre de tracer le graphe de la fonction f et de x 7→ x) de relier
les points d'abscisse et d'ordonnée

x u0 u1 u1 u2 u2 u3 . . .
y u1 u1 u2 u2 u3 u3 . . .

On remarque que les ordonnées sont les même que les abscisses, décalées de 1 cran.

a) Compléter le programme python suivant pour qu'il trace le graphique correspondant à l'évolution
de la suite récurrente avec f : x 7→

√
x :

import numpy as np
import matplotlib.pyplot as plt

n=int(input("nombre de termes?"))
u0=float(input("premier terme?"))
def f(x):

return ___
sam=500
plt.clf()
plt.xlim([0, 2])
plt.ylim([0, 2])
S=np.zeros(2*n+2)
S[1]=u0
for i in range(1,n+1):

S[2*i]=___
S[2*i+1]=S[2*i]

X=np.linspace(0,2,sam)
Y=___
plt.plot(X,X,color='black')
plt.plot(X,___,color='blue')
plt.plot(S[range(1,(2*n)+1)],S[range(2,(2*n+1)+1)],color='red')

b) Quel semble être le comportement de cette suite, quelque soit le premier terme (à condition qu'il
soit positif, bien sûr !) ? Démontrer votre hypothèse.

c) En faire de même avec la fonction f : x 7→ e−x.

5

ECG 1 TD d'informatique no 3 Résolution d'équations

Figure 2 � Diagramme de bifurcation de la suite logistique

3.3 Un cas... chaotique

Certains détails de cette section utilisent le théorème 3.1 de la section précédente, mais il est possible
de simplement lire ce théorème et la discussion ci-dessous sans chercher à tout justi�er. Les simulations
informatiques, intéressantes par elles-mêmes et illustrant les résultats décrits, ne nécessitent aucune
justi�cation.

Une suite logistique est une suite véri�ant la relation un+1 = µun(1−un) = f(un). Une interprétation
classique est l'évolution d'une population : la population de la génération suivante (un+1) est calculé
comme le produit d'un coe�cient de fertilité µ, de la population courante un (chaque individu ayant
ainsi en moyenne µ enfants) et d'un facteur de surpopulation (1− un) (seule une fraction 1− un de la
population survit à l'age adulte, s'il y a trop d'individus les ressources viennent à manquer).

a) Justi�er que si µ ∈ [0, 4], la suite un reste entre 0 et 1 (on suppose que u0 ∈ [0, 1]).

b) i. Justi�er que si µ < 1, f est contractante, et la population �nit par s'éteindre. Ce résultat
reste vrai pour µ = 1, même si f n'est plus contractante. (simulation avec par exemple
µ = .75)

ii. Montrer que sinon, la fonction f a un unique point �xe ϕ = µ−1
µ dans]0, 1[.

iii. Montrer que si µ ∈]1, 2], la suite est monotone si u0 6 1
2 (et donc à partir du rang 1 dans

tous les cas), et la population tend vers ce point �xe. (simulation avec par exemple µ = 1.75)

iv. Montrer que si µ ∈]2, 3[, f est contractante au voisinage de ϕ. La population �nit aussi par
tendre vers le point �xe, mais cette fois-ci en oscillant autour. (simulation avec par exemple
µ = 2.75)

v. C'est si µ ∈]3, 4] que tout �che le camp : si µ 6 3.57 (environ), la suite oscille entre
plusieurs valeurs (simulation avec µ = 3.54). Et si µ > 3.57 (simulation avec µ = 3.82), le
comportement est complètement chaotique : il dépend fortement de la population initiale, et
s'approche d'un grand nombre de points. Ces points �attracteurs� ont une forme particulière
(appelée �attracteur étrange�), la �gure 2 en présente le graphe en fonction du paramètre µ.

c) Reprendre le programme du 3.2 pour construire une fonction logplot(mu,u0,n0,n) qui trace,
pour µ et u0 donnés, le graphe des termes de la suite logistique correspondante entre n0 et n.
Tester ce programme pour µ = .75, 1.75, 2.75, 3.3, 3.82, 3.84, 3.85, 3.86, . . .

6

ECG 1 TD d'informatique no 3 Résolution d'équations

Le programme suivant permet de construire une approximation (assez grossière) de l'attracteur dans
python, en traçant les valeurs des suites logistiques un en fonction du paramètre µ, pour n entre N0 et
N. step correspond à l'échantillonnage en µ. Plus ces valeurs sont importantes, plus le programme sera
long à tourner...

mport numpy as np
import matplotlib.pyplot as plt

plt.figure(figsize=(5, 3), dpi=300)
plt.clf()
plt.xlim(0,4)
plt.ylim(0,1)
N0=100
N=100
step=0.002
MU=np.arange(0,4,step)
for mu in MU:

M=np.zeros(N0);P=np.zeros(N0)
u=0.1
for n in range (1,N0):

u=mu*u*(1-u)
for n in range(0,N):

u=mu*u*(1-u)
M[n]=mu
P[n]=u

plt.plot(M,P,'.',color='black',markersize=0.1)

plt.savefig('LogAtt.png')

7

ECG 1 TD d'informatique no 3 Résolution d'équations

A Commandes

A.1 Tableaux et arrays

Syntaxe (librairie numpy)
import numpy as np

Syntaxe (déclaration d'arrays)
Déclaration type �liste� :

np.array([a,b,...]) #déclaration explicite
np.array([f(x) for x in A]) #déclaration paramétrique
np.array([x for x in A if condition]) #déclaration implicite

N.B. : un tableau à plusieurs entrées est simplement vu comme une �liste de liste�.
Déclarations spéciales :

np.arange(début,fin,pas) #plage de données: écart entre les valeurs
np.linspace(début,fin,nb) #plage de données: nombre de terme
np.ones(n) #vecteur-ligne rempli de 1
np.ones([n,p]) #matrice (n,p) remplie de 1
np.zeros(n) #vecteur-ligne rempli de 0
np.zeros([n,p]) #matrice (n,p) remplie de 0

Syntaxe (accès aux données dans un array)
A[i,j] # case (i,j)
A[i,:] #i-ieme ligne
A[:,j] #j-ieme colonne
A[i1:i2,j1:j2]#sous-matrice

A.2 Représentations graphiques

Syntaxe (graphes : librairie matplotlib.pyplot)
import matplotlib.pyplot as plt

Ne pas oublier de �nettoyer� la fenêtre graphique au moyen de plt.clf().
Selon les versions de python, il peut être nécessaire de demander explicitement d'a�cher la fenêtre

graphique par

plt.show()

Syntaxe (graphe)
plt.plot(Abscisses,Ordonnées)

(python trace simplement les points d'abscisse et d'ordonnées spéci�ées, et les relie...)

B Dichotomie : correction

Le programme suivant permet de résoudre, à une précision p donnée par l'utilisateur, l'équation
f(x) = 0, où f est une fonction prédé�nie dans python, négative en a et positive en b :

def resolve(a,b,p):
while (b-a>p):

if (f((a+b)/2)>0):
a=a
b=(a+b)/2

else:
a=(a+b)/2
b=b

return (a+b)/2

8

	Méthode par dichotomie
	Par des suites récurrentes
	Version TLM
	Version IAF

	Pour aller plus loin...
	Généralité de la méthode ``IAF''
	Étude graphique des suites un+1=f(un)
	Un cas... chaotique

	Dichotomie: correction

