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Abstract

The overall performance of content distribution networks as well as recently
proposed information-centric networks rely on both memory and bandwidth
capacities. The hit ratio is the key performance indicator which captures the
bandwidth / memory tradeoff for a given global performance.
This paper focuses on the estimation of the hit ratio in a network of caches that
employ the Random replacement policy (RND). Assuming that requests are in-
dependent and identically distributed, general expressions of miss probabilities
for a single RND cache are provided as well as exact results for specific pop-
ularity distributions (such results also hold for the FIFO replacement policy).
Moreover, for any Zipf popularity distribution with exponent α > 1, we obtain
asymptotic equivalents for the miss probability in the case of large cache size.
We extend the analysis to networks of RND caches, when the topology is either
a line or a homogeneous tree. In that case, approximations for miss probabili-
ties across the network are derived by neglecting time correlations between miss
events at any node; the obtained results are compared to the same network
using the Least-Recently-Used discipline, already addressed in the literature.
We further analyze the case of a mixed tandem cache network where the two
nodes employ either Random or Least-Recently-Used policies. In all scenarios,
asymptotic formulas and approximations are extensively compared to simulation
results and shown to be very accurate. Finally, our results enable us to propose
recommendations for cache replacement disciplines in a network dedicated to
content distribution.

1. Introduction

Communication networks use an ever increasing amount of data storage to
cache information in the aim of performance improvement. Data caching con-
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sists in temporarily storing pieces of data into a memory, so as to directly provide
the data upon possible forthcoming requests. The performance gain stems from
the Round-Trip-Time reduction and the increase in network capacity when the
cache is located downstream a bandwidth bottleneck, e.g., a communication
link with limited bandwidth or a shared bus in a network of chips.

As a major application, the increasing amount of content delivered to In-
ternet users has pushed the use of Web caching into communication models
based on distributed caching such as Content Delivery Networks (CDNs) or
Peer-To-Peer (P2P) Networks. Additionally, new information-centric network
architectures ([1], [2], [3]) have been recently proposed, that include built-in
network storage as a central feature of the underlying communication model.
Content storage then becomes a primary resource in such networks, aiming at
minimizing content delivery time under an ever increasing demand that cannot
simply be satisfied by increasing link bandwidth. On the economic side, the use
of network storage to bypass bandwidth bottlenecks appears cost effective as
memory turns out to be cheaper than transmission capacity.

One of the fundamental operations of a cache is defined by its replacement
policy which determines the object to be removed from the cache when the
latter is full. Many replacement policies are based on content popularity, with
significant cost for managing the sorted lists. This is the case, in particular,
for the Least Frequently Used (LFU) policy and more sophisticated variants of
it. On the contrary, Most Recently Used (MRU), Least Recently Used (LRU),
First-In-First-Out (FIFO) and Random (RND) policies have the compelling
feature to replace cached objects with constant delay. In-network storage, as
envisaged in the new architectures mentioned above, may require packet-level
caching at line rate; current routers running complex replacement policies might
not, however, sustain such high rates [4]. In this framework, RND or FIFO
policies can therefore be seen as presenting the least possible complexity; in
fact, the latter require less memory access per packet than LRU or MRU, and
it has been shown [4] that this advantage is critical for sustaining high-speed
caching with current memory technology.

In this paper, we address performance issues of caching networks running
the RND replacement policy; our analysis also holds for the FIFO policy whose
performance is known to be equivalent to that of RND. We mainly focus on
the analytical characterization of the miss probabilities under the Independent
Reference Model (IRM) assumptions when the number of available objects is
infinite. Exploiting the Markovian properties of the cache occupancy and its
associated product-form distribution, we first express the miss rate as a ratio of
normalizing constants. This enables us to provide exact formulae for the miss
rate in case of either geometric or specific Zipf content popularity distributions.
On the basis of Large Deviations results for discrete probability distributions,
Proposition 3.9 then asserts our main result: When the popularity distribution
follows a general power-law with decay exponent α > 1, the miss probability is
asymptotic to Aρα/C

α−1 for large cache size C, where constants A and ρα de-
pend on α only. In Proposition 3.10, we extend that result to miss probabilities
conditioned by the object popularity rank.
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A second major contribution of the paper is given by Proposition 5.1, where
we evaluate the performance of networks of caches under the RND policy, for
both linear and homogeneous tree networks and asymptotically Zipf popularity
distributions. An approximate closed formula for the miss probability across the
network is provided and compared to corresponding estimates for LRU cache
networks. The analysis is also extended to the mixed tandem cache network
where one cache employs LRU and the other uses RND.

The specific focus on Zipf distributions or, more generally, power-law distri-
butions is motivated by numerous studies on Internet object popularity, starting
from the late 90’s experiments on World Wide Web documents ([5],[6]) to the
content stored in enterprises media servers ([7],[8]) and recent studies on In-
ternet media content ([9], [10]). While other content popularity distributions
might be considered, we do not provide here a complete review of the literature
on Internet content popularity characterization; the above references confirm
the relevance of Zipf distributions for studying caching performance.

The remainder of the paper is organized as follows. Section 2 presents related
work on the analytic performance evaluation of caching systems. Section 3 ana-
lyzes the RND cache replacement policy and its comparison to LRU for a single
cache; these analytic results are compared to exact numerical and simulation
results in Section 4. Section 5 reports the approximate analysis of the network
of RND caches for two topologies, namely the line and the tree. Numerical
and simulation results for the network case are reported in Section 6. Section
7 further evaluates the tandem cache system where one cache implements LRU
and the other RND. Section 8 concludes the paper.

2. Related Work

There is a significant body of work on caching systems and their associated
replacement policies; we here only report the literature focusing on the analytic
characterization of the performance of such systems.

The replacement policy most often analyzed is LRU whose performance is
evaluated considering the move-to-front rule, consisting in putting the latest
requested object in front of a list; a miss event for a LRU cache with finite size
takes place when the position (also referred to as search cost) of an object in
the list is larger than that size. Under the Independent Reference Model, [11]
calculates the expected search cost and its variance for finite lists. An explicit
formula is given in [12, 13] for the probability distribution of that cost; such a
formula is, however, impractical for numerical evaluation in case of large object
population and large cache size. Integral representations obtained in [14, 15]
using the Laplace transform of the search cost function reduce the problem to
numerical integration.

An asymptotic analysis of LRU miss probabilities for Zipf and Weibull pop-
ularity distributions is derived in [16] and provides simple closed formulas. Ex-
tensions to correlated requests are obtained in [17, 18], showing that short-term
correlation does not impact the asymptotic results derived in [16]; the case of
variable object sizes is also considered in [19]. The average miss probability
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for a LRU cache when requests are issued according to a general, possibly non-
stationary, stochastic point process is obtained in [20].

The analytic evaluation of the RND policy has first been initiated in [21] for
a single cache where the miss probability is given a general expression for any
popularity distribution. To the best of our knowledge, its application to specific
popularity distributions has, however, not yet been envisaged together with its
numerical tractability for large object population and cache size. Besides, a
fluid limit analysis is performed in [22] by considering a sequence of single cache
systems indexed by a integer n; for any popularity distribution, the average miss
probability is then shown to tend a limit when n tends to infinity. The latter
limit verifies an implicit equation and is related to the heuristic approximation
proposed in [23] for the FIFO replacement policy. Finally, the so-called ”Che
approximation” has been applied in [24] to the RND replacement scheme; in
that approach, the sojourn time for any object r in the cache is assumed to be
approximately inversely proportional to the request rate for objects other than
r. The miss rate is similarly shown to be given by an implicit equation and the
validatity of the approach is validated numerically.

We are aware of a few papers that address the issue of networks of caches.
Significant work is devoted to systems where a document is copied to all crossed
caches. As we also assume in Section 5, most papers use the approximation
that the output of any cache is also IRM, with filtered popularity. A network of
LRU caches, in particular, has been analyzed in [25], using the above-mentioned
approximation obtained in [23] for the miss probability at each node; miss prob-
abilities can then be obtained as the solution of an iterative algorithm that is
proved to converge. Using the same assumption, the results of [16] are also
extended in [26] to a two-level request process where objects are segmented into
packets, when assuming that the LRU policy applies to packets; the analysis is
applied to line and tree topologies with in-path caching. Moreover, reference
[27] extends [26] when network links have finite bandwidth. An even stronger
assumption is used in [28], where hierarchical networks are analyzed assuming
that, at each level, the requests form an independent process and have Zipf
popularity. As noted in [28] and [29], the output of a cache is generally not
IRM; reference [30] provides exact results for tree topologies of caches, when
each cache keeps documents according to an exponentially distributed timer.

Besides, other papers focus on networks of caches where documents are not
systematically copied to all caches along their path. In particular, the intercon-
nection of LRU caches using the Leave a Copy Down mechanism (each cache of
a given level stores the transmitted object) is analyzed in [31]. Mixed replace-
ment policies are analyzed in the context of a hierarchical cache in [32], and
hybrid policies with good performance and implementation cost are proposed.

3. Single cache model

In this section, we address the single cache system with RND replacement
policy, deriving analytic expressions of the miss probability together with asymp-
totics for large cache size. To avoid technical results at first reading, the reader
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may quickly go through the notation of Section 3.1 and directly skip to main
results given in Propositions 3.9 and 3.10.

3.1. Basic results

Consider a cache memory with finite size which is offered requests for ob-
jects. If the cache size is attained and a request for an object cannot be satisfied
(corresponding to a miss event), the requested object is fetched from the repos-
itory server and cached locally at the expense of replacing some other object in
the cache. The object replacement policy is assumed to follow the RND disci-
pline, i.e.whenever a miss occurs, the object to be replaced is chosen at random,
uniformly among the objects present in cache.

We consider a discrete time system: at time t ∈ N, the t-th object requested
from the cache is denoted by R(t) ∈ {1, 2, ..., N}, where N ∈ N ∪ {+∞} is the
total number of objects which can be possibly requested (in the present analysis,
the set of all possible objects is considered to be invariant in time). We assume
that all N objects are ordered with decreasing popularity, the probability that
the object with popularity rank r is requested being qr, 1 ≤ r ≤ N . In the
following, we consider the Independent Reference Model, where variables R(t),
t ∈ N, are mutually independent and identically distributed with distribution
defined by

P(R = r) = qr, 1 ≤ r ≤ N.

Let C ≤ N be the cache size. We denote by NC the set of all ordered vectors
(j1, ..., jC) ∈ {1, ..., N}C with jk < j` for k < `. Define the cache state at time
t ∈ N by the vector S(t) ∈ NC , where component Sk(t), 1 ≤ k ≤ C, is the rank
of the object with the kth highest popularity in the cache. Define

G(C) =
∑

(j1,...,jC)∈NC

qj1 ...qjC (1)

with G(0) = 1, and let M(C) finally denote the stationary miss probability
calculated over all possibly requested objects.

It is shown [21] that the cache configurations (S(t))t∈N define a reversible
Markov process with stationary probability distribution given by

P(S = s) =
1

G(C)

∏
j∈s

qj , s ∈ NC ; (2)

moreover ([21], Theorem 4), miss probability M(C) equals

M(C) =

∑
(j1,...,jC)∈NC

qj1 ...qjC
∑

r/∈(j1,...,jC)

qr∑
(j1,...,jC)∈NC

qj1 ...qjC
. (3)

The latter formula is easily understood as the sum, for each possible cache
configuration, of all probabilities to request an object which is not available in
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the cache, weighted by the probability to be in that configuration. It is also
shown [21] that the latter stationary distribution and miss rate probability for
RND are identical to that of a cache using the FIFO replacement policy, so that
our results apply to that policy as well.

We now show that expression (3) can be written in terms of normalizing
constants G(C) and G(C + 1) only; this will give formula (3) a compact form
suitable for the derivation of both exact and asymptotic expressions for M(C).

Lemma 3.1. The miss rate M(C) is given by

M(C) = (C + 1)
G(C + 1)

G(C)
(4)

with G(C) defined in (1).

Proof. The denominator in (3) equals G(C) by definition. The numerator can
be expressed as∑

1≤j1<...<jC≤N

qj1 ...qjC
∑

r/∈{j1,...,jC}

qr

=
∑

1≤j1<...<jC≤N

qj1 ...qjC ×

 ∑
1≤r<j1

qr + ...+
∑

jC−1<r<jC

qr +
∑

jC<r≤N

qr


= (C + 1)

∑
1≤r<j1<...<jC≤N

qrqj1 ...qjC = (C + 1)G(C + 1)

and expression (4) of M(C) follows.

The latter results readily extend to the case when the total number N of
objects is infinite, since the sum Σj≥1qj is finite. The calculation of coeffi-
cients G(C), 0 ≤ C ≤ N , is now performed through their associated generating
function F defined by

F (z) =
∑

0≤C≤N

G(C)zC , z ∈ C, (5)

for either finite or infinite population size N (as M(C) ≤ 1, Lemma 3.1 entails
that G(C+1)/G(C) ≤ 1/(C+1) and the ratio test implies that the power series
defining F (z) has infinite convergence radius). We easily obtain the second
preliminary result.

Lemma 3.2. The generating function F is given by

F (z) =
∏

1≤r≤N

(1 + qrz) (6)

for all z ∈ C.
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Proof. Expanding the latter product and using definition (1) readily provide
the claimed result.

To further study the single cache properties, let Mr(C) denote the per-object
miss probability, given that the requested object is precisely r ∈ {1, ..., N}.
Defining

Gr(C) =
∑

1≤j1<...<jC≤N, r/∈{j1,...,jC}

qj1 ...qjC (7)

with Gr(0) = 1, we then have Mr(C) = P(r /∈ S) so that (2) and (7) yield

Mr(C) =
Gr(C)

G(C)
. (8)

Lemma 3.3. For given r ∈ {1, ..., N}, the per-object miss probability Mr(C)
can be expressed by

Mr(C) = 1 +

C∑
`=1

(−1)`q`r
G(C − `)
G(C)

. (9)

The stationary probability qr(2), r ∈ {1, ..., N}, that a miss event occurs for
object r is given by

qr(2) =
Mr(C)

M(C)
qr (10)

where M(C) is the averaged miss probability.

Proof. By definition (7), the generating function Fr(z) of coefficients Gr(C),
0 ≤ C ≤ N , is given by

Fr(z) =
F (z)

1 + qrz
, z ∈ C. (11)

Expanding the latter ratio as a powers series of z gives

Gr(C) =

C∑
`=0

(−1)C−`qC−`r G(`)

and provides (9) after using definition (8) for Mr(C). Besides, lettingM denote
a miss event, the Bayes formula entails

qr(2) = P(R = r | M) = P(R = r)
P(M | R = r)

P(M)
= qr

Mr(C)

M(C)

hence relation (10).

If the popularity distribution has unbounded support, then limr↑+∞ qr = 0
and formula (9) implies that the per-object probability Mr(C) tends to 1 as
r ↑ +∞ for fixed C; (10) consequently entails

qr(2) ∼ qr
M(C)

, r ↑ +∞. (12)
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For given C, asymptotic (12) shows that the tail of distribution (qr(2))r∈N at in-
finity is proportional to that of distribution (qr)r∈N. The distribution (qr(2))r∈N
describes the output process of the single cache, which process is generated by
consecutive missed requests. It will serve as an essential ingredient to the further
extension of the single cache model to network cache configurations considered
in Section 5.

3.2. Some exact results

Coefficients G(C), C ≥ 0, and associated miss probability M(C) can be
explicitly derived for some specific popularity distributions. In the following,
the total population N of objects is always assumed to be infinite.

Corollary 3.4. Assume a geometric popularity distribution qr = (1 − κ)κr−1,
r ≥ 1, with given κ ∈ ]0, 1[. For all C ≥ 0, the miss rate equals

M(C) =
1− κ

1− κC+1
(C + 1)κC . (13)

Proof. Using Lemma 3.2, F is readily shown to verify the functional identity
F (z) = (1 + (1− κ)z)F (κz) for all z ∈ C. Expanding each side of that identity
in power series of z and identifying identical powers provides the value of the
ratio G(C + 1)/G(C), hence result (13) by (4).

Let us now assume that the popularity distribution follows a Zipf distribution
defined by

qr =
A

rα
, r ≥ 1, (14)

with exponent α > 1 and normalization constant A = 1/ζ(α), where ζ is the
Riemann’s Zeta function. We now show that explicit rational expressions for
miss rate M(C) can be obtained for some integer values of α.

Corollary 3.5. Assume a Zipf popularity distribution with exponent α. The
miss probability then equals

M(C) =



3

2C + 3
if α = 2,

45

(4C + 3)(4C + 5)(2C + 3)
if α = 4,

840

(6C + 7)(6C + 5)(3C + 4)(3C + 2)(2C + 3)
if α = 6

for all C ≥ 0.

Proof. When α = 2, the normalization constant equals A = 1/ζ(2) = 6/π2.
Using the infinite product formula ([33], p.85, formula 4.5.68)

F (z) =
∏
j≥1

(
1 +

u2

π2j2

)
=

sinhu

u
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and expanding the left hand side into powers of u2 = Aπ2z gives the expan-
sion F (z) = ΣC≥0G(C)zC where G(C) = (π2A)C/(2C + 1)! for all C ≥ 0.
Computing ratio (4) with the above expression of G(C) then provides the miss
probability M(C) = 3/(2C + 3), as claimed.

The subsequent cases follow a similar derivation pattern: for α = 4 (resp.
α = 6), the infinite product F (z) = f(u) is given a simple closed form as a finite
product of functions u 7→ sinh(ωu)/u where ω2 = −1 (resp. ω3 = −1) and
<(ω) > 0 and with variable change u4 = Aπ4z (resp. u6 = Aπ6z). Expanding
then f(u) in power series of z gives a rational expression for coefficient G(C),
from which the rational expression for miss probability M(C) is derived.

Rational expressions of Corollary 3.5 do not seem, however, to generalize for
integer values α = 2p with p ≥ 4; upper bounds can nevertheless be envisaged
and are the object of further study.

As also suggested by Corollary 3.5, the cache size corresponding to a target
miss probability should be a decreasing function of α. This property is gener-
alized in Section 3.3 where an asymptotic evaluation of M(C) is provided for
large cache size C and any Zipf distribution with real exponent α > 1.

3.3. Large cache approximation
The specific popularity distributions considered in Corollaries 3.4 and 3.5

show that M(C) is of order CqC for large C. In the present section, we derive
general asymptotics for probabilities M(C) and Mr(C) with large cache size
and show that such a magnitude order for M(C) is generally valid for any Zipf
popularity distribution with exponent α > 1.

We first start by formulating a general Large Deviations result for evaluating
coefficients G(C) for large C (Theorem 3.6 below). The derivation of that result
is essentially based on introducing random variables XC , C ≥ 0, related to the
sequence (G(C))C≥0 through their ”shifted” distribution

P(XC = x) =
G(x)

F (θC)
θxC , x ≥ 0,

for some relevant argument θC ; using the local estimates stated in [34] for den-
sities of arbitrary sequences of random variables then provides general estimate
(18). To apply that estimate to the Zipf distribution (14), we then state two
preliminary results (Lemmas 3.7 and 3.8) on the behavior of the associated gen-
erating function F at infinity. This finally enables us to claim our central result
(Proposition 3.9) for the behavior of M(C) for large C.

Theorem 3.6. (See Proof in Appendix A)
(i) Given the generating function F defined in (6) and C ≥ 0, equation

zF ′(z) = CF (z) (15)

has a unique real positive solution z = θC ;
(ii) Assume there exists some constant σ > 0 such that the limit

lim
C↑+∞

es
√
C F (θCe

−s/
√
C)

F (θC)
= eσ

2s2/2 (16)
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holds for any given s ∈ C with <(s) = 0 and, given any δ > 0, there exists
η ∈ ]0, 1[ and an integer Cδ such that

sup
δ≤|y| ≤π

∣∣∣∣F (θCe
iy)

F (θC)

∣∣∣∣1/C ≤ η (17)

for C ≥ Cδ. We then have

G(C) ∼ exp(HC)

σ
√

2πC
(18)

as C tends to infinity, with HC = logF (θC)− C log θC .

Following Theorem 3.6, the asymptotic behavior of M(C) can then be de-
rived from (18) together with identity (4). This approach is now applied to the
Zipf popularity distribution (14); in this aim, the behavior of the associated
generating function F is specified as follows.

Lemma 3.7. (See Proof in Appendix B)
For α > 1 and large z ∈ C \ R−, logF (z) expands as

logF (z) = α(ραAz)
1/α − 1

2
log(Az) + Sα + o(1) (19)

where A = 1/ζ(α), with constants

ρα =

(
π/α

sin(π/α)

)α
(20)

and Sα depending on α only.

The next lemma specifies in turn the behaviour of the solution θC to equation
(15) for large C.

Lemma 3.8. (See Proof in Appendix C)
For α > 1 and large C, the unique real positive solution θC to (15) verifies

θC =
Cα

Aρα
+ Cα−1rC (21)

with rC = A1 + O(C−1) with A1 = α/2ραA if α 6= 2, and rC = O(logC) if
α = 2.

We can now state our central result.

Proposition 3.9. For a Zipf popularity distribution with exponent α > 1, the
miss probability M(C) is asymptotic to

M(C) ∼ Aρα
Cα−1

(22)

for large C, with prefactor ρα defined in (20).
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Proof. As verified in Appendix D, the conditions of Theorem 3.6 are satisfied
for a Zipf distribution. Using asymptotics (19) and (21) of Lemmas 3.7 and 3.8
to make the argument HC explicit in (18), we then have

HC = logF (θC)− C log θC

= α(ραAθC)1/α − 1

2
log(AθC) + Sα + o(1)− C log

[
Cα

Aρα
+ Cα−1rC

]
so that HC+1−HC = −α logC + k+ o(1) with k = log(Aρα). By definition (4)
of M(C), the latter estimates enable us to derive that

M(C) = (C + 1)
G(C + 1)

G(C)
∼ C exp[HC+1 −HC ]

∼ C ek

Cα
=

Aρα
Cα−1

as claimed.

We therefore conclude with Proposition 3.9 that M(C) = O(CqC) for any
Zipf popularity with exponent α > 1.

Remark 3.1. Using elementary asymptotics for sin(π/α), expression (20) for
factor ρα readily shows that limα↑+∞ ρα = 1 and ρα ∼ 1/(α − 1) as α ↓ 1,
respectively. Note also that coefficient Aρα = ρα/ζ(α) in (22) has bounded
variations for α > 1 as it is lower bounded by 1 (attained for α = 1 and α = +∞)
and upper bounded by its maximum 1.503... (attained for α = 2.172...).

Remark 3.2. Proposition 3.9 also provides asymptotic (22) for M(C) under
the weaker assumption that the popularity distribution (qr)r≥1 has a heavy tail
of order r−α for large r and some α > 1, without being precisely Zipf as in (14).
In fact, all necessary properties for deriving Lemmas 3.7 and 3.8 are based on
that tail behavior only.

To close this section, we now address the asymptotic behavior of Mr(C)
defined in (8).

Proposition 3.10. For any Zipf popularity distribution with exponent α > 1
and given the object rank r, the per-object miss probability Mr(C) is estimated
by

Mr(C) ∼ ραr
α

Cα + ραrα
(23)

for large C, with prefactor ρα defined in (20).

Proof. The generating function Fr of the sequence Gr(C), C ≥ 0, being given by
(11), apply Theorem 3.6 to estimate coefficients Gr(C) for large C. Concerning
condition (i), the solution η = ηC to equation ηF ′r(η) = CFr(η) reduces to
equation (15) for θ = θC where the term qrθ/(1 + qrθ) has been suppressed; but
suppressing that term does not modify the estimate for θC with large C so that
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ηC ∼ θC . On the other hand, condition (ii) is readily verified by generating
function Fr and we then obtain

Gr(C) ∼ G(C)

1 + qrθC
. (24)

By Lemma 3.8, we have θC ∼ Cα/Aρα for large C; definition (8) of Mr(C) and
estimate (24) with qr = A/rα give

Mr(C) =
Gr(C)

G(C)
∼ 1

1 + qrθC
∼ ραr

α

Cα + ραrα
(25)

and result (23) follows.

For any value α > 1, (23) is consistent with the fact that Mr(C) is an
increasing function of object rank r and a decreasing function of cache size C.

3.4. Comparing RND to LRU

Let us now compare the latter results with the LRU replacement policy
investigated in [15, 16]. Recall that, for a Zipf popularity distribution with
exponent α > 1, the miss probability M(C) for LRU can be estimated by
M(C) ∼ Aλα/Cα−1 for large C ([16], Theorem 3), with

λα =
1

α

[
Γ

(
1− 1

α

)]α
(26)

where Γ is Gamma function; prefactor λα can also be estimated by λα ∼ eγ/α
as α ↑ +∞ (where γ ≈ 0.57721 denotes Euler’s constant with eγ = 1, 781...) and
λα ∼ 1/(α− 1) as α ↓ 1. From functional properties of the Γ function, it can be
shown (see Appendix E) that prefactors ρα and λα respectively associated
with RND and LRU performance are such that

∀ α > 1, ρα > λα, (27)

thus confirming the fact that LRU discipline performs better than RND in
general. More specifically, Remark 3.1 and the latter estimates for λα show
that the difference ρα − λα tends to 1 as α ↑ +∞. This difference decreases,
however, for smaller values of α since ρα and λα behave similarly as α is close
to 1 (see Figure 1); in fact, we can easily show that

ρα =
e−h log h

h
+O(h), λα =

e−h log h

h
− γ +O(h log h)

for small h = α−1 and where γ is Euler’s constant, so that limα↓1(ρα−λα) = γ.
For small enough values of α, say 1 < α ≤ 2, we can therefore consider that
both disciplines provide essentially similar performance levels in terms of miss
probabilities for large cache sizes.

In contrast to heavy-tailed popularity distributions, we can consider a light-
tailed distribution where qr = A exp(−Brβ), r ≥ 1, with positive parameters
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Figure 1: Respective prefactors ρα and λα for RND and LRU policies, and variations of
ρα − λα and λα/ρα.

A,B, β. It is shown in this case [16] that the miss probability for LRU is
asymptotic to

M(C) ∼ eγ

βB
C1−βqC

for large C. For a geometric popularity distribution (with β = 1), the latter es-
timate shows that M(C) = O(qC); on the other hand, formula (13) of Corollary
3.4 shows that M(C) = O(CqC) for RND discipline. This illustrates the fact
that RND and LRU replacements provide significantly different performance
levels if the popularity distribution is highly concentrated on a relatively small
number of objects.

4. Numerical results: single cache

In this section, we present numerical and simulation results to validate the
preceding estimates for a single RND policy cache. In the following, when
considering a finite object population with total size N , the Zipf popularity
distribution is normalized accordingly. We also mention that the content pop-
ularity distribution obviously refers to document classes instead of individual
documents. For comparison purpose with the existing LRU analysis, we repre-
sent these classes by a single index, as if they were a single document. In the
following, cache sizes must accordingly be scaled up to the typical class size.

Simulations are performed using CCNPL-sim simulator [35]. In every simu-
lation run, performance measures are collected once the system has reached the
stationary state, thus ignoring the transient behavior.

The most critical parameter in our simulation setting is the numerical value
of α. As the Zipf distribution flattens when α gets closer to 1, much longer
simulation runs are necessary to have good estimates of the miss rate. Small
enough values of α must, nevertheless, be considered as they are more realistic.
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Figure 2: Single cache results: (a) exact formula for M(C) with RND policy (b) asymptotic
of M(C) with RND policy (c) asymptotic of Mr(C) with C = 25, N = 20 000 α = 1.7for
RND and LRU policies.

Estimates of α have been reported in [10] for web sites providing access to video
content like www.metacafe.com for which α = 1.43, www.dailymotion.com and
www.veoh.com for which α = 1.72 and α = 1.76, respectively. In the following,
we hence fix α = 1.5 or α = 1.7 in our numerical experiments.

Fig. 2(a) first reports exact formula (3) for M(C) = M(C;N) as a function
of cache size C and for increasing values of total population N , where M(C;N)
measures the total miss probability for a cache of size C when the number of
objects N is finite. As expected, the convergence speed of M(C;N) to M(C;∞)
as N ↑ +∞ increases with α. In the case when α = 1.5 for instance, a pop-
ulation of N = 20 000 can be considered a good approximation for an infinite
object population (N =∞), while there is almost no difference between values
M(C;N = 20 000) and M(C;N =∞) when α = 1.7.

In Fig. 2(b), we compare the exact formula (3) for M(C), asymptotic (22)
and simulation results for the above scenario. Formula (3) for N = ∞ is com-
puted with arbitrary precision and we used N = 20 000 for simulation as a good
approximation for an infinite object population. Simulation and exact results
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are very close (especially for α = 1.7), while asymptotic (22) gives a very good
estimation of the miss probability as soon as cache size C is above 20.

Fig. 2(c) presents the miss probability Mr(C) as a function of the object
rank r for both RND and LRU policies with fixed C = 25, N = 20 000 and
α = 1.7. Results are reported for the most popular classes and confirm the
asymptotic accuracy of estimate (23) for RND and the corresponding one for
LRU policy [29]. Beside the good approximation provided by the asymptotics,
it is important to remark that RND and LRU performance are very close when
object rank r ≥ 15, while there is a slight difference for the most popular objects
(say r < 15). Moreover, comparing M(C = 25) for RND and LRU (respectively
equal to 0.147 and 0.108), we observe only a 4% smaller miss probability using
LRU with respect to RND policy. This may suggest RND as a good candidate
for caches working at very high speed, where LRU may become too expensive
in terms of computation due to its relative complexity.

5. In-network cache model

In order to generalize the single-cache model, networks of caches with various
topologies can be considered.

5.1. Line topology

We first consider the tandem system defined as follows. Any request is
addressed to a first cache ]1 with size C1; if it is not satisfied, it is addressed to
a second cache ]2 with size C2:

- if this request is satisfied at cache ]2, the object is copied to cache ]1, with
replacement performed according to the RND discipline;

- if this request is not satisfied at cache ]2, the object is retrieved from a
repository server and copied in caches ]1 and ]2 according to the RND discipline.
Note that this replacement scheme, hereafter denoted by IPC for In-Path
Caching, ignores any collaboration between the two caches and blindly copies
objects in all caches along the path towards the requesting source.

We now fix some notation and properties for the above defined tandem
model. Let R1(t) ∈ {1, 2, ..., N} denote the object requested at cache ]1 at time
t; we still assume that variables R1(t), t ∈ N, describe an IRM process with
distribution defined by P(R1 = r) = qr, 1 ≤ r ≤ N . Denoting by S1(t) (resp.
S2(t)) the state vector of cache ]1 (resp. ]2) at time t, the bivariate process
(S1(t),S2(t))t∈N is easily shown to define a Markov process that, however, is
not reversible. It is therefore unlikely that the stationary distribution of process
(S1,S2) can be derived in a simple product-form.

Alternatively, we here follow an approach based on the approximation of the
request process to cache ]2. Let tn, n ∈ N, denote the successive instants when a
miss occurs at first cache ]1, and R2(n) be the object corresponding to that miss
event at time tn. First note that the common distribution of variables R2(n) is
the stationary distribution (qr(2))r∈N introduced in Lemma 3.3, equation (10),
with cache size C replaced by C1. In the following, we will further assume that
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(H) the request process for cache ]2 is an IRM, that is, all variables R2(n),
n ∈ N, are independent with common distribution

P(R2 = r) = qr(2), r ∈ N.

The simplifying assumption (H) neglects any correlation structure for the
output process of cache ]1 (that is, the input to cache ]2) produced by consecu-
tive missed requests. Recall also that the tail of distribution (qr(2))r∈N, defined
by (12), is proportional to that of distribution (qr)r∈N.

The latter two-stage tandem model can be easily extended to a tandem
network consisting in a series of K caches (K > 2) where any request dismissed
at caches ]1, ..., ]`, ` ≥ 1, is addressed to cache ](` + 1). As an immediate
generalization of the IPC scheme, we assume that any requested document
which experiences a miss at cache ]j, 1 ≤ j ≤ `, and an object hit at cache ](`+1)
is copied backwards at all downstream caches ]1, ..., ]`. A request miss therefore
corresponds to a miss event at each cache 1, 2, ...,K. Furthermore, assumption
(H) is generalized by saying that any cache ]` considered in isolation behaves
as a single cache with IRM input produced by consecutive missed requests at
cache ](`− 1). The size of cache ]` is denoted by C`.

In the following, the ”global” miss probability Mr(C1, . . . , C`) (resp. ”local”
miss probability M∗r (C1, . . . , C`)) for request r at cache ` is the miss probability
for object r over all caches 1, ..., ` (resp. the miss probability for object r at
cache `) so that

Mr(C1, . . . , C`) =
∏̀
j=1

M∗r (C1, . . . , Cj) (28)

(note that for a single cache, we have Mr(C1) = M∗r (C1)). To simplify notation,
we abusively write Mr(`) (resp. M∗r (`)) instead of Mr(C1, . . . , C`) (resp. instead
of M∗r (C1, . . . , C`)). Finally, if qr(`), r ≥ 1, defines the distribution of the input
process at cache ]`, the averaged local miss probability M∗(`) at cache ]` is
given by

M∗(`) =
∑
r≥1

M∗r (`)qr(`) (29)

for any ` ∈ {1, ...,K}.

Proposition 5.1. (See Proof in Appendix F)
For the K-cache tandem system with IPC scheme, suppose that the request

process at cache ]1 is IRM with Zipf popularity distribution with exponent α > 1,
and that assumption (H) holds for all caches ]2, ..., ]K.

For any ` ∈ {1, ...,K} and large cache sizes C1, ..., C`
1, the global miss

1For ` > 1, a formal definition of these large sizes is to set the scaling Cj = cjx for all
j ∈ {1, ..., `} with bounded cj , and let the parameter x tend to infinity.
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probability Mr(`) (resp. local miss probability M∗r (`)) is given by

Mr(`) ∼
ραr

α

ραr
α +

∑̀
j=1

Cαj

, M∗r (`) ∼

ραr
α +

`−1∑
j=1

Cαj

ραr
α +

∑̀
j=1

Cαj

. (30)

The average global miss probability M(`) = Σr≥1Mr(`)qr for all objects requested
along the cache network is given by

M(`) ∼ Aρα∑̀
j=1

Cαj

1− 1
α

(31)

for any ` ∈ {1, ...,K} and large cache sizes C1, ..., C`.

Proposition 5.1 shows how the K-stage tandem system with IPC scheme
improves the performance in terms of miss probability by adding a term Cαj
when the j-th cache is added to the path.

5.2. Tree topology

The previous linear network model can be easily extended to the homoge-
neous tree topology with Zipf distributed requests. By homogeneous, we mean
that all leaves of the tree are located at a common depth of the root, and that
the cache size for each node at a given level i is equal to Ci (where C1 is the
cache size of the leaves). An example of such a tree is a complete binary tree of
given height.

Let Λ1, . . . ,ΛJ be the J leaves of the tree. We assume that all requests
arrive at the leaves, following an IRM, that is, P(R(t) = r,Λ(t) = j) = pjqr
for all 1 ≤ r ≤ N , 1 ≤ j ≤ J , where (p1, . . . , pJ) are positive values such that
Σ1≤j≤J pj = 1 and Λ(t) denotes the leaf where the request t arrives at time t.
Requests are served according to the IPC rule, i.e., are forwarded upwards until
the content is found, and the content is then copied in each cache between this
location and the addressed leaf.

Corollary 5.2. Consider a homogeneous tree with IPC scheme and suppose
that assumption (H) holds for all its internal nodes. The results of Proposition
5.1 then extend to that tree with IRM request process at leaves and Zipf popularity
distribution with exponent α > 1.

Proof. Only the order of requests in time matters since their precise timing is
irrelevant; we can consequently assume that the requests arrive according to a
Poisson process with intensity 1. From the property of independent thinning
and merging of Poisson processes, it follows that the requests for a given object
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r at leaf j is also a Poisson process with intensity pjqr (with a Zipf distribution
qr = A/rα, r ≥ 1) and that the request process at leaf j is a Poisson process
with intensity pj . Now, using assumption (H) and applying the previous results
for a single cache to each leaf, we deduce that at any leaf j, the miss sequence
for object r is a Poisson process with intensity pjqrM

∗
r (1). Merging these miss

sequences from all children of a given second-level node, we deduce that the
requests at this node build up a Poisson process and that the probability of
requesting an object r is qrM

∗
r (1)/M(1) = qr(2). This process has the same

properties as the IRM process with distribution (qr(2))r∈N used in the proof of
Proposition 5.1, which therefore applies. Repeating recursively this reasoning
at each level, we conclude that Proposition 5.1 holds in this context.

Remark 5.1. Corollary 5.2 is also valid for a homogeneous tree where different
replacement policies are used at different levels i (e.g. Random at first level and
LRU at second one).

6. Numerical results: network of caches

In this section, we report numerical and simulation results to show the ac-
curacy of the approximations presented in Section 5.

Fig. 3(a) first depicts estimate (30) of M∗r (1) and M∗r (2) for both RND and
LRU with C1 = C2 = 25, N = 20 000 and α = 1.7 (the approximation for
the tandem LRU is taken from [26]). We focus on the second cache, as the
performance of the first one has been analyzed in previous sections. We note a
good agreement between the approximations given in Section 5 and simulation
results.

Moreover, while less popular objects are affected in the same way when em-
ploying either RND or LRU (in our specific example, r ≥ 15), a significantly
different behavior is detectable for popular objects (r < 15). Local miss proba-
bilities M∗r (1) and M∗r (2) help understanding where an object has been cached,
conditioned on its rank. The combination of LRU and IPC clearly tends to
favor stationary configurations where popular objects are likely to be stored in
the first cache (see [26] for a similar discussion). When using RND instead of
LRU, however, the distribution of the content across the two caches is fairly
different; as illustrated in Fig. 3(a), while the most popular objects are likely to
be retrieved at the first cache when using either LRU or RND, such objects can
also be found in the second cache only when using RND. It therefore appears
that while both LRU and RND tend to store objects proportionally to their
popularity, RND more evenly distributes objects across the whole path.

Fig. 3(b) reports the global miss probability Mr(2) = M∗r (1)M∗r (2) at the
second cache (the probability to query an object of rank r at the repository
server) with the same setting than that described for Fig. 3(a). In this example,
we see that objects with rank r less than about 15 are slightly more frequently
requested at the server when using RND rather than LRU, but RND is more
favorable than LRU for objects with higher rank r ≥ 15. In average, the global
miss probability at the second cache M(2), reported in Fig. 3(c) for C1 = C2 ≤
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Figure 3: Tandem cache results: (a) asymptotics of M∗
r (1), M∗

r (2) (b) and of Mr(2) for RND
and LRU policies compared to simulation with C1 = C2 = 25, N = 20 000 , α = 1.7 (c)
asymptotic for M(2) = M(C1, C2) with C1 = C2 ≤ 100, N = 20 000, α = 1.7.

100, N = 20 000 and α = 1.7, is very similar using either RND or LRU, with
a slight advantage to LRU. The average miss probability M(2) indicates the
amount of data that is to be requested from the server.

We finally observe that the approximations calculated in Section 5 for RND
prove very accurate (as in [27], [26] for LRU). Furthermore, these approxima-
tions work well in a large number of scenarios that we do not report here for
the sake of conciseness.

7. Mixture of RND and LRU

We have considered so far networks of caches where all caches use the RND
replacement policy. In practice, it is feasible to use different replacement al-
gorithms in the same network. This section addresses the case of a two-cache
tandem network, where one cache uses the RND replacement algorithm while
the other uses the LRU algorithm. As in Section 5.2, these results also hold in
the case of an homogeneous tree.
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7.1. Large cache size estimates

We provide estimates for miss probabilities in the case when cache sizes C1

and C2 are large.

Proposition 7.1. For the two-cache tandem system with IPC scheme, suppose
the request process at cache ]1 is IRM with Zipf popularity distribution with
exponent α > 1 and that assumption (H) for cache ]2 holds.

I) When cache ]1 (resp. cache ]2) uses the RND (resp. LRU) replacement
policy, the global (resp. local) miss probability Mr(2) (resp. M∗r (2)) on cache ]2
is given by 

Mr(2) ∼ ραr
α

ραr
α + Cα1

exp

(
− ραC

α
2

αλα (ραrα + Cα1 )

)
,

M∗r (2) ∼ exp

(
− ραC

α
2

αλα (ραrα + Cα1 )

) (32)

for large cache sizes C1, C2 and constants ρα, λα introduced in (20) and (26),
respectively.

II) When cache ]1 (resp. cache ]2) uses the LRU (resp. RND) replacement
policy, the global (resp. local) miss probability Mr(2) (resp. M∗r (2)) on cache ]2
is given by 

Mr(2) ∼ ραr
α

ραr
α exp

(
Cα1

αλαrα

)
+ Cα2

,

M∗r (2) ∼ ραr
α

ραr
α + Cα2 exp

(
− Cα1
αλαrα

) (33)

for large cache sizes C1, C2.

Proof. We follow the same derivation pattern as the proof of Proposition 5.1
detailed in Appendix F.

I) When cache ]1 uses the RND replacement policy, we know from Ap-
pendix F that the request process at cache ]2 is IRM with popularity distri-
bution

qr(2) = qr
M∗r (1)

M∗(1)
∼ Cα−11

Cα1 + ραrα
, r ≥ 1,

and is asymptotically Zipf for large r. We then follow the proof of Proposition
6.2 of [26]. Let S2(0, t) be the number of different objects requested at cache ]2
in the time interval [0, t]; it verifies

E [S2(0, t)] =
∑
r≥1

(
1− e−qr(2)t

)
.
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We then first deduce that

E [S2(0, t)] ≥
∫ +∞

1

(
1− e−qu(2)t

)
du. (34)

Using the variable change v = Cα−11 t/(Cα1 + ραu
α) in the latter integral, we

further obtain

E [S2(0, t)] ≥
(
Cα−11 t

ρα

) 1
α

×
∫ C

α−1
1 t

Cα1 +ρα

0

1

α

(
1− e−v

)
v−1−

1
α

(
1− C1v

t

) 1
α−1

dv.

Letting t ↑ +∞, the monotone convergence theorem applied to the family of

functions v 7→ (1− C1v/t)
−1+1/α

, t > 0, together with a further integration by
parts yield

lim
t↑+∞

E [S2(0, t)]
α

t
≥
(
Cα−11

ρα

)[
Γ

(
1− 1

α

)]α
. (35)

Starting integral (34) from u = 0 instead of u = 1, the latter asymptotic bound
is seen to hold also as an upper bound of E [S2(0, t)]

α
/t, thus showing that (35)

actually holds as an equality. The local per-object miss rate on the second cache
for an LRU cache is then

M∗r (2) ∼ exp

[
−qr(2)Cα2

(
lim
t↑+∞

E [S2(0, t)]
α

t

)−1]

which proves expressions (32).
II) When cache ]1 applies the LRU replacement policy, the local per-object

miss rate at cache ]1 is known asymptotically [29] to equal

M∗r (1) ∼ exp

[
− Cα1
rα
[
Γ
(
1− 1

α

)]α
]

= exp

[
− Cα1
αλαrα

]
and the local average miss rate is

M∗(1) ∼ 1

α

[
Γ

(
1− 1

α

)]α
A

Cα−11

=
λαA

Cα−11

.

Using assumption (H), it then follows that the input process at cache ]2 is IRM
with popularity distribution given by

qr(2) = qr
M∗r (1)

M∗(1)
∼ Cα−11

λαrα
exp

[
− Cα1
αλαrα

]
, r ≥ 1.

Note that this distribution is asymptotically Zipf, that is, qr(2) ∼ A′(2)/rα for
large r with coefficient A′(2) = A/M∗(1). Applying estimate (25) to the above
defined distribution qr(2), r ≥ 1, it then follows that

M∗r (2) ∼ 1

1 + qr(2)θ′(2)
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where the associated root θ′(2) is easily estimated by θ′(2) = Cα2 /A
′(2)ρα by

using Lemma 3.8. We then derive that

M∗r (2) ∼
(

1 +
Cα2

A′(2)ρα

AM∗r (1)

rαM∗(1)

)−1
which finally leads to expressions (33).

7.2. Numerical results

We here report numerical and simulation results for mixed homogeneous tree
topologies to show the accuracy of the approximations presented in Section 7.1,
so as to derive some more general observations about the mixture of RND and
LRU in a network of caches. Following Section 5.2, we actually simulate tree
topologies with 2 leaves with cache size C1 and one root with cache size C2.

Fig. 4(a) reports M∗r (2) for RND-LRU and LRU-RND homogeneous tree
networks with asymptotics (32) and (33), respectively. We first note that the
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Figure 4: Mixed tree cache networks with C1 = 25, C2 = 50, α = 1.7: (a) asymptotic of
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latter provide estimates with reasonable accuracy. Besides, we observe that the
behavior of M∗r (2) is in strict relation to the policy used for cache ]1. If cache
]1 is RND, then M∗r (2) has a behavior similar to that observed in RND caches
in tandem; similarly, if cache ]1 is LRU, M∗r (2) behaves as in the case of LRU
caches in tandem.

This phenomenon has a simple explanation. RND and LRU policies act sim-
ilarly on objects ranked in the tail of the Zipf popularity distribution. However,
the two replacement policies manage popular objects in a rather different way,
as already observed in Section 6. The ”local” popularity distribution seen by
2nd level caches results from the shaping around the mean of the popularity
distribution given at 1st level, while the tail remains unchanged. The portion
of the distribution that is affected by such a shaping process is determined by
the cache size C1 at first level. In the analysis reported in Fig. 4, the 1st level
cache significantly determines the performance of the overall tandem system. In
Fig. 4(b), we observe that the global miss probability Mr(2) in the two mixed
tandem caches is similar, while the distribution of the objects across the two
nodes varies considerably.

Finally, Fig. 4(c) depicts simulation results for M(2) = M(C1, C2), for all
possible configurations in an homogeneous tree network where C1 = C2 ≤ 100.
We observe that the LRU-RND tree cache network achieves slightly better per-
formance than the LRU-LRU system. This behaviour would suggest to prefer
LRU at 1st level since it performs better in terms of miss probability, while
using RND at 2nd level in order to save significant processing time.

8. Conclusion

The recent technological evolution of memory capacities, as illustrated by the
deployment of CDNs and the proposition of new information-centric architec-
tures where caching becomes an intrinsic network property, raise new interests
on cache studies.

In this paper, we have studied the RND replacement policy where objects to
be removed are chosen uniformly at random. Assuming that the content popu-
larity follows a Zipf law with parameter α > 1, and that request processes are
IRM, we prove (Proposition 3.9) that the miss rate is asymptotically equivalent
to Aρα/C

α−1 for large cache size C. This shows that the difference between
LRU and RND caches is asymptotically independent of the cache size and de-
pends on coefficient Aρα only. These results are extended to typical network
topologies, namely tandems and homogeneous trees, under the approximation
that request processes are IRM at any node. The case of mixed policies (RND
at one network level and LRU at the other one) is also considered. Simulation
results show that the IRM assumption applied to several network topologies is
efficient and provides accurate estimates.

Our results suggest that the performance of RND is reasonably close to
that of LRU in terms of average miss rate. As a consequence, RND is a good
candidate for high-speed caching when the complexity of the replacement policy
becomes critical. In the presence of a hierarchy of caches, caches at deep levels
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(i.e. access networks) typically serve a relatively small number of requests per
second which can be easily sustained by a cache running LRU; LRU policy
should consequently be implemented at the bottom level since it provides the
best performance. Meanwhile, higher-level caches see many aggregated requests
and should therefore use the RND policy which yields similar performance while
being less computationally expensive. Recall finally that the FIFO policy, the
alternative high-speed candidate, has theoretical performance similar to that of
RND.

We have assumed in this paper that the parameter α of the Zipf distribution
is larger than 1, and the total number of available objects is infinite. For further
study, we first intend to explore the case α ≤ 1 with a finite number of objects.
Besides, since Zipf popularity distributions do not represent all types of Internet
traffic, we also intend to analyze the performance of RND caches when the
popularity has a light-tailed (e.g. Weibull) distribution. Finally, all results
derived in this paper hold for i.i.d. requests processes; actual traces show,
however, that consecutive requests are correlated, both in time and space. The
definition of an accurate and realistic model which can take these correlations
into account, as well as the extension of the present results to such a request
model, is also on our research agenda.
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Appendix A. Proof of Theorem 3.6

(i) Using (6), equation (15) reduces to g(z) = C where

g(z) = z
F ′(z)

F (z)
=
∑
j≥1

qjz

1 + qjz
. (A.1)

Continuous function g : z ∈ [0,+∞[ → g(z) ∈ [0,+∞[ vanishes at z = 0, is
strictly increasing on [0,+∞[ and tends to +∞ when z ↑ +∞. Equation (15)
has consequently a unique positive solution θC . Note that θC tends to +∞ as
C ↑ +∞, since g(z) ≤ Σj≥1(qjz) = z, hence θC ≥ C.

(ii) Consider the random variable XC with support N and distribution

P(XC = x) =
G(x)

F (θC)
θxC , x ≥ 0, (A.2)

where θC satisfies (15); note that definition (A.2) for XC is equivalent to

G(x) =
F (θC)

θxC
P(XC = x), x ≥ 0. (A.3)

By definitions (5) and (A.2), the generating function of random variable XC is
z 7→ F (zθC)/F (θC); in view of (15), the expectation of variable XC is then

E(XC) =
d

dz

F (zθC)

F (θC)

∣∣∣
z=1

= θC
F ′(θC)

F (θC)
= C

so that random variables YC = (XC −C)/
√
C, C ≥ 0, are all centered. Besides,

the Laplace transform of variable YC is given by

E(e−sYC ) = es
√
CE(e−sXC/

√
C) = es

√
C F (θCe

−s/
√
C)

F (θC)

for all s ∈ C. By Lévy’s continuity theorem ([36], Theorem 4.2.4), assumption
(16) entails that variables YC converge in distribution when C ↑ +∞ towards a
centered Gaussian variable with variance σ2; moreover, assumption (17) ensures
that the conditions of Chaganty-Sethuraman’s theorem ([34], Theorem 4.1) hold
so that P(XC = C) = P(YC = 0) is asymptotic to

P(XC = C) ∼ 1

σ
√

2πC
(A.4)

as C ↑ +∞. Equation (A.3) for x = C and asymptotic (A.4) together provide
estimate (18) for G(C).
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Appendix B. Proof of Lemma 3.7

Let q(x) = A/xα and fz(x) = log(1 + q(x)z) for any real x ≥ 1 and z ∈ C;
definitions (6), (14) and the above notation then entail that

logF (z) =
∑
r≥1

fz(r);

function logF is analytic in the domain C \ R−. For given z ∈ C \ R− and
integer J ≥ 1, the Euler-Maclaurin summation formula ([37], Chap.VI, Sect.2,
formula (16.4)) reads

J∑
r=1

fz(r) =

∫ J

1

fz(x)dx+
1

2
[fz(J) + fz(1)]+

1

12
[f ′z(J)− f ′z(1)]+

Tz(J)

6
(B.1)

with

Tz(J) =

∫ J

1

B3({x})f (3)z (x)dx,

where B3(x) = x(x − 1)(2x − 1)/2 is the third Bernoulli polynomial and {x}
denotes the fractional part of real x; derivatives of fz are taken with respect to
x. Consider the behavior of the r.h.s. of (B.1) as J tends to infinity. We first
have fz(1) = log(1 + Az) and fz(J) = O(J−α) for large J ; differentiation with
respect to x entails

f ′z(1) = − αAz

1 +Az

and f ′z(J) = O(J−α−1) for large J . Differentiating twice again with respect to
x shows that the third derivative of fz is O(x−α−3) for large positive x, and
is consequently integrable at infinity. Letting J tend to infinity in (B.1) and
using the above observations together with the boundedness of periodic function
x ≥ 1 7→ B3({x}), we obtain

logF (z) =

∫ +∞

1

fz(x)dx+
1

2
log(1 +Az) +

αAz

12(1 +Az)
+
Tz
6

(B.2)

with remainder term

Tz =

∫ +∞

1

B3({x})f (3)z (x)dx. (B.3)

Now, considering the first integral in the r.h.s. of (B.2), the variable change
x = t(Az)1/α gives∫ +∞

1

fz(x)dx = (Az)1/α
[
L−

∫ 1/(Az)1/α

0

log

(
1 +

1

tα

)
dt
]

(B.4)

where L is the finite integral

L =

∫ +∞

0

log

(
1 +

1

tα

)
dt = α

∫ +∞

0

dt

1 + tα
= α

π/α

sin(π/α)
= αρ1/αα (B.5)
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(use an integration by parts and see ([33], p.256, formula 6.1.17) for the second
to last equality) with ρα introduced in (20) for α > 1, and where∫ 1/(Az)1/α

0

log

(
1 +

1

tα

)
dt =

log(Az)

(Az)1/α
+

α

(Az)1/α
+ o(1); (B.6)

gathering (B.5) and (B.6) in expression (B.4) then provides expansion∫ +∞

1

fz(x)dx = L(Az)1/α − log(Az)− α+ o(1). (B.7)

We finally show that remainder term (B.3) tends to a finite limit tα when

z ↑ +∞. In fact, making the third derivative f
(3)
z explicit gives

Tz = αAz
[
α(1 + α)Uz − 2Vz

]
(B.8)

where

Uz =

∫ +∞

1

B3({x}) xα−1

x2(xα +Az)2
dx, Vz =

∫ +∞

1

B3({x}) (Az + (α+ 1)xα)2

x3(xα +Az)3
dx.

First estimate Uz for large z:
• if 1 < α ≤ 2, variable change x = t(Az)1/α yields

Uz = (Az)−2−2/α
∫ +∞

1/(Az)1/α
B3

({
t

(Az)1/α

})
u(t)dt

where u(t) = tα−1/(t2(tα + 1)2). Polynomial B3 is upper bounded by some
positive constant b on interval [0, 1] so that

| Uz | ≤ b(Az)−2−2/α
∫ +∞

1/(Az)1/α
u(t)dt (B.9)

where the latter integral diverges for the lower bound t = 0 and is O(z−1+2/α)
for 1 < α < 2 or O(log z) for α = 2. As a consequence, Uz is of order O(z−3)
for 1 < α < 2 or O(z−3 log z) for α = 2 and therefore always tends to 0 when z
tends to infinity;
• if α > 2, the integral in (B.9) converges for lower bound t = 0 and therefore

Uz = O(z−2−2/α) tends to 0.
We thus deduce that for all α > 1, zUz tends to 0 when z tends to infinity.
Addressing now Vz, write

Vz = (Az)−1−3/α
∫ +∞

1

B3({x})v
(

x

(Az)1/α

)
dx

with

v(t) =
(1 + (α+ 1)tα)2

t3(1 + tα)3
.
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We have t3v(t) ≤M for t ≥ 0 and some constant M > 0 so that

(Az)−3/αv
(
x(Az)−1/α

)
≤ M

x3

for all x ≥ 1, where function x 7→ M/x3 is integrable on [1,+∞[; besides,
v(t) ∼ 1/t3 as t ↓ 0 so that (Az)−3/αv(x(Az)−1/α) tends to 1/x3 for given
x ≥ 1. Applying the dominated convergence theorem to the family of functions
x ≥ 1 7→ (Az)−3/αv(x(Az)−1/α), we therefore deduce that (Az)Vz has the finite
limit

vα =

∫ +∞

1

B3({x})dx

x3
.

We conclude from (B.8) and the above discussion that Tz tends to the finite
limit tα = −2αvα when z ↑ +∞.

Gathering terms in (B.2)-(B.7), we are finally left with expansion (19) where
constants A and Sα = −α + α/12 + tα/6 depend on α only (some further
calculations can provide the actual value Sα = −α log(2π)/2, although that
value is not necessary in our discussion).

Appendix C. Proof of Proposition 3.8

Recall definition (A.1) of function g and write equivalently

g(z) =
∑
r≥1

gz(r).

where we let gz(x) = Az(xα+Az)−1. The Euler-Maclaurin summation formula
([37], Chap.VI, Sect.2, formula (16.4)) applies again in the form

J∑
r=1

gz(r) =

∫ J

1

gz(x)dx+
1

2
[gz(J) + gz(1)]+

1

12
[g′z(J)− g′z(1)]+

Wz(J)

6
(C.1)

for given z ∈ Cr R−, integer J ≥ 1 and where

|Wz(J) | ≤ 12

(2π)2

∫ J

1

| g(3)z (x) | dx

(derivatives of gz are taken with respect to variable x). Consider the behavior
of the r.h.s. of (C.1) as J tends to infinity. Firstly, gz(1) = Az/(Az + 1) and
gz(J) = O(J−α) as J ↑ +∞; secondly, g′z(1) = −Aαz(1 + Az)−2 together with
g′z(J) = O(J−α−1) for large J . Differentiating twice again shows that the third
derivative of gz is O(x−α−3) for large positive x and is consequently integrable
at infinity. Letting J tend to infinity in (C.1) therefore implies equality

g(z) =

∫ +∞

1

gz(x)dx+
1

2

Az

Az + 1
+

1

12

Aαz

(1 +Az)2
+
Wz

6
(C.2)
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where

|Wz | ≤
12

(2π)2

∫ +∞

1

| g(3)z (x) | dx.

Using the explicit expression of the derivative g
(3)
z , it can be simply shown that

|Wz | = O(z−2/α), |Wz | = O(z−1 log z), |Wz | = O(z−1) (C.3)

if α > 2, α = 2 and 1 < α < 2, respectively. Now, considering the first integral
in the r.h.s. of (C.2), the variable change x = t(Az)1/α gives∫ +∞

1

gz(x)dx = I(Az)1/α − 1 +O

(
1

z

)
(C.4)

where I = L/α = ρ
1/α
α , with integral L introduced in (B.5) for α > 1. Expand-

ing all terms in powers of z for large z, it therefore follows from (C.2) and (C.4)
that

g(z) = ρ1/αα (Az)1/α − 1

2
+Wz

with Wz estimated in (C.3). For large C, equation (A.1), i.e.g(θC) = C, then
reads

AθC =

[
C

I
+

1

2I
+O(WθC )

]α
=

(
C

I

)α
+

α

2Iα
Cα−1 +O(Cα−2) (C.5)

for α > 2 since (C.3) implies WθC = O(θ
−2/α
C ) = O(C−2) in this case. The

case 1 < α < 2 gives a similar expansion since the remainder is then of order
WθC/C = O(C−α/C) = O(C−α−1). Finally, the case α = 2 yields

AθC =

[
C

I
+

1

2I
+O(WθC )

]2
=

(
C

I

)2

+O

(
logC

C

)
. (C.6)

Gathering results (C.5)-(C.6) finally provides expansions (21) for θC .

Appendix D. Proof of Proposition 3.9

We here verify that conditions (16) and (17) of Theorem 3.6 are satisfied
in the case of a Zipf popularity distribution with exponent α > 1. Let us first
establish convergence result (16). Using Lemma 3.7, we readily calculate

es
√
C F (θCe

−s/
√
C)

F (θC)
= es

√
C exp

[
α(ραAθC)1/α

(
e−s/α

√
C − 1

)
+

s

2
√
C

+ ε(θCe
−s/
√
C)− ε(θC)

]
(D.1)

for any given s ∈ C with <(s) = 0, | =(s) | ≤ a and where ε(θ)→ 0 as θ ↑ +∞.
By Lemma 3.8, we further obtain α(ραAθC)1/α = αC +αραrC + o(rC) and the

expansion of e−s/α
√
C − 1 at first order in 1/C entails that

α(ραAθC)1/α
(
e−s/α

√
C − 1

)
= −s

√
C +

s2

2α
+O

(
1√
C

)
;
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letting C tend to infinity, we then derive from (D.1) and the previous expansions
that

es
√
C F (θCe

−s/
√
C)

F (θC)
→ exp

(
s2

2α

)
so that assumption (16) is satisfied with σ2 = 1/α.

Let us finally verify boundedness condition (17). Rephrasing (D.1) for the
value s = −iy

√
C, we have(

F (θCe
iy)

F (θC)

)1/C

= exp
[α(ραAθC)1/α

C

(
eiy/α − 1

)
− iy

2C

+
ε(θCe

iy)− ε(θC)

C

]
(D.2)

for any y ∈ R. But as above, α(ραAθC)1/α/C tends to the constant α when
C ↑ +∞ so that∣∣∣∣F (θCe

iy)

F (θC)

∣∣∣∣1/C ≤| E(y) |β ×
∣∣∣ exp

[ε(θCeiy)− ε(θC)

C

]∣∣∣ (D.3)

for some positive constant β and where

E(y) =
∣∣∣exp

(
eiy/α − 1

)∣∣∣ = exp
(

cos
( y
α

)
− 1
)
.

Function E is continuous, even and given δ > 0, h is decreasing on interval [δ, π]
since α > 1, hence E(y) ≤ E(δ) = ηδ < 1 for δ ≤ y ≤ π. Using the estimates
of remainder Tz derived in Appendix B, it is further verified that, given any
compact K ⊂ C not containing the origin u = 0, we have limC↑+∞ ε(θCu) = 0
uniformly with respect to u ∈ K; this entails that the exponential term in the
right-hand side of (D.3) tends to 1 when C ↑ +∞ uniformly with respect to
u = eiy, y ∈ [δ, π]. We finally conclude that condition (17) is verified.

Appendix E. Proof of inequality (27)

Using functional properties Γ(z)Γ(1 − z) = π/ sin(πz), 0 < z < 1, and
Γ(z) = Γ(1+z)/z verified by Γ function ([33], p.256, formulae 6.1.17 and 6.1.15),
expressions (20) and (26) for ρα and λα give

log

(
ρα
λα

)
=

log Γ(1 + x)− x log x

x

where x = 1/α. Letting h(x) = log Γ(1+x)−x log x, we now show that h(x) > 0
for 0 < x < 1, which will provide the conclusion.

We first note that h(0) = h(1) = 0 and h′(x) = ψ(x + 1) − log x − 1 where
ψ(z) = Γ′(z)/Γ(z) is defined by

ψ(z) = −γ − 1

z
+
∑
n≥1

z

(z + n)n
,
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γ denoting Euler’s constant; ψ is known [33] to satisfy the functional identity
ψ(z+1) = ψ(z)+1/z. The above expressions of h′ and ψ successively imply that
h′(0) = +∞ and h′(1) = −γ since ψ(2) = ψ(1) + 1 = −γ + 1. Differentiating
again, we obtain h′′(x) = (k(x)− 1)/x for 0 < x < 1 where

k(x) =
∑
n≥1

x

(x+ n)2
;

a final differentiation readily shows that k′(x) > 0 for 0 < x < 1.
Function k is therefore strictly increasing on interval [0, 1] from k(0) = 0 to

k(1) = π2/6 − 1 < 1, and therefore k(x) < 1 for 0 < x < 1. As a consequence,
h′′ is always negative on [0, 1], which implies that h′ is strictly decreasing on
that interval from h′(0) = +∞ and h′(1) = −γ; h′ thus vanishes at a unique
value x∗ ∈ ]0, 1[ which is the unique extremum of h in [0, 1]. Function h is
therefore increasing on [0, x∗] from h(0) = 0 to h(x∗) > 0 and decreasing on
[x∗, 1] from h(x∗) > 0 to h(1) = 0. This implies that h(x) > 0 for 0 < x < 1, as
claimed.

Appendix F. Proof of Proposition 5.1

Let qr(` + 1), r ≥ 1, denote the distribution of the input process at cache
](` + 1), ` ≥ 1. By the same reasoning than that performed in Lemma 3.3, we
can write

qr(`+ 1) = qr(`)
M∗r (`)

M∗(`)
= qr

M∗r (`)...M∗r (1)

M∗(`)...M∗(1)
(F.1)

for all r ∈ N, where M∗r (`) (resp. M∗(`)) is the local miss probability of a
request for object r at cache ]` (resp. the averaged local miss probability for all
objects requested at cache ]`) introduced in (29) and with notation qr = qr(1).
As M∗r (`′)→ 1 for all `′ ≤ ` when r ↑ +∞, we deduce from (F.1) that

qr(`+ 1) ∼ A(`)

rα

when r ↑ +∞, where A(`) = A/M∗(1)M∗(2)...M∗(`). Apply then estimate (25)
to obtain

M∗r (`+ 1) ∼ 1

1 + θ(`+ 1)qr(`+ 1)
(F.2)

where θ(`+1) ∼ Cα`+1/A(`)ρα and with qr(`+1) given by (F.1); using the value
of A(`) above and the definition qr = A/rα, the product θ(`+1)qr(`+1) reduces
to

θ(`+ 1)qr(`+ 1) ∼
Cα`+1

A(`)ρα
· qr

M∗r (`)...M∗r (1)

M∗(`)...M∗(1)

=
Cα`+1

ραrα
M∗r (`)...M∗r (1). (F.3)
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Writing then Mr(`+1) = Mr(`)M
∗
r (`+1), asymptotics (F.2) and (F.3) together

yield

Mr(`+ 1) ∼Mr(`)

[
1 +

Cα`+1

ραrα
M∗r (`)...M∗r (1)

]−1
so that

1

Mr(`+ 1)
∼ 1

Mr(`)
+
Cα`+1

ραrα

since Π`
j=1M

∗
r (j) = Mr(`) after (28); the latter recursion readily provides ex-

pression (30) for Mr(`), 1 ≤ ` ≤ K.
Using relation Mr(`+ 1) = Mr(`)M

∗
r (`+ 1) again together with expression

(30) of Mr(`) provides in turn expression (30) for M∗r (`), 1 ≤ ` ≤ K.
We finally justify estimate (31) for the average miss probability M(`). Writ-

ing by definition M(`) = Σr≥1qrMr(`), we estimate the latter sum by a Riemann
integral; using asymptotic (30) for Mr(`) then gives

M(`) =

+∞∑
r=1

qrMr(`) ∼
+∞∑
r=1

A

rα

(
ραr

α

ραrα + Cα1 + ...+ Cα`

)
∼ Aρα

∫ +∞

0

C1dx
1

ραCα1 x
α + Cα1 + ...+ Cα`

=
Aρα

Cα−11

∫ +∞

0

dx

1 + vα + ραxα
(F.4)

after setting vα = (Cα2 + ...+ Cα` )/Cα1 . Variable change t = xρ
1/α
α /(1 + vα)1/α

reduces the latter integral to

1

vα + 1
×
(
vα + 1

ρα

)1/α ∫ +∞

0

dt

1 + tα
=

1

(vα + 1)1−1/α

so that estimate (F.4) finally provides (31).
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