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A B S T R A C T   

Time-resolved multivariate pattern analysis (MVPA), a popular technique for analyzing magneto- and electro- 
encephalography (M/EEG) neuroimaging data, quantifies the extent and time-course by which neural repre-
sentations support the discrimination of relevant stimuli dimensions. As EEG is widely used for infant neuro-
imaging, time-resolved MVPA of infant EEG data is a particularly promising tool for infant cognitive 
neuroscience. MVPA has recently been applied to common infant imaging methods such as EEG and fNIRS. In 
this tutorial, we provide and describe code to implement time-resolved, within-subject MVPA with infant EEG 
data. An example implementation of time-resolved MVPA based on linear SVM classification is described, with 
accompanying code in Matlab and Python. Results from a test dataset indicated that in both infants and adults 
this method reliably produced above-chance accuracy for classifying stimuli images. Extensions of the classifi-
cation analysis are presented including both geometric- and accuracy-based representational similarity analysis, 
implemented in Python. Common choices of implementation are presented and discussed. As the amount of 
artifact-free EEG data contributed by each participant is lower in studies of infants than in studies of children and 
adults, we also explore and discuss the impact of varying participant-level inclusion thresholds on resulting 
MVPA findings in these datasets.   

1. Introduction 

Without the benefit of verbal communication, inferring the mental 
states and representations of infants from behavior or neuroimaging 
data is an ongoing challenge. Functional imaging methods such as 
functional near-infrared spectroscopy (fNIRS) and electroencephalog-
raphy (EEG) are popular in infant research due to their non-invasiveness 
and relative tolerance for movement while recording (Bell and Cuevas, 
2012). These methods provide either fine-grained temporal with limited 
spatial information (EEG) or moderate spatial with limited temporal 

information (fNIRS) about neural responses, and typically consist of 
group average responses to stimuli (Dehaene-Lambertz and Spelke, 
2015). While these methods can reveal information about conditional 
differences in timing or amplitude driven by different stimuli, tradi-
tional univariate methods such as ERP analysis rely on averages from 
one or more channels, ignoring information that may be represented in 
the patterns contained within these clusters. 

Machine learning approaches including multivariate pattern analysis 
(MVPA) or “decoding” that have historically been used with adult neural 
data are promising avenues for infant research. Rather than finding 
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differences in average stimulus-response recordings, MVPA is used to 
map patterns of activation across a cluster of channels to specific stimuli, 
other relevant dimensions of the task or of the individual participant 
(Haynes and Rees, 2006). Using machine learning classification tech-
niques, the goal of MVPA is to reliably discriminate between the patterns 
of activation associated with stimuli, categories of stimuli, or other 
relevant aspects of the experimental condition or participant’s pheno-
type (e.g., their attentional state or intrinsic trait). If patterns of neural 
activation can reliably map to stimuli (i.e., enable above-chance clas-
sification accuracy), it is plausible that these neural patterns support the 
discrimination of these stimuli, although we cannot infer whether the 
detected information drives behavior without manipulating these neural 
patterns (Haxby et al., 2014; Isik et al., 2014). This technique has been 
applied to adult data, primarily fMRI voxels, to index the information 
that can be extracted from brain activity, including in multivariate, 
spatially distributed representations (Haxby, 2012). Multivariate 
methods have been used in many research contexts and stimulus mo-
dalities including discrimination of painful stimuli (e.g. Brodersen et al., 
2012), localized touch sensation (e.g. Lee et al., 2020), faces (e.g. Riv-
olta et al., 2014), and auditory properties (e.g. Lee et al., 2011) among 
many other applications (Haynes and Rees, 2006). 

Advances in the application of multivariate data-driven methods to 
infant-friendly neuroimaging tools such as EEG and fNIRS bears promise 
for developmental researchers to begin answering questions beyond 
what can be addressed with traditional neuroimaging analysis tech-
niques (Bayet et al., 2021; Norman et al., 2006; O’Brien et al., 2020; 
Zinszer et al., 2017). While the existing methodology lays the ground-
work for infant study, challenges inherent to the collection and analysis 
of infant neural data require specific solutions and a thorough investi-
gation into best practices. Infant data are often limited both by 
recruitment challenges, and large variation in usable trials due to limi-
tations in infants’ tolerance and attention span, as well as movement 
when collecting neural data (Aslin and Fiser, 2005; Raschle et al., 2012). 
While tasks and imaging modalities can be tailored to maximize infant 
comfort and attention span (e.g., Hoehl and Wahl, 2012), analysis of 
infant neuroimaging data still presents distinct challenges. 

Despite the challenges inherent to infant MVPA, there are many 
benefits for developmental research that make the effort worthwhile. 
The potential applications for infant MVPA are demonstrated by the 
number of published studies using this method to analyze functional 
neuroimaging data from adults that go beyond traditional univariate 
techniques applied to sensory domains and imaging modalities (Haynes 
and Rees, 2006; Simanova et al., 2010). MVPA is already being used to 
investigate speech encoding and comprehension in preverbal infants 
and nonverbal children with autism, accessing information that is 
incredibly difficult to estimate in the absence of verbal report (Gennari 
et al., 2021; Petit et al., 2020). MVPA also allows developmental re-
searchers to reveal information from neural data that is not accessed by 
traditional univariate analysis, such as patterns of response that are 
distributed across multiple channels. 

Recent work shows that applying MVPA to quantify the time course 
and characteristics of infants’ representations of auditory and/or visual 
stimuli from infant EEG and fNIRS is feasible, and opens new avenues for 
developmental research (Bayet et al., 2020; Emberson et al., 2017; 
Gennari et al., 2021; Jessen et al., 2019; Mercure et al., 2020). In Bayet 
et al. (2020), EEG data from 12 to 15-month-old infants as well as adults 
viewing images of animals and parts of the body were used to train a 
linear support vector machine (SVM) classifier, an analytic method that 
maps response features from neuroimaging data onto classification la-
bels such as stimulus type. The accuracy of this stimulus-response 
mapping function is then assessed via 4-fold cross-validation – a pro-
cess of repeatedly training the SVM classifier on a subset of the data and 
testing that trained classifier on the withheld subset (25% for 4-fold). 
Patterns of activation in Bayet et al. (2020) yielded above-chance 
discrimination of 8 different visual stimuli in both adults and infants. 
Building on these results, here we outline the steps required to perform 

time-resolved, within-subject MVPA with infant EEG data, summarize 
classification and validation best practices, and discuss the effectiveness 
of these methods given the limited number of trials typically available 
from infant EEG datasets. 

In this tutorial, we describe the steps needed to conduct time- 
resolved MVPA with infant EEG data, discuss how different analysis 
parameters impact findings in our sample dataset, and present accom-
panying code as an example implementation. To broaden access to 
developmental researchers, sample code for core analyses is provided 
for both Python and Matlab using established toolboxes (Python’s scikit- 
learn; Pedregosa et al., 2011) and/or functions (MATLAB’s libsvm 
implementation; Chang and Lin, 2011). 

2. Sample dataset 

Data consisted of processed, normalized EEG voltages from 12 to 15- 
month-old infants (N = 21) and adults (N = 9) as they passively watched 
8 static visual images of familiar animate objects (cat, dog, rabbit, bear, 
hand, foot, mouth, or nose). These data have been described elsewhere 
(Bayet et al., 2020), and were pre-processed as follows using functions 
from the EEGlab toolbox (Delorme and Makeig, 2004). 

The PREP pipeline toolbox (Bigdely-Shamlo et al., 2015) was used to 
detect and interpolate noisy channels, perform robust 
average-reference, and remove line-noise. Butterworth filters were 
applied to the continuous data between 0.2 and 200 Hz using functions 
from the ERPlab toolbox (Lopez-Calderon and Luck, 2014). These 
filtered signals were smoothed with a 20 ms running average, epoched 
between − 50 and 500 ms, and baseline corrected. 

Trials were excluded if the participant stopped looking at the screen 
during stimulus presentation for any reason, if any channel’s voltage 
exceeded a specified threshold (± 150 μV for infants, ± 80 μV for 
adults), or if a possible eye movement artifact was present in the signal 
as identified by offline video coding in infants, and analysis of electro-
oculogram (EOGs) in adults. Finally, voltages were normalized by taking 
the z-score of the segmented EEG with respect to the baseline period for 
each individual trial and channel (i.e., univariate noise normalization). 
Sample datasets are openly available at https://github.com/Bayet 
Lab/infant-EEG-MVPA-tutorial as .mat files. 

3. MVPA implementation 

3.1. Programming implementations 

To make this tutorial as widely accessible as possible, we provide a 
dual example implementation of the core analysis steps described below 
in both MATLAB (R2019b) and Python (Python 3). This code is openly 
available at https://github.com/BayetLab/infant-EEG-MVPA-tutorial 
and includes decoding and cross-validation accuracy operations using 
a linear SVM classifier (Fig. 1). Additional steps are provided in Python 
only. However, the libraries required have Matlab parallels, should one 
wish to implement them in Matlab as well. The clear advantage of Py-
thon is its portability and availability as an open-source programming 
language. However, some matrix operations compute faster in Matlab. 
Both implementations produce comparable results, and a permutation 
based one-way ANOVA with cluster correction for multiple comparisons 
across time-points identified no significant clusters of difference be-
tween the Matlab and Python-computed classification accuracy times-
eries from the sample datasets (Fig. 2A, B). 

3.2. Cross-validation and pseudo-averaging 

A key component of many MVPA implementations is the use of cross- 
validation. With cross-validation, only a portion of the available trials, 
the “training set”, is used to train the classifier. The remaining trials are 
held-out, forming the “test set”. A classifier is first trained on a sub-
stantial portion of the data from each participant (e.g., 75%) to estimate 
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the activation patterns associated with the dimension or category of 
interest. Then the classifier’s performance is assessed based on its ability 
to use these estimates to make predictions about the withheld test set 
(Fig. 1) (Bhavsar and Panchal, 2012). 

In this way, classification accuracy reflects the extent to which the 
classifier successfully extracted patterns from the training set that sup-
ported the discrimination of the relevant dimension in the training set 
(e.g., cat or dog) and that generalized to the test set. To avoid an idio-
syncratic partitioning of the data into training and test sets, this 

procedure is repeated multiple times to randomly assign observations to 
the training and test sets. In our example, trial order was permuted (i.e., 
repeatedly sampled at random) within each participant and condition to 
form four folds (75–25%) for cross-validation (Grootswagers et al., 
2017). Previous work has demonstrated that k-fold cross-validation 
(here, k = 4 folds) provides a more stable estimate of accuracy than 
methods that have too many (such as leave-one-out) or too few (spli-
t-half) divisions of the entire dataset (Varoquaux et al., 2017). For the 
purposes of our analysis, we selected k = 4 folds due to its common use 

Fig. 1. Example of the process for pseudotrial 
generation and classification, performed on one 
stimulus pair for one participant and time- 
point. This process is repeated for all time-
points, stimulus pairs, and participants. Avail-
able trials for each condition are randomly 
permuted, then divided into 4 bins of approxi-
mately equal size (+/- 1 when trial number is 
not evenly divisible by 4). The trials in each bin 
are averaged to create 4 pseudotrials per con-
dition, which are then used for training and 
testing the classifier. The resulting classification 
accuracies are averaged over all 200 trial order 
permutations for final pairwise.   

Fig. 2. Left: Average overall classification ac-
curacy across the time series as generated by 
the Matlab and Python implementations for 
infants (A, n = 10), and adults (B, n = 8) with 
standard error highlighted. Right: Average 
classification accuracy as generated by z-scored 
and non-z-scored data for infants (C, n = 10) 
and adults (D, n = 8). Time windows of cluster 
corrected above chance accuracy are denoted 
by the corresponding-colored horizontal solid 
lines. The black bars in panel D denote a sig-
nificant difference between z-scored and non-z- 
scored classification accuracy.   
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in the computational cognitive neuroscience literature (Gemignani 
et al., 2018; Hu et al., 2015; Valente et al., 2021) and the fact that it 
could accommodate numbers of available trials as small as 4 per con-
dition. However, different values of k are expected to yield similar re-
sults (Varoquaux et al., 2017). 

Due to the typically high levels of noise in EEG data, trials are 
averaged within each cross-validation fold to improve classification 
performance (Grootswagers et al., 2017). For example, if there were 2 
stimuli (e.g., cat or dog) and 20 available trials for each, these trials were 
first randomly ordered and separated into 4 cross-validation folds, then 
within each fold the 5 cat trials and the 5 dog trials were averaged, 
resulting in 4 cat and 4 dog “pseudo-trials” (Grootswagers et al., 2017; 
Isik et al., 2014). Pairwise, within-subject classification of trials was 
then performed such that 2 stimuli (e.g., cat vs. dog) were compared for 
each time point independently, with 3 pseudo-trials used for training 
and the 4th for testing. This procedure was repeated for 200 permuta-
tions of trial order, and classification accuracy was averaged over these 
permutations to yield a more robust estimate (Bayet et al., 2020) 
(Fig. 1). 

In some cases, additional testing of the model on an independent 
validation dataset can be desirable, going beyond cross-validation. For 
example, if researchers use cross-validation accuracy as a guide for 
choosing their classification model (e.g., deciding on features, classifier 
type, or kernel based on which decision yields the highest cross- 
validation accuracy), then cross-validation alone would provide an 
overly optimistic estimate of the final model’s performance (Hastie 
et al., 2009). Even when it is not used to guide model selection, certain 
research questions may necessitate assessing model generalization 
beyond the parameters of a specific dataset (e.g., if assessing bio-
markers, or if seeking to assess the generalizability of individual par-
ticipants’ neural representations across multiple days). In such cases, 
testing the final model on an additional validation dataset may be 
required to better estimate the model’s performance. 

3.3. Choosing response features to be used for classification 

In the current implementation example, normalized voltage values 
across channels were used as features to train the classifier indepen-
dently for each time point. The resulting decoding accuracy function 
represents how effectively the normalized amplitude values across 
channels predict which stimulus was present on a given trial in the test 
set at each time point after stimulus onset. Researchers may wish to 
implement MVPA with alternative features such as the average voltage 
during a rolling time-window, or spectral power across channels and 
frequency bands instead of voltages (Xie et al., 2020). Both feature ap-
proaches (i.e., time-domain and frequency-domain) have been demon-
strated to effectively decode stimuli; however, at least in certain 
paradigms, different features may reflect different aspects of perception, 
cognition, or attention (Desantis et al., 2020). For example, Desantis et. 
al. demonstrated that voltage amplitude and alpha-band power both 
reliably decoded attention orientation, however alpha-band power was 
more associated with attention orienting in space while voltage ampli-
tude signaled perceptual processes associated with attention. However, 
these frequency components must be extracted over a temporal window, 
thereby resulting in some loss of temporal resolution and increase in the 
potential dimensionality of the data (Vidaurre et al., 2020). 

3.4. Choosing a classification algorithm 

Here, we utilized a linear SVM to classify patterns of voltages across 
channels at each time-point. The tools leveraged for Matlab and Python 
were Libsvm (Chang and Lin, 2011) and scikit-learn’s svm.SVC function 
(Pedregosa et al., 2011), respectively. The scikit-learn SVM imple-
mentation is based on Libsvm and both yield comparable results. Libsvm 
supports several variations to the SVM classifier. In the Python imple-
mentation all arguments to SVC were left as defaults. The Matlab 

implementation specifies a linear kernel in the call to the SVM training 
function. The SVM classification method, which generates hyperplanes 
that maximize separation between categories in a high dimensional 
space, is particularly effective given the large number of features 
considered for classification in comparison to the small available num-
ber of training trials (observations) (Bhavsar and Panchal, 2012). SVM 
classifiers select samples that maximize the distance between categories, 
or support vectors to define the margins between categories. Support 
vectors are calculated such that they maximize the distance between the 
support vectors and the hyperplane that divides the categories. The 
decision boundaries defined in the training step are then used to classify 
the test data. 

Alternatives to a linear SVM classifier include non-linear classifiers 
(e.g., Gaussian kernel SVM, Deep Neural Network) as well as other types 
of linear classifier such as logistic regression, Linear Discriminant 
Analysis, etc. Previous MVPA work suggests that most linear classifica-
tion methods should perform similarly, as measured by prediction ac-
curacy and stability of weights (Varoquaux et al., 2017). While a 
non-linear classifier can account for significantly more features than a 
linear approach, without a very large sample size such classification 
models are prone to overfitting (D’souza et al., 2020), i.e., fitting 
spurious patterns in the training data. It is also important to note that the 
SVM seeks any difference in the high-dimensional representation of the 
EEG features, including noise in the data. 

Multi-way classification was also assessed as an alternative strategy 
to pairwise classification (Supplementary Fig. S1). Briefly, both 8-class 
and pairwise classification yielded comparable performance, and their 
resulting average classification timeseries were significantly correlated 
(adults: Spearman’s r[548] = 0.95, p < 0.001; infants: r[548] = 0.65, 
p < 0.001). 

4. Resulting metrics and statistical testing 

4.1. Output 

In the provided implementation, the output of the decoding function 
(in both language implementations) is a Matlab (.mat) file containing 
the fields ‘out’ and ‘results’. The ‘out’ field contains the string name of 
the file. The ‘results’ field contains a 4-d double matrix of the resulting 
decoding accuracies ‘DA’, a structure containing the decoding parame-
ters ‘params_decoding’, a matrix containing the number of trials 
completed for each participant in each condition ‘nreps’, and an array 
‘times’ that is a list of all time points. 

The ‘DA’ field is a 4-d matrix of the shape (number of participants, 
number of timepoints, number of conditions, number of conditions). 
That is, for each participant, at each timepoint, there is an upper diag-
onal matrix of average pairwise decoding accuracies for each stimulus 
pair. Of note, to avoid duplication, only the upper diagonal matrix (i.e., 
matrix elements above the diagonal) will contain numbers, while the 
diagonal and lower diagonal matrix will contain NaNs (not a number). 

4.2. Within-subject pairwise classification accuracy against chance 

To assess overall classification accuracy across the timeseries, the 
decoding accuracy (DA) matrix was averaged over all subjects and 
conditions and compared to chance (50% in the case of pairwise clas-
sification). To derive an average timeseries over all participants, the 
condition-by-condition matrices need to be averaged over participants 
and condition pairs (i.e., the first, third, and fourth dimensions of the 
matrix in either Python or Matlab). This results in a one-dimensional 
array containing one average accuracy value per time point. To 
examine the pairwise decoding accuracy over the time series for each 
participant separately, accuracies should only be averaged over condi-
tion pairs (i.e., only the third and fourth dimensions): This results in a 
matrix of size (number of participants, number of time points) con-
taining average classification accuracies at each time point for each 
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participant. (Fig. 2; A, B). 
In our example, the significance of the classification accuracy against 

chance was calculated using a one-way right-tailed F-test at each time- 
point, with cluster-based correction for multiple comparisons (Maris 
and Oostenveld, 2007). This was implemented using the cluster per-
mutation test function in the MNE library (Gramfort, 2013) which is 
designed to achieve non-parametric testing by generating clusters of 
data based on some test statistic (in this case, an F-test at each time 
point) and then making inferences based on the size of those clusters. 
This non-parametric approach addresses the issue of multiple compari-
sons without assuming a particular distribution for the test statistic or 
relying on a Gaussian distribution within the data (Smith and Nichols, 
2009). Of note, standard parametric or non-parametric statistical 
methods applied to classification accuracy do not support population 
level inference beyond the existence of an average effect (Allefeld et al., 
2016). In other words, because the actual value of the estimated clas-
sification accuracy can never be below chance, this test can only suggest 
that there is an effect in some individuals in the sample. If more precise 
population inference is necessary, alternative strategies have been pro-
posed, such as examining the prevalence of the observed effect in the 
sample, as opposed to group means (Allefeld et al., 2016). 

In the provided implementation, classification performance is 
assessed against the theoretical chance level for pairwise classification 
(i.e., 50%). Importantly, however, since signal in noisy data is more 
accurately estimated as sample size increases, the success of the classi-
fier could be due to a mismatch in the number of trials per stimulus 
rather than the underlying EEG features. One way to guard against this 
potential bias is to assess the classifier’s performance on experimental 
data by comparing it to an empirical “null” distribution of classification 
accuracy, derived by shuffling trial labels while conserving the imbal-
anced numbers of trials for each stimulus. Indeed, with the current 
sample datasets, we did find that the overall empirical chance level for 
all pairwise classifications was slightly but significantly higher than the 
theoretical chance level of 50% (infants: M = 50.80%, Student t-test 
against theoretical chance level of 50%: t[49,999 = 108.33, p < 0.001; 
adults: M = 50.60%, t[49,999] = 71.49, p < 0.001; empirical null dis-
tributions from collapsing null accuracy timeseries obtained from 100 
label permutations). Critically, classification accuracy for the experi-
mental data significantly exceeded this empirical chance level for both 
infants and adults (Supplementary Fig. S2), suggesting that the observed 
above-chance classification of stimuli from the EEG data cannot be 
completely accounted for by imbalances in the number of available trials 
between stimulus conditions. 

4.3. Representational Similarity Analyses 

Representational similarity analysis (RSA) is a multivariate analysis 
method that assesses and compares the implied “geometry” of neural 
representations, i.e., how similar, or dissimilar patterns of neural ac-
tivity are in response to different stimuli (Diedrichsen and Kriegeskorte, 
2017; Haxby et al., 2014; Kriegeskorte and Kievit, 2013). The resulting 
measures of similarity or dissimilarity may then be compared between 
processing stages, groups, task conditions, or species, or between 
experimental and model data (Diedrichsen and Kriegeskorte, 2017; 
Haxby et al., 2014; Kriegeskorte and Kievit, 2013). In other words, RSA 
projects response differences from any dependent variable into a com-
mon space, thereby allowing those response differences to be compared 
with other responses differences or measures of difference regardless of 
the measures themselves (e.g., EEG, fMRI, model responses, behavioral 
ratings of dissimilarity; Anderson et al., 2016; Bayet et al., 2020). 
Dissimilarity can be quantified in multiple ways such as Euclidean dis-
tance, pairwise correlations, and decoding accuracy (Guggenmos et al., 
2018). Here we focused on classification accuracy, which is directly 
available from standard MVPA decoding, and cross-validated Euclidean 
distance, which has shown particular reliability as a measure of 
dissimilarity (Guggenmos et al., 2018). 

The first step to RSA is constructing representational dissimilarity 
matrices (RDMs), which describe the difference between EEG feature 
patterns for the classes of stimuli (Fig. 3A, B; Supplementary Fig. S3). 
The accuracy-based RDM is simply a matrix of pairwise classification 
accuracies across the set of stimuli. Measuring representational simi-
larity based on Euclidean distance requires a separate decoding step. 
The procedure for Euclidean decoding was much the same as decoding 
with SVM, however the Euclidean distance between values, with addi-
tional cross-validation steps to improve signal-to-noise ratio, was 
calculated instead of classification accuracy. Following the formula 
described by Walther et. al., the difference between the mean EEG 
voltage values for two stimuli were calculated for test and training sets 
of pseudotrials, and multiplied (Walther et al., 2016). This created a 
more stable estimate of representational difference, given that noise is 
assumed to be independent between the two sets. Euclidean distance 
based RDMs were calculated using the same procedure described above. 
RDMs can be used to test computational and cognitive theories, and 
allows for the comparison of representations without identifying the 
transformation between representational spaces (Kriegeskorte and Kie-
vit, 2013). Note, in practice the ability to make group comparisons with 
RSA is limited by the number of stimuli. In this example, RDMs contain 
28 distances between pairs of 8 stimuli; based on this number of dis-
tances, analyses correlating RDMs between groups or time-windows can 
theoretically detect correlations of r~0.45 or higher with 80% power 
(one-tail linear correlation, α = 5% for a single test; G*Power 3.1). 

5. Impact of data preprocessing procedures 

A complete and systematic exploration of the impact of different 
preprocessing parameters was outside of the scope of this tutorial. 
However, we highlight and discuss key decision points below, focusing 
on preprocessing parameters applied to the sample MVPA datasets that 
differ from those commonly used for either univariate ERP analysis of 
infant EEG or for MVPA of adult M/EEG data. 

First, continuous EEG signals were filtered at 0.2–200 Hz, with line- 
noise corrected separately using the PREP pipeline (Bigdely-Shamlo 
et al., 2015). Stronger filtering (e.g., 0.3–30 Hz) is typically applied on 
continuous infant EEG signals before computing ERP amplitude analyses 
in time-windows of interest. However, lighter filtering is preferred for 
more temporally resolved analyses, such as ERP latency analyses or 
temporally-resolved MVPA, in order to minimize temporal distortions of 
the underlying signal (for more detailed discussions of the impact of 
filtering, see e.g. Grootswagers et al., 2017; Tanner et al., 2015). Tem-
poral smoothing of the continuous voltage timeseries was additionally 
applied using 20 ms bins. While such temporal smoothing is uncommon 
in ERP analysis, it provides a modest boost in MVPA classification per-
formance (for a more detailed discussion of the impact of smoothing, see 
e.g., Grootswagers et al., 2017). 

Second, following a common practice with MVPA of adult MEG data 
(Jensen et al., 2019; Sato et al., 2018; Vries et al., 2021), EEG epochs 
were z-scored with respect to the baseline period in each channel and 
trial, rather than simply baseline corrected (as would be typical for ERP 
analysis). To assess the impact of this additional z-score normalization 
on classification accuracy timeseries, we next computed and compared 
classification accuracy timeseries obtained from both z-scored and 
non-z-scored (i.e., baseline corrected) data. Classification on both 
z-scored and non-z-scored data achieved above chance accuracy (Fig. 2). 
The resulting classification accuracy over the time series was signifi-
cantly correlated between z-scored and non-z-scored data for the adult 
and infant datasets (Spearman’s r: infants, r[548] = 0.91, p < 0.001 
adults: r[548] = 0.92 p < 0.001; Fig. 2; C, D). Timeseries of classifica-
tion accuracy derived from the z-scored and non-z-scored data were also 
compared for significant difference using a non-parametric clus-
ter-corrected test. No significant difference was found for the infant 
data, although classification accuracy was significantly higher on the 
non-z-scored than the z-scored adult data at some time points (Fig. 2, D). 
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Thus, z-score normalization may not always be necessary or helpful for 
time-resolved MVPA of every EEG dataset. Nonetheless, due to the 
documented advantage of normalization for reliably estimating dis-
similarities (Guggenmos et al., 2018), and to guard against the possi-
bility that relatively noisier channels could drive multivariate findings, 
we used z-scored data for the analyses in this tutorial. 

Finally, because infant data is inherently noisy, and to guard against 
“false positive” findings driven by noise, the sample datasets were also 
subjected to voltage-based and behavior-based artifact rejection steps in 
line with standard infant ERP analysis practices. Some researchers 
choose to forgo artifact rejection in MVPA analysis of adults’ data 
(Grootswagers et al., 2017) because the cross-validated machine 
learning process can allow classifiers to disregard noisy channels, and to 
avoid discarding meaningful data along with the noise. However, the 
extent to which classifiers are sensitive to noise may depend on the 
extent and structure of the noise present in the data – for example, 
systematic differences in eye movement artifacts between conditions 
could theoretically drive above-chance classification in the absence of 
meaningful signal. Applying artifact rejection steps appropriate for in-
fant EEG data provides a safeguard against overestimating the extent to 
which infants’ neural representations support accurate classification of 
the variable of interest, although the resulting data may instead un-
derestimate classification. 

6. Impact of limited trial numbers and criteria for participant 
inclusion 

Difficulties collecting enough valid trials for analysis frequently 
impede infant research. In general, it is not possible to state a priori how 
many valid trials per stimulus are required to generate asymptotic 
decoding accuracy (i.e., the maximal accuracy possible for the classifi-
cation being attempted), due to differences in the characteristics of 
different data and populations of study. While our sample dataset was 
not designed to support asymptotic classification accuracy due to its 

relatively limited number of trial repetitions (20 of each of the 8 im-
ages), we next sought to evaluate the impact of data inclusion decisions 
after a dataset has been collected. Specifically, we asked whether shift-
ing either the total number of available valid trials per condition or the 
minimum number of valid trials per condition for participant inclusion 
(i.e., shifting trial thresholds) would affect classification accuracy and 
the reliability of the estimated representational distances. 

To assess the relative impact of the number of available valid trials 
on the stability of decoding accuracy, subsets were created containing 
participant data that exactly met different trial number thresholds. That 
is, at a threshold of 4, in one subset 4 trials from each condition were 
randomly selected for analysis in participants with enough available 
data. In separate subsets, all available trial data from participants who 
met the threshold were included. Within the example datasets, the 
number of participants included in the analysis was reduced as the trial 
threshold for participant inclusion in the analysis became more stringent 
(Fig. 4). 

6.1. Impact on classification accuracy 

As expected, in both infants and adults, classification accuracy 
decreased when trials were cut off at the threshold compared to when all 
available trials were used (Supplemental Fig. S4). The results showed 
similar time points of above chance accuracy regardless of trial number 
threshold in both the infant and adult data (Fig. 5). Higher numbers of 
valid trials led to higher classification accuracy in the adult dataset, as 
expected, with a positive correlation between the exact number of trials 
included per participant and the overall classification accuracy (Spear-
man’s r[5] = 0.79, p = 0.035; statistics for all subsets in Supplemental 
Table S1). However, this pattern was less marked in the infant dataset 
(Fig. 5), possibly due to a ceiling effect as well as to some level of trade- 
off between the number of available trials and the number of available 
participants with at least that number of available trials. Classification 
accuracy in infants was numerically higher at the most stringent 

Fig. 3. Top: Representational dissimilarity matrices of pairwise classification accuracy and cross validated Euclidean distance for the subsets of infants (A, n = 10) 
and adults (B, n = 8) with highest overall RDM reliability. RDMs calculated in the time windows during the window of highest classification accuracy (for all time 
windows see Supplemental Materials). Spearman’s r between the classification and Euclidian-distance RDMs is reported above RDMs, with significantly correlations 
for both infants and adults (ps < 0.001). Bottom: Multidimensional scaling (MDS) used to render the Euclidean distance between stimuli representations in a two- 
dimensional space in infants (C) and adults (D). MDS is a method for visualizing a distance matrix in two-dimensional space while maintaining the distance between 
stimuli. Grouping of animals vs. body parts is clearly visible in adults. 
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threshold of 10 trials per condition. However, this pattern of results may 
reflect the particularities of the small amount of participant data (Sup-
plemental Fig. S4). 

6.2. Impact on the reliability of Representational Dissimilarity Matrices 

To assess the feasibility of RSA in the infant EEG dataset, we also 
examined the reliability by which the dissimilarity between neural 

responses to different stimulus types could be estimated at the group 
level – i.e., the noise ceiling (Nili et al., 2014). To that end, we used the 
Spearman-Brown split-half reliability method which involves corre-
lating dissimilarity matrices, composed of the pairwise dissimilarities 
between all stimuli pairs, between two halves of the dataset (Lage--
Castellanos et al., 2019). Specifically, the Pearson’s correlation coeffi-
cient was calculated between group-level RDMs estimated from random 
half-splits of the full group, repeated for 100 split halves (Nili et al., 

Fig. 4. Number of participants from the test data included vs. trial threshold for infants (A) and adults (B). Trial thresholds tested are highlighted in purple, and 
number of participants included at each threshold are noted at the top of the bars. 

Fig. 5. Left: Overall average decoding accuracy when number of trials per condition was restricted to exactly each of the trial thresholds, with 95% confidence 
interval highlighted, for (A) infants and (C) adults. Time windows of cluster corrected above chance accuracy are denoted by the horizontal solid lines. Participants 
with fewer than the specified number of artifact-free trials are excluded (see Fig. 1). Right: Average pairwise split-half reliability of the group-level Representational 
Dissimilarity Matrices of both classification accuracy and Euclidean distance obtained at each trial number threshold with corresponding average and 2.5–97.5 
percentiles of the null split-half noise ceiling calculated in the time windows of highest classification accuracy for infants (B) and adults (D). Reliability plots for pre- 
and post-peak time-windows are additionally shown in Supplementary Fig. S5. 
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2014). The statistical significance of these estimates was determined by 
repeating the same split half procedure, only this time shuffling dis-
similarities in one of the splits in each iteration, repeated for 10,000 
permutations (Lage-Castellanos et al., 2019) to form a null distribution 
against which to compare empirical reliability values (Fig. 5B, D). 

Spearman correlations were calculated between reliability and trial 
number threshold in each of the time windows under consideration (pre, 
during, and post peak accuracy) and were FDR corrected over time 
windows and “exactly n” and “at least n” trial threshold groups. No re-
lationships between the reliability of classification accuracy RDMs and 
trial threshold survived FDR correction. However, in the “exactly n tri-
als” subsets of the adult data, reliability of Euclidean distance RDMs was 
significantly correlated with trial threshold in all time windows. The 
only significant relationship that survived FDR correction in the infant 
data was a significant negative correlation between the exact number of 
trials included and Euclidean distance reliability in the pre- and post- 
peak time windows, but not when including all trials if a minimum 
threshold number of trials per condition is met (reported in full in 
Supplementary Tables S2, S3). These results suggest that, for group-level 
RSA with small infant datasets, decreasing the number of artifact-free 
trials needed for participant-inclusion may not necessarily decrease 
how reliable the resulting group RDMs are, and may in fact yield more 
reliable estimates in some datasets if the number of included partici-
pants can be increased – i.e., there is a trade-off between the number of 
trials per stimulus per infant and the number of infants (Fig. 5B, D; 
Supplementary Fig. S5). 

7. Discussion 

This tutorial aims to expand access to time-resolved MVPA and 
facilitate its future application to novel developmental research. Due to 
the number of logistical difficulties involved with collecting fMRI data 
from awake infants (for examples where this is successfully done, see e. 
g. (Dehaene-Lambertz et al., 2002; Ellis and Turk-Browne, 2018)) and 
the relative ease of collecting EEG data, a standard methodology for 
applying MVPA to infant EEG is extremely valuable. Providing imple-
mentations in two commonly used programming languages (Matlab, 
Python) significantly increases the availability of this method. As 
demonstrated here, both implementations give comparable results. Both 
infant and adult EEG data were successfully used to achieve reliable 
decoding of two or more stimuli, with classification accuracy on the 
infant EEG data rising significantly above chance even with restrictions 
on trial numbers. 

Overall, the estimated classification accuracy timeseries appeared 
relatively robust to a range of preprocessing and analysis parameters, 
including data normalization, number of trials available or needed for 
inclusion, or multi-class vs. pairwise classification. When comparing the 
classification accuracy of z-scored and non-z-scored data, there was a 
trend of improved classification accuracy in the non-normalized data, 
which reached significance in the adult data. This raises the question of 
whether normalization may sometimes obscure meaningful patterns 
available in baseline-corrected voltage. While the difference in classifi-
cation accuracy between z-scored and non-z-scored EEG in our infant 
data was not statistically significant, it is possible that it would be in a 
larger data set. That said, normalization has been found to increase the 
reliability of estimated representational distances (Guggenmos et al., 
2018), and is still expected to be preferable when, for example, noise 
levels vary between channels. 

While these results do not allow us to recommend a specific mini-
mum number of valid trials per condition for inclusion when using 
MVPA to analyze infant EEG data, they do provide some insight. Spe-
cifically, the expected, positive relationship between available trial 
numbers and resulting classification accuracy that was clear in adult 
data may not always apply for more variable infant data: Indeed, raising 
the minimum number of trials needed for inclusion tended to limit the 
number of participants that could be included in the analysis in a more 

drastic way for infant than adult data. Rather, examining accuracy and 
reliability as a function of different inclusion thresholds in pilot data 
analysis may inform study-specific design or analytic criteria. Such pilot 
analysis would allow researchers to take the characteristics of the data 
collected from the study population and experimental design into ac-
count when performing a final analysis. 

There are several important limitations to MVPA as a means of 
accessing neural representations. First, like univariate analyses, MVPA is 
sensitive to any pattern that differentiates categories. It is not guaran-
teed that the underlying cause of such a multivariate pattern is a 
cognitive process of interest, as opposed to some spurious or con-
founding factor such a low-level difference in stimulus brightness, size, 
or number of trials. Second, while linear classification requires fewer 
data to yield robust results than non-linear methods such as artificial 
neural networks (Alwosheel et al., 2018), this method is limited by the 
assumption of linearity inherent in the classification method. While 
there are theoretical and practical reasons to favor the use of linear 
classifiers when employing MVPA to assess neural representations 
(Hung et al., 2005; King et al., 2018), there is always a possibility that 
discrimination within the brain relies on nonlinear patterns of activation 
that do not fall within the linear constraints of the classifier (Naselaris 
and Kay, 2015; Popov et al., 2018). Thus, linear classifiers may under-
estimate the information that is available in infants’ distributed neural 
patterns. 

There are also caveats to the current example results that should be 
kept in mind when implementing this method. Primarily, the data set 
used to produce example decoding results was small. While the method 
was successfully executed on these data, the limited sample size could 
have skewed the presented results compared to a larger dataset. These 
specific findings reported here may not generalize to other sensory do-
mains, EEG sensor types, age groups, or other kinds of visual stimuli. 
Despite these limitations, the current tutorial further demonstrates the 
feasibility of time-resolved MVPA for examining patterns of activation in 
infant EEG, and provides practical guidance to its implementation. 
Future research may address these limitations by replicating the current 
analyses in different, larger sets of infant EEG data. 

By applying MVPA to infant EEG data in a pre-verbal age group, 
developmental researchers can draw conclusions about the nature and 
consistency of neural representations of perceived stimuli beyond what 
is afforded by univariate behavioral or neuroimaging methods. Future 
research may further expand the use of MVPA with infant data to other 
neuroimaging modalities (e.g., fMRI, time-frequency decomposition of 
EEG data, source-localized EEG data) and tailor data collection and 
analysis methods to better address limitations of infant neuroimaging, 
including the quality and quantity of data available for data-intensive 
analyses such as MVPA. 
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Figure S1. Decoding accuracy over the time series within the in the subset of 

participants that were included in Bayet et al (2020) (Infants n=10, Adults 

n=8). Horizontal bars indicate above chance classification accuracy.  

Average accuracy time series were significantly correlated with those 

obtained using pairwise classification in both adults (Spearman’s r = 0.95, p 

< 0.001) and infants (Spearman’s r = 0.65, p < 0.001). 
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Figure S2. Decoding accuracy over the time series within the originally included 

subset of participant data (A. Infants n=10, B. Adults n=8). Horizontal bars indicate 

above chance classification accuracy as compared to an empirical null average at each 

time point. Empirical chance was calculated by running classification on data with 

randomly permuted labels over 100 permutations.  
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Figure S3. Representational Dissimilarity Matrices (RDMs) of pairwise classification accuracy and 

cross validated Euclidean distance for the subsets of adults (n=8) and infants (n=15) with highest 

overall RDM reliability. RDMs calculated in the time windows during which classification accuracy 

rises above chance (A), during the window of highest classification accuracy (B) and following the 

window of highest classification accuracy (C).  

Figure S4. Average classification accuracy at different trial thresholds with (A) infants (time window 

100-500 ms) and (B) adults (time window 50-500 ms) and Euclidean distance with (C) infants (time 

window 100-500 ms) and (D) adults (time window 50-500 ms). Blue denotes the distribution when the 

number of trials included was cut off at the threshold, and orange denotes when all trials were 

included for all participants who met the threshold of trials per condition.  
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Figure S5. Average split-half reliability of the group-level Representational Dissimilarity Matrices 

of both classification accuracy and Euclidean distance obtained at each trial number threshold, 

with corresponding average and 2.5-97.5 percentiles of the null split-half noise ceiling calculated 

in the time windows during which classification accuracy rises above chance (Infants: A, Adults: 

D), during the window of highest classification accuracy (Infants: B, Adults: E), and following the 

window of highest classification accuracy (Infants: C, Adults: F).  
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 Pre-peak 

Infant: 100-200 ms 

Adult: 50-150 ms 

Peak 

Infant: 200-350 ms 

Adult: 150-300 ms 

Post-peak 

Infant: 350-500 ms 

Adult: 300-400 ms 

Infants, at least n trials r = -0.39 p = 0.720 r = 0, p = 1 r = 0.30, p = 0.720 

Infants, exactly n trials r = -0.30, p = 0.720 r = 0.79, p = 0.300 

 

r = 0.89, p = 0.222 

Adults, at least n trials r = 0.79, p = 0.035 * r = 0.91, p = 0.008 * 

 

r = 0.79, p = 0.035 * 

Adults, exactly n trials r = 0.93, p = 0.006 * r = 1.0, p<0.001 * r = 0.96, p = 0.001 * 

 

 

 Pre-peak 

Infant: 100-200 ms 

Adult: 50-150 ms 

Peak 

Infant: 200-350 ms 

Adult: 150-300 ms 

Post-peak 

Infant: 350-500 ms 

Adult: 300-400 ms 

Infant at least n r = -0.89, p = 0.080 r = -0.30 p = 0.744 r = 0 p=1 

Infant exactly n r = -0.97, p = 0.015 * r = -0.30 p = 0.744 r = -0.99, p<0.001 * 

Adult at least n r = 0.75, p = 0.078 r = -0.53 p = 0.252 r = -0.36, p=0.430 

Adult exactly n r = 0.96, p = 0.002 * r = 0.89, p = 0.014 * r = 0.96, p=0.002 * 

 

  

Table S1. Spearman correlations between group average classification accuracy and trial number 

threshold in all subsets. All p-values are FDR corrected across time windows and type of subset (i.e., 

at least vs. exactly n trials). 

Table S2. Spearman correlations between the reliability of Euclidean distance RDMs and trial number 

threshold in all subsets. All p-values are FDR corrected across time windows and type of subset (i.e., 

at least vs. exactly n trials). 
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 Pre-peak 

Infant: 100-200 ms 

Adult: 50-150 ms 

Peak 

Infant: 200-350 ms 

Adult: 150-300 ms 

Post-peak 

Infant: 350-500 ms 

Adult: 300-400 ms 

Infants, at least n trials r = -0.49 p = 0.780 r =0, p = 1 r = 0.01, p = 1 

Infants, exactly n trials r = -0.70, p = 0.564 r =-0.09, p = 1 

 

r = -0.89, p = 0.222 

Adults, at least n trials r = 0.75, p = 0.156  r = -0.53, p = 0.030  

 

r = -0.50, p = 0.030  

Adults, exactly n trials r = -0.25, p = 0.588  r = 0.86, p = 0.084  r = 0.64, p = 0.240  

 

 

Table S3. Spearman correlations between the reliability of classification accuracy RDMs and trial 

number threshold in all subsets. All p-values are FDR corrected across time windows and type of 

subset (i.e., at least vs. exactly n trials). 
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