Automorphismes polynomiaux du plan

Séance d'exercices 10

Marc Abboud

28 Novembre 2024

Exercice 1. Montrer que la multiplicité d'intersection des courbes $y - x^2 = 0$ et y = 0 en l'origine est 2.

Exercice 2. Soit D = mH où $m \ge 1$ et H est un hyperplan de \mathbf{P}^n . Montrer que ϕ_{mH} correspond au plongement de Veronese de degré m.

Exercice 3. On considère $X = \mathbf{P}^1 \times \mathbf{P}^1$.

- 1. Montrer que tous les diviseurs de la forme ${\bf P}^1 \times \{pt\}$ sont linéairement équivalents.
- 2. En utilisant le fait que $\operatorname{Pic}(\mathbf{A}^2) = 0$ et que $\mathbf{A}^2 \subset \mathbf{P}^1 \times \mathbf{P}^1$ montrer que $\operatorname{Pic}(\mathbf{P}^1 \times \mathbf{P}^1) = \mathbf{Z}L_1 \oplus \mathbf{Z}L_2$ où $L_1 = \mathbf{P}^1 \times \{\operatorname{pt}\}\$ et $L_2 = \{\operatorname{pt}\} \times \mathbf{P}^1$. Montrer de plus que

$$L_1^2 = L_2^2 = 0 \text{ et } L_1 \cdot L_2 = 1.$$
 (1)

- 3. En déduire que \mathbf{P}^2 et $\mathbf{P}^1 \times \mathbf{P}^1$ ne sont pas isomorphes.
- 4. Soit $\Delta \subset \mathbf{P}^1 \times \mathbf{P}^1$. Montrer que $\Delta \sim L_1 + L_2$ de deux façons différentes.
 - (a) Montrer que $\Delta \cdot L_1 = \Delta \cdot L_2 = 1$.
 - (b) Trouver une fonction rationnelle sur $\boldsymbol{P}^1\times\boldsymbol{P}^1$ tel que son diviseur est

$$\Delta - L_1 - L_2. \tag{2}$$

5. Calculer ϕ_{Δ} .

Exercice 4. Soit $V \subset \mathcal{L}(D)$ un système linéaire de dimension 2 sans partie fixe. On suppose que $D^2 = 0$. Montrer que l'application induite $\phi_V : X \dashrightarrow \mathbf{P}^1$ est un morphisme. On admettra le fait suivant : si V est un système linéaire sans composantes fixes, alors pour tout $D \in \mathbf{P}(V)$ il existe $D' \in \mathbf{P}(V)$ tel que $\mathrm{Supp}\,D$, $\mathrm{Supp}\,D'$ n'ont pas de composantes en communs.