Automorphismes polynomiaux du plan

Séance d'exercices 4

Marc Abboud

26 Septembre 2024

Exercice 1. On considère $f(x,y) = (\frac{x}{y},y)$. Donner le domaine de défintion de $f: \mathbf{A}^2 \longrightarrow \mathbf{A}^2$ et de $f: \mathbf{A}^2 \longrightarrow \mathbf{P}^2$.

Exercice 2. Soit X une variété quasiprojective irréductible. Montrer que les lois d'additions et de multiplications définies en cours sur K(X) sont bien définies (i.e sont compatibles avec la relation d'équivalence).

Exercice 3. Soient X,Y des variétés quasiprojectives irréductibles et $f:X \dashrightarrow Y$ une application dominante (i.e. l'image est dense). Montrer que f induit un homomorphisme de K-algèbres

$$f^*: K(Y) \to K(X). \tag{1}$$

Montrer que réciproquement tout homomorphisme de K-algèbres $\phi: K(Y) \to K(X)$ provient d'une application rationnelle dominante $f: X \dashrightarrow Y$. (Se ramener au cas où X,Y sont affines).

Exercice 4. Une *droite* dans \mathbf{P}^2 est une courbe de degré 1. On note $\operatorname{PGL}_3(K) = \operatorname{GL}_3(K)/K \cdot \operatorname{id}$.

1. Montrer qu'on a un morphisme de groupes $\operatorname{PGL}_3(K) \to \operatorname{Aut}(\mathbf{P}^2)$ donné par

$$\begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \cdot \begin{bmatrix} X : Y : Z \end{bmatrix} = \begin{bmatrix} aX + bY + cZ : dX + eY + fZ : gX + hY + iZ \end{bmatrix}$$
(2)

Montrer que si $p_1, p_2, p_3 \in \mathbf{P}^2$ sont trois points, alors il existe $M \in \mathrm{PGL}_3(K)$ tel que

$$M(p_1) = [0:0:1], \quad M(p_2) = [0:1:0], \quad M(p_3) = [1:0:0]$$
 (3)

si et seulement si p_1, p_2, p_3 ne sont pas alignés (c'est à dire pas sur une même droite). Pour se faire écrire $p_i = [x_i : y_i : z_i]$ et montrer que trois points sont alignés si et seulement si le déterminant

$$\begin{vmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ z_1 & z_2 & z_3 \end{vmatrix}$$
 (4)

s'annule.

Exercice 5. 1. Montrer que toute droite dans \mathbf{P}^2 est isomorphe à \mathbf{P}^1 . Soit $C \subset \mathbf{P}^2$ la courbe de degré 2 donnée par l'équation

$$XY + XZ + YZ = 0. (5)$$

On va montrer que C est isomorphe à \mathbf{P}^1 .

- 2. Montrer que p = [0:0:1] appartient à C.
- 3. Montrer que l'ensemble des droites passant passant par p est paramétrée par \mathbf{P}^1 qu'on notera avec des coordonnées homogènes [s:t].
- 4. Soit [s,t] une droite passant par p, montrer que cette droite a un unique point d'intersection q([s:t]) avec C autre que p et donner les coordonnées de q([s:t]) en fonction de [s:t].
- 5. Montrer que $[s:t] \in \mathbf{P}^1 \mapsto q([s:t]) \in C$ est un isomorphisme.