Corps finis

Marc Abboud

Les références pour ce cours sont le cours d'algèbre de Daniel Perrin et le cours d'arithmétique de Jean Pierre Serre.

1 Construction des corps finis

Proposition 1.1. Soit \mathbf{F} un corps fini, alors la caractéristique de F est un nombre premier p > 0. Il existe alors un entier N > 0 tel que \mathbf{F} est de cardinal p^n .

Démonstration. Si \mathbf{F} était de caractéristique nulle, son sous-corps premier serait \mathbf{Q} et \mathbf{F} serait alors infini. Soit p la caractéristique de p, le plongement $\mathbf{F}_p \hookrightarrow \mathbf{F}$ donne que \mathbf{F} est un \mathbf{F}_p -espace vectoriel de dimension finie donc de cardinal p^N avec N la dimension de \mathbf{F} sur \mathbf{F}_p .

Proposition 1.2. Soit \mathbf{F} un corps de caractéristique p > 0, alors pour tout N > 0, l'application $\sigma_n : x \in \mathbf{F} \mapsto x^{p^n}$ est un morphisme de corps. De plus si \mathbf{F} est fini, c'est un automorphisme.

On appelle σ_1 le morphisme de Frobenius et σ_n le morphisme de Frobenius d'ordre n.

Démonstration. Il suffite de le montrer pour σ_1 car σ_n est simplement σ_1 composée n fois avec elle-même. L'application σ_1 est un morphisme de corps car pour tout $x, y \in \mathbf{F}, (x+y)^p = x^p + y^p$. Si \mathbf{F} est un corps fini alors σ_1 est un automorphisme car σ_1 est injective.

Lemme 1.3. Soit \mathbf{F} un corps et $\sigma : \mathbf{F} \Rightarrow \mathbf{F}$ un automorphisme de corps, alors l'ensemble $\{x \in \mathbf{F} : \sigma(x) = x\}$ est un sous-corps de \mathbf{F} .

Théorème 1.4. Soit p un nombre premier et N > 0 un entier. On pose $q = p^N$, il existe un corps \mathbf{F} de cardinal q. Deux tels corps sont isomorphes car \mathbf{F} s'obtient comme un corps de décomposition du polynôme $X^q - X$ sur \mathbf{F}_p . On note \mathbf{F}_q le corps de cardinal q.

Plus généralement, le corps \mathbf{F}_{q^m} s'obtient comme un corps de décomposition de $X^{q^m} - X$ sur \mathbf{F}_q .

Démonstration. Soit \mathbf{F} un corps de décomposition de $P = X^q - X$, \mathbf{F} est nécessairement scindé à racines simples dans \mathbf{F} car $P' = -1 \neq 0$. Donc \mathbf{F} est au moins de cardinal q car P a exactement q racines dans \mathbf{F} . Maintenant, posons $\mathcal{L} = \{x \in \mathbf{F} : x^q = x\}$. Par ce que l'on vient de dire, L est de cardinal q et c'est un sous corps de \mathbf{F} par la proposition 1.2 et le lemme 1.3. Maintenant comme \mathbf{F} est engendré par les racines de P, on a en fait $\mathbf{F} = \mathcal{L}$ et tout a été prouvé.

Exemple 1.5. Le corps \mathbf{F}_4 s'obtient comme un corps de rupture du polynôme $X^2 + X + 1$ car $X^4 - X = X(X-1)(X^2 + X + 1)$. On note α une racine de $X^2 + X + 1$ dans \mathbf{F}_4 . Voici la table d'addition et de multiplication de $\mathbf{F}_4 = \{0, 1, \alpha, 1 + \alpha\}$.

+	0	1	α	$1 + \alpha$		×	0	1	α	$1 + \alpha$
0	0	1	α	$1 + \alpha$		0	0	0	0	0
1	1	0	$1 + \alpha$	α	;	1	0	1	α	$1 + \alpha$.
α	α	$1 + \alpha$	0	1		α	0	α	$1 + \alpha$	1
$1 + \alpha$	$1+\alpha$	α	1	0		$1 + \alpha$	0	$1 + \alpha$	1	α

Proposition 1.6. Soit \mathbf{F}_{p^n} et \mathbf{F}_{p^m} deux corps finis, alors \mathbf{F}_{p^n} est isomorphe à un sous-corps de \mathbf{F}_{p^m} si et seulement si n divise m.

Démonstration. Si on a un plongement $\mathbf{F}_{p^n} \to \mathbf{F}_{p^m}$, alors par la multiplicativité des degrés des extensions on a que n divise m.

Réciproquement, si n divise m on écrit $m=n\ell$. Soit ${\bf F}$ un corps de décomposition de $P=X^{p^n}-X$ sur ${\bf F}_{p^m}$, soit x une racine de P dans ${\bf F}$, alors on a $x^{p^n}=x$. Si on élève les deux cotés de cette équation à la puissance p^n ℓ fois, on a que $x^{p^{n\ell}}=x^{p^m}=x$, ce qui donne que x appartient à ${\bf F}_{p^m}$. On en déduit que ${\bf F}_{p^m}$ contient déjà toutes les racines de P donc ${\bf F}_{p^m}$ contient un sous corps isomorphe à ${\bf F}_{p^n}$.

Corollaire 1.7. Soient n, m deux entiers tels que n divise m et q une puissance d'un nombre premier. Il y a exactement n plongement $\mathbf{F}_{q^n} \hookrightarrow \mathbf{F}_{q^m}$.

Exercice 1:

S oit ${\bf F}$ un corps fini, montrer que ${\bf F}$ n'est pas algébriquement clos.

Corollaire 1.8. Soit q une puissance d'un nombre premier. On choisit $\mathbf{F}_{q^{n!}}$ avec un plongement $\mathbf{F}_{q^{n!}} \hookrightarrow \mathbf{F}_{q^{(n+1)!}}$. Montrer que

$$\mathbf{F}:=igcup_{n\geq 1}\mathbf{F}_{q^{n!}}$$

est une clôture algébrique de \mathbf{F}_q .

2 Polynômes irréductibles sur les corps finis

Proposition 2.1 (Corollaire de la proposition 1.6). Soient q, m deux entiers avec $q = p^n$ pour un certain entier n. Soit Q un polynôme irréductible sur \mathbf{F}_q de degré d divisant m, alors Q divise $X^{q^m} - X$.

Démonstration. Soit $P := X^{q^m} - X$ et x une racine de Q dans une clôture algébrique de \mathbf{F}_q , on a que Q est le polynôme minimal de x sur \mathbf{F}_q donc le degré de l'extension $\mathbf{F}_q(x)$ est égal à d. Par la proposition 1.6, on a que $\mathbf{F}_q(x)$ est isomorphe à un sous corps de \mathbf{F}_{q^m} . Donc par le théorème 1.4, on a $x^{q^m} - x = 0$. Ceci peut être fait pour toutes les racines de Q dans la clôture algébrique. On a donc que Q divise $X^{q^m} - X$ dans $\overline{\mathbf{F}_q}$. Si Q ne divise pas P dans \mathbf{F}_q , alors ils sont premiers entre eux car Q est irréductible sur \mathbf{F}_q . Mais par Bézout, il serait aussi premiers entre eux dans $\overline{\mathbf{F}_q}$, c'est absurde.

 $\textbf{Corollaire 2.2.} \ \textit{Soit} \ \text{Irr}(q,d) \ \textit{l'ensemble des polynômes irr\'eductibles unitaires sur} \ \mathbf{F}_q \ \textit{de degr\'ed} \ \textit{d. on a}$

$$X^{q^m} - X = \prod_{d|m} \prod_{Q \in Irr(q,d)} Q$$

Démonstration. Soit $L = \prod_{d|m} \prod_{Q \in \operatorname{Irr}(q,d)} Q$ et $P = X^{q^m} - X$, on a déjà que L divise P par la proposition 2.1 et le lemme de Gauss. Maintenant écrivons P = LR et supposons que $R \neq 1$. Soit R_1 un facteur irréductible de R de degré d. Par l'égalité P = LR on a que \mathbf{F}_{q^m} contient un corps de rupture de R_1 . Donc on a que d divise m et donc $R_1 \in \operatorname{Irr}(q,d)$ c'est absurde car P possèderait alors un facteur carré mais P' = 1.

Exercice 1

On définit la fonction de Mobius $\mu: \mathbb{N}^* \to \{0, -1, 1\}$ par $\mu(1) = 1, \mu(n) = 0$ si n contient un facteur carré

et $\mu(p_1 \cdots p_r) = (-1)^r$ si les p_i sont des nombres premiers distincts.

- 1. Montrer que μ est multiplicative, i.e si $m \wedge n = 1$, alors $\mu(mn) = \mu(m) \cdot \mu(n)$.
- 2. Montrer que pour tout $n \in \mathbf{N}^*, n \neq 1, \sum_{d|n} \mu(d) = 0$.
- 3. Soit $f: \mathbf{N}^* \Rightarrow A$ où A est un groupe abélien. On pose $g(n) = \sum_{d|n} f(d)$. Montrer la formule d'inversion de Mobius : $f(n) = \sum_{d|n} \mu\left(\frac{n}{d}\right) g(d)$.
- 4. En déduire la formule $\sum_{d|n} \mu\left(\frac{n}{d}\right) d$.

Proposition 2.3. Soit $I(q,d) := \operatorname{Card} \operatorname{Irr}(q,d)$, alors on a

$$q^m = \sum_{d|m} dI(q, d).$$

et par la formule d'inversion de Mobius on a

$$I(q, d) = \frac{1}{d} \sum_{d' \mid d} \mu\left(\frac{d'}{d}\right) q^{d'}.$$

En particulier, pour tout $d \ge 1$, il existe un polynôme irréductible de degré d et on a l'équivalent

$$I(q,d) \sim_{d \to \infty} \frac{q^d}{d}$$
.

Démonstration. On déduit la formule avec le corollaire 2.2. On obtient la formule de I(q,d) avec la formule d'inversion de Môbius appliquée à la fonction $d \mapsto dI(q,d)$.

Corollaire 2.4 (Théorème de l'élément primitif). Soit q une puissance d'un nombre premier et n un entier, le corps \mathbf{F}_q^n s'obtient comme un corps de rupture d'un polynôme irréductible sur \mathbf{F}_q de degré n. En particulier l'extension $\mathbf{F}_{q^n}/\mathbf{F}_q$ est monogène.

3 Résultats sur les corps finis

3.1 Le groupe des inversibles

Proposition 3.1. Le groupe des inversibles d'un corps fini est cyclique.

Démonstration. Soit **F** un corps fini de cardinal q et M = q - 1 le cardinal de \mathbf{F}^{\times} .

Soit d un entier divisant M et x un élément d'ordre d. On va montrer que tout élément d'ordre d s'obtient comme une puissance de x. Le groupe engendré par x est de taille d et tous les éléments dedans sont racines du polynôme X^d-1 . Comme ce polynôme a au plus d racines dans \mathbf{F} on les a toutes. Donc si y est d'ordre d, on a que y est une puissance de x. Ainsi, \mathbf{F}^{\times} contient au plus $\varphi(d)$ éléments d'ordre d.

Soit N(d) le nombre d'éléments d'ordre d, on a $N(d) \leq \varphi(d)$ et $M = \sum_{d|M} N(d) \leq \sum_{d|M} \varphi(d) = M$. Donc il n'y a que des égalités et en particulier $N(M) = \varphi(M) \neq 0$ donc \mathbf{F}^{\times} est cyclique.

Corollaire 3.2 (Théorème de l'élément primitif). Soit q une puissance d'un nombre premier et n un entier. Le corps \mathbf{F}_{q^n} s'obtient comme un corps de rupture d'un polynôme irréductible sur \mathbf{F}_q de degré n. En particulier, il existe des polynômes irréductibles de tout degré sur \mathbf{F}_q . En particulier, l'extension $\mathbf{F}_{q^n}/\mathbf{F}_q$ est monogène.

Corollaire 3.3. Soit q une puissance d'un nombre premier, \mathbf{F}_q admet une racine primitive n-ième de l'unité si et seulement si n divise q-1.

Démonstration. Comme le groupe $\mathbf{F}_{q^n}^{\times}$ est cyclique, l'extension $\mathbf{F}_{q^n}/\mathbf{F}_q$ est monogène et finie.

3.2 Les carrés dans F_q

Proposition 3.4. Soit \mathbf{F}_q un corps fini, alors

- 1. Si q est pair, tout élément de \mathbf{F}_q est un carré.
- 2. Sinon \mathbf{F}_q^{\times} contient exactement $\frac{q-1}{2}$ carrés, soit Γ le sous-groupe des carrés dans \mathbf{F}_q^{\times} et $a \in \mathbf{F}_q^{\times} \setminus \Gamma$, on a

$$\mathbf{F}_{q}^{\times} = \Gamma \sqcup a \cdot \Gamma.$$

Démonstration. Si q est pair alors par la proposition 1.2, l'application $F: x \in \mathbf{F}_q \mapsto x^2$ est un morphisme

de corps. Il est donc injectif et donc bijectif car \mathbf{F}_q est fini. Sinon, Soit $\varphi: x \in \mathbf{F}_q^{\times} \mapsto x^2 \in \mathbf{F}_q^{\times}$. C'est un morphisme de groupe son noyau est de cardinal 2 car les racines carrés de 1 sont 1 et -1 (on est en caractéristique impaire). Soit $\Gamma = \operatorname{Im} \varphi$, on a donc $\operatorname{Card} \Gamma = \operatorname{Card} \Gamma$ $\frac{\operatorname{Card} \mathbf{F}_q^{\times}}{2} = \frac{q-1}{2}$. Maintenant soit $a \in \Gamma^c$, on a une application injective $x \in \Gamma \mapsto a \cdot x \in \Gamma^c$. Comme Γ et son complémentaire ont même cardinal, c'est une bijection.

Corollaire 3.5. Soient $a, b, c \in \mathbf{Z}$ tels que a, b, c ne sont pas des carrés dans \mathbf{Z} mais le produit abc l'est, le polynôme

$$(X^2-a)(X^2-b)(X^2-c)$$

n'a pas de racines dans ${f Q}$ mais a des racines dans ${f F}_p$ pour tout p premier.

Démonstration. Soit P le polynôme $(X^2-a)(X^2-b)(X^2-c)$. Comme P est unitaire à coefficients entiers, toutes ses racines rationnelles sont entières. Par les hypothèses sur a, b, c, P n'a pas de racines dans \mathbf{Z} .

Soit p un nombre premier. Si p=2, alors P a des racines dans \mathbf{F}_2 . Sinon, supposons que P n'a pas de racines dans \mathbf{F}_p pour un certain p premier impair. Cela veut dire que a,b,c ne sont pas des carrés dans \mathbf{F}_p et par la proposition précédente le produit abc non plus. Mais c'est absurde car abc est un carré dans ${\bf Z}$. \square

Proposition 3.6. Soit quine puissance d'un nombre premier impair, alors $x \in \mathbf{F}_q^{\times}$ est un carré si et seulement $si \ x^{\frac{q-1}{2}} = 1.$

Démonstration. Si x est un carré dans \mathbf{F}_q^{\times} , alors $x=y^2$ avec $y\in\mathbf{F}_q^{\times}$ et alors

$$x^{\frac{q-1}{2}} = y^{q-1} = 1$$

par le théorème de Fermat. Maintenant, on sait qu'il y a exactement $\frac{q-1}{2}$ carrés dans \mathbf{F}_q^{\times} et qu'ils sont tous racines du polynôme $Q = X^{\frac{q-1}{2}} - 1$ qui est aussi de degré $\frac{q-1}{2}$. On a donc trouvé toutes les racines de Q et

Corollaire 3.7. Soit q une puissance d'un nombre premier impair, -1 est un carré dans \mathbf{F}_q si et seulement si q est congru à 1 modulo 4.

Loi de réciprocité quadratique. Soit p un nombre premier impair et $n \in \mathbf{F}_p$, on definit le symbole de Legendre

$$\left(\frac{n}{p}\right) = \begin{cases} 1 \text{ si } n \text{ est un carr\'e dans } \mathbf{F}_p \\ 0 \text{ si } n = 0 \\ -1 \text{ sinon.} \end{cases}$$

On étend cette notation à $n \in \mathbf{Z}$ en prenant son image modulo p.

Proposition 3.8. Soit x un entier et p un nombre premier impair, on a en fait

$$\left(\frac{x}{p}\right) = x^{\frac{p-1}{2}} \mod p.$$

On en déduit que

$$\left(\frac{xy}{p}\right) = \left(\frac{x}{p}\right) \left(\frac{y}{p}\right).$$

Démonstration. Cela résulte de la proposition 3.6.

Proposition 3.9. On a

1.
$$\left(\frac{-1}{p}\right) = (-1)^{\frac{p-1}{2}}$$
.

2.
$$\left(\frac{2}{p}\right) = (-1)^{\frac{p^2-1}{8}}$$
.

Démonstration. La première formule se déduit du corollaire 3.7. La deuxième est bien définie car les seuls carrés modulo 8 sont 0,1 et 4. Comme p est premier on a bien $p^2 \equiv 1 \mod 8$. Pour la montrer on choisit α une racine primitive 8-ième de l'unité dans une clôture algébrique de \mathbf{F}_p (elle existe par le corollaire 3.3). On pose alors $y = \alpha + \alpha^{-1}$.

- 1. Montrer que $y^2 = 2$ en utilisant le fait que α^2 et α^{-2} sont les deux racines carrés de -1.
- 2. Si $p \equiv \pm 1 \mod 8$, montrer que $y^p = y$ et en déduire que $\left(\frac{2}{p}\right) = 1$.
- 3. Si $p \equiv \pm 5 \mod 8$, montrer que $y^p = -y$ en utilisant le fait que $\alpha^4 = -1$. En déduire que $\left(\frac{2}{p}\right) = -1$.

Théorème 3.10 (Loi de réciprocité quadratique). Soient ℓ, p des nombres premiers impairs, on a

$$\left(\frac{\ell}{p}\right)\left(\frac{p}{\ell}\right) = (-1)^{\frac{p-1}{2}\frac{\ell-1}{2}}.$$

Le reste de cette partie est dédiée à la preuve de la loi de réciprocité quadratique.

Soit w une racine primitive ℓ -ième dans une cloture algébrique de \mathbf{F}_p , (elle existe par le corollaire 3.3). On pose

$$y = \sum_{t \in \mathbf{F}_s} \left(\frac{t}{p}\right) w^t$$

Exercice 1:

M ontrer que cette somme est bien définie (expliquer le sens de w^t).

Lemme 3.11. On a $y^2 = (-1)^{\frac{\ell-1}{2}} \ell$. Où on identifie ℓ et son image dans \mathbf{F}_p .

Démonstration.

$$y^{2} = \sum_{t,u \in \mathbf{F}_{\ell}} \left(\frac{ut}{\ell} \right) w^{u+t}$$
$$= \sum_{u \in \mathbf{F}_{\ell}} w^{u} \left(\sum_{t \in \mathbf{F}_{\ell}} \left(\frac{t(u-t)}{\ell} \right) \right)$$

Or

$$\left(\frac{t(u-t)}{\ell}\right) = \left(\frac{-t^2}{\ell}\right)\left(\frac{1-t^{-1}u}{\ell}\right) = (-1)^{\frac{l-1}{2}}\left(\frac{1-t^{-1}u}{\ell}\right).$$

D'où

$$(-1)^{\frac{\ell-1}{2}} y^2 = \sum_{u \in \mathbf{F}_{\ell}} C_u w^u$$

avec $C_u = \sum_{t \in \mathbf{F}_{\ell}} \left(\frac{1 - t^{-1} u}{\ell} \right)$.

Exercice 2:

M ontrer que

- 1. Si $u = 0, C_u = \ell 1$.
- 2. Sinon $C_u = -1$.

Lemme 3.12. On a $y^{p-1} = (\frac{p}{\ell})$.

Démonstration. On a $y^p = \left(\frac{p}{\ell}\right) y$.

On en déduit maintenant la loi de réciprocité quadratique, en effet par les lemmes 3.11 et 3.12, on a

$$\left(\frac{(-1)^{\frac{\ell-1}{2}}\ell}{p}\right) = y^{p-1} = \left(\frac{p}{\ell}\right).$$

Et par la proposition 3.8 on a

$$\left(\frac{(-1)^{\frac{\ell-1}{2}}}{p}\right) = (-1)^{\frac{p-1}{2} \cdot \frac{\ell-1}{2}}.$$