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Law of large numbers The Central Limit Theorem

The law of large numbers

Fix p 2 (0, 1). Throw n times in a row a coin which has a probability p of
giving heads.

As n ! 1, how does evolve the proportion of heads?
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Law of large numbers The Central Limit Theorem

The law of large numbers
A bit more formally, for i > 1 set Xi = 1 if the i-th throw is heads (happens
with probability p) and 0 otherwise (happens with probability 1- p). Set
Sn = X1 + · · ·+ Xn.

y What is the behavior of Sn

n as n ! 1?
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y Law of large numbers: Sn

n converges almost surely towards p as n ! 1.
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y Can we “zoom in”?
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- p : 1 6 n 6 1000
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for p = 0.6.

y Can we “zoom in”?

y Is there a function f(n) such that f(n)
�
Sn

n - p
�

has a nice behavior for n
large?

Igor Kortchemski Structure in randomness 5 / 672



Law of large numbers The Central Limit Theorem

The Central Limit Theorem

The speed of convergence is 1p
n

. This means that
p
n(Sn

n - p) has
a nondegenerate behavior as n ! 1.
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Law of large numbers The Central Limit Theorem

Structure in randomness
There is structure in this randomness!

Look at the “endpoints”p
n(Sn

n - p) and draw the empirical histogram.
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Figure: Empirical histograms of 10000 simulations of
p
n ·

�
Sn
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for n = 10000.
Left: p = 0.6; Right:p = 0.4.

Figure: Plot of the function x 7! 1p
2⇡
e-

x2
2 .
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Left: p = 0.6; Right:p = 0.4.
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Let Sn be the sum of n independent Bernoulli random variables of pa-
rameter p 2 (0, 1). Then, for every a < b:

P
 

a 6
p
np

p(1- p)

✓
Sn
n

- p

◆
6 b

!

�!
n!1

Zb

a

1p
2⇡

e-x2/2dx.

Theorem (Central limit theorem – De Moivre Laplace theorem).

We say that
p
np

p(1-p)

�
Sn

n - p
�

converges in distribution to a Gaussian random

variable.
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Law of large numbers The Central Limit Theorem

The central limit theorem
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We do not know where the “trajectory" will arrive, but we know an
esimate of the probability that it arrives in a certain region thanks to
the central limit theorem.
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Recap

- Sets
- Mathematical assertions (quantifiers)
- Functions

First part: foundations



Recap

- Binomial coefficients
- Permutations
- Graphs

Second part: combinatorics



Recap

- Events, probabilities
- Independence, conditional probabilities

Third part: Probability



Rigor

Intuition Examples

Abstraction
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A graph

Rigor

Intuition Examples

Abstraction

Understanding

Warning when applying Mathematics in the real world!


