ECG 1 TD D’INFORMATIQUE N° 3 RESOLUTION D’EQUATIONS

1 Méthode par dichotomie

Ezercice 1
a) i Justifier que I'équation x + x? 4+ 23 = 1 a une unique solution dans [0, 1].

ii. Définir dans python la fonction f : x — x + 2% + 2% — 1 (qui aura le nom f).

iii. En utilisant une méthode par dichotomie, compléter la fonction python suivante pour qu’elle
calcule I'unique solution de I’équation précédente, & une précision donnée par 1’'utilisateur.

def resolve(p):
a=_

(b-a___p):
if (__):
a=___

return ___

b) Mémes questions pour 'équation Y ,_, z¥ = 1, avec n € IN* quelconque (qui devra ainsi faire
partie des arguments des fonctions).

¢) En reprenant les programmes précédents, proposer un fonction python utilisant une méthode par
dichotomie qui calcule, lorsque 'utilisateur donne :

une fonction continue f,

un réel «,

un intervalle [a,b] tel que f(a) < a < f(b) ou f(a) > a > f(b) (le programme pourra vérifier

cette condition),

une précision e,

une valeur approchée d’une solution de ’équation f(z) = «, a € preés.

tn(l)

Exercice 2

1
On s’intéresse a I’équation (F) :

X

a) Etude mathématique
On pose g : x — e~ 4+ In(x).

i

ii.

iii.
iv.
V.

vi.

Justifier que la fonction g est dérivable sur R, et calculer sa dérivée.

En utilisant le fait que pour tout z € R, e* > x, montrer que g est strictement croissante
sur RY .

Calculer les limites de g en 0 et +oo.

En déduire que g s’annule une, et une seule fois sur R’ , en un point que I'on appellera a.
Montrer que « est I'unique solution de (E).

1
Montrer que < < a < 1.

b) Programmation

Compléter la fonction python suivante pour qu’elle calcule, au moyen d’une méthode par dicho-
tomie, une valeur approchée de a & n chiffres aprés la virgule.

import numpy as np
def alpha(n):
c=___

if np.___<np.___:

a=___
else:

b=___

return (atb)/2

ECG 1 TD D’INFORMATIQUE N° 3 RESOLUTION D’EQUATIONS

2 Par des suites récurrentes

2.1 Version TLM

Exercice 3
On veut ici résoudre I’équation (F):xz =1+ /.

a) Existence de la solution :

i. Etudier la fonction f : x — 1+ \/x — z, et justifier que I’équation (E) a une unique solution
strictement positive, que ’on notera 7.

ii. Justifier que 1 < r < 4.
b) Suites récurrentes :
On considére les suites (uy,) et (vy,) définies comme suit :

ug = 1 ot vg = 4
YReN wuppr = 14 +/(uy) VneN v,y = 1+,/v,

i. a. Montrer par récurrence que pour tout n € N, u,, < r < v,.
b. Montrer que (u,) est croissante et (v,,) est décroissante.
c. En déduire que (u,) et (v,) convergent toutes les deux vers r.
¢) Programmation :
i. Définir dans python la fonction g : x +— 1+ /.

ii. Compléter le programme suivant pour qu’il calcule, pour une précision p donnée, un enca-
drement de r de cette précision.

def solution(p):

u=___

V=___

while (___):
u=___
V_

return [u,v]

Ezercice 4
On s’intéresse aux solutions de ’équation (E) : z = 2In(1 + z).

a) Existence de la solution :
i. Etudier la fonction f : z — 2In(1 4 2) — x, et justifier que I’équation (E) a une unique
solution strictement positive, que ’on notera 7.
ii. Justifier que 2 < r < 4.
b) Suites récurrentes :
On considére les suites (uy,) et (vy,) définies comme suit :

Uy = 2 ¢ Vo = 4
YneN wupp1r = 2In(l+wuy,) ¢ VneN v, = 2In(l+w,)

i. Montrer par récurrence que ces deux suites sont bien définies, que (u,) est croissante, (v;,)
décroissante, et que pour tout n € N, u, <7 < v,.

ii. Montrer que les deux suites (u,) et (v,) convergent, et que leur limite vaut r.
¢) Programmation :

i. Définir dans python la fonction g : z — In(1 +).

ii. Ecrire un programme en python qui calcule u,, et v, pour n donné.

iii. Ecrire un programme en python qui calcule une valeur approchée de r & une précision ¢
donnée.

ECG 1 TD D’INFORMATIQUE N° 3 RESOLUTION D’EQUATIONS

2.2 Version IAF

Ezxercice
Cette fois-ci, c’est ’équation (E) : x = \/11?6 que l'on veut résoudre sur R.
1
On pose f:z+— A

a) Existence de la solution :

i. Montrer que f est dérivable sur R, et en donner la dérivée.
ii. Montrer que pour tout = € Ry, |f/(z)| < 3.

iii. En déduire que la fonction g : ¢ — f(x)—x est strictement décroissante sur R, et en donner
les limites en 0 et +oc.

iv. En déduire que I’équation (F) a une unique solution positive, que I'on notera .
v. Montrer que 0 < ¢ < 1.

b) Suite récurrente :
On considére & nouveau une suite (u,) définie par

uyg = 0
YneWN wupr1 = flup)
i. Montrer que pour tout n € IN
U —
st — | < lun =]
2
ii. En déduire que pour tout n € IN
1
[un — | < on

iii. En déduire que u,, —
n—+4o0o

¢) Programmation :

i. Compléter le programme suivant pour qu’il calcule, pour une précision p donnée, un enca-
drement de ¢ de cette précision.

def solution(p):
n=0
u:

U=___

n=n+1
return u

d) Bonus : Etait-il possible d’utiliser le TLM dans cette situation (voir 3) ?

Exercice 6
Cette fois-ci, c’est ’équation (E):x =e

22 ,

T que 'on veut résoudre sur R.
22

Onpose f:x—e 7.

a) Existence de la solution :

i. Montrer que f est dérivable deux fois sur R, et en donner la dérivée, ainsi que sa dérivée
seconde.

ii. Etudier la convexité de f.

iii. En déduire que pour tout x € R, |f/(x)| < ﬁ

iv. En déduire que la fonction g : @ — f(x) —x est strictement décroissante sur R, et en donner
les limites en 0 et +o0.

v. En déduire que I’équation (F) a une unique solution positive, que I’on notera .

vi. Montrer que 0 < ¢ < 1.

b) Suite récurrente :
On considére a nouveau une suite (u,,) définie par

ug = 0
VneN upt1 = flun)

ECG 1 TD D’INFORMATIQUE N° 3 RESOLUTION D’EQUATIONS

i. Montrer que pour tout n € IN

.
i =gl < 122

ii. En déduire que pour tout n € IN
2

|un - 90‘ <e”
iii. En déduire que u,, —
n—-+4oo

¢) Programmation :

i. Proposer un programme python qui calcule, pour une précision p donnée, un encadrement
de ¢ de cette précision.

3 Pour aller plus loin...

3.1 Généralité de la méthode “IAF”

Ezercice 7

On suppose ici qu’on a affaire & une fonction f contractante sur un intervalle I, c’est-a-dire que :
— I est stable par f (c’est-a-dire que si x € I, f(x) € I),
— f est dérivable sur I,
— il existe une constante k telle que Va € I, |f'(z)| < k < 1.

a) Montrer tout d’abord que, quelque soit z,y € I, |f(x)— f(y)| < k|lz—y| < |z—y| (d’ou Pappellation
de “contractante”).
b) Montrer que la fonction g : © — f(x) — x est strictement décroissante sur I.

¢) En déduire que f a un unique point fixe sur I, que ’on notera . On pourra passer par les étapes
suivantes :
— Si lintervalle I = [a, b] est un segment, considérer le signe de f(z) —z en a et en b.
— Si l'intervalle T est fini (mais pas forcément fermé), considérer le signe des limites a la place,
— Si lintervalle I est infini, montrer que

fl@)—z<(k—1Dz—ky+ fy)
(ot y est un point quelconque de I) et en déduire que f tend vers —oco en 4o0o. (on pourra
utiliser Pautre version de 'TAF, et adapter le résultat pour une limite en —o0)
d) Prenons une suite u,, vérifiant 'équation u,11 = f(uy), de premier terme wug € I.
i. Montrer que Vn € N, u,, € I.
klu, — @l.
k™ lug — o).

ii. Montrer que ¥n € IN, |uy,11 — | <
iii. En déduire que Yn € IN, |u,, — ¢| <

iv. En déduire le théoréme suivant :

Théoréme 3.1
Soit f une fonction contractante sur I. Toute suite (u,) vérifiant pour tout n € N w41 =
f(uyn), de premier terme dans I, converge vers l'unique point fize de f sur I.

e) Vérifier que les fonctions suivantes sont contractantes, et tester au moyen du programme créé au
3.2 le théoréme précédent :
— x>z, I:]%,—i-oo[,
— x e " I =]e +oof (dés que € > 0),
— T 1—&-%’ I =R,
— :c+—>e*"”2, I=R.

ECG 1 TD D’INFORMATIQUE N° 3 RESOLUTION D’EQUATIONS

3.2 Etude graphique des suites u, ., = f(u,)

Il est possible de représenter graphiquement 1’évolution d’une telle suite :

L L Uy e

Uy Uy u; U, uouy

FIGURE 1 — Représentation graphique d’une suite récurrente

Pour tracer un tel graphe, il suffit (outre de tracer le graphe de la fonction f et de z — x) de relier
les points d’abscisse et d’ordonnée

r | Up U3 U U2 U2 U3
Yylu ur Uz U2 U3 U3

On remarque que les ordonnées sont les méme que les abscisses, décalées de 1 cran.

a) Compléter le programme python suivant pour qu’il trace le graphique correspondant & I’évolution
de la suite récurrente avec f : x — /x :

import numpy as np
import matplotlib.pyplot as plt

n=int(input("nombre de termes?"))
ud=float(input("premier terme?"))
def f(x):
return __
sam=500
plt.clf()
plt.xlim([0, 2])
plt.ylim([0, 21)
S=np.zeros(2xn+2)
S[1]=u0
for i in range(1,n+1):
S[2*xi]=___
S[2xi+1]=S[2*i]
X=np.linspace(@,2,sam)

Y=___
plt.plot(X,X,color="'black"')
plt.plot(X,___,color="blue')

plt.plot(SLrange(1, (2xn)+1)]1,S[range(2, (2*xn+1)+1)]1,color="red"')

b) Quel semble étre le comportement de cette suite, quelque soit le premier terme (& condition qu’il
soit positif, bien str!) ? Démontrer votre hypothése.

¢) En faire de méme avec la fonction f: z +— e™%.

ECG 1

TD D’INFORMATIQUE N° 3 RESOLUTION D’EQUATIONS

1.0

0.8 A

0.6

0.4 -

0.2 A

0.0 T
0.0 05

FIGURE 2 — Diagramme de bifurcation de la suite logistique

3.3 Un cas... chaotique

Certains détails de cette section utilisent le théoréme 3.1 de la section précédente, mais il est possible
de simplement lire ce théoréme et la discussion ci-dessous sans chercher a tout justifier. Les simulations
informatiques, intéressantes par elles-mémes et illustrant les résultats décrits, ne nécessitent aucune
justification.

Une suite logistique est une suite vérifiant la relation u,+1 = pu,(1—u,) = f(u,). Une interprétation
classique est ’évolution d’une population : la population de la génération suivante (u,y1) est calculé
comme le produit d’un coefficient de fertilité u, de la population courante u, (chaque individu ayant
ainsi en moyenne p enfants) et d’un facteur de surpopulation (1 — u,,) (seule une fraction 1 — u,, de la
population survit & ’age adulte, s’il y a trop d’individus les ressources viennent & manquer).

a) Justifier que si p € [0,4], la suite u,, reste entre 0 et 1 (on suppose que ug € [0, 1]).

b)

i

ii.

iii.

iv.

Justifier que si p < 1, f est contractante, et la population finit par s’éteindre. Ce résultat
reste vrai pour ;1 = 1, méme si f n’est plus contractante. (simulation avec par exemple
uw=".75)

Montrer que sinon, la fonction f a un unique point fixe ¢ = “T_l dans |0, 1].

Montrer que si p €]1,2], la suite est monotone si ug < 3 (et donc & partir du rang 1 dans
tous les cas), et la population tend vers ce point fixe. (simulation avec par exemple p = 1.75)

Montrer que si p €]2, 3], f est contractante au voisinage de . La population finit aussi par
tendre vers le point fixe, mais cette fois-ci en oscillant autour. (simulation avec par exemple
u=2.75)

Clest si €]3,4] que tout fiche le camp : si p < 3.57 (environ), la suite oscille entre
plusieurs valeurs (simulation avec p = 3.54). Et si p > 3.57 (simulation avec pu = 3.82), le
comportement est complétement chaotique : il dépend fortement de la population initiale, et
s’approche d’un grand nombre de points. Ces points “attracteurs”’ ont une forme particuliére
(appelée “attracteur étrange”), la figure 2 en présente le graphe en fonction du paramétre p.

c) Reprendre le programme du 3.2 pour construire une fonction logplot(mu,u®@,n@,n) qui trace,
pour p et ug donnés, le graphe des termes de la suite logistique correspondante entre ng et n.
Tester ce programme pour p = .75,1.75,2.75, 3.3, 3.82, 3.84, 3.85,3.86, . . .

ECG 1 TD D’INFORMATIQUE N° 3 RESOLUTION D’EQUATIONS

Le programme suivant permet de construire une approximation (assez grossiére) de 'attracteur dans
python, en tracant les valeurs des suites logistiques u,, en fonction du paramétre u, pour n entre NO et
N. step correspond & 1’échantillonnage en u. Plus ces valeurs sont importantes, plus le programme sera
long a tourner...

mport numpy as np
import matplotlib.pyplot as plt

plt.figure(figsize=(5, 3), dpi=300)
plt.clf()
plt.x1im(0,4)
plt.ylim(@,1)
NO=100
N=100
step=0.002
MU=np.arange(0,4,step)
for mu in MU:
M=np.zeros(NQ) ;P=np.zeros(NQ)
u=0.1
for n in range (1,N0):
u=muxux(1-u)
for n in range(@,N):
u=mu*u*(1-u)
MLn]=mu
PLn]=u
plt.plot(M,P,"'."', color="black',markersize=0.1)

plt.savefig('LogAtt.png')

ECG 1 TD D’INFORMATIQUE N° 3 RESOLUTION D’EQUATIONS

A Commandes

A.1 Tableaux et arrays

Syntaze (librairie numpy)
| import numpy as np

Syntaze (déclaration d’arrays)
Déclaration type “liste” :

np.array([a,b,...]) #déclaration explicite
np.array([f(x) for x in A]) #déclaration paramétrique
np.array([x for x in A if condition]) #déclaration implicite

N.B. : un tableau & plusieurs entrées est simplement vu comme une “liste de liste”.
Déclarations spéciales :

np.arange(début,fin,pas) #plage de données: écart entre les valeurs
np.linspace(début,fin,nb) #plage de données: nombre de terme

np.ones(n) #vecteur-ligne rempli de 1
np.ones([n,pl) #matrice (n,p) remplie de 1
np.zeros(n) #vecteur-ligne rempli de 0

np.zeros([n,pl) #matrice (n,p) remplie de 0

Syntaze (accés aur données dans un array)
Ali,j] # case (i,])

Ali,:] #i-ieme ligne

AL:,j]1 #j-ieme colonne
A[i1:12,j1:j2]#sous-matrice

A.2 Représentations graphiques

Syntaze (graphes : librairie matplotlib.pyplot)
| import matplotlib.pyplot as plt

Ne pas oublier de “nettoyer” la fenétre graphique au moyen de plt.clf().
Selon les versions de python, il peut étre nécessaire de demander explicitement d’afficher la fenétre
graphique par

| p1t. show()

Syntaze (graphe)
‘ plt.plot(Abscisses,Ordonnées)

(python trace simplement les points d’abscisse et d’ordonnées spécifiées, et les relie...)

B Dichotomie : correction

Le programme suivant permet de résoudre, & une précision p donnée par l'utilisateur, I’équation
f(x) =0, ou f est une fonction prédéfinie dans python, négative en a et positive en b :

def resolve(a,b,p):
while (b-a>p):
if (f((atb)/2)>0):
a=a
b=(a+b)/2
else:
a=(atbh)/2
b=b
return (at+b)/2

	Méthode par dichotomie
	Par des suites récurrentes
	Version TLM
	Version IAF

	Pour aller plus loin...
	Généralité de la méthode ``IAF''
	Étude graphique des suites un+1=f(un)
	Un cas... chaotique

	Dichotomie: correction

