
  

Figure 1: Scheme of the experimental design 
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Abstract— This study presents the implementation of a 
within-subject neural decoder, based on Support Vector 
Machines, and its application for the classification of 
distributed patterns of hemodynamic activation, measured with 
Functional Near Infrared Spectroscopy (fNIRS) on children, in 
response to meaningful and meaningless auditory stimuli. 
Classification accuracy nominally exceeds chance level for the 
majority of the participants, but fails to reach statistical 
significance. Future work should investigate whether individual 
differences in classification accuracy may relate to other 
characteristics of the children, such as their cognitive, speech or 
reading abilities. 

I. INTRODUCTION 

The increasing development and use of multivariate 
statistical analysis techniques represents a significant 
advance in the field of neuroimaging. These methods have 
been shown to make possible the discovery of subtle  effects 
that may remain undetected by using univariate analysis of 
spatially clustered regions of interest [1][2]. For this reason, 
their use has become widespread especially with fMRI data, 
and gradually also with other neuroimaging data [3]. Many 
studies employing multivariate pattern analysis (MVPA) 
techniques have confirmed that the distributed patterns of 
brain activity can decode many different classes of stimuli  
[4], but to date there is no reported use of MVPA to 
discriminate patterns of cerebral hemodynamic responses to 
purely auditory stimuli that only differ by the 
meaningfulness, or lack thereof, of the presented words.  

Contrasting hemodynamic responses to words and non-
words has the potential to identify how different brain 
regions contribute to lexical processing and how individual 
participants access words in the mental lexicon. [5] 

Here we propose to reverse this logic and to use the 
hemodynamic pattern over different brain regions to identify 
this contrast in word meaning, with the ultimate goal of 
characterizing the lexical skills at an individual level. To this 
end, we present children with meaningless and meaningful 
stimuli, and we employ classification methods to 
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discriminate their elicited brain patterns by means of a 
within-subject decoder based on the use of Support Vector 
Machines (SVM) that uses features drawn from the 
simultaneous variation of both oxygenated and 
deoxygenated components of the hemodynamic response 
measured with functional Near Infrared Spectroscopy 
(fNIRS).  

II. METHODS 

A. Participants 

Seventy-two (72) healthy children (38 males, 34 
females) between the ages of 3.72 and 7.76 years (M: 5.64, 
S: 1.05) participated in this study. Participants were 
recruited from New Haven and the surrounding areas of 
Connecticut. The experimental protocols were approved by 
the Yale Institutional Review Board. Participants were 
native English speakers.  

B. Experiment 

Participants were instructed to passively listen to 16 
blocks of auditory stimuli, played though headphones while 
looking at a fixation cross that appeared on a monitor. 

Each auditory condition consisted of 8 blocks, with each 
block consisting of the repeated sequence of one meaningful 
or meaningless word (from now on called “words” and 
“non-words” for brevity). The non-words conformed to the 
phonological properties of English, but had no meaningful 
referent .  The duration in each block was 7 s and contained 
6 repetitions of the same word or non-word, with 100 ms of 
silence between each repetition. There was a 13 s rest period 
between each block and the order of blocks (word vs. non-
word) was randomized. The procedure is illustrated in 
Figure 3. 

Throughout the exposure to these stimuli, participants’ 
fNIRS signals were measured. 

C. Data collection 

The fNIRS recordings were performed with a Shimadzu 
Lab NIRS system with 20 sources x 18 detectors, resulting 
in 58 channels (sampling frequency 15.385 Hz, wavelengths 
780, 805, 830 nm). Probes were positioned according to the 
scheme in Fig. 2. Sources and detectors were separated by 
2.75-3 cm, depending on the size of the individual’s head. 
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The MVPA analysis was run within-participants, 
therefore there was no need to precisely align the anatomical 
positions of the channels across participants. 

D. Pre-processing 

Data were pre-processed using custom scripts written in  
MATLAB. In particular, raw data were converted into 
optical density and then concentration changes of oxy- and 
deoxyhemoglobin (HbO and HbR) using the modified Beer-
Lambert Equation (ΔHbO= −1,488×ΔA780 + 
0,5970×ΔA805 + 1,4847×ΔA830 ,  ΔHbR = 1,845 × ΔA780 
− 0,2394×ΔA805 – 1,0947×ΔA830, with A780, A805 and 
A830 being the optical absorbances at 780, 805 and 830 nm, 
respectively). 

After conversion into HbO and HbR changes, time traces 
were screened to detect and correct motion artifacts. This 
step was performed using the Wavelet-based algorithm 
described in [6] and available in Homer2 [7], and applied 
with parameter threshold =1.5 and order N=2 Daubechies 
wavelet. After the motion artifacts correction, the data 
quality of the channels was evaluated by computing the 
coefficient of variation (CV) of each channel, defined as the 
standard deviation of the timeseries divided by its mean 
value. Channels having CV > 8% for either HbO or HbR 
were discarded from the analysis. This criterion was defined 
by visual inspection. 

The next step was to remove from the data the 
contribution of global systemic effects originating in the 
superficial layers of scalp, dura, and peripheral vasculature 
and not in the cortex [8].  To this end, a spatial filter based 
on principal component decomposition [9] was applied to 
both HbO and HbR time traces. 

Finally, a band-pass frequency filter was applied to the 
data in the range 0.01-0.2 Hz [10], to ensure that the time 
traces did not contain contributions from either the very low 
frequency systemic fluctuations, the respiration or the heart-
rate oscillations. The filter was designed as a zero-phase 
digital FIR filter with the MATLAB function filtfilt. 

After pre-processing, time traces were epoched in a time 
window of -0.5 s before each block to 15 s after each block, 
and baseline corrected (baseline: -0.5 s to 0). After epoching, 
a “channel stability” analysis was performed to determine 
which channels did not respond reliably across multiple 
blocks of stimuli. This analysis, initially introduced for 
fMRI analysis, has been successfully adapted to fNIRS data 
[11]. For each channel, irrespective of the type of stimulus 
(i.e., it is not a measure of discriminability of words vs. non-
words), the Pearson correlation coefficients are computed 

between each possible pair of blocks, and then averaged to 
produce a mean stability value.  

Only channels having a stability value equal or higher 
than the median stability value across all channels are 
retained for further analysis. This procedure was carried out 
separately on HbO and HbR time traces, and channels that 
resulted stable at least for one of the two hemoglobin 
components were retained for further analysis.  

For each subject, the remaining blocks were then 
classified as “words” or “non-words” using the algorithm 
explained in the following section (“within-subject 
classification”). 

E. The algorithm 

• Extraction of features 

Features were extracted for each block and for each 
channel from both HbO and HbR time traces, separately. 
The largest peak values of HbO and HbR were computed 
within the time window from 5 to 10 seconds after onset of 
the stimulus, since it’s the time interval where the peak of 
the hemodynamic response is most likely to occur [12]. 

To ensure the meaningfulness of the features in 
representing the hemodynamic activation in response to the 
task, the peak value was computed as the largest positive 
value for HbO and the largest negative value of HbR, 
because HbR is expected to have a negative deflection in 
response to neural activation [13], [14]. Each feature was 
then normalized, by removing its mean value across trials 
and dividing by its standard deviation.  

• Classification of Multivariate Patterns 

The obtained trials were classified using linear support 
vector machines implemented in MATLAB 2017b with 
libsvm-3.11 [15], with 4-fold cross-validation and 100 
permutations. Sixteen blocks were randomly divided into 4 
folds, with each fold containing 2 blocks for each class. 
Three folds and the remaining fold were used for training 
and test dataset, respectively. This procedure was repeated 
100 times, and at each repetition the order of the trials was 

Figure 3: Scheme of the data analysis pipeline 

Figure 2: Top view of the channels arrangement on the scalp 



  

permuted. For each subject, classification accuracies were 
averaged across the permutations. 

• Modeling the classification accuracy 

As a result of both the CV quality criterion and the 
stability analysis, both performed within-subject, the number 
of available channels was different across subjects. The 
potential effect of different number of channels on the 
results was therefore investigated. 

To investigate the source of great variability in the 
resulting classification accuracies, a Mixed Effect Linear 
(LME) Model was fitted in MATLAB 2017b, with a random 
intercept for each participant, and fixed effects including 
Age and Number of Excluded Channels (Accuracy ~ Age + 
ExcludedChannels + (1|Participant)) and an Analysis of 
Variance was carried out on the model to test the statistical 
significance of the effects (DF=66). 

III. RESULTS 

A. Classification accuracy 

The overall classification results showed substantial 
variability across  subjects, ranging from 24.5% to 85.5% 
(median= 54.5%, µ= 53.3%, σ = 14.7 %). Figure 4 shows 
the distribution of classification accuracies. 

B. Evaluation of the effects 

To assess whether the signal quality, and therefore the 
different number of stable channels, played a role in the 
variability of classification results that we observed, the 
distribution of number of excluded channels was partitioned 
into 25th, 50th and 75th percentiles (0-5, 5-10, 10-15, 15-
49), and the distributions of classification accuracies within 
these bins were evaluated (Figure 5). The fewest subjects 
were eliminated when only 5-10 channels were excluded, 
and the resultant decoding accuracy among these subjects 
was the highest and least variable. 

However, the ANOVA did not reveal any significant 
effect of either Age (p=0.810) or Number of Excluded 
Channels (p=0.282) on the decoding accuracy. The LME 
model estimated a negative coefficient for Age (ß1= -0.403, 
SE= 1.67) and a positive coefficient for Excluded Channels  

 

 

(ß2= 0.176, SE= 0.16), although both of these factors played 
a minor role.  

C. Grand averages of the hemodynamic response to the 

stimuli 

Figure 6 shows the grand averages of the hemodynamic 
response to the two classes of stimuli, computed across the 
whole group (left column) and across the subjects having 
accuracies equal or higher than the median value (54.5%) 
(right column). From visual inspection, the subjects having 
the higher accuracies are those whose hemodynamic 
activation to NonWords is greater than to Words (both with 
HbO and HbR). To explore whether such an interaction 
between higher accuracies (>54.5%) and stimulus type was 
statistically significant, we modeled the mean values of the 
timetraces in the observation window (5-10sec) with a LME 
model. We defined 2 groups (“low” and “high” accuracy), 

All subjects 

 

Subjects with 

Accuracy > (54.5%) 

  

  

Figure 6: Grand averages over subjects and channels of 
the hemodynamic responses to word and non-words (top: 
HbO, bottom: HbR, left: average over all subjects, right: 
average over subjects with accuracies above the median) 

Figure 4: Distribution of overall classification accuracies (the 
red line indicates the median value) 

Figure 5: Distributions of classification accuracies grouped by 
number of unstable channels 



  

and used group and stimulus type as between-subject factors 
and channel values as within-subject factor. The test only 
revealed significant main effect of “Group” (p=0.03 for HbR 
and 0.08 for HbO), but not for the other effects or for the 
interaction group x stimulus type. 

IV. DISCUSSION 

The algorithm described in this work provides evidence 
that distributed patterns of hemodynamic activity measured 
by fNIRS can, in some cases, discriminate between two 
classes of auditory stimuli that only differ by the 
meaningfulness of the presented words.  Importantly, a 
univariate analysis revealed no differences between words 
and non-words, suggesting that a multivariate approach is a 
promising technique for decoding subtle differences in 
meaning.  

The presented analysis is multivariate in that it combines 
features derived from different channels; but it is also 
multivariate because it combines features derived from the 
simultaneous variations of both hemoglobin components, 
which potentially makes the analysis more sensitive and less 
susceptible to the natural inter-subjective variability of the 
hemodynamic response.   

The resulting classification accuracies vary greatly 
across the tested subjects; they are nominally above chance 
level for 57% of the subjects and above 60% for 36% of 
them, but unfortunately are not statistically above chance at 
the group level. 

The source of this great variability is yet to be 
investigated; the present study excludes a statistically 
significant effect of signal quality or age of the participants 
on the results. Statistical power will likely require a larger 
sample size. 

The method achieves accuracies below chance level for 
many subjects, but interestingly, by visually inspecting the 
time course of the responses we observe that the subjects 
with best accuracies show higher response to non-words 
than to words, although the corresponding statistical test did 
not reveal such interaction. 

Given the wide range of ages of the participants, and so 
of their cognitive, reading and speech comprehension 
abilities, we hypothesize that the individual differences in 
word vs. non-word classification accuracy could be related 
to individual differences in cognitive, reading or speech 
abilities which could underlie the observed individual 
differences in the representation of the meaning of spoken 
words. 

V. CONCLUSION 

The presented method is the first of its kind to apply 
Support Vector Machines combining HbO and HbR as 
simultaneous features to classify multivariate patterns of 
hemodynamic activity elicited in children listening to 
meaningful and meaningless words. The subset of 
participants with the best accuracies show a higher neural 
activation, observable on both HbO and HbR, to non-words 
than to words. The next step of this work will be to 
investigate whether the classification accuracies are related 
to the ability of the children to decode the presence of 

meaning in words, by interrogating the relation between the 
accuracies and their cognitive, reading and speech 
comprehension skills. 
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