Les permutations

Séance Rennes et Maths Marc Abboud

1er octobre 2022

1 Définitions et premiers résultats

Définition 1.1. Une permutation de n éléments est une fonction $\sigma: \{1, \dots, n\} \to \{1, \dots, n\}$ qui réarrange les entiers de 1 à n.

Exemple 1.2. On peut définir σ qui réarrange les entiers 1, 2, 3 en échangeant la place de 2 et 3 et ne bouge pas 1. Ainsi, $\sigma(1) = 1$, $\sigma(2) = 3$ et $\sigma(3) = 2$.

Définition 1.3. On appelle groupe symétrique l'ensemble des bijections de $\{1, ..., n\}$. on le note S_n (ou \mathfrak{S}_n pour les plus courageux).

Pour toute permutation σ , on peut définir la permutation inverse σ^{-1} qui réarrange les entiers de 1 à n dans le sens contraire de σ . On a donc $\sigma(i) = j$ si et seulement si $\sigma^{-1}(j) = i$. Il y a une permutation particulière qui consiste à réarranger les entiers de 1 à n en ne touchant à rien. On appelle cette permutation l'identité et on la note id.

Exercice 1. Quel est l'inverse de id?

On peut aussi composer les permutations. Si α, β sont deux permutations, je définis $\alpha\beta$ comme la permutation où j'applique d'abord β puis α . On peut résumer ceci ainsi

$$\alpha\beta(i) = \alpha\left(\beta(i)\right). \tag{1}$$

On a donc un produit défini sur S_n tel que tout élément a un inverse. On appelle ce genre d'espace un groupe.

Ainsi, dans la suite, lorsqu'on aura deux permutations α et β , on notera indifféremment $\alpha \circ \beta$ ou $\alpha \beta$ pour la composée de α et β . ATTENTION, le produit dans le groupe symétrique n'est pas commutatif pour $n \geq 3$! C'est à dire que de manière générale, $\alpha \beta \neq \beta \alpha$.

Il y a plusieurs façons de représenter une permutation. Une des façons classique est de l'écrire sous forme de tableau à deux lignes, la première étant $(1 \cdots n)$ et la deuxième l'image de la première ligne par σ . Plus précisément, soit $x_i \in [|1, n|]$ l'entier tel que $\sigma(i) = x_i$, on représente alors σ par le tableau :

$$\sigma = \begin{pmatrix} 1 & 2 & \cdots & n \\ x_1 & x_2 & \cdots & x_n \end{pmatrix} = \begin{pmatrix} 1 & 2 & \cdots & n \\ \sigma(1) & \sigma(2) & \cdots & \sigma(n) \end{pmatrix}$$

Exercice 2. Décrire S_n pour n = 1, 2, 3.

Exercice 3. Donner le cardinal de S_n .

Exercice 4. On définit $\varphi: S_{n-1} \to S_n$ l'application définie par

$$\varphi(\sigma) = \begin{pmatrix} 1 & 2 & \cdots & n-1 & n \\ \sigma(1) & \sigma(2) & \cdots & \sigma(n-1) & n \end{pmatrix}$$

Montrer que φ est une bijection entre S_{n-1} et $\{\sigma \in S_n : \sigma(n) = n\}$.

Montrer de plus que σ est un morphisme de groupe, c'est à dire $\varphi(\mathrm{id}_{S_{n-1}}) = \mathrm{id}_{S_n}$ et $\forall \tau, \sigma \in S_{n-1}, \varphi(\sigma\tau) = \varphi(\sigma)\varphi(\tau)$.

Définition 1.4. Soit E un ensemble et $f: E \to E$ une fonction. On dit que $x \in E$ est un point fixe de f si f(x) = x.

2 Les cycles

Nous allons nous intéresser maintenant à une classe particulière de permutations : les cycles.

Définition 2.1. Soit n un entier naturel et $p \in [|2, n|]$. Un p-cycle est une permutation σ telle qu'il existe des entiers $x_1, ..., x_p$ tous distincts tel que $\forall 1 \leq i \leq p-1, \sigma(x_i) = x_{i+1}, \sigma(x_p) = x_1$ et pour tout $j \notin \{x_1, ..., x_p\}, \sigma(j) = j$.

L'ensemble $\{x_1, ..., x_p\}$ est appelé le support de σ .

On notera $\sigma = (x_1 \ x_2 \ \cdots \ x_p)$.

Remarque 2.2. Si $\gamma \in S_n$ est un cycle, alors les éléments qui ne sont pas dans le support de σ sont exactement les points fixes de γ .

Remarque 2.3. Si on travaille dans S_3 , il faut comprendre que $(1\ 2\ 3)=(2\ 3\ 1)$.

Définition 2.4. Un 2-cycle est appelé une transposition.

Remarque 2.5. En particulier, une transposition τ vérifie $\tau^2 = id$.

Exercice 5. Donner le nombre de p-cycles dans S_n .

Exercice 6. Décrire l'inverse d'un cycle. Montrer que si γ est un p-cycle, alors $\gamma^p = \mathrm{id}$.

Exercice 7. Soit σ une permutation et $x_1, ..., x_p$ des entiers. Montrer que $\sigma(x_1 x_2 \cdots x_p)\sigma^{-1} = (\sigma(x_1) \sigma(x_2) \cdots \sigma(x_p))$.

Exercice 8. Montrer que deux cycles γ et α à support disjoints commutent, c'est à dire $\gamma \circ \alpha = \alpha \circ \gamma$.

Théorème 2.6. Les transpositions engendrent S_n . C'est à dire que toute permutation $\sigma \in S_n$, il existe des transpositions $\tau_1, ..., \tau_s$ telles que $\sigma = \tau_1 \cdots \tau_s$.

Exercice 9 (Preuve du théorème). On procède par récurrence sur n.

- 1. Montrer le résultat pour n = 1, n = 2, n = 3.
- 2. On suppose le résultat vrai pour S_{n-1} . Soit $\sigma \in S_n$, en utilisant l'exercice 4, montrer que le résultat est vrai si $\sigma(n) = n$.
- 3. On prend $\sigma \in S_n$ quelconque. Montrer qu'il existe une transposition $\tau \in S_n$ tel que $\sigma' := \tau \sigma$ est telle que $\sigma'(n) = n$ et conclure.

Théorème 2.7. Toute permutation $\sigma \in S_n$ se décompose en produit de cycles à support disjoints. C'est à dire qu'il existe $\gamma_1, ..., \gamma_s$ des cycles (de longueurs potentiellement différentes) tels que $\sigma = \gamma_1 \cdots \gamma_s$. En particulier, ces cycles commutent et cette décomposition est unique.

Exercice 10. Trouver la décomposition en cycles à supports disjoints de la permutation suivante :

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 4 & 7 & 5 & 3 & 1 & 2 & 8 & 6 \end{pmatrix}$$

3 Représentation du groupe symétrique

Lorsque l'on veut étudier un groupe, une bonne manière est de le voir comme un groupe de transformation d'un espace géométrique.

Exercice 11. Soit n un entier et γ le cycle $\gamma = (1 \ 2 \cdots n)$. Montrer que l'on peut voir γ comme la rotation d'angle $2\pi/n$ sur un polygône à n côtés.

Exercice 12. On représente chaque permutation $\sigma \in S_n$ par la transformation sur \mathbf{R}^n qui permute les coordonnées :

$$\sigma(x_1, \dots, x_n) = (x_{\sigma(1)}, \dots, x_{\sigma(n)})$$
(2)

- 1. Montrer que le sous-espace d'équation $x_1 + \cdots + x_n = 0$ est invariant.
- 2. Pour n=2 donner explicitement l'interprétation géométrique de l'action de S_2 sur \mathbf{R}^2 et donner le sous-espace invariant.