TD N°7 : PROPRIÉTÉS DES SEMI-GROUPES ET ÉQUATION DE SCHRÖDINGER NON-LINÉAIRE

Exercice 1 4 : semi-groupe dérivable

Soient S un semi-groupe fortement continu sur un espace de Banach X, et A son générateur infinitésimal. Étant donné $t_0 \ge 0$, on suppose que $S'(t_0) := \frac{\mathrm{d}}{\mathrm{d}t}\big|_{t=t_0} S(t)$ définit un opérateur dans $\mathcal{L}(X)$.

- 1. Pour tout x dans X, montrer que $S(t_0)x \in D(A)$ et que $S'(t_0) = AS(t_0)$.
- 2. Pour tout $t \geq t_0$, montrer que S(t) est dérivable.
- 3. Pour tout n dans \mathbb{N} , montrer que S(t) est n fois dérivable pour tout $t \geq nt_0$, et que

$$S^{(n)}(t) = A^n S(t).$$

Exercice 2 4 : type d'un semi-groupe

Soit S un semi-groupe fortement continu sur un espace de Banach X. On définit le type de S par

$$\omega_0 := \inf_{t>0} \frac{1}{t} \log ||S(t)|| \in \mathbb{R} \cup \{-\infty\}.$$

1. Montrer que

$$\omega_0 = \lim_{t \to +\infty} \frac{1}{t} \log ||S(t)||.$$

2. Pour tout $\omega > \omega_0$, montrer l'existence de $M_\omega > 0$ tel que

(1)
$$\forall t > 0, \quad ||S(t)|| \le M_{\omega} e^{\omega t}.$$

Exercice 3 4 : théorème de Hille-Yosida

Soient S un semi-groupe fortement continu sur un \mathbb{C} -espace de Banach X, et A son générateur infinitésimal. L'ensemble résolvant $\rho(A)$ est l'ensemble des $\lambda \in \mathbb{C}$ tel que l'opérateur $A_{\lambda} := \lambda - \mathrm{Id}$ a un inverse borné $R(\lambda, A)$ ($\rho(A)$ est le complémentaire du spectre de A). $R(\lambda, A)$ est la résolvante de A en λ . On suppose S de type fini, et soit (M, ω) vérifiant (1).

1. Montrer que $C_{\omega} := \{ \lambda \in \mathbb{C} / \operatorname{Re} \lambda > \omega \} \subset \rho(A)$, et que

$$\forall \lambda \in C_{\omega}, \forall y \in X, \quad R(\lambda, A)y = \int_{0}^{+\infty} e^{-\lambda t} S(t) y \, dt.$$

2. Montrer que

(2)
$$\forall k \in \mathbb{N}, \forall \lambda \in C_{\omega}, \forall y \in X, \quad ||R^{k}(\lambda, A)|| \leq M(\operatorname{Re}\lambda - \omega)^{-k}.$$

Réciproquement, soit A un opérateur non-borné à domaine dense, tel qu'il existe (M, ω) satisfaisant, $C_{\omega} \subset \rho(A)$ et (2).

3. Pour $n > \omega$, on considère les approximations de Yosida de A

$$A_n := AJ_n$$
, où $J_n := nR(n, A)$.

Déterminer les limites $n \to +\infty$ de J_n et A_n .

4. On pose $S_n(t) := e^{tA_n}$. Montrer que pour $n > 2\omega$,

$$\forall t > 0, \quad ||S_n(t)|| \le Me^{2\omega t}.$$

- 5. Pour tout x dans X, montrer que $S_n(t)x$ converge vers un certain S(t)x lorsque $n \to +\infty$. [Indication : On pourra montrer que la suite est de Cauchy.]
- 6. Pour tout x dans D(A), montrer que $t \mapsto S(t)x$ est différentiable.
- 7. Montrer que A est le générateur infinitésimal de S.

La suite de ce TD est consacrée à l'équation de Schrödinger non linéaire

(NLS)
$$i\partial_t u + \Delta u = \kappa u |u|^{\alpha} \quad t \in \mathbb{R}, \ x \in \mathbb{R}^N,$$
$$u_{|t=0} = u_0,$$

où $\kappa \in \mathbb{R}$ et $\alpha > 0$. Le but est de prouver le résultat suivant :

Théorème 3.1. Soit $u_0 \in L^2(\mathbb{R}^N)$, $\kappa \in \mathbb{R}$, $\alpha > 0$.

— Théorie L^2 sous-critique : on suppose $\alpha < 4/N$. Alors il existe T > 0, qui ne dépend que de $\|u_0\|_{L^2(\mathbb{R}^N)}$, tel que (NLS) admet une unique solution $u \in L^p([-T,T],L^q(\mathbb{R}^N))$ pour tout couple $(p,q) \in [2,+\infty]^2$ tel que

(3)
$$\frac{2}{p} + \frac{N}{q} = \frac{N}{2}, \quad p > 2.$$

- De plus cette solution est dans $C(]-T,T[,L^2(\mathbb{R}^N))$.
- Théorie L^2 critique : on suppose $\alpha = 4/N$. Il existe une constante $C_0 > 0$ telle que si $||u_0||_{L^2} \leq C_0$, alors (NLS) admet une unique solution globale $u \in L^p(\mathbb{R}, L^q(\mathbb{R}^N))$ pour tout couple admissible (p,q) vérifiant (3). De plus $u \in \mathcal{C}(\mathbb{R}, L^2(\mathbb{R}^N))$.

On rappelle l'équation de Schrödinger linéaire non homogène

(LSNH)
$$i\partial_t u + \Delta u = f \quad t \in \mathbb{R}, \ x \in \mathbb{R}^N,$$
$$u_{|t=0} = u_0,$$

où $u: \mathbb{R} \times \mathbb{R}^N \to \mathbb{C}$, et f est un terme source dont la régularité sera précisée au cours du problème. Plusieurs résultats de cours sont rappelés en Appendice.

Exercice 4 .: Invariance d'échelle

1. Soit $\lambda > 0$ et soit $u \in \mathcal{C}(\mathbb{R}, L^2(\mathbb{R}^N))$ une solution de (NLS) au sens des distributions. On pose

$$u_{\lambda}:(t,x)\in\mathbb{R}\times\mathbb{R}^{N}\mapsto\lambda^{2/\alpha}u(\lambda^{2}t,\lambda x)$$

Montrer que u_{λ} est solution de (NLS).

2. Montrer que

$$\|\lambda^{2/\alpha}u_0(\lambda\cdot)\|_{L^2(\mathbb{R}^N)}\lambda^{\frac{2}{\alpha}-\frac{N}{2}}\|u_0\|_{L^2(\mathbb{R}^N)}.$$

3. Montrer que si (p,q) vérifie (3)

$$||u_{\lambda}||_{L^{p}(\mathbb{R}),L^{q}(\mathbb{R}^{N})} = \lambda^{\frac{2}{\alpha} - \frac{N}{2}} ||u||_{L^{p}(\mathbb{R}),L^{q}(\mathbb{R}^{N})}.$$

En déduire que si $\alpha = 4/N$, l'espace $L^p(\mathbb{R}), L^q(\mathbb{R}^N)$ est invariant par le changement d'échelle $u \to u_\lambda$.

Exercice 5 & : estimation du terme non-linéaire

Pour T > 0, on définit l'espace

$$S_T^0 = \bigcap_{(p,q) \text{ v\'erifiant (3)}} L^p([-T,T], L^q(\mathbb{R}^N)).$$

1. Soit $u \in S_T^0$. On pose $f = \kappa u |u|^{\alpha}$. Soit (\bar{p}, \bar{q}) vérifiant (3). Montrer que

$$||f||_{L^{\bar{p}'}([-T,T],L^{\bar{q}'}(\mathbb{R}^N))} = |\kappa|||u||_{L^{(\alpha+1)\bar{p}'}([-T,T],L^{(\alpha+1)\bar{q}'}(\mathbb{R}^N))}^{\alpha+1}.$$

2. On va chercher à trouver (\bar{p}, \bar{q}) , (p_1, q_1) , (p_2, q_2) admissibles tels que l'on puisse interpoler $L^{(\alpha+1)\bar{p}'}([-T, T], L^{(\alpha+1)\bar{q}'}(\mathbb{R}^N))$ entre $L^{p_1}([-T, T], L^{q_1}(\mathbb{R}^N))$ et $L^{p_2}([-T, T], L^{q_2}(\mathbb{R}^N))$.

a) On suppose que

$$\frac{1}{q_1} + \frac{\alpha}{q_2} \in \left[\frac{1}{2}, 1\right],$$

et on pose $\frac{1}{\bar{q}'} = \frac{1}{q_1} + \frac{a}{q_2}$ (avec donc $\bar{q} \geq 2$.) Montrer que pour presque tout $t \in [-T, T]$,

$$||u(t)||_{L^{(\alpha+1)\bar{q}'}(\mathbb{R}^N))} \le ||u(t)||_{L^{q_1}(\mathbb{R}^N)}^{\frac{1}{\alpha+1}} ||u(t)||_{L^{q_2}(\mathbb{R}^N)}^{\frac{\alpha}{\alpha+1}}$$

b) Montrer que si $a \in [0, 4/N]$, il existe $\theta \in [0, 1]$, avec $\theta = 0$ si et seulement si a = 4/N, tel que

$$\theta + \frac{1}{p_1} + \frac{a}{p_2} = \frac{1}{\bar{p}'}.$$

c) En déduire que si (4) est vérifiée et que $a \in [0, 4/N]$,

$$||f||_{L^{\bar{p}'}([-T,T],L^{\bar{q}'}(\mathbb{R}^N))} \le |\kappa|T^{\theta}||u||_{L^{p_1}([-T,T],L^{q_1}(\mathbb{R}^N))}||u||_{L^{p_2}([-T,T],L^{q_2}(\mathbb{R}^N))}^{\alpha}.$$

3. Soit $u, v \in S_T^0$. On pose $f = \kappa u |u|^{\alpha}$, $g = \kappa v |v|^{\alpha}$. Montrer qu'il existe une constante $C_{\alpha} > 0$ telle que

$$|f - g| \le C_{\alpha} |\kappa| |u - v| \left(|u|^{\alpha} + |v|^{\alpha} \right).$$

4. En utilisant le même type de calculs et les mêmes notations que précédemment, montrer que

$$||f - g||_{L^{\bar{p}'}([-T,T],L^{\bar{q}'}(\mathbb{R}^N))} \le |\kappa|T^{\theta}||u - v||_{L^{p_1}([-T,T],L^{q_1}(\mathbb{R}^N))}^{\frac{1}{\alpha+1}} \left(||u||_{L^{p_2}([-T,T],L^{q_2}(\mathbb{R}^N))}^{\alpha} + ||v||_{L^{p_2}([-T,T],L^{q_2}(\mathbb{R}^N))}^{\alpha} \right).$$

Exercice 6 : point fixe

Soit $(p,q) \in [2,+\infty]$ vérifiant (3) et tel que $0 < \alpha/q < 1/2$. Soit T > 0 quelconque. On pose

$$X_T = L^p([-T, T], L^q(\mathbb{R}^N)) \cap L^{\infty}([-T, T], L^2(\mathbb{R}^N)),$$

muni de la norme

$$||u||_{X_T} = ||u||_{L^p([-T,T],L^q(\mathbb{R}^N))} + ||u||_{L^\infty([-T,T],L^2(\mathbb{R}^N))}.$$

Soit $u_0 \in L^2(\mathbb{R}^N)$ quelconque. On suppose que $\alpha \in [0, 4/N]$.

1. On considère l'application

$$\Phi: u \in X_T \mapsto v \in X_T$$

où v est solution de (LSNH) avec $f = \kappa u |u|^{\alpha}$, i.e.

$$v(t) = e^{it\Delta}u_0 + \kappa \int_0^t e^{i(t-s)\Delta} \left(u(s)|u(s)|^{\alpha} \right) ds.$$

Montrer que Φ est bien définie.

2. Montrer qu'il existe une constante $C_1 > 0$ ne dépendant que de α, p et q, et $\theta \ge 0$, avec $\theta = 0$ si et seulement si $\alpha = 4/N$, tel que pour tout $u \in X_T$,

$$\|\Phi(u)\|_{X_T} \le C_1 \left(\|u_0\|_{X_T} + T^{\theta} \|u\|_{X_T}^{1+\alpha} \right).$$

3. Montrer qu'il existe une constante $C_2 > 0$ telle que pour tout $u_1, u_2 \in X_T$,

$$\|\Phi(u_1) - \Phi(u_2)\|_{X_T} \le C_2 T^{\theta} \|u_1 - u_2\|_{X - T} \left(\|u_1\|_{X_T}^{\alpha} + \|u_2\|_{X_T}^{\alpha} \right)$$

4. On suppose dans cette question que $\alpha < 4/N$ (de sorte que $\theta > 0$), et on prend $u_0 \in L^2(\mathbb{R}^N)$ quelconque. On définit la boule

$$B = \{ u \in X_T, \quad ||u||_{X_T} \le 2C_1 ||u_0||_{L^2(\mathbb{R}^N)} \}.$$

- a) Montrer qu'il existe $T_1 > 0$ tel que si $T \leq T_1$, la boule B est stable par Φ .
- b) Montrer qu'il existe $T_2 > 0$ tel que si $T < T_2$, l'application Φ est contractante sur B.

On explicitera les dépendances de T_1 et de T_2 en fonction de $||u_0||_{L^2}$.

- c) En déduire que si $T < \min(T_1, T_2)$, Φ admet un unique point fixe sur B. Conclure.
- 5. On suppose dans cette question que $\alpha = 4/N$ (et donc $\theta = 0$.) On pose, pour $\delta > 0$,

$$B_{\delta} = \{ u \in X_T, \quad ||u||_{X_T} \le \delta \},$$

et on suppose que $||u_0||_{L^2(\mathbb{R}^N)} \leq C_0$.

a) On suppose que

(5)
$$C_1\left(C_0 + \delta^{1+\alpha}\right) \le \delta, 2C_2\delta^{\alpha} < 1.$$

Montrer que B_{δ} est stable par Φ et que Φ est une contraction sur B_{δ} .

- b) Montrer qu'il existe des constantes C_0 , $\delta > 0$ qui vérifient (5).
- c) Conclure.

Appendice

On rappelle les résultats suivants :

— Pour tout $p \in [1,2]$, pour tout $t \in \mathbb{R}$, pour tout $f \in L^p(\mathbb{R}^N)$, on a

$$\left\| e^{it\Delta} f \right\|_{L^{p'}(\mathbb{R}^N)} \le \frac{1}{(4\pi|t|)^{N(\frac{1}{p}-\frac{1}{2})}} \|f\|_{L^p(\mathbb{R}^N)}.$$

— Inégalités de Strichartz : pour tout $(p,q) \in [2,+\infty]^2$ tels que

(6)
$$\frac{2}{p} + \frac{N}{q} = \frac{N}{2}, \quad p > 2$$

il existe une constante $C_{p,q} > 0$ telle que pour toute fonction $u_0 \in L^2(\mathbb{R}^N)$, on a

$$\left\| e^{it\Delta} u_0 \right\|_{L^p(\mathbb{R}, L^q(\mathbb{R}^N))} \le C_{p,q} \|u_0\|_{L^2(\mathbb{R}^N)}.$$

— Inégalités de Strichartz pour le terme source :

Proposition 6.1. Soit $(p,q), (\bar{p},\bar{q}) \in [2,+\infty]^2$ deux couples d'exposants admissibles, i.e.

$$\frac{2}{p} + \frac{N}{q} = \frac{2}{\bar{p}} + \frac{N}{\bar{q}} = \frac{N}{2}, \quad p > 2, \ \bar{p} > 2.$$

 $\textit{Il existe une constante $C_{p,q,\bar{p},\bar{q}}>0$ telle que pour tout $T>0$, pour tout $f\in L^{\bar{p}'}([0,T],L^{\bar{q}'}(\mathbb{R}^N))$}$

$$\left\| \int_0^t e^{i(t-s)\Delta} f(s) ds \right\|_{L^p([0,T],L^q(\mathbb{R}^N))} \le C_{p,q,\bar{p},\bar{q}} \|f\|_{L^{\bar{p}'}([0,T],L^{\bar{q}'}(\mathbb{R}^N))}.$$