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Particle system

Mean-field interaction

dX i,N
t = −∇V (X i,N

t )dt − 1
N

N∑
j=1

∇W (X i,N
t − X j,N

t )dt + dB i,N
t
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Conditioning

∀t ∈ [0, T ], XN
t := 1

N

N∑
i=1

X i,N
t ≤ 0.

Mean-field limit
As N → +∞, this becomes

∀t ∈ [0, T ], E[X t ] ≤ 0,

where

dX t = −∇V (X t)dt − ∇[W ⋆ Law(X t)](X t)dt + dBt .

⇒ Deterministic constraint!
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Conditioning

∀t ∈ [0, T ], XN
t := 1

N

N∑
i=1

X i,N
t ≤ 0.

Rare event
Tricky situation when

P
(

∀t ∈ [0, T ], XN
t ≤ 0

)
−−−−−→
N→+∞

0.

⇒ What is the conditional law of particles as N → +∞?
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Conditioned particle system

Gibbs measure

Gibbs principle

Time marginalsStochastic control
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Large deviation principle

Path empirical measure

µN
[0,T ] := 1

N

N∑
i=1

δX i,N
[0,T ]

.

Large deviations
There exists HT : P(C([0, T ],R)) → [0, +∞] such that for any
A ⊂ P(C([0, T ],R)),

P
(
µN

[0,T ] ∈ A
∣∣ ∀t ∈ [0, T ], XN

t ≤ 0
)

≍ e−N[IT (A)−min IT ],

where
IT (A) := inf

µ[0,T ]∈A
∀t∈[0,T ],

∫
xdµt (x)≤0

HT (µ[0,T ]).

⇒ Constrained variational principle.
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Related control problem

Controlled process
dX t,µ,α

s = −∇V (X t,µ,α
s )ds − ∇[W ⋆ Law(X t,µ,α

s )](X t,µ,α
s )ds

+α(s, X t,µ,α
s )ds + dBs , t ≤ s ≤ T ,

X t,µ,α
t = X t,µ

t , X t,µ
t ∼ µ,

for some control function α : [t, T ] × R → R.

Value function

FT (t, µ) := inf
α measurable

∀s∈[t,T ], E[X t,µ,α
s ] ≤ 0

E
∫ T

t

1
2 |α(s, X t,µ,α

s )|2ds.

↪→ One looks for α which realises FT (0, µ).

⇒ McKean-Vlasov control problem with law constraints.
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From conditioning to control

Theorem

inf
µ∈P(C([0,T ],R))

∀t∈[0,T ],
∫

xdµt (x)≤0

HT (µ[0,T ]) = inf
µ0∈P(R)∫
xdµ0(x)≤0

H0(µ0) + FT (0, µ0),

and any minimiser µ[0,T ] of the l.h.s. is the path-law of the
optimally controlled process:

dX t = −∇V (X t)dt − ∇[W ⋆ Law(X t)](X t)dt
+α(t, X t)dt + dBt , 0 ≤ t ≤ T ,

X 0 ∼ µ0,

for α which realises FT (0, µ0).
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HJB equation

Optimal control
Moreover, there exists λ ∈ M+([0, T ]) such that α = −∇φ, where

∂tφ − ∇V · ∇φ − 2∇(W ⋆ µt) · ∇φ + 1
2 ∆φ

− 1
2 |∇φ|2 = −λ(dt)IdR,

φ(T , ·) = 0.

Long time perspectives
As T → +∞, expected convergence towards stationary solutions of

inf
α measurable

∀t∈R+, E[X 0,µ,α
t ] ≤ 0

lim sup
T→+∞

1
2T E

∫ T

0
|α(t, X 0,µ,α

t )|2dt.
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Law(µN
[0,T ]∈A | ∀t∈[0,T ], XN

t ≤0 )

inf
µ[0,T ]

∀t,
∫

xdµt (x)≤0

HT (µ[0,T ])

Gibbs principle

Dawson-Gärtner Girsanov

HJB equation

α = −∇φ
PDE system on (Law(Xαt ), φ)inf

α
∀t, E[Xα

t ]≤0

1
2

∫ T

0
E|α(t,Xα

t )|2dt
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Assumptions

Linear functional derivative
The map Ψ : P(Rd) → R is assumed to be C1 in the following
sense: for any µ, µ′ ∈ P(Rd),

d
dε

∣∣
ε=0Ψ(µ + ε(µ′ − µ)) = ⟨µ − µ′, δΨ

δµ (µ)
〉
,

for δΨ
δµ : P(Rd) × Rd → R continuous, with polynomial growth.

Constraint qualification assumption
Some µ̃[0,T ] with H(µ̃[0,T ]|ν[0,T ]) < +∞ exists, satisfying

∀t ∈ [0, T ], Ψ(µt) + ⟨µ̃t − µt ,
δΨ
δµ (µt)

〉
< 0.

Example
In the linear case δΨV

δµ (µ) = V , and a sufficient condition is

ν[0,T ]({∀t ∈ [0, T ], V (xt) ≤ −η}) > 0,

for some η > 0. ΨW would also work.
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From conditioning to constraints

Mean-field constraint

Given Ψ : P(Rd) → R, define the stopping time

τN
Ψ := inf{t > 0 , Ψ(π(X⃗ N

t )) > 0},

Then − 1
N log P(T < τN

ψ ) converges to

inf
(µt )0≤t≤T ∈ AC([0,T ],P(Rd ))

∀t∈[0,T ],Ψ(µt )≤0

1
2

∫ T

0
∥∂tµt − L⋆µt µt∥2

µt dt.

⇒ Describes large conditioned systems.
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Fundamental examples

Example (Markov diffusion)
When ν[0,T ] is the law of the diffusion

dX i
t = b(X i

t )dt + dB i
t ,

the Doob transform shows that Z⃗N
[0,T ] := (Z 1,N

[0,T ], . . . , ZN,N
[0,T ]),

dZ i,N
t = b(Z i,N

t )dt + ∇Z i lnPZ⃗N
t

(
τN

Ψ > T − t
)
dt + dB i

t ,

is exchangeable and Law(X 1
[0,T ]|T < τN

Ψ )-distributed.

⇒ Mean-field limit for interacting particles.
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