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Titre :  Décroissance rapide des biproduits croisés et théorie des 
représentations de certains produits semidirects 

Résumé :  On étude la propriété de décroissance rapide (propriété (RD)) 
et croissance polynomiale pour les duaux des groupes quantiques 
compacts venant de la construction de biproduits croisés des paires 
assorties des groupes classiques, et la théorie des représentations des 
produits semidirects d'un groupe quantique compact avec un groupe fini. 
On utilise ces théories pour donner des nouveaux exemples des groupes 
quantiques discrets ayant la propriété (RD) sans la croissance 
polynomiale. 
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Title :  Rapid decay of bicrossed products and representation theory of 
some semidirect products 

Abstract :  We study the rapid decay property (property (RD)) and 
polynomial growth of the duals of bicrossed products of matched pairs of 
classical groups, and the representation theory of semi-direct products of 
a compact quantum group with a finite group. We use these theories to 
obtain new examples of discrete quantum groups that has property (RD) 
but not polynomial growth. 
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Introduction and some background

The central theme of this thesis is the study of a certain approximation property,
namely the rapid decay property, a.k.a. property (𝑅𝐷), of the dual of bicrossed prod-
ucts of matched pair of classical groups.

To put the mathematical objects of this thesis into perspective, we now brie�y
outline some background on property (𝑅𝐷). In the breakthrough paper (Haagerup,
1978/79), Haagerup showed that for the free group F𝑁 with 𝑁 generators, the norm
of the reduced𝐶∗-algebra𝐶∗

𝑟 (F𝑁 ) can be controlled by the more manageable Sobolev
ℓ2-norm associated to the word length function on F𝑁 . This striking phenomenon is
later shown to be quite ubiquitous, and is later recognized and systematically studied
as the rapid decay property (property (𝑅𝐷)) by Jolissaint (Jolissaint, 1990). Among
many of its applications nowadays, let us mention the remarkable connection with
𝐾–theory. Property (𝑅𝐷) allowed Jolissaint (Jolissaint, 1989) to show that the 𝐾-
theory of 𝐶∗

𝑟 (Γ) equals the 𝐾-theory of subalgebras of rapidly decreasing functions
of Γ (Jolissaint did attribute this result to Connes). This work was later used by
V. La�orgue in his approach to the Baum-Connes conjecture via Banach KK-theory
(La�orgue, 2002; 2000).

We are now witnessing the rapid development of the theory of topological quan-
tum groups in the sense of Woronowicz in the compact case (Woronowicz, 1998;
1987) (and its dual which is the discrete case), and in the sense of Kustermans and
Vaes (Kustermans and Vaes, 2003; 2000) in the more general locally compact case. It
is natural to develop various approximation properties in this new quantum setting.
The bicrossed product construction, which was already present in the framework of
Kac algebras (see (Kac, 1968)), and later developed in full generality in the framework
of locally quantum groups in (Vaes and Vainerman, 2003), is a powerful process of
producing highly nontrivial (both non-commutative and non-cocommuative) quan-
tum groups starting from the so-called matched pair of (quantum) groups. In the
paper (Fima et al., 2017), various approximation property for (the dual of) compact
bicrossed products of classical matched pair are studied. However, due to the lack
of correct understanding the representation theory of these bicrossed products, the
study of property (𝑅𝐷) for the dual of these bicrossed products was out of reach, and
this is the starting point of the work in this thesis.

The main content of this thesis is divided into three chapters. Chapter I stud-
ies the permanence of property (𝑅𝐷), and the closely related property of polynomial
growth, under the above mentioned bicrossed product construction. This is achieved
by a careful study of the representation theory of these bicrossed products, and the
theory ofmatched pair of length functions designed to re�ect this representation the-
ory. Chapter II studies the representation theory of semidirect products of a compact
quantum group with a �nite group, and can be viewed as a quantum analogue of the
classicalMackey’s analysis, with the new results on the calculation of the fusion rules
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of these semidirect products. While the author is led to study the representation of
these semidirect products motivated by constructing concrete examples of bicrossed
products whose dual has property (𝑅𝐷), it is the author’s opinion that this theory is
of interest of its own, as it satisfactorily describes the representation theory of many
semidirect products, which might have wider applications. Chapter III constructs
concrete examples of bicrossed products whose dual has (𝑅𝐷) but not polynomial
growth, hence provides new examples of interesting quantum groups. Here the more
theoretical work of both Chapter I and Chapter II are used in an essential way. The
author hopes these examples provide more “�esh” to the abstract theory of the �rst
two chapters of this thesis.
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Chapter I

Rapid decay and polynomial growth
of bicrossed products

Introduction

This chapter of the thesis is a rewrite of the author’s collaborative work with P. Fima
(Fima and Wang, 2018). The central theme here is the study of the permanence of
property (𝑅𝐷) and the closely related property of polynomial growth of the dual of
bicrossed products. We refer the reader to the introduction to this thesis and to the
article (Fima and Wang, 2018) for some background on property (𝑅𝐷) and why they
are interesting objects.

We now compare the treatment here with that of (Fima and Wang, 2018). The
similarities are obvious: the central tools are always representation theory of the bi-
crossed product and the theory of matched pair of length functions. However, there
are more di�erences to justify this rewrite. Firstly, (Fima and Wang, 2018) is a re-
search article targeted towards experts in this �eld, it is written with brevity in mind
in order to convey our research e�ciently; by contrast, this rewrite takes a more
pedagogically friendly approach and is more detailed. Secondly, in the treatment
of the representation theory of bicrossed product, a whole section, namely § I.3, is
dedicated to motivate the classi�cation of irreducible representations of bicrossed
products. Despite its logical independence, the author hopes the treatment there is
more natural and easier to understand, and satis�es people who wonders why the
classi�cation of irreducible representations of the bicrossed product in (Fima and
Wang, 2018) looks like what they do, which could seem to be quite arti�cial and
miraculous without the considerations in § I.3. The key idea in (Fima and Wang,
2018) in the study of irreducible representations of the bicrossed product is by twist-
ing the induced representations of some suitable isotropy subgroups. This idea of
course remains important in this thesis if one ignores the motivational § I.3 (and log-
ically speaking, one can safely to do so). On the other hand, our notations in this
rewrite is quite di�erent from the notations in (Fima and Wang, 2018). In the lat-
ter, the more succinct notation introduces one noteworthy obscurity—one relies on
the choices of some orbital sections, and many more closely related mappings that
depends on these choices, which makes the calculations there a little bit di�cult to
track. Here in this thesis, these choices are eliminated wherever possible, and we
replace them with the more systematic (yet somewhat equivalent) notion of the so-
called O-representations. The latter treatment on matched pair of length functions
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2 CHAPTER I. (RD) AND POLYNOMIAL GROWTH FOR BICROSSED PRODUCTS

also uses this approach. This makes our main results, namely the results presented
in § I.7 and § I.8, a little more precise and the proof of these results more transparent.
As an illustration of the advantage of this more systematic approach, we point out
the fusion rules for bicrossed products in (Fima and Wang, 2018) (Theorem I.4.15,
statement (c)) is easily simpli�ed (Theorem I.4.19). We also point out that unlike the
paper (Fima et al., 2017) that (Fima andWang, 2018) is based upon, the construction of
the bicrossed product here in this thesis is given by a purely algebraic approach as an
algebraic compact quantum group, which gives a more clear picture of what is going
on. This purely algebraic picture can be easily translated to the now more standard
operator-algebraic construction via the GNS construction with respect to the Haar
integral, and at the same time has the important advantage of being more suitable
of a systematic study of the representation theory of the underlying quantum group,
as is manifested in § I.3. Finally, we point out that more background information on
generalities of length functions, property (𝑅𝐷) and polynomial growth is given here
(§ I.6) to make this thesis more self-contained.

I.1 Matched pair of groups

We begin with some rudimentary observations on locally compact groups. Let 𝐻
be a locally compact group. Suppose there exists a compact subgroup 𝐺 of 𝐻 , and
a discrete group Γ of 𝐻 , such that 𝐻 = Γ𝐺 (so 𝐻 = 𝐺Γ too) and Γ ∩ 𝐺 = {𝑒𝐻 },
where 𝑒𝐻 is the identity of 𝐻 . Then every element of 𝐻 can be written uniquely as a
product of an element of 𝐺 and an element of Γ, in either order. In particular, there
are mappings 𝛼 : Γ ×𝐺 → 𝐺 , 𝛽 : Γ ×𝐺 → Γ such that

∀𝑔 ∈ 𝐺,𝛾 ∈ Γ, 𝛾𝑔 = 𝛼𝛾 (𝑔)𝛽𝑔 (𝛾), (I.1.1)

where 𝛼𝛾 = 𝛼 (𝛾, ·) and 𝛽𝑔 = 𝛽 (·, 𝑔). Based on this property, we have

∀𝑟, 𝑠 ∈ Γ, 𝑔 ∈ 𝐺, 𝑟𝑠𝑔 = 𝛼𝑟𝑠 (𝑔)𝛽𝑔 (𝑟𝑠) = 𝑟𝛼𝑠 (𝑔)𝛽𝑔 (𝑠) = 𝛼𝑟
(
𝛼𝑠 (𝑔)

)
𝛽𝛼𝑠 (𝑔) (𝑟 )𝛽𝑔 (𝑠),

Then the uniqueness of the corresponding decompositions forces that

∀𝑟, 𝑠 ∈ Γ, 𝑔 ∈ 𝐺, 𝛼𝑟𝑠 (𝑔) = (𝛼𝑟 ◦ 𝛼𝑠 ) (𝑔), 𝛽𝑔 (𝑟𝑠) = 𝛽𝛼𝑠 (𝑔) (𝑟 )𝛽𝑔 (𝑠).

Similarly,

∀𝛾 ∈ Γ, 𝑔, ℎ ∈ 𝐺, 𝛼𝛾 (𝑔ℎ)𝛽𝑔ℎ (𝛾) = 𝛾𝑔ℎ = 𝛼𝛾 (𝑔)𝛽𝑔 (𝛾)ℎ = 𝛼𝛾 (𝑔)𝛼𝛽𝑔 (𝛾 ) (ℎ)𝛽ℎ
(
𝛽𝑔 (𝛾)

)
,

Then this forces that

∀𝛾 ∈ Γ, 𝑔, ℎ ∈ 𝐺, 𝛼𝛾 (𝑔ℎ) = 𝛼𝛾 (𝑔)𝛼𝛽𝑔 (𝛾 ) (ℎ), 𝛽𝑔ℎ (𝛾) = (𝛽ℎ ◦ 𝛽𝑔) (𝛾).

Obviously, we have

∀𝛾 ∈ Γ, 𝑔 ∈ 𝐺, 𝛼𝑒 (𝑔) = 𝑔, 𝛽𝑒 (𝛾) = 𝛾, 𝛼𝛾 (𝑒) = 𝑒, 𝛽𝑔 (𝑒) = 𝑒.

To recapitulate, we have

(a) 𝛼 is a left action of the discrete group Γ on 𝐺 viewed as a compact space;

(b) 𝛽 is a right action of the compact group 𝐺 on the discrete space Γ;
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(c) the two actions satisfy the following compatibility conditions:

∀𝛾 ∈ Γ, 𝑔, ℎ ∈ 𝐺, 𝛼𝛾 (𝑔ℎ) = 𝛼𝛾 (𝑔)𝛼𝛽𝛾 (𝑔) (ℎ) and 𝛼𝛾 (𝑒𝐺 ) = 𝑒𝐺 , (I.1.2)

and

∀𝑔 ∈ 𝐺, 𝑟, 𝑠 ∈ Γ, 𝛽𝑔 (𝑟𝑠) = 𝛽𝛼𝑠 (𝑔) (𝑟 )𝛽𝑔 (𝑠) and 𝛽𝑔 (𝑒Γ) = 𝑒Γ . (I.1.3)

Lemma I.1.1. Both 𝛼, 𝛽 : Γ ×𝐺 → 𝐺 are continuous.

Proof. Since Γ is a discrete subgroup of 𝐻 , it is in particular closed. As a continuous
bijection from a compact space onto a Hausdor� space, the mapping 𝜑 : 𝐺 → 𝐻/Γ,
𝑔 ↦→ 𝑔Γ is in fact a homeomorphism. By (I.1.1), we have 𝛾𝑔Γ = 𝛼𝛾 (𝑔)Γ, thus
𝛼 (𝛾, 𝑔) = 𝛼𝛾 (𝑔) = 𝜑−1 (𝛾𝑔Γ), i.e. 𝛼 is the composite of the multiplication Γ ×𝐺 → 𝐻 ,
the canonical projection 𝐻 → 𝐻/Γ, and the inverse 𝜑−1 : 𝐻/Γ → 𝐺 of the homeo-
morphism 𝜑 , all of which are continuous. Hence 𝛼 itself is continuous. The continu-
ity of 𝛽 follows from that of 𝛼 and (I.1.1). �

Corollary I.1.2. Using the above notations, every 𝛽-orbit is �nite.

Proof. For each𝛾 ∈ Γ, the 𝛽-orbit𝛾 ·𝐺 is the rang of𝐺 under the continuous mapping
𝛽 (𝛾, · ) : 𝐺 → Γ. Hence𝛾 ·𝐺 is compact in the discrete space Γ, thusmust be �nite. �

Conversely, one can easily check that given a pair of groups (Γ,𝐺), where 𝐺 is
compact and Γ is discrete, suppose that there exists a continuous left action 𝛼 of the
group Γ on 𝐺 , and a continuous right action 𝛽 of the group 𝐺 on Γ, such that the
compatibility conditions (I.1.2) and (I.1.3) hold, then

(𝑔, 𝑟 ) (ℎ, 𝑠) :=
(
𝑔𝛼𝑟 (ℎ), 𝛽ℎ (𝑟 )𝑠

)
(I.1.4)

de�nes a group law on𝐺×Γ, which makes𝐺×Γ a locally compact topological group.
When one identi�es𝐺 × Γ with𝐻 via multiplication, one recovers the multiplication
on 𝐻 from (I.1.4)(see (I.1.1)).

We formalize these observations in the following de�nition.

De�nition I.1.3. A matched pair of groups consists of the following data:

• a pair (Γ,𝐺) of topological groups, where Γ is discrete and 𝐺 is compact,

• a continuous left action 𝛼 : Γy 𝐺 ,

• a continuous right action 𝛽 : Γx 𝐺 ,

such that for all 𝑟, 𝑠 ∈ Γ, 𝑔, ℎ ∈ 𝐺 , the following compatibility conditions (often
referred as the matched pair relations in the sequel) are satis�ed:

𝛼𝑟 (𝑔ℎ) = 𝛼𝑟 (𝑔)𝛼𝛽𝑔 (𝑟 ) (ℎ), 𝛽𝑔 (𝑟𝑠) = 𝛽𝛼𝑠 (𝑔) (𝑟 )𝛽𝑔 (𝑠),
𝛼𝛾 (𝑒𝐺 ) = 𝑒𝐺 , and 𝛽𝑔 (𝑒Γ) = 𝑒Γ .

(I.1.5)

Such a matched pair of groups is often denoted simply as (Γ,𝐺), suppressing the
actions 𝛼 and 𝛽 when they are implicitly understood from context.
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Remark I.1.4. There is a more general notion of matched pair of locally compact
groups. A pair of locally compact groups (𝐺1,𝐺2) is called matched if there exists
a locally compact group 𝐺 , such that 𝐺1, 𝐺2 are identi�ed with closed topological
subgroup of 𝐺 that intersect trivially and the complement of 𝐺1𝐺2 is a null set with
respect to the Haar measure of 𝐺 . In our case, 𝐺1 = Γ is discrete (hence closed) ,
𝐺2 = 𝐺 is compact, so 𝐺1𝐺2 is closed, and its complement is open and hence is of
null Haar measure if and only if 𝐺1𝐺2 = 𝐺 . Thus our notion of matched pair is the
particular case of matched pair of locally compact groups where the �rst group is
compact and the second group discrete.

Remark I.1.5. There is an even more general notion of a matched pair of locally
compact quantum groups ((Majid, 1990b; 1991),(Takeuchi, 1981),(Vaes and Vainer-
man, 2003)). There are two important constructions associated to such a matched
pair, both yielding new locally compact quantum groups. One is called the double
crossed product, which is the quantum analogue of recovering the global group 𝐺
from the matched pair (𝐺1,𝐺2) in the classical case of locally compact groups. We
will not treat this construction in this thesis and refer the reader to (Baaj and Vaes,
2005). The other one is called the bicrossed product construction, the most general
case in the setting of locally compact quantum groups is treated in (Vaes and Vain-
erman, 2003). We also refer the reader to the introduction of Chapter II of this thesis
for further references on these constructions. Among other important results, it is
shown in (Vaes, 2005, Proposition 2.17) that the bicrossed product of a pair of lo-
cally compact quantum groups (G1,G2) is compact if and only if G1 is discrete and
G2 is compact. The construction of bicrossed product in this generality is rather
technically involved and requires the theory of locally compact quantum groups as
developed in (Kustermans and Vaes, 2000) and (Kustermans and Vaes, 2003). Since
we only consider the classical bicrossed product where the matched pair is given
by De�nition I.1.3, in this case a simpler construction (albeit still very nontrivial) of
bicrossed product is developed in (Fima et al., 2017). The construction of bicrossed
products in this thesis uses a purely algebraic one, which the author believes to be
pedagogically more suitable for treating the representation theory of such objects,
and is long known among experts working on Hopf algebras.

We �nish our treatment of matched pair with some technical lemmas.

Lemma I.1.6. If (Γ,𝐺) is a matched pair of groups with left action 𝛼 , then for every
𝛾 ∈ Γ, the homeomorphism 𝛼𝛾 : 𝐺 → 𝐺 preserves the Haar measure of 𝐺 .

Proof. Let 𝛽 : Γ × 𝐺 → Γ be the corresponding right action of the matched pair
(Γ,𝐺). By Lemma I.1.1, the 𝛽-orbit 𝛾 ·𝐺 of 𝛾 is �nite (compact in a discrete space Γ).
Suppose 𝛾 ·𝐺 = {𝑠1, . . . , 𝑠𝑛}, and put 𝐴𝑘 :=

{
𝑔 ∈ 𝐺 : 𝛽𝑔 (𝛾) = 𝑠𝑘

}
for 𝑘 = 1, . . . , 𝑛. By

the continuity of 𝛽 (Lemma I.1.1), each𝐴𝑘 is clopen in𝐺 . Fix an arbitrary 𝑔 ∈ 𝐺 , and
denote the Haar probability measure on𝐺 by 𝜇. Consider the measure 𝜈 : = 𝛼∗𝛾 𝜇, we
want to show that 𝜈 = 𝜇. Since 𝜈 (𝐺) = 𝜇

(
𝛼𝛾 (𝐺)

)
= 𝜇 (𝐺) = 1, by the uniqueness of

the Haar probability measure, it su�ces to show that for every Borel set 𝑋 of𝐺 , one
has 𝜈 (𝑋𝑔) = 𝜈 (𝑋 ). Let 𝑋𝑘 = 𝐴𝑘 ∩ 𝑋 , then each 𝑋𝑘 remains a Borel set and 𝑋 is the
disjoint union of 𝑋1, . . . , 𝑋𝑛 . Moreover, by the right invariance of 𝜇, the de�nition of
𝑋𝑘 and (I.1.2), one has

𝜈 (𝑋𝑘𝑔) = 𝜇
(
𝛼𝛾 (𝑋𝑘𝑔)

)
= 𝜇

(
𝛼𝛾 (𝑋𝑘 )𝛼𝑠𝑘 (𝑔)

)
= 𝜇

(
𝛼𝛾 (𝑋𝑘 )

)
= 𝜈 (𝑋𝑘 ).
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Summing up the above equality over𝑘 = 1, . . . , 𝑛 yields 𝜈 (𝑋𝑔) = 𝜈 (𝑋 ), which �nishes
the proof. �

Notations I.1.7. In the following, the right action 𝛽 is often simply denoted by a dot,
while the left action is always indicated explicitly by 𝛼 .

Lemma I.1.8. For every 𝛾 ∈ Γ, let 𝐺𝛾 be the isotropy subgroup of 𝐺 �xing 𝛾 with
respect to the action 𝛽 , then 𝐺𝛾 is clopen, and 𝛼𝛾 restricts to a topological isomorphism
from 𝐺𝛾 onto 𝐺𝛾−1 .

Proof. That 𝐺𝛾 is clopen follows from the continuity of 𝛽 and the discreteness of Γ.
For every 𝑔 ∈ 𝐺 , we have

𝑒Γ = 𝛽𝑔 (𝛾−1𝛾) = 𝛽𝛼𝛾 (𝑔) (𝛾−1)𝛽𝑔 (𝛾),

hence (𝛾 · 𝑔)−1 = 𝛾−1 · 𝛼𝛾 (𝑔), and 𝑔 ∈ 𝐺𝛾 ⇐⇒ 𝛼𝛾 (𝑔) ∈ 𝐺𝛾−1 , which, together
with the matched pair relations (which imply that 𝛼𝛾 |𝐺𝛾 is multiplicative), proves
the second assertion. �

Lemma I.1.9. Let𝛾, 𝑟 ∈ Γ, then for every𝑔 ∈ 𝐺 , 𝑟 = 𝛾 ·𝑔 if and only if𝛾−1 ·𝛼𝛾 (𝑔) = 𝑟−1.
In particular, (𝛾 ·𝐺)−1 = 𝛾−1 ·𝐺 , and 𝑟 ↦→ 𝑟−1 is a bijection from 𝛾 ·𝐺 onto 𝛾−1 ·𝐺 .

Proof. By the matched pair relations, we have

𝑒Γ = 𝛽𝑔 (𝛾−1𝛾) = 𝛽𝛼𝛾 (𝑔) (𝛾−1)𝛽𝑔 (𝛾) =
(
𝛾−1 · 𝛼𝛾 (𝑔)

)
(𝛾 · 𝑔) �

Lemma I.1.10. If O1, O2 are 𝛽-orbits, then the set

O1O2 := {𝑟𝑠 : 𝑟 ∈ O1, 𝑠 ∈ O2} ⊆ Γ

is a disjoint union of 𝛽-orbits.

Proof. If 𝛾 ∈ O1O2, then 𝛾 = 𝑟𝑠 for some 𝑟 ∈ O1 and 𝑠 ∈ O2, and for every 𝑔 ∈ 𝐺 , we
have

𝛾 · 𝑔 = 𝛽𝑔 (𝑟𝑠) = 𝛽𝛼𝑠 (𝑔) (𝑟 )𝛽𝑔 (𝑠) = (𝑟 · 𝛼𝑠 (𝑔)) (𝑠 · 𝑔) ∈ O1O2 . �

I.2 Bicrossed product as an algebraic compact quantum group

From now on in this chapter, we �x a matched pair (Γ,𝐺) (see De�nition I.1.3) to-
gether with the associated actions 𝛼 and 𝛽 .

Let Pol(𝐺) be the subalgebra of matrix coe�cients of representations of 𝐺 , then
Pol(𝐺) is a dense ∗-subalgebra of the abelian𝐶∗-algebra𝐶 (𝐺). Moreover, Pol(𝐺) also
possesses a canonical algebraic compact quantum group structure with comultiplica-
tion inherited from 𝐺 viewed as a commutative compact quantum group (𝐶 (𝐺),Δ).
Since 𝛼𝑟 : 𝐺 → 𝐺 is a homeomorphism for every 𝑟 ∈ Γ, 𝛼𝑟

(
Pol(𝐺)

)
is a dense sub-

space of 𝐶 (𝐺), which is also stable under involution (conjugation). Let 𝐴0 be the
subalgebra of𝐶 (𝐺) generated by ∪𝛾 ∈Γ𝛼∗𝛾

(
Pol(𝐺)

)
and

{
𝛼∗𝛾 (𝑣𝑟,𝑠 ) : 𝑟, 𝑠, 𝛾 ∈ Γ

}
, where

𝑣𝑟,𝑠 is the character function of the clopen set

𝐺𝑟,𝑠 =
{
𝑔 ∈ 𝐺 : 𝛽𝑔 (𝑟 ) = 𝑠

}
⊆ 𝐺.

The clopen set 𝐺𝛾,𝛾 is in fact an open subgroup of 𝐺 , which will often be denoted
be 𝐺𝛾 . We check immediately that for each 𝛽-orbit 𝛾 · 𝐺 , where 𝛾 ∈ Γ, the matrix
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(𝑣𝑟,𝑠 )𝑟,𝑠∈𝛾 ·𝐺 over 𝐶 (𝐺) is a magic unitary. Our �rst goal is to establish that 𝐴0 =

Pol(𝐺) (Proposition I.2.4).
With these notations introduced, we �rst establish some elementary properties

of Pol(𝐺) associated with the matched-pair actions 𝛼 and 𝛽 .

Lemma I.2.1. Suppose𝐻 is a topological group, (𝑉 , 𝜌) a continuous �nite dimensional
representation of 𝐻 . For any continuous mapping 𝜑 : 𝐻 → C, let 𝜑̆ : 𝐻 → C be the
mapping ℎ ↦→ 𝜑 (ℎ−1), and (𝑉 ∗, 𝜌∗) the contragredient representation of (𝑉 , 𝜌), then 𝜑
is a matrix coe�cient of 𝜌 if and only if 𝜑̆ is a matrix coe�cient of 𝜌∗.

Proof. This follows directly from the de�nition of the contragredient representation,
namely 𝜌∗ (ℎ) is the transpose of 𝜌 (ℎ−1). �

Lemma I.2.2. Suppose 𝐻 is a topological group, 𝜑 : 𝐻 → C is a continuous function
on 𝐻 , then the following are equivalent:

(a) the subspace
L𝐻 (𝜑) = Vect{𝜑 (ℎ · ) : ℎ ∈ 𝐻 }

of 𝐶 (𝐻 ) is �nite-dimensional;

(b) the subspace
R𝐻 (𝜑) = Vect{𝜑 ( ·ℎ) : ℎ ∈ 𝐻 }

of 𝐶 (𝐻 ) is �nite-dimensional;

(c) the subspace
T𝐻 (𝜑) = Vect{𝜑 (ℎ · 𝑘) : ℎ, 𝑘 ∈ 𝐻 }

of 𝐶 (𝐻 ) is �nite dimensional;

(d) there is a continuous representation (𝑉 , 𝜌) of 𝐻 on some �nite dimensional com-
plex vector space 𝑉 , such that 𝜑 is a matrix coe�cient of 𝜌 .

Proof. That (d) implies (c) follows from a routine veri�cation, and obviously (c) im-
plies both (a) and (b). If (b) implies (d), then by Lemma I.2.1, (a) also implies (d). Thus
to �nish the proof, it su�ces to show that (b) implies (d).

Suppose (b) holds. Put 𝑉 = R𝐻 (𝜑), then 𝑉 is a �nite dimensional subspace of
the function space 𝐶 (𝐺). De�ne 𝜌 : 𝐻 → GL(𝑉 ), ℎ ↦→ 𝑅∗

ℎ
, where 𝑅ℎ : 𝐻 → 𝐻 is the

multiplication on the right by ℎ, and 𝑅∗
ℎ
is the pull-back along 𝑅ℎ , i.e. 𝑅∗ℎ : 𝜓 ↦→ 𝜓 ◦𝑅ℎ .

Then (𝑉 , 𝜌) is a �nite dimensional representation of 𝐻 . Note that 𝜑 ∈ 𝑉 , and the
evaluation at the identity element 𝑒 , denoted by 𝑒̂ , is a linear functional on𝑉 . Hence
the mapping

ℎ ↦→ 〈̂𝑒 , 𝜌 (ℎ)𝜑〉 = 〈̂𝑒 , 𝜑 ◦ 𝑅ℎ〉 = [𝜑 ◦ 𝑅ℎ] (𝑒) = 𝜑 (ℎ)

is a matrix coe�cient of 𝜌 . The proof will be complete once we show that the repre-
sentation (𝑉 , 𝜌) is continuous, which is equivalent to every matrix coe�cients of 𝜌
is continuous. For all ℎ0 ∈ 𝐻 , let ℎ̂0 ∈ 𝑉 ∗ be the linear functional of evaluating at ℎ0,
then obviously ∩ℎ0∈𝐻 ker ℎ̂0 = 0, hence𝑉 ∗ is the linear span of

{
ℎ̂0 : ℎ0 ∈ 𝐻

}
. Thus

to prove that every matrix coe�cient of 𝜌 is continuous on𝐻 , it su�ces to show that
mappings from 𝐻 to C of the form

ℎ ↦→
〈
ℎ̂0 , 𝜌 (ℎ)𝜓

〉
=

〈
ℎ̂0 , 𝜓 ◦ 𝑅ℎ

〉
= 𝜓 (ℎℎ0)
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are always continuous for all ℎ0 ∈ 𝐻 , and 𝜓 ∈ 𝑉 . But the above mapping is just
𝜓 ◦ 𝑅ℎ0 , whose continuity follows from the continuity of both𝜓 and 𝑅ℎ0 . �

Lemma I.2.3. Let 𝐾 be an open subgroup of the compact group 𝐺 , then Pol(𝐺) |𝐾 =

Pol(𝐾), where
Pol(𝐺) |𝐾 = {𝜑 |𝐾 : 𝜑 ∈ Pol(𝐺)}.

Proof. If 𝜑 ∈ Pol(𝐺) is a matrix coe�cient of some (continuous) �nite dimensional
representation (𝑉 , 𝜌), then 𝜑 |𝐾 is a matrix coe�cient of the restricted representation
𝜌 |𝐾 . Thus Pol(𝐺) |𝐾 ⊆ Pol(𝐾). Since Pol(𝐺) is dense in𝐶 (𝐺), the subspace Pol(𝐺) |𝐾
is dense in 𝐶 (𝐾) (any function 𝑔 in 𝐶 (𝐾) can be extended to a function 𝑓 in 𝐶 (𝐺)
by the Tietze extension theorem, and if 𝑓 is the uniform limit of a sequence (𝑓𝑛) in
Pol(𝐺), which exists by the density of Pol(𝐺) in 𝐶 (𝐺), then in particular, 𝑔 is the
uniform limit of (𝑔𝑛), where 𝑔𝑛 = 𝑓𝑛 |𝐾 ). Hence by the orthogonality relations, we
must have Pol(𝐺) |𝐾 = Pol(𝐾). �

Proposition I.2.4. Using the above notations, the following hold:

(a) 𝑣𝑟,𝑠 ∈ Pol(𝐺) for all 𝑟, 𝑠 ∈ Γ in the same 𝛽-orbit,

(b) for every 𝛾 ∈ Γ, and all 𝜑 ∈ 𝐶 (𝐺) with supp𝜑 ⊆ 𝐺𝛾 , we have 𝜑 ∈ Pol(𝐺) if and
only if 𝜑 |𝐺𝛾 ∈ Pol(𝐺𝛾 );

(c) Pol(𝐺) is stable under the action of 𝛼 , i.e. one has 𝛼∗𝛾𝜑 = 𝜑 ◦ 𝛼𝛾 ∈ Pol(𝐺), for
every 𝜑 ∈ Pol(𝐺) and every 𝛾 ∈ Γ.

Proof. (a). Take any 𝛽-orbit𝛾 ·𝐺 , where𝛾 is some element in Γ. The right permutation
representation of𝐺 on the �nite dimensional Hilbert space ℓ2 (𝛾 ·𝐺) (equipped with
the canonical Hilbert space structure on it), when written in the operator form, is
exactly ∑

𝑟,𝑠∈𝛾 ·𝐺 𝑒𝑟,𝑠 ⊗ 𝑣𝑟,𝑠 ∈ B(ℓ2 (𝛾 · 𝐺)) ⊗ 𝐶 (𝐺), where
{
𝑒𝑟,𝑠 : 𝑟, 𝑠 ∈ 𝛾 ·𝐺

}
is the

matrix unit associated with the canonical Hilbert basis {𝛿𝑟 : 𝑟 ∈ 𝛾 ·𝐺}. Thus 𝑣𝑟,𝑠 ,
where 𝑟, 𝑠 ∈ 𝛾 ·𝐺 , are all matrix coe�cients of this representation.

(b). It is clear that 𝜑 ∈ Pol(𝐺) implies 𝜑 |𝐺𝛾 ∈ Pol(𝐺𝛾 ). Conversely, suppose
𝜑 |𝐺𝛾 ∈ Pol(𝐺𝛾 ). Then by Lemma I.2.3, there exists some 𝜑 ′ ∈ Pol(𝐺) with 𝜑 ′ |𝐺𝛾 =

𝜑 |𝐺𝛾 . Since 𝑣𝛾,𝛾 ∈ Pol(𝐺) by (a), supp 𝑣𝛾,𝛾 = 𝐺𝛾 and supp𝜑 ⊆ 𝐺𝛾 , we have 𝜑 =

𝑣𝛾,𝛾𝜑
′ ∈ Pol(𝐺).

(c). We �rst treat the special case in which supp𝜑 ⊆ 𝐺𝛾−1 . Denote 𝜑 |𝐺𝛾−1 by𝜓 . By
Lemma I.2.3, there exists a �nite dimensional unitary representation (𝜌,H ) of𝐺𝛾−1 ,
such that𝜓 is a matrix coe�cient of 𝜌 . Hence by Lemma I.1.8, 𝛼∗𝛾𝜓 = 𝜓 ◦𝛼𝛾 is a matrix
coe�cient of the unitary representation (𝜌 ◦𝛼𝛾 ,H ) of𝐺𝛾 . Using Lemma I.1.8 again,
we see that supp(𝛼∗𝛾𝜑) ⊆ 𝐺𝛾 . Hence (𝛼∗𝛾𝜑) |𝐺𝛾 = 𝛼∗𝛾𝜓 ∈ Pol(𝐺𝛾 ), and 𝛼∗𝛾𝜑 ∈ Pol(𝐺)
by (b).

Take an arbitrary 𝑟 ∈ 𝛾 ·𝐺 , and suppose supp𝜑 ⊆ 𝐺𝛾−1,𝑟−1 . Take 𝑔0 ∈ 𝐺 such that
𝑟 = 𝛾 · 𝑔0, then by Lemma I.1.9, 𝑟−1 = 𝛾−1 · 𝛼𝛾 (𝑔0). Using Lemma I.1.9 again, we also
have supp(𝛼∗𝛾𝜑) ⊆ 𝐺𝛾,𝑟 . Let 𝑅𝑔 : 𝐺 → 𝐺 be the multiplication on the right by 𝑔 ∈ 𝐺 .
Put 𝜑 ′ = 𝜑 ◦ 𝑅𝛼𝛾 (𝑔0) and 𝜑1 =

(
𝛼∗𝛾𝜑

)
◦ 𝑅𝑔0 , then 𝜑 ′ ∈ Pol(𝐺) by Lemma I.2.2, and

supp𝜑 ′ ⊆ 𝐺𝛾−1 so supp(𝛼∗𝛾𝜑 ′) ⊆ 𝐺𝛾 as we’ve seen above, while supp𝜑1 ⊆ 𝐺𝛾 . Now
for every 𝑥 ∈ 𝐺𝛾 , we have

𝜑1 (𝑥) = (𝛼∗𝛾𝜑) (𝑥𝑔0) = 𝜑
(
𝛼𝛾 (𝑥𝑔0)

)
= 𝜑

(
𝛼𝛾 (𝑥)𝛼𝛾 (𝑔0)

)
= 𝜑 ′ (𝛼𝛾 (𝑥)) = (𝛼∗𝛾𝜑 ′) (𝑥).

Thus 𝜑1 = 𝛼∗𝛾𝜑
′ ∈ Pol(𝐺) by the previous case, and consequently 𝛼∗𝛾𝜑 ∈ Pol(𝐺) by

Lemma I.2.2.
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The general case now follows easily. Indeed, by Lemma I.1.9, 𝑟 ↦→ 𝑟−1 is a bi-
jection from 𝛾 · 𝐺 onto 𝛾−1 · 𝐺 . Hence, 𝜑 =

∑
𝑟 ∈𝛾 ·𝐺 𝑣𝛾−1,𝑟−1𝜑 . Since the support of

each 𝑣𝛾−1,𝑟−1𝜑 ∈ Pol(𝐺) (see (a)) is in 𝐺𝛾−1,𝑟−1 , we have 𝛼∗𝛾 (𝑣𝛾−1,𝑟−1𝜑) ∈ Pol(𝐺) by our
previous argument. Hence

𝛼∗𝛾𝜑 =
∑︁
𝑟 ∈𝛾 ·𝐺

𝛼∗𝛾 (𝑣𝛾−1,𝑟−1𝜑) ∈ Pol(𝐺). �

Remark I.2.5. If 𝛽 is trivial, i.e. 𝛼 is an action by continuous group automorphisms,
then (c) is almost self-evident. It is remarkable that Pol(𝐺) remains stable under the
action of 𝛼 even 𝛼 fails to be an action by group automorphisms (𝛽 nontrivial).

With these preparations, we can now construct the bicrossed product of the
matched pair (Γ,𝐺) as an algebraic compact quantum group. Consider

A = 𝐶𝑐
(
Γ, Pol(𝐺)

)
=

{
Φ : Γ → Pol(𝐺) : Φ(𝛾) = 0 except for a �nite number of 𝛾 ∈ Γ

}
.

(I.2.1)

The goal is to construct a multiplication 𝑚 : A ⊗ A → A with a (unique) unit
𝜂 : C→ A , a comultiplication Δ̃ : A → A ⊗ A with a (unique) counit 𝜖 : A → C,
a (uniquely determined) antipode 𝑆 : A → A , an involution ∗ : A → A and a
positive invariant integral (which will be normalized as the Haar state) 𝜏 : A → C,
such that equipped with these structures, (A , Δ̃) is an algebraic compact quantum
group.

Let 𝛼 : Γ → Aut
(
𝐶 (𝐺)

)
be the group morphism 𝛾 ↦→ 𝛼∗

𝛾−1
, then

(
Γ,𝐶 (𝐺), 𝛼

)
is a

𝐶∗-dynamical system. It is well-known that when de�ning the crossed product of Γ
and 𝐶 (𝐺) with respect to the action 𝛼 , one starts with the convolution as multipli-
cation on the space𝐶𝑐

(
Γ,𝐶 (𝐺)

)
of (automatically continuous) mappings from Γ into

𝐶 (𝐺) with compact (equivalently, �nite) support, which makes𝐶𝑐
(
Γ,𝐶 (𝐺)

)
an invo-

lutive algebra. For convenience of the reader, we recall brie�y here this construction
in a slightly more general setting where we replace 𝐶 (𝐺) with an arbitrary unital
involutive algebra, and 𝛼 : Γ → Aut(𝐴) is still a group morphism. The idea is that
one wants to incorporate the multiplication structures of both the algebra 𝐴 and the
group Γ in a universal way. To achieve this, one considers the vector space 𝐶𝑐 (Γ, 𝐴)
of compactly supported (which is the same as �nitely supported as the group Γ is
discrete), 𝐴-valued functions. Since 𝐴 is a unital algebra, one has the analogue of 𝐴-
valued Dirac measure, i.e. for each 𝛾 ∈ Γ, one can associate a element 𝑢𝛾 ∈ 𝐶𝑐 (Γ, 𝐴),
such that

∀𝜇 ∈ Γ, 𝑢𝛾 (𝜇) =
{
0 if 𝜇 ≠ 𝛾,
1𝐴 if 𝜇 = 𝛾

where of course 1𝐴 is the multiplicative unit of the algebra 𝐴. In this way, one has a
copy of Γ as a set in 𝐶𝑐 (Γ, 𝐴) via the bijective correspondence 𝛾 ↔ 𝑢𝛾 . There is also
a distinct element in Γ, namely the multiplicative identity 𝑒Γ , which gives us a copy
of 𝐴 in 𝐶𝑐 (Γ, 𝐴) via the embedding 𝐴 ↩→ 𝐶𝑐 (Γ, 𝐴), 𝑎 ↦→ 𝑢𝛾𝑎, where the notation 𝑢𝛾𝑎
denotes the 𝐴-valued function

∀𝜇 ∈ Γ, 𝑢𝛾𝑎 =

{
0 if 𝜇 ≠ 𝛾,
𝑎 if 𝜇 = 𝛾 .

Identifying 𝐴 and Γ with their respective copies in 𝐶𝑐 (Γ, 𝐴) as explained above, the
key idea to de�ne the multiplicative and involutive structure on 𝐶𝑐 (Γ, 𝐴) is that one
wants
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(a) 𝐴 is a unital ∗-subalgebra of 𝐶𝑐 (Γ, 𝐴);

(b) Γ is a unitary subgroup of the multiplicative group of 𝐶𝑐 (Γ, 𝐴);

(c) the action 𝛼𝛾 behaves exactly as conjugation by 𝑢𝛾 for every 𝛾 ∈ Γ, i.e. for all
𝑎 ∈ 𝐴, we have 𝛼𝛾 (𝑎) = 𝑢𝛾𝑎𝑢−1𝛾 = 𝑢𝛾𝑎𝑢𝛾−1 .

With these requirements in mind and using the above notations, and noting that
a generic element of 𝐶𝑐 (Γ, 𝐴) is of the form of �nite sum ∑

𝛾 ∈Γ 𝑢𝛾𝑎𝛾 , where all but
�nitely many 𝑎𝛾 ∈ 𝐴 are nonzero, the multiplication on 𝐶𝑐 (Γ, 𝐴) is de�ned by(∑︁

𝛾 ∈Γ
𝑢𝛾𝑎𝛾

) (∑︁
𝜇∈𝜇

𝑢𝜇𝑏𝜇

)
:=

∑︁
𝛾,𝜇∈Γ

𝑢𝛾𝜇𝛼𝜇−1 (𝑎𝛾 )𝑏𝜇 =
∑︁
𝛾 ∈Γ

𝑢𝛾
∑︁

𝑟,𝑠∈Γ, 𝑟𝑠=𝛾
𝛼𝑠−1 (𝑎𝑟 )𝑏𝑠 , (I.2.2)

as by our requirements, we have

∀𝜇 ∈ Γ, 𝑎 ∈ 𝐴, 𝑎𝛾𝑢𝜇 = 𝑢𝜇𝑢
−1
𝜇 𝑎𝛾𝑢𝜇 = 𝑢𝜇 (𝑢𝜇−1𝑎𝛾𝑢𝜇) = 𝑢𝜇𝛼𝜇−1 (𝑎).

One checks easily that the multiplication as de�ned in (I.2.2) makes𝐶𝑐 (Γ, 𝐴) a unital
associative algebra, with𝑢𝑒Γ1𝐴 being themultiplicative unit. Similarly, the involution
on 𝐶𝑐 (Γ, 𝐴) is de�ned by(∑︁

𝛾 ∈Γ
𝑢𝛾𝑎𝛾

)
:=

∑︁
𝛾 ∈Γ

𝑎∗𝛾𝑢𝛾−1 =
∑︁
𝛾 ∈Γ

𝑢𝛾−1𝛼𝛾 (𝑎∗𝛾 ) =
∑︁
𝛾 ∈Γ

𝑢𝛾𝛼𝛾−1 (𝑎∗𝛾−1 ), (I.2.3)

as one needs 𝑢∗𝛾 = 𝑢−1𝛾 = 𝑢𝛾−1 , i.e. 𝑢𝛾 to be unitary, in our requirements. Again,
one checks easily that (I.2.6) de�nes an involution on the unital associative algebra
𝐶𝑐 (Γ, 𝐴), making the latter a unital involutive algebra and completes this construc-
tion. We call the unital involutive algebra 𝐶𝑐 (Γ, 𝐴) the (algebraic) crossed product
of Γ and 𝐴 with respect to the action 𝛼 , and also denote it by 𝐴 o𝛼 Γ, or simply by
𝐴 o Γ when the action 𝛼 is clear. Of course, we have the following useful universal
property, whose proof is merely a routine veri�cation using the construction above.

Proposition I.2.6. Using the above notations, the formula

∀𝛾 ∈ Γ, 𝑎 ∈ 𝐴, 𝜌 (𝑢𝛾𝑎) = 𝜌Γ (𝑢𝛾 )𝜌𝐴 (𝑎) (I.2.4)

determines a bijection between the class of non-degenerate representations 𝜌 of the invo-
lutive algebra𝐴o Γ on some Hilbert space𝐻 and the class of pairs (𝜌Γ, 𝜌𝐴), where 𝜌Γ is
a unitary representation of the group Γ on 𝐻 and 𝜌𝐴 is a non-degenerate representation
of the involutive algebra 𝐴 on 𝐻 , such that 𝜌Γ and 𝜌𝐴 are covariant in the sense that

∀𝛾 ∈ Γ, 𝑎 ∈ 𝐴, 𝜌𝐴
(
𝛼𝛾 (𝑎)

)
= 𝜌Γ (𝑢𝛾 )𝜌𝐴 (𝑎)𝜌Γ (𝑢𝛾−1 ). (I.2.5)

Beforewe return to our discussion of the bicrossed products, we point out that per
our construction,𝐶𝑐 (Γ, 𝐴) is a free𝐴-module (both left and right) with

{
𝑢𝛾 : 𝛾 ∈ Γ

}
as a base.

We now apply the above procedure to the bicrossed product construction. Since
Pol(𝐺) is a unital ∗-subalgebra of𝐶 (𝐺) that is invariant under the action 𝛼 (Proposi-
tion I.2.4), we can canonically identi�es A = 𝐶𝑐

(
Γ, Pol(𝐺)

)
as a unital ∗-subalgebra

of the ∗-algebra𝐶𝑐
(
Γ,𝐶 (𝐺)

)
. This gives us the multiplication𝑚, the unit 𝜂 : C→ A

for the multiplication 𝑚, and the involution ∗ on A . For 𝜑 ∈ Pol(𝐺), 𝛾 ∈ Γ, let



10 CHAPTER I. (RD) AND POLYNOMIAL GROWTH FOR BICROSSED PRODUCTS

𝑢𝛾𝜑 : Γ → Pol(𝐺) denote the mapping sending 𝑟 ∈ Γ to 𝛿𝛾,𝑟𝜑 ∈ Pol(𝐺). We write
𝑢𝑒Γ𝜑 simply as 𝜑 , and 𝑢𝛾1𝐺 simply as 𝑢𝛾 , where 1𝐺 is of course the constant function
on 𝐺 with value 1, which is the common unit of Pol(𝐺) and 𝐶 (𝐺). Thus 𝑢𝑒Γ = 1𝐺
is the multiplicative identity of A , and is often denoted simply as 1. This allows us
to identify Γ with the subgroup

{
𝑢𝛾 : 𝛾 ∈ 𝐺

}
of the multiplicative group A ×, and

identify Pol(𝐺) with the unital ∗-subalgebra
{
𝑢𝑒Γ𝜑 : 𝜑 ∈ Pol(𝐺)

}
ofA . These iden-

ti�cation will be freely used below without further explanation. As a vector space,
A is spanned by

{
𝑢𝛾𝜑 : 𝛾 ∈ Γ, 𝜑 ∈ Pol(𝐺)

}
. Thus the multiplication 𝑚 on A is

completely determined by the following relations (note that𝑚 is associative)

∀𝑟, 𝑠 ∈ Γ, 𝜑,𝜓 ∈ Pol(𝐺), 𝑚(𝑢𝑟 ⊗ 𝑢𝑠 ) = 𝑢𝑟𝑢𝑠 = 𝑢𝑟𝑠 , 𝑚(𝜑 ⊗𝜓 ) = 𝜑𝜓,
and 𝑚(𝜑 ⊗ 𝑢𝛾 ) = 𝜑𝑢𝛾 = 𝑢𝛾

(
𝛼𝛾−1 (𝜑)

)
= 𝑢𝛾 (𝛼∗𝛾𝜑) =𝑚(𝑢𝛾 ⊗ 𝛼∗𝛾𝜑);

where as the involution ∗ on A is completely determined by

∀𝛾 ∈ Γ, 𝜑, (𝑢𝛾𝜑)∗ = 𝜑∗𝑢∗𝛾 = 𝜑𝑢𝛾−1 = 𝑢𝛾

(
𝛼∗
𝛾−1𝜑

)
. (I.2.6)

This completes our description of the multiplicative and involutive structures of A .
To describe the comultiplication Δ̃ requires further work. De�ne

𝜌Γ : Γ → A ⊗ A , 𝛾 ↦→
∑︁
𝑟 ∈𝛾 ·𝐺

𝑢𝛾𝑣𝛾,𝑟 ⊗ 𝑢𝑟 .

Lemma I.2.7. The mapping 𝜌Γ is a unitary representation of the discrete group Γ, i.e.
𝜌Γ (𝑒Γ) = 1 ⊗ 1, 𝜌Γ (𝛾) is unitary, and 𝜌Γ (𝛾𝜇) = 𝜌Γ (𝛾)𝜌Γ (𝜇) for all 𝛾, 𝜇 ∈ Γ.

Proof. That 𝜌Γ (𝑒Γ) = 1⊗ 1 follows from the de�nition of 𝜌Γ and the fact that 𝑒Γ ·𝐺 =

{𝑒Γ}. We now show that that 𝜌Γ is multiplicative. By de�nition,

𝜌Γ (𝛾)𝜌Γ (𝜇) =
∑︁
𝑟 ∈𝛾 ·𝐺,
𝑠∈𝜇 ·𝐺

𝑢𝛾𝑣𝛾,𝑟𝑢𝜇𝑣𝜇,𝑠 ⊗ 𝑢𝑟𝑢𝑠 =
∑︁
𝑟 ∈𝛾 ·𝐺,
𝑠∈𝜇 ·𝐺

𝑢𝛾𝜇

(
𝛼∗𝜇𝑣𝛾,𝑟

)
𝑣𝜇,𝑠 ⊗ 𝑢𝑟𝑠 . (I.2.7)

Note that
(
𝛼∗𝜇𝑣𝛾,𝑟

)
𝑣𝜇,𝑠 ∈ Pol(𝐺) (Proposition I.2.4) is the characteristic function of

the clopen set 𝑋𝑟,𝑠 := 𝛼−1𝜇 (𝐺𝛾,𝑟 ) ∩𝐺𝜇,𝑠 . By the matched pair relations, we have

∀𝑔 ∈ 𝐺, (𝛾𝜇) · 𝑔 = 𝛽𝑔 (𝛾𝜇) = 𝛽𝛼𝜇 (𝑔) (𝛾)𝛽𝑔 (𝜇) =
(
𝛾 · 𝛼𝜇 (𝑔)

)
(𝜇 · 𝑔),

which implies that for every 𝑡 ∈ (𝛾𝜇) ·𝐺 , the clopen set𝐺𝛾𝜇,𝑡 is the disjoint union of
clopen sets of the form 𝑋𝑟,𝑠 where 𝑟 ∈ 𝛾 ·𝐺 , 𝑠 ∈ 𝜇 ·𝐺 and 𝑟𝑠 = 𝑡 . Hence

𝑣𝛾𝜇,𝑡 =
∑︁
𝑟 ∈𝛾 ·𝐺,
𝑠∈𝜇 ·𝐺,
𝑟𝑠=𝑡

(𝛼∗𝜇𝑣𝛾,𝑟 )𝑣𝜇,𝑠 . (I.2.8)

Combining (I.2.7) and (I.2.8) yields

𝜌Γ (𝛾)𝜌Γ (𝜇) =
∑︁

𝑡 ∈(𝛾𝜇) ·𝐺
𝑢𝛾𝜇𝑣𝛾𝜇,𝑡 ⊗ 𝑢𝑡 = 𝜌Γ (𝛾𝜇).

It remains to show that 𝜌Γ (𝛾) is unitary, or equivalently (in view of the mul-
tiplicativity of 𝜌Γ and 𝜌Γ (𝑒Γ) = 1 ⊗ 1), that 𝜌Γ (𝛾−1) = [𝜌Γ (𝛾)]∗. But this follows
immediately from Lemma I.1.9, the de�nition of 𝜌Γ and formula (I.2.6). �
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The unital ∗-morphism Δ : Pol(𝐺) → Pol(𝐺) ⊗ Pol(𝐺) ⊆ A ⊗ A can be seen as
a representation of the unital ∗-algebra Pol(𝐺).

Lemma I.2.8. The representations 𝜌Γ and Δ are covariant, i.e. for all 𝛾 ∈ Γ and 𝜑 ∈
Pol(𝐺), we have

Δ(𝜑)𝜌Γ (𝛾) = 𝜌Γ (𝛾)Δ
(
𝛼∗𝛾𝜑

)
. (I.2.9)

Proof. By de�nition, we have

Δ(𝜑)𝜌Γ (𝛾) =
∑︁
𝑟 ∈𝛾 ·𝐺

Δ(𝜑)
(
𝑢𝛾𝑣𝛾,𝑟 ⊗ 𝑢𝑟

)
=

∑︁
𝑟 ∈𝛾 ·𝐺

(𝑢𝛾 ⊗ 𝑢𝑟 )
[(
𝛼∗𝛾 ⊗ 𝛼∗𝑟

) (
Δ(𝜑)

) ]
(𝑣𝛾,𝑟 ⊗ 1),

𝜌Γ (𝛾)Δ
(
𝛼∗𝛾𝜑

)
=

∑︁
𝑟 ∈𝛾 ·𝐺

(𝑢𝛾 ⊗ 𝑢𝑟 ) (𝑣𝛾,𝑟 ⊗ 1)Δ
(
𝛼∗𝛾𝜑

)
.

Thus it su�ces to show that

(𝑣𝛾,𝑟 ⊗ 1)Δ
(
𝛼∗𝛾𝜑

)
=

[(
𝛼∗𝛾 ⊗ 𝛼∗𝑟

) (
Δ(𝜑)

) ]
(𝑣𝛾,𝑟 ⊗ 1). (I.2.10)

As continuous mappings from 𝐺 × 𝐺 into C, both sides of (I.2.10) are supported in
𝐺𝛾,𝑟 ×𝐺 . Moreover, for every (𝑔, ℎ) ∈ 𝐺𝛾,𝑟 ×𝐺 , we have[

(𝑣𝛾,𝑟 ⊗ 1)Δ
(
𝛼∗𝛾𝜑

)]
(𝑔, ℎ) =

[
Δ

(
𝛼∗𝛾𝜑

)]
(𝑔, ℎ) = 𝜑

(
𝛼𝛾 (𝑔ℎ)

)
, (I.2.11)

and {[(
𝛼∗𝛾 ⊗ 𝛼∗𝑟

) (
Δ(𝜑)

) ]
(𝑣𝛾,𝑟 ⊗ 1)

}
(𝑔, ℎ)

=

[(
𝛼∗𝛾 ⊗ 𝛼∗𝑟

) (
Δ(𝜑)

) ]
(𝑔, ℎ) = 𝜑

(
𝛼𝛾 (𝑔)𝛼𝑟 (ℎ)

)
.

(I.2.12)

Since 𝑔 ∈ 𝐺𝛾,𝑟 , we have 𝛽𝑔 (𝛾) = 𝑟 , and the matched pair relations yield

𝛼𝛾 (𝑔ℎ) = 𝛼𝛾 (𝑔)𝛼𝑟 (ℎ). (I.2.13)

Combining (I.2.11), (I.2.12) and (I.2.13) establishes (I.2.10), hence proves (I.2.9). �

By Lemma I.2.7, Lemma I.2.8 and Proposition I.2.6, the linear mapping Δ̃ : A →
A ⊗ A determined by 𝑢𝛾𝜑 ↦→ 𝜌Γ (𝛾)Δ(𝜑) is a well-de�ned (recall that A is free
Pol(𝐺)-module with

{
𝑢𝛾 : 𝛾 ∈ Γ

}
as a base) unital ∗-morphism.

Lemma I.2.9. The comultiplication Δ̃ : A → A ⊗ A is coassociative.

Proof. Since the comultiplication Δ of the Hopf ∗-algebraic structure on Pol(𝐺) is
coassociative and A is generated by Γ and Pol(𝐺) as an algebra, it su�ces to show
that for every 𝛾 ∈ Γ, we have

(id ⊗Δ̃)Δ̃(𝑢𝛾 ) = (Δ̃ ⊗ id)Δ̃(𝑢𝛾 ). (I.2.14)

On the one hand, we have

(id ⊗Δ̃)Δ̃(𝑢𝛾 ) =
∑︁
𝑟 ∈𝛾 ·𝐺

𝑢𝛾𝑣𝛾,𝑟 ⊗ Δ̃(𝑢𝑟 ) =
∑︁

𝑟,𝑠∈𝛾 ·𝐺
𝑢𝛾𝑣𝛾,𝑟 ⊗ 𝑢𝑟𝑣𝑟,𝑠 ⊗ 𝑢𝑠 . (I.2.15)
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On the other hand, we have

(Δ̃ ⊗ id)Δ̃(𝑢𝛾 ) =
∑︁
𝑠∈𝛾 ·𝐺

Δ̃(𝑢𝛾𝑣𝛾,𝑠 ) ⊗ 𝑢𝑠 =
∑︁
𝑠∈𝛾 ·𝐺

𝜌Γ (𝑢𝛾 )Δ(𝑣𝛾,𝑠 ) ⊗ 𝑢𝑠

=
∑︁
𝑟 ∈𝛾 ·𝐺,
𝑠∈𝛾 ·𝐺

(𝑢𝛾𝑣𝛾,𝑟 ⊗ 𝑢𝑟 ⊗ 𝑢𝑠 )
(
Δ(𝑣𝛾,𝑠 ) ⊗ 1

)
.

(I.2.16)

By comparing (I.2.15) and (I.2.16), it su�ces to show that for all 𝑟, 𝑠 ∈ 𝛾 ·𝐺 , we have

𝑣𝛾,𝑟 ⊗ 𝑣𝑟,𝑠 = (𝑣𝛾,𝑟 ⊗ 1)Δ(𝑣𝛾,𝑠 ) (I.2.17)

in order to establish (I.2.14). As mappings from𝐺 ×𝐺 into C, for all 𝑔, ℎ ∈ 𝐺 , we have

[(𝑣𝛾,𝑟 ⊗ 1)Δ(𝑣𝛾,𝑠 )] (𝑔, ℎ) = 𝑣𝛾,𝑟 (𝑔)𝑣𝛾,𝑠 (𝑔ℎ), (I.2.18)

which is 1 if 𝛾 ·𝑔 = 𝑟 and 𝛾 · (𝑔ℎ) = 𝑠 , and is 0 otherwise. Hence (𝑣𝛾,𝑟 ⊗ 1)Δ(𝑣𝛾,𝑠 ) is the
characteristic function of the clopen subset𝐺𝛾,𝑟 ×𝐺𝑟,𝑠 of𝐺 ×𝐺 , i.e. (I.2.18) holds. �

Let 𝜖 be the counit (evaluating at 𝑒𝐺 ) of the Hopf ∗-algebra (Pol(𝐺),Δ). De�ne
the linear mapping 𝜖 : A → C to be the one uniquely determined by

𝜖 : A → C, 𝑢𝛾𝜑 ↦→ 𝛿𝛾,𝑒Γ𝜖 (𝜑) = 𝛿𝛾,𝑒Γ𝜑 (𝑒𝐺 ). (I.2.19)

Lemma I.2.10. The linear mapping 𝜖 is a counit for the comultiplication Δ̃.

Proof. For every 𝛾 ∈ Γ, and every 𝜑 ∈ Pol(𝐺), note that 𝑒Γ · 𝐺 is the singleton
consisting of only 𝑒Γ , we have

(id ⊗𝜖)Δ̃(𝑢𝛾𝜑) = (id ⊗𝜖)
( ∑︁
𝑟 ∈𝛾 ·𝐺

(𝑢𝛾𝑣𝛾,𝑟 ⊗ 𝑢𝑟 )Δ(𝜑)
)

=
∑︁
𝑟 ∈𝛾 ·𝐺

𝛿𝑟,𝑒Γ (𝑢𝛾𝑣𝛾,𝑟 ) [(id ⊗𝜖)Δ(𝜑)] =
∑︁
𝑟 ∈𝛾 ·𝐺

𝛿𝛾,𝑒Γ (𝑢𝛾𝑣𝛾,𝑟 ) [(id ⊗𝜖)Δ(𝜑)]

= 𝛿𝛾,𝑒Γ𝑢𝛾 [(id ⊗𝜖)Δ(𝜑)] = 𝛿𝛾,𝑢𝛾𝑢𝛾
(
𝜑 (𝑒𝐺 )1

)
= 𝜖 (𝑢𝛾𝜑)1.

On the other hand,

(𝜖 ⊗ id)Δ̃(𝑢𝛾𝜑) = (𝜖 ⊗ id)
( ∑︁
𝑟 ∈𝛾 ·𝐺

(𝑢𝛾𝑣𝛾,𝑟 ⊗ 𝑢𝑟 )Δ(𝜑)
)

= 𝛿𝛾,𝑒Γ (𝜖 ⊗ id)
( ∑︁
𝑟 ∈𝛾 ·𝐺

(𝑢𝛾𝑣𝛾,𝑟 ⊗ 𝑢𝑟 )Δ(𝜑)
)

= 𝛿𝛾,𝑒Γ (𝜖 ⊗ id)
( ∑︁
𝑟 ∈𝑒Γ ·𝐺

(𝑢𝑒Γ𝑣𝛾,𝑟 ⊗ 𝑢𝑟 )Δ(𝜑)
)

= 𝛿𝛾,𝑒Γ (𝜖 ⊗ id)
[
(𝑢𝑒Γ ⊗ 𝑢𝑒Γ )Δ(𝜑)

]
= 𝛿𝛾,𝑒Γ (𝜖 ⊗ id)Δ(𝜑) = 𝛿𝛾,𝑒Γ𝜑 (𝑒𝐺 )1 = 𝜖 (𝑢𝛾𝜑)1.

This �nishes the proof. �

Now we’ve shown that (A , Δ̃) is a unital and counital ∗-bialgebra with 𝜖 as its
counit, it remains to describe the antipode 𝑆 : A → A and the Haar integral 𝜏 :
A → C.
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Theorem I.2.11. The pairG = (A , Δ̃) is an algebraic compact quantum group of Kac
type. More precisely, the following hold.

(a) The linear mapping1

𝜖 : A → C, 𝑢𝛾𝜑 ↦→ 𝜑 (𝑒𝐺 ) = 𝜖 (𝜑) (I.2.20)

is a unital ∗-morphism of ∗-algebras, where 𝜑 ∈ Pol(𝐺), and 𝜖 is the counit for
Pol(𝐺).
Moreover, 𝜖 is the counit for Δ̃.

(b) The linear mapping

𝑆 : A → C, 𝑢𝛾𝜑 ↦→
∑︁
𝑟 ∈𝛾 ·𝐺

(𝑆𝜑)𝑣𝑟,𝛾𝑢𝑟−1 (I.2.21)

is a unital ∗-antihomomorphism of ∗-algebras, where 𝜑 ∈ Pol(𝐺) and 𝑆 is the
antipode for Pol(𝐺).
Moreover, 𝑆 is the antipode for the ∗-bialgebra (A , Δ̃).

(c) The linear functional

𝜏 : A → C, 𝑢𝛾𝜑 ↦→ 𝛿𝛾,𝑒Γ𝜏 (𝜑) (I.2.22)

is the Haar state for the Hopf ∗-algebra (A , Δ̃), where 𝜏 : Pol(𝐺) → C is the
Haar state on (Pol(𝐺),Δ).
Moreover, 𝜏 is tracial.

Proof. (a). Since for all 𝛾, 𝜇 ∈ Γ, 𝜑𝛾 , 𝜑𝜇, 𝜑 ∈ Pol(𝐺), we have

𝜖 (𝑢𝛾𝜑𝛾𝑢𝜇𝜙𝜇) = 𝜖
(
𝑢𝛾𝜇 (𝛼∗𝜇𝜑𝛾 )𝜑𝜇

)
= 𝜑𝛾

(
𝛼𝜇 (𝑒𝐺 )

)
𝜑𝜇 (𝑒𝐺 )

= 𝜑𝛾 (𝑒𝐺 )𝜑𝜇 (𝑒𝐺 ) = 𝜖 (𝜑𝛾 )𝜖 (𝜙𝜇)

and
𝜖 (𝑢𝛾−1 ) = 𝑢𝛾 , 𝜖 (𝜑) = 𝜖 (𝜑) = 𝜑 (𝑒𝐺 ),

the linear mapping 𝜖 is indeed a unital ∗-morphism.
Since Γ and Pol(𝐺) generates A as an algebra, to show that 𝜖 is the counit for Δ̃,

it su�ces to check that the ∗-morphisms (id ⊗𝜖)Δ̃ and (𝜖 ⊗ id)Δ̃ both act as identity
on all 𝑢𝛾 , 𝛾 ∈ Γ and 𝜑 ∈ Pol(𝐺). By de�nition, Δ̃|Pol(𝐺) = Δ and 𝜖 = 𝜖 , hence this
condition on 𝜑 ∈ Pol(𝐺) is automatic. As for 𝑢𝛾 , we calculate

(id ⊗𝜖)Δ̃(𝑢𝛾 ) =
∑︁
𝑟 ∈𝛾 ·𝐺

𝜖 (𝑢𝑟 )𝑢𝛾𝑣𝛾,𝑟 = 𝑢𝛾
∑︁
𝑟 ∈𝛾 ·𝐺

𝑣𝛾,𝑟 = 𝑢𝛾

=
∑︁
𝑟 ∈𝛾 ·𝐺

𝛿𝛾,𝑟𝑢𝑟 =
∑︁
𝑟 ∈𝛾 ·𝐺

𝜖 (𝑢𝛾𝑣𝛾,𝑟 )𝑢𝑟 = (𝜖 ⊗ id)Δ̃(𝑢𝛾 ).

This �nishes the proof of (a).

1By this, wemean the unique linear mapping sending𝑢𝛾𝜑 to𝜑 (𝑒𝐺 ) . Note thatA is the linear span of{
𝑢𝛾𝜑 : 𝛾 ∈ Γ, 𝜑 ∈ Pol(𝐺)

}
, so this makes sense. The same applies to (b) and (c) below without further

remark.
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(b). Since 𝑆 |Pol(𝐺) = 𝑆 is a ∗-antihomomorphism, to establish that 𝑆 is also a
∗-antihomomorphism, it su�ces, by the general theory, to show that 𝑆 is the antipode
for the ∗-bialgebra (A , Δ̃) and is also ∗-preserving. For all 𝛾 ∈ Γ, 𝜑 ∈ Pol(𝐺), using
the Sweedler notations and the Hopf ∗-algebra structure on Pol(𝐺), we have that

𝑚(id ⊗𝑆)Δ̃(𝑢𝛾𝜑) =𝑚(id ⊗𝑆)
( ∑︁
𝑟 ∈𝛾 ·𝐺

∑︁
𝑢𝛾𝑣𝛾,𝑟𝜑 (1) ⊗ 𝑢𝑟𝜑 (2)

)
=

∑︁
𝑟,𝑠∈𝛾 ·𝐺

∑︁
𝑢𝛾𝑣𝛾,𝑟𝜑 (1)𝑆 (𝜑 (2) )𝑣𝑠,𝑟𝑢𝑠−1

=
∑︁

𝑟,𝑠∈𝛾 ·𝐺
𝑢𝛾𝑣𝛾,𝑟𝑣𝑠,𝑟

(∑︁
𝜑 (1)𝑆 (𝜑 (2) )

)
𝑢𝑠−1

=
∑︁

𝑟,𝑠∈𝛾 ·𝐺
𝛿𝑠,𝛾𝜖 (𝜑)𝑣𝛾,𝑟𝑢𝛾𝑢𝑠−1

=
∑︁
𝑟 ∈𝛾 ·𝐺

𝜖 (𝜑)𝑣𝛾,𝑟𝑢𝛾𝑢𝛾−1 = 𝜖 (𝜑)1 = 𝜖 (𝑢𝛾𝜑)1

and noticing 𝑆 (𝑣𝛾,𝑟 ) = 𝑣𝑟,𝛾 , that

𝑚(𝑆 ⊗ id)Δ̃(𝑢𝛾𝜑) =𝑚(𝑆 ⊗ id)
( ∑︁
𝑟 ∈𝛾 ·𝐺

∑︁
𝑢𝛾𝑣𝛾,𝑟𝜑 (1) ⊗ 𝑢𝑟𝜑 (2)

)
=

∑︁
𝑟,𝑠∈𝛾 ·𝐺

∑︁
𝑣𝑟,𝛾𝑆 (𝜑 (1) )𝑣𝑠,𝛾𝑢𝑠−1𝑢𝑟𝜑 (2)

=
∑︁

𝑟,𝑠∈𝛾 ·𝐺
𝛿𝑟,𝑠𝑣𝑟,𝛾𝑆 (𝜑 (1) )𝑢𝑠−1𝑟𝜑 (2)

=
∑︁
𝑟 ∈𝛾 ·𝐺

∑︁
𝑣𝑟,𝛾𝑆 (𝜑 (1) )𝜑 (2) =

∑︁
𝑟 ∈𝛾 ·𝐺

𝜖 (𝜑)𝑣𝑟,𝛾

= 𝜖 (𝜑)1 = 𝜖 (𝑢𝛾𝜑)1.

Hence 𝑆 is indeed the antipode for (A , Δ̃), and is in particular a unital antihomomor-
phism of algebras. That 𝑆 is ∗-preserving follows from the fact that 𝑆 is ∗-preserving
on Pol(𝐺), and that[

𝑆 (𝑢𝛾 )
]∗

=

{ ∑︁
𝑟 ∈𝛾 ·𝐺

𝑣𝑟,𝛾𝑢𝑟−1

}∗

=
∑︁
𝑟 ∈𝛾 ·𝐺

𝑢𝑟𝑣𝑟,𝛾 =
∑︁
𝑟 ∈𝛾 ·𝐺

(𝛼∗
𝑟−1𝑣𝑟,𝛾 )𝑢𝑟

(♠)
==

∑︁
𝑟 ∈𝛾 ·𝐺

𝑣𝑟−1,𝛾−1𝑢𝑟 =
∑︁

𝑠∈𝛾−1 ·𝐺
𝑣𝑠,𝛾−1𝑢𝑠−1 (see Lemma I.1.9 for (♠))

= 𝑆 (𝑢𝛾−1 ) = 𝑆 (𝑢∗𝛾 ).

(c). By de�nition, 𝜏 (1) = 𝜏 (1𝐺 ) = 1. To show that 𝜏 is a state, it su�ces to
check that it is positive. Take an arbitrary element of A , this element is a �nite sum∑
𝛾 ∈Γ 𝑢𝛾𝜑𝛾 , where all but �nitely many 𝜑𝛾 ∈ Pol(𝐺) are nonzero. Recall that as a

set A = 𝐶𝑐 (Γ, Pol(𝐺)) and note that for a map 𝐹 ∈ 𝐶𝑐 (Γ, Pol(𝐺)), by de�nition,
𝜏 (𝐹 ) = 𝜏

(
𝐹 (𝑒𝐺 )

)
. Motivating by these observations, we calculate{(∑︁

𝛾 ∈Γ
𝑢𝛾𝜑𝛾

)∗ (∑︁
𝛾 ∈Γ

𝑢𝛾𝜑𝛾

)}
(𝑒𝐺 ) =

{ ∑︁
𝛾,𝜇∈Γ

𝜑𝛾𝑢𝛾−1𝜇𝜑𝜇

}
(𝑒𝐺 ) =

∑︁
𝛾 ∈Γ

𝜑𝛾𝜑𝛾 ≥ 0,

which implies 𝜏 is positive since 𝜏 is positive.
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We now show that 𝜏 is an integral, i.e. it is invariant. Take any 𝛾 ∈ Γ, 𝜑 ∈ Pol(𝐺),
using the Sweedler’s notation for (Pol(𝐺),Δ), we have

(id ⊗𝜏)Δ̃(𝑢𝛾𝜑) =
∑︁
𝑟 ∈𝛾 ·𝐺

∑︁
𝜏 (𝑢𝑟𝜑 (2) )𝑢𝛾𝑣𝛾,𝑟𝜑 (1)

=
∑︁
𝑟 ∈𝛾 ·𝐺

𝑢𝛾𝑣𝛾,𝑟
∑︁

𝛿𝑟,𝑒Γ𝜏 (𝜑 (2) )𝜑 (1)

= 𝛿𝛾,𝑒Γ

∑︁
𝑟 ∈𝛾 ·𝐺

𝑢𝛾𝑣𝛾,𝑟
∑︁

𝜏 (𝜑 (2) )𝜑 (1)

= 𝛿𝛾,𝑒Γ

∑︁
𝑟 ∈𝛾 ·𝐺

𝜏 (𝜑)𝑣𝛾,𝑟1 = 𝛿𝛾,𝑒Γ𝜏 (𝜑)1 = 𝜏 (𝑢𝛾𝜑)1,

and

(𝜏 ⊗ id)Δ̃(𝑢𝛾𝜑) =
∑︁
𝑟 ∈𝛾 ·𝐺

∑︁
𝜏 (𝑢𝛾𝑣𝛾,𝑟𝜑 (1) )𝑢𝑟𝜑 (2)

= 𝛿𝛾,𝑒𝐺

∑︁
𝑟 ∈𝛾 ·𝐺

∑︁
𝜏 (𝑣𝛾,𝑟𝜑 (1) )𝑢𝑟𝜑 (2)

= 𝛿𝛾,𝑒𝐺

∑︁
𝜏 (𝑣𝑒Γ,𝑒Γ𝜑 (1) )𝑢𝑒Γ𝜑 (2)

= 𝛿𝛾,𝑒𝐺

∑︁
𝜏 (𝜑 (1) )𝜑 (2) = 𝛿𝛾,𝑒𝐺𝜏 (𝜑)1 = 𝜏 (𝑢𝛾𝜑)1.

Therefore, 𝜏 is indeed invariant.
Now that (A , Δ̃) is an algebraic compact quantum group of Kac type (since 𝑆 is

∗-preserving, see (b)), the Haar state 𝜏 is tracial by the general theory. Alternatively,
one can check directly that 𝜏 is tracial by a routine calculation and Lemma I.1.6. �

De�nition I.2.12. Wecall the algebraic compact quantumgroupG in Theorem I.2.11
the bicrossed product of the matched pair (Γ,𝐺) of groups2.

Using the GNS construction with respect to the Haar state 𝜏 , we obtain immedi-
ately the 𝐶∗-algebraic and von Neumann algebraic version of G.

Corollary I.2.13. (Fima, Mukherjee & Patri (Fima et al., 2017)) Using the above nota-
tions, and recall that 𝛼 : Γ y 𝐶 (𝐺) is the left action 𝛾 ↦→ 𝛼∗

𝛾−1
, the reduced (resp. full)

𝐶∗-version of G is given by the reduced (resp. full) crossed product Γ n𝛼,red 𝐶 (𝐺) (resp.
Γ n𝛼,full 𝐶 (𝐺)) of 𝐶∗-algebras, and the von Neumann algebraic version of G is given
by the von Neumann algebraic cross product Γ n𝛼 𝐿(𝐺), with the comultiplications in
each case being the unique extension of Δ̃ by continuity (weak continuity in the von
Neumann case, id. for the Haar state), and the Haar states in each case being the unique
extension of 𝜏 by continuity. �

I.3 Decomposition of A as a comodule

We begin by recalling some generalities about algebraic compact quantum groups,
their corepresentations and comodules. Let H = (H ,Δ) be an algebraic compact
quantum group with Haar state ℎ. Then as a vector space, H is equipped with the
inner product 〈· , ·〉ℎ induced by ℎ, i.e. 〈𝑥 , 𝑦〉ℎ = ℎ(𝑥∗𝑦) for all 𝑥,𝑦 ∈ H . A right
comodule over the coalgebra H is a vector space 𝑉 equipped with a linear map
(called the structure map) 𝛿 : 𝑉 → 𝑉 ⊗ H such that (𝛿 ⊗ id)𝛿 = (id ⊗Δ)𝛿 , and

2Of course, G depends on the actions, see De�nition I.1.3 and the remark on our notations after it
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(id ⊗𝜖)𝛿 = id, where 𝜖 : H → C is the counit. If in addition 𝑉 is also an inner-
product space, then the comodule (𝑉 , 𝛿) is called unitary when

∀𝜉, 𝜂 ∈ 𝑉 , 〈𝛿 (𝜉) , 𝛿 (𝜂)〉 = 〈𝜉 , 𝜂〉1H (I.3.1)

where the “inner product” on the left side of (I.3.1) is on the (algebraic) tensor prod-
uct 𝑉 ⊗ H with values in H de�ned by 〈𝑎 ⊗ 𝑥 , 𝑏 ⊗ 𝑦〉 = 〈𝑎 , 𝑏〉𝑥∗𝑦, and 1H is the
multiplicative identity of the algebra H . Given a �nite dimensional right module
(𝑉 , 𝛿) of H , there exists a unique representation 𝑈 ∈ B(𝑉 ) ⊗ H of H on 𝑉 such
that𝑈 (𝜉⊗1H ) = 𝛿 (𝜉) for all 𝜉 ∈ 𝑉 . Conversely, if𝑈 ∈ B(𝑉 )⊗H is a representation
of H on𝑉 , then𝑉 is a right comodule of H whose structure map 𝛿 is de�ned by the
same formula. By the general theory of algebraic compact quantum groups, one has
H is a unitary right comodule over H itself, where the structure map is the comul-
tiplication Δ, and H admits a unique decomposition H = ⊕𝑖∈𝐼H𝑖 as an orthogonal
algebraic direct sum of comodules, such that each component H𝑖 corresponds to a
pure representation which is a direct sum of �nitely many copies of some irreducible
unitary representation𝑈𝑖 ofH, and the unitary representations corresponding to dif-
ferent H𝑖 ’s are pairwise orthogonal. Moreover, each H𝑖 is spanned by the matrix
coe�cients of𝑈𝑖 , hence is in fact a sub-coalgebra of H and the multiplicity of𝑈𝑖 in
the representation corresponding to H𝑖 is exactly dim𝑈𝑖 . If we �x a Hilbert basis for
𝑈𝑖 , and write the matrix coe�cients of𝑈𝑖 as 𝑢 (𝑖)

𝑝,𝑞 , then since Δ(𝑢 (𝑖)
𝑝,𝑞) =

∑
𝑟 𝑢

(𝑖)
𝑝,𝑟 ⊗𝑢

( 𝑗)
𝑟,𝑞 ,

one has H𝑖 = ⊕𝑝H (𝑖)
𝑝 , where each H (𝑖)

𝑝 is spanned by elements of the form 𝑢
(𝑖)
𝑝,𝑞

with 𝑝 �xed and 𝑞 arbitrary. All of the irreducible sub-comodules H (𝑖)
𝑝 are equiva-

lent, and corresponds to a copy of𝑈𝑖 . It follows from the orthogonality relations that
every irreducible unitary representation of H is a copy of a unique𝑈𝑖 .

With the above picture of representations (which are corepresentations of the
underlying Hopf algebras) and comodules of algebraic compact quantum groups in
mind, together with the construction described in I.2, one can now describe all ir-
reducible unitary representations, up to equivalence, of the bicrossed product G =

(A , Δ̃)—one simply study the (irreducible) sub-comodules of A generated by a sin-
gle suitable element, since every irreducible unitary representation ofG is equivalent
to the representation corresponding to a simple sub-comodule of A , and all such
simple sub-comodules are generated by any of its nonzero element.

By the de�nition of Δ̃ and 𝜏 , it is obvious that one has the following orthogonal
decomposition of A as comodules over A :

A =
⊕
𝛾 ∈Γ

A𝛾 =
⊕
𝛾 ∈Γ

𝑢𝛾 Pol(𝐺), (I.3.2)

where A𝛾 := 𝑢𝛾 Pol(𝐺) is the sub-comodule
{
𝑢𝛾𝜑 : 𝜑 ∈ Pol(𝐺)

}
. As we’ve pointed

out, all irreducible sub-comodules are generated by any of its nonzero elements, by
the co-semisimplicity of A , one has only to describe the structure of sub-comodules
of each A𝛾 that is generated by a single element, i.e., an element of the form 𝑢𝛾𝜑 ,
where 𝜑 ∈ Pol(𝐺).

Before we proceed, we recall the notion of rank of an algebraic tensor. Let 𝑉 ,𝑊
be two vector spaces, recall the rank rank(𝑡) of a tensor 𝑡 ∈ 𝑉 ⊗𝑊 is the smallest
integer 𝑛 ∈ N, such that there exists 𝑣1, . . . , 𝑣𝑛 ∈ 𝑉 and𝑤1, . . . ,𝑤𝑛 ∈𝑊 satisfying

𝑡 =
𝑛∑︁
𝑖=1

𝑣𝑖 ⊗𝑤𝑖 . (I.3.3)
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It is easy to see that if one has a decomposition (I.3.3), then rank(𝑡) = 𝑛 if and only
if both (𝑣1, . . . , 𝑣𝑛) and (𝑤1, . . . ,𝑤𝑛) are linearly independent.

We also recall the notations in Lemma I.2.2, namely for 𝜑 ∈ Pol(𝐺), the subspace
L𝐺 (𝜑) (resp. R𝐺 (𝜑)) is the �nite dimensional subspace generated by left (right)
translations of 𝜑 .

Finally, we return to the general case discussed at the beginning of this section,
the right sub-comodule generated by an arbitrary element 𝑥 ∈ H is exactlyH ′ ·𝑥 =

{(id ⊗𝑙)Δ(𝑥) : 𝑙 ∈ H ′}, where H ′ is the algebraic dual of H . In particular, if H
is some classical compact group 𝐻 viewed as an algebraic compact quantum group,
i.e. H = Pol(𝐻 ), then the right sub-comodule generated by 𝜑 ∈ Pol(𝐻 ) is exactly
R𝐻 (𝜑), since all linear functionals on Pol(𝐻 ) are linear combinations of evaluations
on some point of 𝐺 , and [Δ(𝜑)] (𝑥,𝑦) = 𝜑 (𝑥𝑦) for all 𝑥,𝑦 ∈ 𝐻 .

Lemma I.3.1. For all 𝛾 ∈ Γ, and all nonzero 𝜑 ∈ Pol(𝐺), the sub-comodule 𝐶𝛾 (𝜑) of
A𝛾 generated by 𝑢𝛾𝜑 is exactly

𝑢𝛾

( ⊕
𝜇∈𝛾 ·𝐺

𝑣𝛾,𝜇R𝐺 (𝜑)
)
= Vect

{
𝑢𝛾𝑣𝛾,𝜇𝜑 ( ·𝑔) : 𝑔 ∈ 𝐺, 𝜇 ∈ 𝛾 ·𝐺

}
,

where the direct sum decomposition is orthogonal.

Proof. By de�nition, we have

Δ̃(𝑢𝛾𝜑) =
∑︁
𝜇∈𝛾 ·𝐺

(𝑢𝛾 ⊗ 𝑢𝜇) [(𝑣𝛾,𝜇 ⊗ 1)Δ(𝜑)] =
∑︁
𝜇∈𝛾 ·𝐺

𝑛∑︁
𝑖=1

(𝑢𝛾𝑣𝛾,𝜇𝜑1,𝑖 ) ⊗ (𝑢𝜇𝜑2,𝑖 ), (I.3.4)

where 𝑛 = rank
(
Δ(𝜑)

)
, and

Δ(𝜑) =
𝑛∑︁
𝑖=1

𝜑1,𝑖 ⊗ 𝜑2,𝑖 ∈ Pol(𝐺) ⊗ Pol(𝐺). (I.3.5)

Since 𝜑2,𝑖 , 𝑖 = 1, . . . , 𝑛 are linearly independent, so are 𝑢𝜇𝜑2,𝑖 , 𝜇 ∈ 𝛾 · 𝐺 , 𝑖 = 1, . . . , 𝑛.
Thus the sub-comodule generated by 𝑢𝛾𝜑 is exactly the subspace spanned by ele-
ments of the form 𝑢𝛾𝑣𝛾,𝜇𝜑1,𝑖 with 𝜇 ∈ 𝛾 · 𝐺 and 𝑖 = 1, . . . , 𝑛. On the other hand, by
the discussion above the lemma, we also have

Vect
{
𝜑1,𝑖 : 𝑖 = 1, . . . , 𝑛

}
= R𝐺 (𝜑).

Hence the sub-comodule generated by𝑢𝛾𝜑 is indeed spanned by𝑢𝛾
∑
𝜇∈𝛾 ·𝐺 𝑣𝛾,𝜇R𝐺 (𝜑).

The fact that this is an orthogonal direct sum decomposition follows by a direct cal-
culation using the de�nition of the faithful Haar state 𝜏 on A . �

Lemma I.3.2. Let 𝛾 ∈ Γ, 𝜑 ∈ Pol(𝐺), and take any 𝜇 ∈ 𝛾 · 𝐺 and any 𝑔 ∈ 𝐺𝛾,𝜇 , the
following hold:

(a) the linear mapping 𝑅𝑔 : 𝜓 ↦→ 𝜓 ( ·𝑔) is an isomorphism from 𝑣𝛾,𝜇R𝐺 (𝜑) onto
𝑣𝛾,𝛾R𝐺 (𝜑);

(b) dim 𝑣𝛾,𝜇R𝐺 (𝜑) = dim 𝑣𝛾,𝛾R𝐺 (𝜑) = rank
(
(𝑣𝛾,𝜇⊗1)Δ(𝜑)

)
= rank

(
(𝑣𝛾,𝛾⊗1)Δ(𝜑)

)
;
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Proof. Since R𝐺 (𝜑) is right invariant, the linear mapping 𝑅𝑔 is well-de�ned (note
that 𝑔 ∈ 𝐺𝛾,𝜇 implies that 𝑅𝑔 (𝑣𝛾,𝜇) = 𝑣𝛾,𝛾 ). Similarly, since 𝑔−1 ∈ 𝐺𝜇,𝛾 , the linear
mapping 𝑅𝑔−1 : 𝑣𝛾,𝛾R𝐺 (𝜑) → 𝑣𝛾,𝜇R𝐺 (𝜑) is well-de�ned, and it is obviously the
inverse of 𝑅𝑔 : 𝑣𝛾,𝜇R𝐺 (𝜑) → 𝑣𝛾,𝛾R𝐺 (𝜑). This proves (a).

We now prove (b). By [Δ(𝜑)] (𝑥,𝑦) = 𝜑 (𝑥𝑦) for all 𝑥,𝑦 ∈ 𝐺 , it is clear that Δ(𝜑) ∈
R𝐺 (𝜑)⊗L𝐺 (𝜑). SinceL𝐺 (𝜑) is left-invariant, themapping 𝐿𝑔−1 : L𝐺 (𝜑) → L𝐺 (𝜑),
𝜓 ↦→ 𝜓 (𝑔−1 · ) is a well-de�ned linear isomorphism. Hence by (a),

𝑅𝑔 ⊗ 𝐿𝑔−1 :
(
𝑣𝛾,𝜇R𝐺 (𝜑)

)
⊗ L𝐺 (𝜑) →

(
𝑣𝛾,𝛾R𝐺 (𝜑)

)
⊗ L𝐺 (𝜑) (I.3.6)

is a well-de�ned linear isomorphism. On the other hand, for all 𝑔1, 𝑔2 ∈ 𝐺 , we have{
(𝑅𝑔 ⊗ 𝐿𝑔−1 ) [(𝑣𝛾,𝜇 ⊗ 1)Δ(𝜑)]

}
(𝑔1, 𝑔2) = [(𝑣𝛾,𝜇 ⊗ 1)Δ(𝜑)] (𝑔1𝑔,𝑔−1𝑔2)

= 𝑣𝛾,𝜇 (𝑔1𝑔)𝜑 (𝑔1𝑔2) = 𝑣𝛾,𝛾 (𝑔1)𝜑 (𝑔1𝑔2) = [(𝑣𝛾,𝛾 ⊗ 1)Δ(𝜑)] (𝑔1, 𝑔2) .

Thus (𝑅𝑔 ⊗ 𝐿𝑔−1 ) [(𝑣𝛾,𝜇 ⊗ 1)Δ(𝜑)] = (𝑣𝛾,𝛾 ⊗ 1)Δ(𝜑), and

rank
(
(𝑣𝛾,𝜇 ⊗ 1)Δ(𝜑)

)
= rank

(
(𝑣𝛾,𝛾 ⊗ 1)Δ(𝜑)

)
,

as it is clear that the isomorphism (I.3.6) preserves the rank of all tensors. On the
other hand, it is clear from (a) that

dim 𝑣𝛾,𝜇R𝐺 (𝜑) = dim 𝑣𝛾,𝛾R𝐺 (𝜑).

Put 𝑑 = dim 𝑣𝛾,𝛾R𝐺 (𝜑) and 𝑑 ′ = rank
(
(𝑣𝛾,𝛾 ⊗ 1)Δ(𝜑)

)
, it remains to show that

𝑑 = 𝑑 ′. Let C𝛾 (𝜑) be the sub-comodule of A generated 𝑢𝛾𝜑 . Then by Lemma I.3.1,
we have dimC𝛾 (𝜑) = 𝑑 · |𝛾 ·𝐺 |. On the other hand, for all 𝑟 ∈ 𝛾 · 𝐺 , there is a
decomposition

(𝑣𝛾,𝑟 ⊗ 1)Δ(𝜑) =
𝑑′∑︁
𝑖=1

𝜑𝑟,𝑖 ⊗𝜓𝑟,𝑖 ,

where 𝜑𝑟,𝑖 ∈ 𝑣𝛾,𝑟R𝐺 (𝜑) and 𝜓𝑟,𝑖 ∈ L𝐺 (𝜑), since rank
(
(𝑣𝛾,𝑟 ⊗ 1)Δ(𝜑)

)
= 𝑑 ′ and

Δ(𝜑) ∈ R𝐺 (𝜑) ⊗ L𝐺 (𝜑). Hence

Δ̃(𝑢𝛾𝜑) =
∑︁
𝑟 ∈𝛾 ·𝐺

(𝑢𝛾 ⊗ 𝑢𝑟 ) [(𝑣𝛾,𝑟 ⊗ 1)Δ(𝜑)] =
∑︁
𝑟 ∈𝛾 ·𝐺

𝑑′∑︁
𝑖=1

𝑢𝛾𝜑𝑟,𝑖 ⊗ 𝑢𝑟𝜓𝑟,𝑖 . (I.3.7)

Since 𝑑 ′ = rank
(
(𝑣𝛾,𝑟 ⊗ 1)Δ(𝜑)

)
, the families (𝜑𝑟,𝑖 : 𝑖 = 1, . . . , 𝑑 ′) and (𝜓𝑟,𝑖 :

𝑖 = 1, . . . , 𝑑 ′) are both linearly independent. Note that 𝜑𝑟,𝑖 is supported in 𝐺𝛾,𝑟 and
𝐺𝛾,𝑟 , 𝑟 ∈ 𝛾 ·𝐺 are a partition of 𝐺 , it follows that the families(

𝑢𝛾𝜑𝑟,𝑖 : 𝑟 ∈ 𝛾 ·𝐺, 𝑖 = 1, . . . , 𝑑 ′
)

and (
𝑢𝑟𝜓𝑟,𝑖 : 𝑟 ∈ 𝛾 ·𝐺, 𝑖 = 1, . . . , 𝑑 ′

)
are also both linearly independent. Together with (I.3.7), this implies that(

𝑢𝛾𝜑𝑟,𝑖 : 𝑟 ∈ 𝛾 ·𝐺, 𝑖 = 1, . . . , 𝑑 ′
)

is a basis for C𝛾 (𝜑), and 𝑑 ′ · |𝛾 ·𝐺 | = dimC𝛾 (𝜑) = 𝑑 · |𝛾 ·𝐺 |. Hence 𝑑 ′ = 𝑑 . �

Theorem I.3.3. Let 𝛾 ∈ Γ, 0 ≠ 𝜑 ∈ Pol(𝐺). Suppose C is the sub-comodule of A
generated by 𝑢𝛾𝜑 , and put 𝑑 = dim 𝑣𝛾,𝛾R𝐺 (𝜑), then the following hold:
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(a) C is a �nite dimensional Hilbert space as a subspace of the inner product space
A ;

(b) there is an orthonormal basis B :=
(
𝑢𝛾𝜑

(𝑖)
𝜇 : 𝜇 ∈ 𝛾 ·𝐺, 𝑖 = 1, . . . , 𝑑

)
for the

Hilbert space C , such that for all 1 ≤ 𝑖 ≤ 𝑑 , 𝜇 ∈ 𝛾 ·𝐺 , we have supp𝜑 (𝑖)
𝜇 ⊆ 𝐺𝛾,𝜇 ;

(c) dimC C = 𝑑 · |𝛾 ·𝐺 |;

(d) if
(
𝐴
𝑖, 𝑗
𝑟 ,𝑠

)
is the matrix coe�cients of C with respect to the basis B, i.e.

Δ̃
(
𝑢𝛾𝜑

( 𝑗)
𝑠

)
=

𝑑∑︁
𝑖=1

∑︁
𝑟 ∈𝛾 ·𝐺

(
𝑢𝛾𝜑

(𝑖)
𝑟

)
⊗ 𝐴𝑖, 𝑗𝑟,𝑠 (I.3.8)

for all 1 ≤ 𝑗 ≤ 𝑑 , 𝑠 ∈ 𝛾 ·𝐺 , then all 𝐴𝑖, 𝑗𝑟,𝑠 ∈ A are of the form 𝑢𝑟𝑎
𝑖, 𝑗
𝑟 ,𝑠 for a unique

𝑎
𝑖, 𝑗
𝑟,𝑠 ∈ 𝑣𝑟,𝑠 Pol(𝐺). Moreover, de�ne 𝑢𝑟,𝑠 :=

∑𝑑
𝑖,𝑗=1 𝑒𝑖, 𝑗 ⊗ 𝑎

𝑖, 𝑗
𝑟,𝑠 ∈ B(C𝑑 ) ⊗ Pol(𝐺),

where (𝑒𝑖, 𝑗 ) is the matrix unit corresponding to the canonical basis of C𝑑 , and
𝑟, 𝑠 ∈ 𝛾 ·𝐺 , then

𝑢∗𝑟,𝑠𝑢𝑟,𝑠 = 𝑢𝑟,𝑠𝑢
∗
𝑟,𝑠 = idC𝑑 ⊗𝑣𝑟,𝑠 , (I.3.9)

and
(id ⊗Δ) (𝑢𝑟,𝑠 ) =

∑︁
𝑡 ∈𝛾 ·𝐺

(
𝑢𝑟,𝑡

)
12

(
𝑢𝑡,𝑠

)
13. (I.3.10)

Proof. (a) follows from Lemma I.3.1 since R𝐺 (𝜑) is �nite dimensional. (c) follows
directly from (b), while (b) is a direct consequence of the orthogonal decomposition
in Lemma I.3.1 and (b) of Lemma I.3.2.

It remains only to show (d). By Lemma I.3.2, we see that the subspace⊕
𝜇∈𝛾 ·𝐺

𝑣𝛾,𝜇R𝐺 (𝜑)

of Pol(𝐺) is right invariant, hence it is a sub-comodule of Pol(𝐺) over Pol(𝐺). It
is clear from (b) and Lemma I.3.1 that B𝜇 :=

(
𝜑
(𝑖)
𝜇 : 𝑖 = 1, . . . , 𝑑

)
is an orthonor-

mal basis for 𝑣𝛾,𝜇R𝐺 (𝜑) and the disjoint union ∪𝜇∈𝛾 ·𝐺B𝜇 is a basis for the comodule
⊕𝜇∈𝛾 ·𝐺𝑣𝛾,𝜇R𝐺 (𝜇). Note that the comodule ⊕𝜇∈𝛾 ·𝐺𝑣𝛾,𝜇R𝐺 (𝜑) is stable under multipli-
cation by 𝑣𝛾,𝑟 for all 𝑟 ∈ 𝛾 ·𝐺 . Since 𝜑 (𝑖)

𝜇 ∈ 𝑣𝛾,𝜇R𝐺 (𝜑), we have

(𝑣𝛾,𝑟 ⊗ 1)Δ
(
𝜑
(𝑖)
𝜇

)
= (𝑣𝛾,𝑟 ⊗ 𝑣𝑟,𝜇)Δ

(
𝜑
(𝑖)
𝜇

)
for all 𝑟 ∈ 𝛾 ·𝐺 . Hence there exists 𝑎 𝑗,𝑖𝑟,𝜇 ∈ 𝑣𝑟,𝜇 Pol(𝐺), 𝑗 = 1, . . . , 𝑑 , such that

(𝑣𝛾,𝑟 ⊗ 1)Δ
(
𝜑
(𝑖)
𝜇

)
=

𝑑∑︁
𝑗=1

𝜑
( 𝑗)
𝑟 ⊗ 𝑎 𝑗,𝑖𝑟,𝜇 . (I.3.11)

By (I.3.11), we have

Δ̃
(
𝑢𝛾𝜑

( 𝑗)
𝑠

)
=

∑︁
𝑟 ∈𝛾 ·𝐺

(𝑢𝛾 ⊗ 𝑢𝑟 )
[
(𝑣𝛾,𝑟 ⊗ 1)Δ

(
𝜑
( 𝑗)
𝑠

)]
=

∑︁
𝑟 ∈𝛾 ·𝐺

(𝑢𝛾 ⊗ 𝑢𝑟 )
𝑑∑︁
𝑖=1

𝜑
(𝑖)
𝑟 ⊗ 𝑎𝑖, 𝑗𝑟 ,𝑠

=
∑︁
𝑟 ∈𝛾 ·𝐺

𝑑∑︁
𝑖=1

(
𝑢𝛾𝜑

(𝑖)
𝑟

)
⊗

(
𝑢𝑟𝑎

𝑖, 𝑗
𝑟 ,𝑠

)
.

(I.3.12)
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Hence 𝐴𝑖, 𝑗𝑟 ,𝑠 = 𝑢𝑟𝑎
𝑖, 𝑗
𝑟,𝑠 . Since 𝐴

𝑖, 𝑗
𝑟,𝑠 , 𝑟, 𝑠 ∈ 𝛾 ·𝐺 , 𝑖, 𝑗 = 1, . . . , 𝑑 are matrix coe�cients of C

with respect to the orthonormal basis B, for all 𝑟, 𝑠 ∈ 𝛾 ·𝐺 , 𝑖, 𝑗 = 1, . . . , 𝑑 , we have∑︁
𝑡 ∈𝛾 ·𝐺

𝑑∑︁
𝑘=1

𝐴
𝑖,𝑘
𝑟,𝑡

(
𝐴
𝑗,𝑘
𝑠,𝑡

)∗
= 𝛿𝑖, 𝑗𝛿𝑟,𝑠1 =

∑︁
𝑡 ∈𝛾 ·𝐺

𝑑∑︁
𝑘=1

(
𝐴
𝑘,𝑖
𝑡,𝑟

)∗
𝐴
𝑘,𝑗
𝑡,𝑠 (I.3.13)

and

Δ̃
(
𝐴
𝑖, 𝑗
𝑟 ,𝑠

)
=

∑︁
𝑡 ∈𝛾 ·𝐺

𝑑∑︁
𝑘=1

𝐴
𝑖,𝑘
𝑟,𝑡 ⊗ 𝐴

𝑘,𝑗
𝑡,𝑠 . (I.3.14)

Using 𝐴𝑖, 𝑗𝑟,𝑠 = 𝑢𝑟𝑎
𝑖, 𝑗
𝑟,𝑠 , (I.3.13) becomes∑︁
𝑡 ∈𝛾 ·𝐺

𝑑∑︁
𝑘=1

𝑎
𝑖,𝑘
𝑟,𝑡

(
𝑎
𝑗,𝑘
𝑠,𝑡

)∗
= 𝛿𝑖, 𝑗𝛿𝑟,𝑠1 =

∑︁
𝑡 ∈𝛾 ·𝐺

𝑑∑︁
𝑘=1

(
𝑎
𝑘,𝑖
𝑡,𝑟

)∗
𝑎
𝑘,𝑗
𝑡,𝑠 . (I.3.15)

Since 𝑣𝑟,𝑡𝑣𝑠,𝑡 = 𝛿𝑟,𝑠1,
∑
𝑡 ∈𝛾 ¤𝐺 𝑣𝑟,𝑡 = 1 and 𝑎𝑖, 𝑗𝑟 ,𝑠 is supported in 𝐺𝑟,𝑠 (i.e. 𝑎𝑖, 𝑗𝑟,𝑠 = 𝑣𝑟,𝑠𝑎

𝑖, 𝑗
𝑟,𝑠 ),

(I.3.15) is equivalent to

∀𝑟, 𝑠 ∈ 𝛾 ·𝐺, ∀𝑖, 𝑗 = 1, . . . , 𝑑,
𝑑∑︁
𝑘=1

𝑎𝑖,𝑘𝑟,𝑠

(
𝑎
𝑗,𝑘
𝑟,𝑠

)∗
= 𝛿𝑖, 𝑗𝑣𝑟,𝑠 =

𝑑∑︁
𝑘=1

(
𝑎𝑘,𝑖𝑟,𝑠

)∗
𝑎
𝑘,𝑗
𝑟,𝑠 . (I.3.16)

A simple calculation shows that (I.3.16) is equivalent to (I.3.9), thus the latter is es-
tablished.

On the other hand,

Δ̃
(
𝐴
𝑖, 𝑗
𝑟 ,𝑠

)
= Δ̃

(
𝑢𝑟𝑎

𝑖, 𝑗
𝑟 ,𝑠

)
=

∑︁
𝑡 ∈𝛾 ·𝐺

(𝑢𝑟 ⊗ 𝑢𝑡 )
[
(𝑣𝑟,𝑡 ⊗ 1)Δ

(
𝑎
𝑖, 𝑗
𝑟 ,𝑠

)]
,

hence (I.3.14) is equivalent to[
(𝑣𝑟,𝑡 ⊗ 1)Δ

(
𝑎
𝑖, 𝑗
𝑟,𝑠

)]
=

𝑑∑︁
𝑘=1

𝑎
𝑖,𝑘
𝑟,𝑡 ⊗ 𝑎

𝑘,𝑗
𝑡,𝑠 . (I.3.17)

A simple calculation shows that (I.3.10) is equivalent to

Δ
(
𝑎
𝑖, 𝑗
𝑟 ,𝑠

)
=

∑︁
𝑡 ∈𝛾 ·𝐺

𝑑∑︁
𝑘=1

𝑎
𝑖,𝑘
𝑟,𝑡 ⊗ 𝑎

𝑘,𝑗
𝑡,𝑠 . (I.3.18)

Since ∑
𝑡 ∈𝛾 ·𝐺 𝑣𝑟,𝑡 = 1, summing (I.3.17) over 𝑡 ∈ 𝛾 ·𝐺 yields (I.3.18). This �nishes the

proof of the theorem. �

Remark I.3.4. Let
(
𝑒𝑟,𝑠 : 𝑟, 𝑠 ∈ 𝛾 ·𝐺

)
be the matrix units of B

(
ℓ2 (𝛾 ·𝐺)

)
that corre-

sponds to the canonical orthonormal basis (𝛿𝑟 : 𝑟 ∈ 𝛾 ·𝐺). Part (d) of Theorem I.3.3
implies that the operator

𝑈 :=
∑︁

𝑟,𝑠∈𝛾 ·𝐺
𝑒𝑟,𝑠 ⊗ 𝑢𝑟,𝑠 ∈ B

(
ℓ2 (𝛾 ·𝐺)

)
⊗ B(C𝑑 ) ⊗ Pol(𝐺)

is a unitary representation of 𝐺 on the tensor product ℓ2 (𝛾 · 𝐺) ⊗ C𝑑 . This leads
naturally to the notion of O-representations of 𝐺 to be introduced in § I.4 (De�-
nition I.4.1), which will play a central role in our description of the representation
theory of the quantum group G.
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Theorem I.3.3, together with the correspondence between comodules over A as
a Hopf-algebra and representations of G, provides a useful clue of how to describe
the representation theory of G in terms of representation theories of some clopen
subgroups of𝐺 and the dynamics manifested by the actions 𝛼 and 𝛽 . We pursue this
description in § I.4.

I.4 Representation theory of the bicrossed product

This section aims to describe the representation theory of G using some more basic
data—representation theory of various isotropy (with respect to the action 𝛽) sub-
groups of 𝐺 and the dynamics of the bicrossed product actions 𝛼 and 𝛽 . We point
out here that even though § I.3 is not logically necessary to the treatment here, it
does provide the motivation to study O-representations (see De�nition I.4.1 and Re-
mark I.3.4) of𝐺 , which are crucial for our description of the representation theory of
the bicrossed product G. In fact, the proof of many results presented in this section
can be greatly simpli�ed using Theorem I.3.3, but we prefer to give an independent
treatment here, so that readers in a hurry could ignore the materials in § I.3 which
serves only as motivation.

First, we recall some notations. Let O be a 𝛽-orbit. There is a preferred Hilbert
basis for the �nite dimensional Hilbert space ℓ2 (O), namely the set

{
𝛿𝛾 : 𝛾 ∈ O

}
of Dirac measures on O . Let

(
𝑒𝑟,𝑠 : 𝑟, 𝑠 ∈ O

)
be the matrix units of B

(
ℓ2 (O)

)
with

respect to this basis, i.e. 𝑒𝑟,𝑠 (𝛿𝑡 ) = 𝛿𝑠,𝑡𝛿𝑟 for all 𝑡 ∈ O .

De�nition I.4.1. Let O be a 𝛽-orbit. An O-representation (of 𝐺) is a �nite di-
mensional unitary representation 𝑈 of the compact group 𝐺 on the tensor product
ℓ2 (O) ⊗ H , where H is a �nite dimensional Hilbert space, such that if we write𝑈
uniquely as3

𝑈 =
∑︁
𝑟,𝑠∈O

𝑒𝑟,𝑠 ⊗ 𝑢𝑟,𝑠 ∈ B
(
ℓ2 (O)

)
⊗ B(H ) ⊗ Pol(𝐺)

then
∀𝑟, 𝑠 ∈ O, 𝑢𝑟,𝑠𝑢

∗
𝑟,𝑠 = 𝑢

∗
𝑟,𝑠𝑢𝑟,𝑠 = idH ⊗𝑣𝑟,𝑠 .

Using the canonical identi�cation of B(H ) ⊗ 𝐶 (𝐺) with 𝐶
(
𝐺,B(H )

)
, we can

view each 𝑢𝑟,𝑠 as a mapping from 𝐺 to B(H ) whose support is exactly 𝐺𝑟,𝑠 . Here
are some elementary properties of O-representations.

Proposition I.4.2. Let O be a 𝛽-orbit, H a �nite dimensional Hilbert space, and
𝑈 =

∑
𝑟,𝑠∈O 𝑒𝑟,𝑠 ⊗ 𝑢𝑟,𝑠 an O-representation on ℓ2 (O) ⊗ H . The following hold:

(a) For all 𝑟, 𝑠, 𝑡 ∈ O and 𝑔 ∈ 𝐺𝑟,𝑠 , ℎ ∈ 𝐺𝑠,𝑡 , we have 𝑢𝑟,𝑠 (𝑔)𝑢𝑠,𝑡 (ℎ) = 𝑢𝑟,𝑡 (𝑔ℎ); or
equivalently,

(id ⊗Δ) (𝑢𝑟,𝑡 ) =
∑︁
𝛾 ∈O

(
𝑢𝑟,𝛾

)
12

(
𝑢𝛾,𝑡

)
13 ∈ B(H ) ⊗ Pol(𝐺) ⊗ Pol(𝐺). (I.4.1)

(b) For every 𝛾 ∈ O , the restriction of 𝑢𝛾,𝛾 onto 𝐺𝛾 is a unitary representation of 𝐺𝛾
on H .

(c) For all 𝑟, 𝑠 ∈ O and 𝑔 ∈ 𝐺𝑟,𝑠 , we have 𝑢𝑠,𝑟 (𝑔−1) = [𝑢𝑟,𝑠 (𝑔)]∗.
3Here, we use the canonical identi�cation of B

(
ℓ2 (O) ⊗ H

)
with B

(
ℓ2 (O) ⊗ B(𝐻 )

)
.
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(d) For all 𝑟, 𝑠 ∈ O , if 𝑔 ∈ 𝐺𝑟,𝑠 , then 𝜓𝑟,𝑠𝑔 : 𝐺𝑟 → 𝐺𝑠 , 𝑥 ↦→ 𝑔𝑥𝑔−1 is an isomorphism
and a homeomorphism, and the representation 𝑢𝑟,𝑟 |𝐺𝑟 is equivalent to

(
𝑢𝑠,𝑠 |𝐺𝑠

)
◦

𝜓
𝑟,𝑠
𝑔 , with 𝑢𝑠,𝑟 (𝑔) as a unitary intertwiner from 𝑢𝑟,𝑟 |𝐺𝑟 to

(
𝑢𝑠,𝑠 |𝐺𝑠

)
◦𝜓𝑟,𝑠𝑔 .

(e) For all 𝑟 ∈ O , the representation 𝑈 is equivalent to Ind𝐺𝐺𝑟
(
𝑢𝑟,𝑟 |𝐺𝑟

)
; or equiva-

lently,
𝜒𝑈 =

∑︁
𝛾 ∈O

𝜄𝛾

(
𝜒𝑢𝛾,𝛾 |𝐺𝛾

)
∈ Pol(𝐺), (I.4.2)

where 𝜒𝑈 (resp. 𝜒𝑢𝛾,𝛾 |𝐺𝛾 ) is the character of the representation 𝑈 (resp. 𝑢𝛾,𝛾 |𝐺𝛾 ),
and 𝜄𝛾 : 𝐶 (𝐺𝛾 ) → 𝐶 (𝐺) is the extension by taking the value 0 outside 𝐺𝛾 .

Proof. (a). Canonically identifying B(H ) ⊗𝐶 (𝐺) ⊗𝐶 (𝐺) with𝐶
(
𝐺 ×𝐺,B(H )

)
, we

have
[(id ⊗Δ) (𝑢𝑟,𝑡 )] (𝑔, ℎ) = 𝑢𝑟,𝑡 (𝑔ℎ) (I.4.3)

and [ (
𝑢𝑟,𝛾

)
12

(
𝑢𝛾,𝑡

)
13
]
(𝑔, ℎ) = 𝑢𝑟,𝛾 (𝑔)𝑢𝛾,𝑡 (ℎ). (I.4.4)

Since the support of 𝑢𝑟,𝛾 is exactly 𝐺𝑟,𝛾 , the equivalence in (a) follows directly from
(I.4.3) and (I.4.4). On the other hand, (I.4.1) holds because𝑈 is a representation of𝐺 .

(b). This follows directly from (a) by putting 𝑟 = 𝑠 = 𝑡 = 𝛾 and the condition that
(𝑈 is an O-representation)

𝑢𝛾,𝛾𝑢
∗
𝛾,𝛾 = 𝑢∗𝛾,𝛾𝑢𝛾,𝛾 = id𝐻 ⊗𝑣𝛾,𝛾 .

(c). Since 𝑔 ∈ 𝐺𝑟,𝑠 ⇐⇒ 𝑟 · 𝑔 = 𝑠 , we have 𝑠 · 𝑔−1 = 𝑟 and 𝑔−1 ∈ 𝐺𝑠,𝑟 . Thus by (a),
we have

𝑢𝑟,𝑠 (𝑔)𝑢𝑠,𝑟 (𝑔−1) = 𝑢𝑟,𝑟 (𝑔𝑔−1) = 𝑢𝑟,𝑟 (𝑒𝐺 ) = idH = 𝑢𝑠,𝑠 (𝑒𝐺 ) = 𝑢𝑠,𝑟 (𝑔−1)𝑢𝑟,𝑠 (𝑔).

Hence
𝑢𝑠,𝑟 (𝑔−1) =

[
𝑢𝑟,𝑠 (𝑔)

]−1
=

[
𝑢𝑟,𝑠 (𝑔)

]∗
.

(d). It is clear that 𝑠 · 𝑔−1 = 𝑟 , and 𝜓𝑠,𝑟
𝑔−1

: 𝐺𝑠 → 𝐺𝑟 is the inverse of 𝜓𝑟,𝑠𝑔 . Since
both 𝜓𝑠,𝑟

𝑔−1
and 𝜓𝑟,𝑠𝑔 are continuous group morphisms, 𝜓𝑟,𝑠𝑔 is an isomorphism and a

homeomorphism. Moreover, by (a) and (c), we have

∀𝑥 ∈ 𝐺𝑟 ,
[ (
𝑢𝑠,𝑠 |𝐺𝑠

)
◦𝜓𝑟,𝑠𝑔

]
(𝑥) = 𝑢𝑠,𝑠 (𝑔𝑥𝑔−1)

= 𝑢𝑠,𝑟 (𝑔)𝑢𝑟,𝑟 (𝑥)𝑢𝑟,𝑠 (𝑔−1)
= 𝑢𝑠,𝑟 (𝑔)𝑢𝑟,𝑟 (𝑥)

[
𝑢𝑠,𝑟 (𝑔)

]∗
.

It follows that the unitary operator𝑢𝑠,𝑟 (𝑔) is an isomorphism from the representation
𝑢𝑟,𝑟 |𝐺𝑟 to 𝑢𝑠,𝑠 |𝐺𝑠 ◦𝜓

𝑟,𝑠
𝑔 .

(e). It follows from the de�nition of𝑈 that

𝜒𝑈 =
∑︁
𝛾 ∈O

(TrB(H ) ⊗ id) (𝑢𝛾,𝛾 ) =
∑︁
𝛾 ∈O

𝜄𝛾

(
𝜒𝑢𝛾,𝛾 |𝐺𝛾

)
.

This proves (I.4.2). By the general theory of induced representations and (d), the
character of the induced representation Ind𝐺𝐺𝑟

(
𝑢𝑟,𝑟 |𝐺𝑟

)
is exactly∑︁

𝛾 ∈O

𝜄𝛾

(
𝜒𝑢𝛾,𝛾 |𝐺𝛾

)
= 𝜒𝑈 .

Hence𝑈 is equivalent to Ind𝐺𝐺𝑟
(
𝑢𝑟,𝑟 |𝐺𝑟

)
. �
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Part (e) of Proposition I.4.2 says that O-representations are exactly copies of in-
duced representations of �nite dimensional unitary representation of the isotropy
subgroup 𝐺𝛾 of any point 𝛾 ∈ O with respect to the action 𝛽 . Conversely, taking
any 𝛾 ∈ O and given a �nite dimensional unitary representation 𝑢 of 𝐺𝛾 , one can
construct an O-representation𝑈 =

∑
𝑟,𝑠∈O 𝑒𝑟,𝑠 ⊗ 𝑢𝑟,𝑠 from 𝑢 with 𝑢 = 𝑢𝛾,𝛾 |𝐺𝛾 . This is

shown in the following proposition.

Proposition I.4.3. Let O be a 𝛽-orbit, 𝛾 ∈ O , and 𝑢 : 𝐺𝛾 → B(H ) a �nite dimen-
sional unitary representation of 𝐺𝛾 . Take 𝜎𝜇 ∈ 𝐺𝛾,𝜇 for each 𝜇 ∈ O with 𝜎𝛾 = 𝑒𝐺 and
de�ne

𝑢𝑟,𝑠 (𝑔) =
{
𝑢

(
𝜎𝑟𝑔𝜎

−1
𝑠

)
, if 𝑔 ∈ 𝐺𝑟,𝑠 ;

0, if 𝑔 ∉ 𝐺𝑟,𝑠 .

Then the operator𝑈 =
∑
𝑟,𝑠∈O 𝑒𝑟,𝑠 ⊗ 𝑢𝑟,𝑠 is an O-representation on ℓ2 (O) ⊗ H .

Proof. From our construction, one checks immediately that

𝑢∗𝑟,𝑠𝑢𝑟,𝑠 = 𝑢𝑟,𝑠𝑢
∗
𝑟,𝑠 = idH ⊗𝑣𝑟,𝑠 ∈ B(H ) ⊗ Pol(𝐺),

and the support of𝑢𝑟,𝑠 is exactly𝐺𝑟,𝑠 for all 𝑟, 𝑠 ∈ O . Using this, we have the following
calculations:

𝑈𝑈 ∗ =

( ∑︁
𝑟,𝑠∈O

𝑒𝑟,𝑠 ⊗ 𝑢𝑟,𝑠

) ( ∑︁
𝑟 ′,𝑠′∈O

𝑒𝑠′,𝑟 ′ ⊗ 𝑢∗𝑟 ′,𝑠′
)
=

∑︁
𝑟,𝑟 ′∈O

𝑒𝑟,𝑟 ′ ⊗
(∑︁
𝑠∈O

𝑢𝑟,𝑠𝑢
∗
𝑠,𝑟 ′

)
=

∑︁
𝑟,𝑟 ′∈O

𝛿𝑟,𝑟 ′𝑒𝑟,𝑟 ′ ⊗
(∑︁
𝑠∈O

𝑢𝑟,𝑠𝑢
∗
𝑟 ′,𝑠

)
(since 𝐺𝑟,𝑠 ∩𝐺𝑟 ′,𝑠 ≠ ∅ ⇐⇒ 𝑟 = 𝑟 ′)

=
∑︁
𝑟 ∈O

𝑒𝑟,𝑟 ⊗
(∑︁
𝑠∈O

𝑢𝑟,𝑠𝑢
∗
𝑟,𝑠

)
=

∑︁
𝑟 ∈O

𝑒𝑟,𝑟 ⊗
(∑︁
𝑠∈O

idH ⊗𝑣𝑟,𝑠

)
=

∑︁
𝑟 ∈O

𝑒𝑟,𝑟 ⊗ idH ⊗1 = idℓ2 (O) ⊗ idH ⊗1

and

𝑈 ∗𝑈 =

( ∑︁
𝑟,𝑠∈O

𝑒𝑠,𝑟 ⊗ 𝑢∗𝑟,𝑠

) ( ∑︁
𝑟 ′,𝑠′∈O

𝑒𝑟 ′,𝑠′ ⊗ 𝑢𝑟 ′,𝑠′
)
=

∑︁
𝑠,𝑠′∈O

𝑒𝑠,𝑠′ ⊗
(∑︁
𝑟 ∈O

𝑢∗𝑟,𝑠𝑢𝑟,𝑠′

)
=

∑︁
𝑠,𝑠′∈O

𝛿𝑠,𝑠′𝑒𝑠,𝑠′ ⊗
(∑︁
𝑟 ∈O

𝑢∗𝑟,𝑠𝑢𝑟,𝑠′

)
(since 𝐺𝑟,𝑠 ∩𝐺𝑟,𝑠′ ≠ ∅ ⇐⇒ 𝑠 = 𝑠 ′)

=
∑︁
𝑠∈O

𝑒𝑠,𝑠 ⊗
(∑︁
𝑟 ∈O

𝑢∗𝑟,𝑠𝑢𝑟,𝑠

)
=

∑︁
𝑠∈O

𝑒𝑠,𝑠 ⊗
(∑︁
𝑟 ∈O

idH ⊗𝑣𝑟,𝑠

)
=

∑︁
𝑠∈O

𝑒𝑠,𝑠 ⊗ idH ⊗1 = idℓ2 (O) ⊗ idH ⊗1.

Hence𝑈 is unitary.
By construction again, for all 𝑟, 𝑠, 𝑡 ∈ O , 𝑔 ∈ 𝐺𝑟,𝑠 and ℎ ∈ 𝐺𝑠,𝑡 , we have

𝜎𝑟𝑔𝜎
−1
𝑠 , 𝜎𝑠𝑔𝜎

−1
𝑡 ∈ 𝐺𝛾
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and

∀𝑔 ∈ 𝐺𝑟,𝑠 , ℎ ∈ 𝐺𝑠,𝑡 ,
𝑢𝑟,𝑡 (𝑔ℎ) = 𝑢 (𝜎𝑟𝑔ℎ𝜎−1𝑡 ) = 𝑢

(
(𝜎𝑟𝑔𝜎−1𝑠 ) (𝜎𝑠ℎ𝜎−1𝑡 )

)
= 𝑢 (𝜎𝑟𝑔𝜎−1𝑠 )𝑢 (𝜎𝑠ℎ𝜎−1𝑡 ) = 𝑢𝑟,𝑠 (𝑔)𝑢𝑠,𝑡 (ℎ).

(I.4.5)

Using the proof of Proposition I.4.2(a), (I.4.5) implies that (in fact, is equivalent to)

∀𝑟, 𝑠 ∈ O, (id ⊗Δ) (𝑢𝑟,𝑠 ) =
∑︁
𝛾 ∈O

(
𝑢𝑟,𝛾

)
12

(
𝑢𝛾,𝑠

)
13.

Hence𝑈 is indeed a representation of 𝐺 on ℓ2 (O) ⊗ H . �

Since (Pol(𝐺),Δ) is a Hopf ∗-subalgebra of (A , Δ̃), any representation 𝑈 ∈
B(H ) ⊗ Pol(𝐺) of 𝐺 is automatically a representation of the bicrossed product G
via the natural embedding

B(H ) ⊗ Pol(𝐺) ↩→ B(H ) ⊗ A .

But by the general theory, we have Pol(G) = A . In order to �nd enough repre-
sentations of G, we need to construct representations of the bicrossed product G
whose matrix coe�cients contain 𝑢𝛾 ∈ A for all 𝛾 ∈ Γ. This can be achieved via the
following lemma.

Lemma I.4.4. Let O be a 𝛽-orbit, H a �nite dimensional Hilbert space. Suppose

𝑈 =
∑︁
𝑟,𝑠∈O

𝑒𝑟,𝑠 ⊗ 𝑢𝑟,𝑠

is an O-representation on ℓ2 (O) ⊗ H , then the operator

ℜO (𝑈 ) : =
(∑︁
𝛾 ∈O

𝑒𝛾,𝛾 ⊗ idH ⊗𝑢𝛾

)
𝑈

=
∑︁
𝑟,𝑠∈O

𝑒𝑟,𝑠 ⊗ [(idH ⊗𝑢𝑟 )𝑢𝑟,𝑠 ] ∈ B
(
ℓ2 (O)

)
⊗ B(H ) ⊗ A

(I.4.6)

is a unitary representation of the bicrossed product G on ℓ2 (O) ⊗H , and the character
𝜒 (ℜO (𝑈 )) of ℜO (𝑈 ) is given by

𝜒 (ℜO (𝑈 )) =
∑︁
𝛾 ∈O

𝑢𝛾 𝜄𝛾

(
𝜒
(
𝑢𝛾,𝛾 |𝐺𝛾

) )
. (I.4.7)

Here for a �xed 𝛾 ∈ O , we let 𝜄𝛾 : Pol(𝐺𝛾 ) → Pol(𝐺) denote the unique extension
of functions by assigning 0 outside 𝐺𝛾 . De�ne

𝐶𝛾 (𝑈 ) :=
{
𝜄𝛾 (𝜑) : 𝜑 ∈ Pol(𝐺𝛾 ) is a matrix coe�cient for

the representation 𝑢𝛾,𝛾 |𝐺𝛾

}
, (I.4.8)

and for any 𝑟, 𝑠 ∈ O , take any 𝑔 ∈ 𝐺𝑟,𝛾 and ℎ ∈ 𝐺𝛾,𝑠 , de�ne

𝐶𝑟,𝑠 (𝑈 ) :=
{
𝜓 (𝑔 · ℎ) : 𝜓 ∈ 𝐶𝛾 (𝑈 )

}
. (I.4.9)

Then the following hold:
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(a) 𝐶𝑟,𝑠 (𝑈 ) does not depend on the choice of 𝑔 and ℎ, and 𝐶𝛾 (𝑈 ) = 𝐶𝛾,𝛾 (𝑈 );

(b) 𝐶𝑟,𝑠 (𝑈 ) does not depend on the choice of 𝛾 ;

(c) the space of matrix coe�cients of ℜO (𝑈 ) is exactly⊕
𝑟,𝑠∈O

𝑢𝑟𝐶𝑟,𝑠 (𝑈 ) ⊆ A , (I.4.10)

where 𝑢𝑟𝐶𝑟,𝑠 =
{
𝑢𝑟𝜓 : 𝜓 ∈ 𝐶𝑟,𝑠

}
.

Proof. Since both ∑
𝛾 ∈O 𝑒𝛾,𝛾 ⊗ idH ⊗𝑢𝛾 and 𝑈 are unitary operators, the operator

ℜO (𝑈 ) is unitary. We now check that ℜO (𝑈 ) is a representation of G. Since id ⊗Δ :
B(H ) ⊗ A → B(H ) ⊗ A ⊗ A is a ∗-morphism of ∗-algebras, we have

(id ⊗Δ) [(idH ⊗𝑢𝑟 ) (𝑢𝑟,𝑠 )] = [(id ⊗Δ) (idH ⊗𝑢𝑟 )] [(id ⊗Δ)𝑢𝑟,𝑠 ]
= [idH ⊗Δ(𝑢𝑟 )]

∑︁
𝛾 ∈O

(
𝑢𝑟,𝛾

)
12

(
𝑢𝛾,𝑠

)
13

=

{∑︁
𝑡 ∈O

idH ⊗𝑢𝑟𝑣𝑟,𝑡 ⊗ 𝑢𝑡

} ∑︁
𝛾 ∈O

(
𝑢𝑟,𝛾

)
12

(
𝑢𝛾,𝑠

)
13

=
∑︁
𝑡,𝛾 ∈O

[
(idH ⊗𝑢𝑟𝑣𝑟,𝑡 )𝑢𝑟,𝛾

]
12

[
(idH ⊗𝑢𝑡 )𝑢𝛾,𝑠

]
13

=
∑︁
𝛾 ∈O

[
(idH ⊗𝑢𝑟𝑣𝑟,𝛾 )𝑢𝑟,𝛾

]
12

[
(idH ⊗𝑢𝛾 )𝑢𝛾,𝑠

]
13

(since (1 ⊗ 𝑣𝑟,𝑡 )𝑢𝑟,𝛾 = 𝛿𝑡,𝛾𝑢𝑟,𝛾 ).

This implies that ℜO (𝑈 ) is indeed a unitary representation of G. The statement
about the character follows immediately.

We now prove the second half of the lemma. For all 𝑟, 𝑠 ∈ O , by de�nition, one
checks immediately that 𝜑 ∈ 𝐶𝑟,𝑠 (𝑈 ) if and only if supp𝜑 ⊆ 𝐺𝑟,𝑠 , and 𝜑 (𝑔 · ℎ) |𝐺𝛾
is a matrix coe�cient of 𝑢𝛾,𝛾 |𝐺𝛾 . This implies (a) by a simple computation and the
fact that𝑢𝛾,𝛾 |𝐺𝛾 is a representation. (b) follows from (a) and Proposition I.4.2. Finally,
combining (I.4.6), (I.4.8), (I.4.9) and Proposition I.4.2 yields (c). �

Lemma I.4.5. Let O be a 𝛽-orbit, H , K �nite dimensional Hilbert spaces, and sup-
pose𝑈 =

∑
𝑟,𝑠∈O 𝑒𝑟,𝑠 ⊗𝑢𝑟,𝑠 and𝑉 =

∑
𝑟,𝑠∈O 𝑒𝑟,𝑠 ⊗ 𝑣𝑟,𝑠 are O-representations on ℓ2 (O) ⊗

H and ℓ2 (O) ⊗ K respectively. If 𝑇 ∈ B(H ,K ), then the following are equivalent:

(a) 𝑇 ∈ Mor𝐺𝛾
(
𝑢𝛾,𝛾 |𝐺𝛾 , 𝑣𝛾,𝛾 |𝐺𝛾

)
for some 𝛾 ∈ O ;

(b) 𝑇 ∈ Mor𝐺𝛾
(
𝑢𝛾,𝛾 |𝐺𝛾 , 𝑣𝛾,𝛾 |𝐺𝛾

)
for all 𝛾 ∈ O .

In particular, 𝑢𝛾,𝛾 |𝐺𝛾 ' 𝑣𝛾,𝛾 |𝐺𝛾 for some 𝛾 ∈ O if and only if 𝑢𝛾,𝛾 |𝐺𝛾 ' 𝑣𝛾,𝛾 |𝐺𝛾 for all
𝛾 ∈ O .

Proof. This is a direct consequence of the part (d) of Proposition I.4.2. �

De�nition I.4.6. Let O be a 𝛽-orbit, an O-representation 𝑈 =
∑
𝑟,𝑠∈O 𝑒𝑟,𝑠 ⊗ 𝑢𝑟,𝑠 is

said to be O-irreducible if any4 of the representations 𝑢𝛾,𝛾 |𝐺𝛾 , 𝛾 ∈ O is irreducible.
TwoO-representations𝑈 and𝑉 are said to beO-equivalent, denoted by𝑈 ∼O 𝑉 ,

if there is a bijective (equivalently, unitary)𝑇 satisfying the equivalent conditions in
Lemma I.4.5.

4Hence all by the point (d) of Proposition I.4.2
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Notations I.4.7. It is clear that all O-representations that are O-equivalent to an
O-irreducible one remain O-irreducible. We denote the set of O-equivalence classes of
O-irreducible O-representations by IrrO (𝐺). By Proposition I.4.2 and Proposition I.4.3,
we see that for all 𝛾 ∈ O , there is a canonical bijection

𝛷𝛾 : Irr(𝐺𝛾 ) → IrrO (𝐺)

[𝑢] ↦→
[ ∑︁
𝑟,𝑠∈O

𝑒𝑟,𝑠 ⊗ 𝑢𝑟,𝑠

]
,

(I.4.11)

where 𝑢𝑟,𝑠 , 𝑟, 𝑠 ∈ O are de�ned as in Proposition I.4.3. In particular, 𝛷𝑒Γ is a bijec-
tion from Irr(𝐺) onto Irr{𝑒Γ } (𝐺), which we will use later (§ I.6) to identify Irr(𝐺) with
Irr{𝑒Γ } (𝐺).

Remark I.4.8. Intuitively speaking, the bijection𝛷𝛾 can be seen as a parameteriza-
tion of IrrO (𝐺) with the relatively more concrete data Irr(𝐺𝛾 ).

We can �nally state and prove the classi�cation of irreducible representations of
G.

Theorem I.4.9. Using the above notations, the following hold:

(a) Let O be a 𝛽-orbit,𝑈 an O-representation, then the representationℜO (𝑈 ) of the
bicrossed product G is irreducible if and only if𝑈 is O-irreducible.

(b) We have the following decomposition of A as a vector space

A =
⊕

O∈Orb𝛽

⊕
𝑟,𝑠∈𝑂,

[𝑈 ] ∈IrrO (𝐺 )

𝑢𝑟𝐶𝑟,𝑠 (𝑈 ). (I.4.12)

(c) (Classi�cation of irreducible representations of G) The mapping

ℜ :
∐

O∈Orb𝛽
IrrO (𝐺) → Irr(G)

[𝑈 ] ∈ IrrO (𝐺) ↦→ [ℜO (𝑈 )]

is a well-de�ned bijection.

Proof. (a). Recall that the functional 𝜏 in Theorem I.2.11 is the Haar state on G. By
the characteristic formula (I.4.2) in Proposition I.4.2, �xing an arbitrary 𝛾 ∈ O , we
have

dimEndG (ℜO (𝑈 )) = 𝜏 (𝜒𝑈 ∗𝜒𝑈 )
=

∑︁
𝑟 ∈O

𝜏
(
𝜄𝑟

(
𝜒𝑢𝑟,𝑟 |𝐺𝑟

∗𝜒𝑢𝑟,𝑟 |𝐺𝑟
) )

(
only (𝜒𝑈 ∗𝜒𝑈 ) (𝑒) matters

)
= |O |𝜏

(
𝜄𝛾

(
𝜒𝑢𝛾,𝛾 |𝐺𝛾

∗𝜒𝑢𝛾,𝛾 |𝐺𝛾

))
(
by Proposition I.4.2, (d) and 𝜏 is a Haar state

)
=

|O |
[𝐺 : 𝐺𝛾 ]

dimEnd𝐺𝛾
(
𝑢𝛾,𝛾 |𝐺𝛾

)
= dimEnd𝐺𝛾

(
𝑢𝛾,𝛾 |𝐺𝛾

)
.
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This proves (a).
(b). It is clear by Lemma I.4.4 that the sum on the right side of (I.4.12) is a di-

rect sum. Moreover, by Lemma I.2.3, Lemma I.4.5, the orthogonality relations for
representations, and Lemma I.4.4 again, we have⊕

[𝑈 ] ∈IrrO (𝐺)
𝐶𝑟,𝑠 (𝑈 ) = 𝑣𝑟,𝑠 Pol(𝐺). (I.4.13)

SinceA =
⊕
𝑟 ∈Γ 𝑢𝑟 Pol(𝐺), equation (I.4.13) implies the decomposition (I.4.12), hence

proves (b).
(c) follows from (a) and (b). �

Remark I.4.10. One can even show that the direct sum decomposition (I.4.12) is
orthogonal with respect to the inner product on A induced by the faithful Haar
state 𝜏 with a bit more calculation, but this fact is not needed and we leave it to the
reader.

For the purpose of studying property (𝑅𝐷) of Ĝ, we also need to understand how
the conjugate representation of the irreducible representations of G is expressed us-
ing the above classi�cation, as well as the fusion rules ofG. The problem of identify-
ing the conjugate operation on Irr(G) using our classi�cation result is almost trivial
(Theorem I.4.13), while the fusion rules of G requires some further work (twisted
tensor products).

SinceG is of Kac type (Theorem I.2.11), the conjugate and the contragredient rep-
resentations of any unitary representation of G coincide. For all �nite dimensional
Hilbert space H , let 𝑗H : B(H ) → B(H ) be the ∗-antihomomorphism 𝑇 ↦→ 𝑇 ∗,
where 𝑇 ∗ is the mapping 𝑥 ↦→ 𝑇 ∗𝑥 . We often omit the subscript H and write 𝑗H
simply as 𝑗 when there is no risk of confusion.

Lemma I.4.11. Let O be a 𝛽-orbit, H a �nite dimensional Hilbert space. Suppose

𝑈 =
∑︁
𝑟,𝑠∈O

𝑒𝑟,𝑠 ⊗ 𝑢𝑟,𝑠

is an O-representation on ℓ2 (O) ⊗ H . Let 𝑒𝑟,𝑠 denote the unitary operator ℓ2 (O) →
ℓ2 (O) sending 𝜂 to 𝑒𝑟,𝑠𝜂. Then the conjugate representation ℜO (𝑈 ) of ℜO (𝑈 ) is given
by

ℜO (𝑈 ) =
∑︁
𝑟,𝑠∈O

𝑒𝑠,𝑟 ⊗
{
(idH ⊗𝑢𝑠−1 )

(
(id ⊗𝛼∗

𝑠−1 )
[
( 𝑗 ⊗ 𝑆)𝑢𝑟,𝑠

] )}
. (I.4.14)

Furthermore, posing

𝑤𝑠−1,𝑟−1 := (id ⊗𝛼∗
𝑠−1 )

[
( 𝑗 ⊗ 𝑆)𝑢𝑟,𝑠

]
∈ B(H ) ⊗ Pol(𝐺), (I.4.15)

the unitary operator

𝑊 : =
∑︁
𝑟,𝑠∈O

𝑒𝑠−1,𝑟−1 ⊗𝑤𝑠−1,𝑟−1 =
∑︁

𝑠−1,𝑟−1∈O

𝑒𝑠−1,𝑟−1 ⊗𝑤𝑠−1,𝑟−1

∈ B
(
ℓ2 (O−1)

)
⊗ B(H ) ⊗ Pol(𝐺)

(I.4.16)

is an O−1-representation, and ℜO (𝑈 ) ' ℜO−1 (𝑊 ).
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Proof. Since G is of Kac type, we have

ℜO (𝑈 ) = ( 𝑗 ⊗ 𝑗 ⊗ 𝑆)
( ∑︁
𝑟,𝑠∈O

𝑒𝑟,𝑠 ⊗ (1 ⊗ 𝑢𝑟 )𝑢𝑟,𝑠

)
=

∑︁
𝑟,𝑠∈O

𝑒𝑠,𝑟 ⊗
∑︁
𝑡 ∈O

[( 𝑗 ⊗ 𝑆)𝑢𝑟,𝑠 ]
(
idH ⊗𝑣𝑡,𝑟𝑢𝑡−1

)
=

∑︁
𝑟,𝑠∈O

𝑒𝑠,𝑟 ⊗
∑︁
𝑡 ∈O

𝛿𝑠,𝑡 [( 𝑗 ⊗ 𝑆)𝑢𝑟,𝑠 ]
(
idH ⊗𝑣𝑡,𝑟𝑢𝑡−1

)
(
since the support of ( 𝑗 ⊗ 𝑆)𝑢𝑟,𝑠 is exactly 𝐺−1

𝑟,𝑠 = 𝐺𝑠,𝑟 , and supp 𝑣𝑡,𝑟 = 𝐺𝑡,𝑟
)

=
∑︁
𝑟,𝑠∈O

𝑒𝑠,𝑟 ⊗ [( 𝑗 ⊗ 𝑆)𝑢𝑟,𝑠 ] (idH ⊗𝑢𝑠−1 )

=
∑︁
𝑟,𝑠∈O

𝑒𝑠,𝑟 ⊗
{
(idH ⊗𝑢𝑠−1 )

(
𝛼∗
𝑠−1

[
( 𝑗 ⊗ 𝑆)𝑢𝑟,𝑠

] )}
=

∑︁
𝑟,𝑠∈O

𝑒𝑠,𝑟 ⊗𝑤𝑠−1,𝑟−1 .

Since ℜO (𝑈 ) is a unitary representation of G, by the above calculation, and the
fact that

(
𝑒𝑠,𝑟 : 𝑟, 𝑠 ∈ O

)
is the matrix unit corresponding to the dual basis(

𝛿𝛾 : 𝛾 ∈ O
)

of the canonical basis (𝛿𝛾 : 𝛾 ∈ O) of ℓ2 (O), we deduce that the operator 𝑉 is
unitary, and for all 𝑟, 𝑠 ∈ O , we have

(id ⊗Δ) (𝑣𝑠−1,𝑟−1 ) =
∑︁
𝑡 ∈O

(
𝑤𝑠−1,𝑡−1

)
12

(
𝑤𝑡−1,𝑟−1

)
13 . (I.4.17)

It is trivial to check that

𝑤𝑠−1,𝑟−1𝑤
∗
𝑠−1,𝑟−1 = 𝑤

∗
𝑠−1,𝑟−1𝑤𝑠−1,𝑟−1 = idH ⊗𝑣𝑠−1,𝑟−1 ,

which together with (I.4.17), implies that𝑊 is indeed an O−1-representation.
Finally, the fact that ℜO (𝑈 ) ' ℜO−1 (𝑊 ) can be seen by directly comparing their

characters, both of which are given by∑︁
𝛾 ∈O

𝑢𝛾−1 (TrB(H ) ⊗ id) (𝑤𝛾−1,𝛾−1 ).

Alternatively, one can see this equivalence more concretely by noting that the uni-
tary operator Υ ⊗ idH from ℓ2 (O) ⊗ H onto ℓ2 (O−1) ⊗ H is an isomorphism of
representations from ℜO (𝑈 ) to ℜO−1 (𝑊 ), where Υ : ℓ2 (O) → ℓ2 (O) is the unique
linear(unitary) operator determined by 𝛿𝛾 ↦→ 𝛿𝛾−1 for all 𝛾 ∈ O . �

De�nition I.4.12. Using the notations in Lemma I.4.11, the O−1-representation𝑊
is called the orbital conjugate of the O-representation 𝑈 , and will be denoted by 𝑈 †

in the following.

Using (I.4.15) and (I.4.16) (and the fact that the antipode 𝑆 : Pol(𝐺) → Pol(𝐺)
is of order 2), it is easy to see that 𝑈 †† = 𝑈 , i.e. (·)† is an involution on the class
of all O-representations, where O runs through all 𝛽-orbits, and passes to a well-
de�ned involution, still denoted by †, on the set∐O∈Orb𝛽 IrrO (𝐺) with [𝑈 ]† := [𝑈 †].
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It is clear that † restricts to a bijection between IrrO (𝐺) and IrrO−1 (𝐺), and when
O = {𝑒Γ}, so O = O−1, it reduces to the conjugate operation on the class of �nite di-
mensional unitary representations Rep(𝐺) of 𝐺 , modulo the obvious identi�cations
of course. Now the conjugate representation in terms of our classi�cation (Theo-
rem I.4.9) can be neatly summarized as the following theorem.

Theorem I.4.13. The classi�cation mapping

ℜ :
∐

O∈Orb𝛽
IrrO (𝐺) → Irr(G)

preserves involution.

Proof. This is merely a restatement of Lemma I.4.11 using De�nition I.4.12. �

The following proposition relates the orbital conjugation presented above to the
parallel treatment in (Fima and Wang, 2018, Theorem 3.1 (4)).

Proposition I.4.14. Let 𝛾 ∈ Γ and O = 𝛾 · 𝐺 . If 𝑢 : 𝐺𝛾 → B(H ) is a �nite
dimensional unitary representation of𝐺𝛾 and𝑈 is the O-representation determined by
𝑢 as in Proposition I.4.3, then𝑈 † ' Ind(𝑢 ◦ 𝛼𝛾−1 |𝐺𝛾−1 ).

Proof. This follows from Lemma I.1.8, Proposition I.4.2, and Lemma I.4.11. �

We now turn our attention to the fusion rules of G. For 𝑖 = 1, 2, 3, let O𝑖 be an
𝛽-orbit,𝑈𝑖 =

∑
𝑟,𝑠∈O𝑖 𝑒𝑟,𝑠 ⊗𝑢

(𝑖)
𝑟,𝑠 an O𝑖 -representation on ℓ2 (O𝑖 ) ⊗H𝑖 . To simplify the

notations of our discussion, we denote the representation ℜO𝑖 (𝑈𝑖 ) of G by𝑊𝑖 , and
its character by 𝜒𝑊𝑖 . By Lemma I.1.10, we know that O1O2 is the disjoint union of
𝛽-orbits. For each 𝛾 ∈ O3, we de�ne K

𝛾

O1,O2
to be the subspace of ℓ2 (O1) ⊗ ℓ2 (O2)

spanned by

B𝛾
O1,O2

:=
{
𝛿𝛾1 ⊗ 𝛿𝛾2 : (𝛾1, 𝛾2) ∈ O1 × O2 and 𝛾1𝛾2 = 𝛾

}
. (I.4.18)

If 𝛾 ∉ O1O2 (which is equivalent to O3 ∩O1O2 = ∅), then B𝛾
O1,O2

= ∅ and 𝐾𝛾
O1,O2

= 0.

Theorem I.4.15. Using the above notations, and posing

F𝛾
O1,O2

:= {(𝛾1, 𝛾2) ∈ O1 × O2 : 𝛾1𝛾2 = 𝛾} (I.4.19)

for all 𝛾 ∈ Γ, then the following hold:

(a) The mapping

𝑈1 ×𝛾 𝑈2 : 𝐺𝛾 → B
(
K

𝛾

O1,O2

)
⊗ B(H1) ⊗ B(H2)

𝑔 ↦→
∑︁

(𝑟1,𝑟2),(𝑠1,𝑠2) ∈F𝛾O1,O2

(
𝑒𝑟1,𝑠1 ⊗ 𝑒𝑟2,𝑠2

)
⊗ 𝑢 (1)

𝑟1,𝑠1

(
𝛼𝑟2 (𝑔)

)
⊗ 𝑢 (2)

𝑟2,𝑠2 (𝑔)

(I.4.20)

is a unitary representation of 𝐺𝛾 .
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(b) The character of𝑈1 ×𝛾 𝑈2 is

𝜒
(
𝑈1 ×𝛾 𝑈2

)
=

∑︁
(𝑟1,𝑟2) ∈F𝛾O1,O2

{[
𝜄𝑟1

(
𝜒
(
𝑢
(1)
𝑟1,𝑟1 |𝐺𝑟1

) )
◦ 𝛼𝑟2

] [
𝜄𝑟2

(
𝜒
(
𝑢
(2)
𝑟2,𝑟2 |𝐺𝑟2

) )]}
|𝐺𝛾

. (I.4.21)

Or equivalently, for all 𝑔 ∈ 𝐺𝛾 , we have[
𝜒

(
𝑈1 ×𝛾 𝑈2

) ]
(𝑔)

=
∑︁

(𝑟1,𝑟2) ∈F𝛾O1,O2

[
TrB(H1)

(
𝑢
(1)
𝑟1,𝑟1

(
𝛼𝑟2 (𝑔)

) )] [
TrB(H2)

(
𝑢
(2)
𝑟2,𝑟2 (𝑔)

)]
. (I.4.22)

(c) We have

dimMorG (𝑊3,𝑊1 ×𝑊2)

=
1

|O3 |
∑︁
𝛾3∈O3

dimMor𝐺𝛾3
(
𝑢
(3)
𝛾3,𝛾3 |𝐺𝛾3 ,𝑈1 ×𝛾3 𝑈2

)
.

(I.4.23)

In particular, if O3 ∩ O1O2 = ∅, then dimMorG (𝑊3,𝑊1 ×𝑊2) = 0.

Proof. (a). It is clear that
(
𝑈1 ×𝛾 𝑈2

)
(𝑒𝐺 ) = idK

𝛾

O1,O2
⊗ idH1 ⊗ idH2 . For all 𝑔, ℎ ∈ 𝐺𝛾 ,

we have(
𝑈1 ×𝛾 𝑈2

)
(𝑔)

(
𝑈1 ×𝛾 𝑈2

)
(ℎ)

=
∑︁

(𝑟1,𝑟2),(𝑠1,𝑠2),(𝑡1,𝑡2) ∈F𝛾O1,O2

𝑒𝑟1,𝑡1 ⊗ 𝑒𝑟2,𝑡2

⊗
[
𝑢
(1)
𝑟1,𝑠1

(
𝛼𝑟2 (𝑔)

)
𝑢
(1)
𝑠1,𝑡1

(
𝛼𝑠2 (ℎ)

) ]
⊗

[
𝑢
(2)
𝑟2,𝑠2 (𝑔)𝑢

(2)
𝑠2,𝑡2

(ℎ)
]

=
∑︁

(𝑟1,𝑟2),(𝑠1,𝑠2),(𝑡1,𝑡2) ∈F𝛾O1,O2
,

𝑟1 ·𝛼𝑟2 (𝑔)=𝑠1, 𝑠1 .𝛼𝑠2 (ℎ)=𝑡1,
𝑟2 ·𝑔=𝑠2, 𝑠2 ·ℎ=𝑡2

𝑒𝑟1,𝑡1 ⊗ 𝑒𝑟2,𝑡2

⊗
[
𝑢
(1)
𝑟1,𝑠1

(
𝛼𝑟2 (𝑔)

)
𝑢
(1)
𝑠1,𝑡1

(
𝛼𝑠2 (ℎ)

) ]
⊗

[
𝑢
(2)
𝑟2,𝑠2 (𝑔)𝑢

(2)
𝑠2,𝑡2

(ℎ)
]

(
consider the support of the components 𝑢 (1)

𝑟1,𝑠1 , 𝑢
(1)
𝑠1,𝑡1

, 𝑢
(2)
𝑟2,𝑠2 and 𝑢

(2)
𝑠2,𝑡2

)
=

∑︁
(𝑟1,𝑟2),(𝑠1,𝑠2),(𝑡1,𝑡2) ∈F𝛾O1,O2

,

𝑟1 ·𝛼𝑟2 (𝑔)=𝑠1, 𝑠1 .𝛼𝑠2 (ℎ)=𝑡1,
𝑟2 ·𝑔=𝑠2, 𝑠2 ·ℎ=𝑡2

𝑒𝑟1,𝑡1 ⊗ 𝑒𝑟2,𝑡2 ⊗
[
𝑢
(1)
𝑟1,𝑡1

(
𝛼𝑟2 (𝑔)𝛼𝑠2 (ℎ)

) ]
⊗

[
𝑢
(2)
𝑟2,𝑡2

(𝑔ℎ)
]

(Proposition I.4.2)

=
∑︁

(𝑟1,𝑟2),(𝑡1,𝑡2) ∈F𝛾O1,O2

𝑒𝑟1,𝑡1 ⊗ 𝑒𝑟2,𝑡2 ⊗ 𝑢
(1)
𝑟1,𝑡1

(
𝛼𝑟2 (𝑔ℎ)

)
⊗ 𝑢 (2)

𝑟2,𝑡2
(𝑔ℎ)(

since 𝛼𝑟2 (𝑔ℎ) = 𝛼𝑟2 (𝑔)𝛼𝑟2 ·𝑔 (ℎ)
)

=
(
𝑈1 ×𝛾 𝑈2

)
(𝑔ℎ).

Hence𝑈1 ×𝛾 𝑈2 is indeed a representation of𝐺𝛾 . The fact that this representation is
unitary follows from (I.4.20) and the conditions that(

𝑢
(1)
𝑟1,𝑠1

) (
𝑢
(1)
𝑟1,𝑠1

)∗
=

(
𝑢
(1)
𝑟1,𝑠1

)∗ (
𝑢
(1)
𝑟1,𝑠1

)
= idH1 ⊗𝑣𝑟1,𝑠1
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and that (
𝑢
(2)
𝑟2,𝑠2

) (
𝑢
(2)
𝑟2,𝑠2

)∗
=

(
𝑢
(2)
𝑟2,𝑠2

)∗ (
𝑢
(2)
𝑟2,𝑠2

)
= idH2 ⊗𝑣𝑟2,𝑠2 .

(b). This follows directly from (I.4.20).
(c). Using the character formula (I.4.7), we have

dimMorG (𝑊3,𝑊1 ×𝑊2) = 𝜏
(
𝜒∗𝑊3

𝜒𝑊1 𝜒𝑊2

)
= 𝜏

( ∑︁
𝛾3∈O3

[
𝜄𝛾3

(
𝜒
(
𝑢
(3)
𝛾3,𝛾3 |𝐺𝛾3

) )]∗
𝜒
(
𝑈1 ×𝛾3 𝑈2

))
=

∑︁
𝛾3∈O3

1
[𝐺 : 𝐺𝛾3 ]

dimMor𝐺𝛾3
(
𝑢
(3)
𝛾3,𝛾3 |𝐺𝛾3 ,𝑈1 ×𝛾 𝑈2

)
=

1
|O3 |

∑︁
𝛾3∈O3

dimMor𝐺𝛾3
(
𝑢
(3)
𝛾3,𝛾3 |𝐺𝛾3 ,𝑈1 ×𝛾 𝑈2

)
.

The case when O3 ∩ O1O2 = ∅ is already covered in the above formula, as𝑈1 ×𝛾3 𝑈2
is the zero representation of 𝐺𝛾3 in this case. �

De�nition I.4.16. Using the above notations, we call the unitary representation
𝑈1 ×𝛾 𝑈2 of 𝐺𝛾 the 𝛾-twisted tensor product of𝑈1 and𝑈2.

Theorem I.4.15 (which is a reformulation of Theorem 3.2 of (Fima and Wang,
2018)), together with Theorem I.4.13, gives the fusion rules of G. In preparing this
thesis, the author �nds that the formula (I.4.23) for calculating the fusion rules can
in fact be simpli�ed (Theorem I.4.19). We present this simpli�cation in the rest of
this section.

For all 𝛾 ∈ O3, we de�ne

F𝛾
O1,O2

:= {(𝑟1, 𝑟2) ∈ O1 × O2 : 𝑟1𝑟2 = 𝛾}. (I.4.24)

Lemma I.4.17. Using the above notations, suppose 𝛾,𝛾 ′ ∈ O3, and 𝑔 ∈ 𝐺𝛾,𝛾 ′ , then

Φ𝛾,𝑔 : F
𝛾

O1,O2
→ F𝛾

′

O1,O2

(𝑟1, 𝑟2) ↦→
(
𝑟1 · 𝛼𝑟2 (𝑔), 𝑟2 · 𝑔

)
is a well-de�ned bijection, whose inverse is

Φ𝛾 ′,𝑔−1 : F
𝛾 ′

O1,O2
→ F𝛾

O1,O2

(𝑠1, 𝑠2) ↦→
(
𝑠1 · 𝛼𝑠2 (𝑔−1), 𝑠2 · 𝑔−1

)
.

Proof. For all (𝑟1, 𝑟2) ∈ F𝛾
O1,O2

, by the matched pair relations (I.1.5), we have

𝛾 ′ = 𝛾 · 𝑔 = 𝛽𝑔 (𝑟1𝑟2) = 𝛽𝛼𝑟2 (𝑔) (𝑟1)𝛽𝑔 (𝑟2).

Thus Φ𝛾,𝑔 is well-de�ned. Similarly, Φ𝛾 ′,𝑔−1 is well-de�ned too.
We now show that Φ𝛾 ′,𝑔−1 ◦ Φ𝛾,𝑔 is the identity on F𝛾

O1,O2
. Indeed, for all (𝑟1, 𝑟2) ∈

F𝛾
O1,O2

, we have(
Φ𝛾 ′,𝑔−1 ◦ Φ𝛾,𝑔

)
(𝑟1, 𝑟2) = Φ𝛾 ′,𝑔−1

(
𝑟1 · 𝛼𝑟2 (𝑔), 𝑟2 · 𝑔

)
=

(
𝑟1 · 𝛼𝑟2 (𝑔)𝛼𝑟2 ·𝑔 (𝑔−1), 𝑟2 · 𝑔𝑔−1

)
(by the matched pair relations again)

=
(
𝑟1 · 𝛼𝑟2 (𝑔𝑔−1), 𝑟2

)
=

(
𝑟1 · 𝛼𝑟2 (𝑒𝐺 ), 𝑟2

)
= (𝑟1, 𝑟2).

By symmetry, we have Φ𝛾,𝑔 ◦ Φ𝛾 ′,𝑔−1 is the identity on F𝛾
′

O1,O2
. �
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Lemma I.4.18. Suppose 𝛾,𝛾 ′ ∈ O3 and take any 𝑔 ∈ 𝐺𝛾,𝛾 ′ . For all (𝑟1, 𝑟2) ∈ F𝛾
O1,O2

,
put

(𝑠1, 𝑠2) := Φ𝛾,𝑔 (𝑟1, 𝑟2) =
(
𝑟1 · 𝛼𝑟2 (𝑔), 𝑟2 · 𝑔

)
∈ F𝛾

′

O1,O2
.

Then for all 𝑥 ∈ 𝐺𝛾 ′ , we have

Tr
(
𝑢
(1)
𝑟1,𝑟1

(
𝛼𝑟2 (𝑔𝑥𝑔−1)

) )
Tr

(
𝑢
(2)
𝑟2,𝑟2 (𝑔𝑥𝑔

−1)
)

= Tr
(
𝑢
(1)
𝑠1,𝑠1

(
𝛼𝑠2 (𝑥)

) )
Tr

(
𝑢
(2)
𝑠2,𝑠2 (𝑥)

)
.

(I.4.25)

In particular, we have

𝜒
(
𝑈1 ×𝛾 ′ 𝑈2

)
= 𝜒

(
𝑈1 ×𝛾 𝑈2

)
◦ Ad𝑔 |𝐺𝛾′ , (I.4.26)

where Ad𝑔 : 𝐺 → 𝐺 is the automorphism sending 𝑥 to 𝑔𝑥𝑔−1, and

dimMor𝐺𝛾
(
𝑢
(3)
𝛾,𝛾 |𝐺𝛾 ,𝑈1 ×𝛾 𝑈2

)
= dimMor𝐺𝛾′

(
𝑢
(3)
𝛾 ′,𝛾 ′ |𝐺𝛾′ ,𝑈1 ×𝛾 ′ 𝑈2

)
. (I.4.27)

Proof. First notice that by assertion (a) of Proposition I.4.2, we have 𝑢 (𝑖)
𝑟,𝑟 · (𝑦𝑧) (𝑦𝑧) =

𝑢
(𝑖)
𝑟,𝑟 ·𝑦 (𝑦)𝑢 (𝑖)

𝑟 ·𝑦,𝑟 · (𝑦𝑧) (𝑧) for all 𝑦, 𝑧 ∈ 𝐺 and 𝑖 = 1, 2. By the de�nition of Φ𝛾,𝑔, we have

𝑠1 = 𝑟1 · 𝛼𝑟2 (𝑔) and 𝑠2 = 𝑟2 · 𝑔. We also notice that 𝛼𝑠2 (𝑔−1) =
[
𝛼𝑟2 (𝑔)

]−1, because the
matched pair relations imply

𝑒𝐺 = 𝛼𝑟2 (𝑔𝑔−1) = 𝛼𝑟2 (𝑔)𝛼𝑟2 ·𝑔 (𝑔−1) = 𝛼𝑟2 (𝑔)𝛼𝑠2 (𝑔−1).

To prove (I.4.25), we distinguish the following di�erent cases.
Case I. 𝑥 ∉ 𝐺𝑠2
Since for all 𝑦 ∈ 𝐺 , we have

𝑦 ∈ 𝐺𝑠2 ⇐⇒ 𝑟2 · 𝑔 = 𝑠2 = 𝑠2 · 𝑦 = 𝑟2 · (𝑔𝑦) ⇐⇒ 𝑔𝑦𝑔−1 ∈ 𝐺𝑟2 ,

we have 𝑔𝑥𝑔−1 ∉ 𝐺𝑟2 . As supp𝑢
(1)
𝑟2,𝑟2 = 𝐺𝑟2 and supp𝑢 (2)

𝑠2,𝑠2 = 𝐺𝑠2 , both sides of (I.4.26)
is 0.

Case II. 𝑥 ∈ 𝐺𝑠2 and 𝛼𝑠2 (𝑥) ∉ 𝐺𝑠1
The matched pair relations imply

𝑦 ∈ 𝐺𝑠2 =⇒
{
𝛼𝑟2 (𝑔𝑦𝑔−1) = 𝛼𝑟2 (𝑔)𝛼𝑟2 ·𝑔 (𝑦𝑔−1) = 𝛼𝑟2 (𝑔)𝛼𝑠2 (𝑦)𝛼𝑠2 (𝑔−1)

= 𝛼𝑟2 (𝑔)𝛼𝑠2 (𝑦)
[
𝛼𝑟2 (𝑔)

]−1
.

(I.4.28)

Hence for all 𝑦 ∈ 𝐺𝛾 ′ ∩𝐺𝑠2 , by (I.4.28), we have

𝛼𝑟2 (𝑔𝑦𝑔−1) ∈ 𝐺𝑟1 ⇐⇒ 𝑟1 · 𝛼𝑟2 (𝑔)𝛼𝑠2 (𝑦) = 𝑟1 · 𝑎𝑟2 (𝑔)
⇐⇒ 𝑠1 · 𝛼𝑠2 (𝑦) = 𝑠1 ⇐⇒ 𝛼𝑠2 (𝑦) ∈ 𝐺𝑠1 .

Thus 𝛼𝑟2 (𝑔𝑥𝑔−1) ∉ 𝐺𝑟1 in this case. Consequently, the operators 𝑢 (1)
𝑟1,𝑟1

(
𝛼𝑟2 (𝑔𝑥𝑔−1)

)
and 𝑢 (2)

𝑠1,𝑠1

(
𝛼𝑠2 (𝑥)

)
are both zero, and both sides of (I.4.25) are 0.

Case III. 𝑥 ∈ 𝐺𝑠2 and 𝛼𝑠2 (𝑥) ∈ 𝐺𝑠1
Using (I.4.28) in the previous case, we have 𝛼𝑟2 (𝑔𝑥𝑔−1) ∈ 𝐺𝑟1 , and

𝑢
(1)
𝑟1,𝑟1

(
𝛼𝑟2 (𝑔𝑥𝑔−1)

)
=

{
𝑢
(1)
𝑟1,𝑠1

(
𝛼𝑟2 (𝑔)

)} {
𝑢
(1)
𝑠1,𝑠1

(
𝛼𝑠2 (𝑥)

)} {
𝑢
(1)
𝑠1,𝑟1

( [
𝛼𝑟2 (𝑔)

]−1)}
. (I.4.29)
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By Proposition I.4.2 again, the operator 𝑢 (1)
𝑟1,𝑠1

(
𝛼𝑟2 (𝑔)

)
is unitary and

𝑢
(1)
𝑠1,𝑟1

( [
𝛼𝑟2 (𝑔)

]−1)
=

{
𝑢
(1)
𝑟1,𝑠1

(
𝛼𝑟2 (𝑔)

)}−1
. (I.4.30)

Combining (I.4.29) and (I.4.30) yields

Tr
(
𝑢
(1)
𝑟1,𝑟1

(
𝛼𝑟2 (𝑔𝑥𝑔−1)

) )
= Tr

(
𝑢
(1)
𝑠1,𝑠1

(
𝛼𝑠2 (𝑥)

) )
. (I.4.31)

Similarly (which is even easier), we have

Tr
(
𝑢
(2)
𝑟2,𝑟2 (𝑔𝑥𝑔

−1)
)
= Tr

(
𝑢
(2)
𝑠2,𝑠2 (𝑥)

)
. (I.4.32)

It is clear that (I.4.28) follows from (I.4.31) and (I.4.32).
Combining the cases above concludes the proof of (I.4.25).
Using the formula (I.4.22) in assertion (b) of Theorem I.4.15, we see that (I.4.25)

implies (in fact is equivalent to) (I.4.26).
Finally, (I.4.27) follows from the above by a simple calculation of characters using

the invariance of the Haar state. �

Theorem I.4.19 (Fusion rules of G—simpli�ed version). Using the same notations as
in Theorem I.4.15, the formula (I.4.23) is reduced to

dimMorG (𝑊3,𝑊1 ×𝑊2) = dimMor𝐺𝛾
(
𝑢
(3)
𝛾,𝛾 |𝐺𝛾 ,𝑈1 ×𝛾 𝑈2

)
, (I.4.33)

where 𝛾 is an arbitrary element in O3.

Proof. This follows immediately from of Theorem I.4.15 (c) and Lemma I.4.18. �

I.5 Generalities on property (𝑅𝐷) and polynomial growth

We aim to present some generalities on property (𝑅𝐷) and the closely related prop-
erty of polynomial growth in this section. The results proved here will be vitally
important in the proofs of our characterization of these properties for the discrete
quantum group Ĝ. As G is of Kac-type, we present only the theory for unimodular
discrete quantum groups, which we view as the dual of the compact quantum groups
that are of Kac type. The treatment here are adapted using the more systematic study
in (Vergnioux, 2007), with some simpli�cations in the unimodular case of course, as
we don’t need multiplicative unitary for the compact-discrete duality of quantum
groups, which play a key technical role in Vergnioux’s general theory on the sub-
ject). For the non-unimodular case, we refer our readers to the article (Bhowmick et
al., 2015).

As a warm up, we prove a simple well-known result in polynomial algebra over
�eld of characteristic 0.

Lemma I.5.1. For all 𝑃 (𝑋 ) ∈ R[𝑋 ], there exists a unique 𝑄 (𝑋 ) ∈ R[𝑋 ], such that

∀𝑘 ∈ N, 𝑄 (𝑘) =
𝑘∑︁
𝑗=0

𝑃 ( 𝑗). (I.5.1)
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Proof. Put
(
𝑋
𝑚

)
:= 1

𝑚!
∏𝑚−1

𝑗=0 (𝑋 − 𝑗) ∈ R[𝑋 ] for every𝑚 ∈ N. Then we have deg
(
𝑋
𝑚

)
=

𝑚, and
(
𝑋
𝑚

)
=

(
𝑋+1
𝑚+1

)
−

(
𝑋+1
𝑚

)
. It is easy to see that

( (
𝑋
𝑚

)
: 𝑚 ∈ N

)
is a basis for the real

vector space R[𝑋 ]. Thus there exists 𝑎0, . . . , 𝑎𝑛 ∈ R, such that 𝑃 (𝑋 ) =
∑𝑛
𝑗=0 𝑎 𝑗

(
𝑋
𝑗

)
.

Hence𝑄 (𝑋 ) = ∑𝑛
𝑗=0 𝑎 𝑗

(
𝑋+1
𝑗+1

)
satis�es (I.5.1). Uniqueness of𝑄 is obvious as a non-zero

polynomial admits only �nitely many roots and N is in�nite. �

It is an important idea in geometric group theory to use length functions to con-
trol the growth of a discrete group. The same idea also applies to discrete quantum
groups, which we viewed as the dual of compact quantum groups. Let H be a com-
pact quantum group. Recall that Irr(H) denotes the set of equivalency classes of
irreducible unitary representation of H.

De�nition I.5.2. A length function on the discrete quantum group Ĥ is a mapping
𝑙 : Irr(H) → R≥0, such that (i) 𝑙 ( [𝜀H]) = 0, where 𝜀H is the trivial representation of
H; (ii) 𝑙 (𝑥) = 𝑙 (𝑥) for all 𝑥 ∈ Irr(H); (iii) 𝑙 (𝑧) ≤ 𝑙 (𝑥) + 𝑙 (𝑦) for all 𝑥,𝑦, 𝑧 ∈ Irr(H) such
that 𝑧 ⊆ 𝑥 ⊗ 𝑦.

Proposition I.5.3. Let H be a compact quantum group, 𝑙 a length function on Ĥ. The
following are equivalent.

(a) There exists a polynomial 𝑃 (𝑋 ) ∈ R[𝑋 ], such that for all 𝑘 ∈ N, we have∑︁
𝑥 ∈Irr(H) , 𝑘≤𝑙 (𝑥)<𝑘+1

(dim𝑥)2 ≤ 𝑃 (𝑘).

(b) There exists a polynomial 𝑄 (𝑋 ) ∈ R[𝑋 ], such that for all 𝑘 ∈ N, we have∑︁
𝑥 ∈Irr(H) , 𝑙 (𝑥)<𝑘+1

(dim𝑥)2 ≤ 𝑄 (𝑘).

Proof. Clearly (b) implies (a), while the reverse implication follows from Lemma I.5.1
and the fact that

{𝑥 ∈ Irr(H) : 𝑙 (𝑥) < 𝑘 + 1} =
𝑘⋃
𝑗=0

{𝑥 ∈ Irr(H) : 𝑗 ≤ 𝑙 (𝑥) < 𝑗 + 1}. �

De�nition I.5.4. The pair
(
Ĥ , 𝑙

)
is said to have polynomial growth, it any of the

equivalent conditions in Proposition I.5.3 is satis�ed.
The discrete quantum group Ĥ is said to have polynomial growth, if there is a

length function 𝑙 on it, such that the pair
(
Ĥ , 𝑙

)
has polynomial growth.

Our formulation of the rapid decay property (property (𝑅𝐷)) in the quantum set-
ting requires more work—we need to de�ne the Fourier transform and the Sobolev-
0-norm.

There are several important algebras associated to Ĥ, which we introduce now.
For every class 𝑥 ∈ Irr(H), we choose and �x a unitary representation 𝑢𝑥 of H on
some �nite dimensional Hilbert space H𝑥 such that 𝑢𝑥 ∈ 𝑥 . With these choices
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�xed, ℓ∞ (Ĥ), 𝑐0 (Ĥ) and 𝑐𝑐 (Ĥ) denote respectively the ℓ∞-direct sum, 𝑐0-direct sum,
and 𝑐𝑐 -direct sum of the “block algebras” B(H𝑥 ), i.e.

ℓ∞ (Ĥ) =
ℓ∞⊕

𝑥 ∈Irr(H)
B(H𝑥 ),

𝑐0 (Ĥ) =
𝑐0⊕

𝑥 ∈Irr(H)
B(H𝑥 ),

𝑐𝑐 (Ĥ) =
alg⊕

𝑥 ∈Irr(H)
B(H𝑥 ).

(I.5.2)

Of course, 𝑐𝑐 (Ĥ) is an involutive dense subalgebra5 of the 𝐶∗-algebra 𝑐0 (Ĥ), and
𝑐0 (Ĥ) is weakly dense in the von Neumann algebra ℓ∞ (Ĥ). In particular, 𝑐𝑐 (Ĥ) is
a weakly dense ideal in ℓ∞ (H). To �x the notations, for all 𝑥 ∈ Irr(H), the symbol
𝑝𝑥 denotes the central projection in 𝑐𝑐 (Ĥ) whose component at 𝑦 ∈ Irr(H) is idH𝑥

if 𝑦 = 𝑥 and is 0 otherwise. Hence for all 𝑎 ∈ ℓ∞ (Ĥ), the element 𝑎𝑝𝑥 ∈ 𝑐𝑐 (Ĥ) is
supported at 𝑥 ∈ Irr(H𝑥 ), and we often abuse notation by letting 𝑎𝑝𝑥 also denote its
𝑥-component (so 𝑎𝑝𝑥 ∈ B(H𝑥 )).

Remark I.5.5. Although we don’t need this, we mention in passing here that the
comultiplication on Ĥ is a bit tricky if we adopt the 𝑐0 or the algebraic 𝑐𝑐 picture
of Ĥ (one has to consider their multiplier algebras and use non-degenerate maps as
comultiplication). In the spirit of treating the bicrossed product G as an algebraic
compact quantum group, the algebraic dual of H viewed as an algebraic compact
quantum group is 𝑐𝑐 (H), and this duality can be nicely treated in the framework
of van Daele’s multiplier Hopf algebras, see Part I of (Timmermann, 2008), or the
original papers of van Daele (Van Daele, 1994; 1996; 1998).

We can now introduce the Fourier transform and Sobolev norms on these quan-
tum objects. As we’ve mentioned earlier, since the bicrossed productG is of Kac type
(Theorem I.2.11), it is enough for us to treat the unimodular case, for which we only
need the Sobolev-0-norm instead of all possible Sobolev norms.

De�nition I.5.6. Suppose H is of Kac type, and 𝑎 ∈ 𝑐𝑐 (Ĥ).

• The Fourier transform of 𝑎, denoted by FH (𝑎) or simply F (𝑎), is the element
in Pol(H) de�ned by

FH (𝑎) :=
∑︁

𝑥 ∈Irr(H)
(dim𝑥)

[
(TrH𝑥

⊗ id)
(
𝑢𝑥 (𝑎𝑝𝑥 ⊗ 1)

) ]
. (I.5.3)

• The Sobolev-0-norm of 𝑎, denoted by ‖𝑎‖H,0, is determined by

‖𝑎‖2H,0 =
∑︁

𝑥 ∈Irr(H)
TrH𝑥

(
(𝑎∗𝑎)𝑝𝑥

)
. (I.5.4)

Here, dim𝑥 = dimH𝑥 , which is independent of the choice of the representative
𝑢𝑥 (hence H𝑥 ), and we’ve adopted the abuse of notation as explained right before
Remark I.5.5.

5which is non-unital if the quantum group H is not �nite.
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Remark I.5.7. At �rst glance, it seems that the Fourier transform and the Sobolev-
0-norm both depend on our choice of a complete set of representatives of the set of
classes Irr(H). This dependence is in fact super�uous in the sense as we will now
explain. For each 𝑥 ∈ Irr(H), choose 𝑢𝑥 , 𝑣𝑥 ∈ 𝑥 , and denote the �nite dimensional
Hilbert space on which 𝑢𝑥 (resp. 𝑣𝑥 ) acts by H𝑥 (resp. K𝑥 ). Since [𝑢𝑥 ] = 𝑥 = [𝑣𝑥 ],
there exists a unitary𝑇𝑥 ∈ MorH (𝑢𝑥 , 𝑣𝑥 ), which is unique up to a multiple by a scalar
in T = {𝑧 ∈ C : |𝑧 | = 1}. Hence there is a canonical isomorphism of 𝐶∗-algebras
Θ𝑥 : B(H𝑥 ) → B(K𝑥 ), 𝑆 ↦→ 𝑇𝑥𝑆𝑇

∗
𝑥 . Here, when we say Θ𝑥 is canonical, we mean

Θ𝑥 does not depend on the choice of 𝑇𝑥 , which is true since 𝑇𝑥 is unique up to a
rescaling by a constant in T. Let U := {𝑢𝑥 : 𝑥 ∈ Irr(H)}, V := {𝑣𝑥 : 𝑥 ∈ Irr(H)}.
To emphasize the dependence on the choice of the complete set of representatives
of Irr(H), we use 𝑐U

𝑐 (Ĥ) (resp. 𝑐V
𝑐 (Ĥ)) to denote the copy of 𝑐𝑐 (Ĥ) as de�ned above

with respect to the choiceU (resp.V ), andwe denote the resulting Fourier transform
by FU

H (resp. F V
H ), and the Sobolev-0-norm by ‖ · ‖H,0,U (resp. ‖ · ‖H,0,V ). It is clear

that we now have a canonical isomorphism Θ : 𝑐U
𝑐 (Ĥ) → 𝑐V

𝑐 (H) that restricts to Θ𝑥
on each block B(H𝑥 ). Now for every 𝑥 ∈ Irr(H) and 𝑎𝑥 ∈ B(H𝑥 ), we have

(TrK𝑥
⊗ id)

[
Θ𝑥 (𝑢𝑥 )

(
Θ𝑥 (𝑎𝑥 ) ⊗ 1

) ]
= (TrK𝑥

⊗ id)
[
(𝑇𝑥 ⊗ 1)𝑢𝑥 (𝑇 ∗

𝑥 ⊗ 1)
(
(𝑇𝑥𝑎𝑇 ∗

𝑥 ) ⊗ 1
) ]

= (TrK𝑥
⊗ id)

[
(𝑇𝑥 ⊗ 1)𝑢𝑥 (𝑎𝑥 ⊗ 1) (𝑇 ∗

𝑥 ⊗ 1)
]

= (TrH𝑥
⊗ id)

[ (
𝑢𝑥 (𝑎𝑥 ⊗ 1)

) (
(𝑇 ∗
𝑥𝑇𝑥 ) ⊗ 1

) ]
= (TrH𝑥

⊗ id) [𝑢𝑥 (𝑎𝑥 ⊗ 1)],

which implies
∀𝑎 ∈ 𝑐U

𝑐 (Ĥ), F V
H

(
Θ(𝑎)

)
= FU

H (𝑎). (I.5.5)

Similarly,

∀𝑎𝑥 ∈ B(H𝑥 ), TrK𝑥

(
[Θ𝑥 (𝑎𝑥 )]∗ [Θ𝑥 (𝑎𝑥 )]

)
= TrK𝑥

(𝑇𝑥𝑎∗𝑥𝑎𝑥𝑇 ∗
𝑥 ) = TrH𝑥

(
𝑎∗𝑥𝑎𝑥

)
,

hence
∀𝑎 ∈ 𝑐U

𝑐 (Ĥ), ‖Θ𝑥 (𝑎)‖H,0,V = ‖𝑎‖H,0,U . (I.5.6)

By (I.5.5) and (I.5.6), we see that as far as the Fourier transform and the Sobolev-0-
norm are concerned, all possible choices of complete set of representatives of Irr(H)
behave coherently via the canonical ismorphisms of between their corresponding
copies of 𝑐𝑐 (Ĥ). We shall therefore write simply FH and ‖ · ‖H, with the obvious
adaptations if di�erent choices of complete sets of representatives of Irr(H) are cho-
sen, as indicated above.

The following useful result can be easily obtained using themethods presented in
(Vergnioux, 2007, Proposition 4.4, assertion 2) or (Bhowmick et al., 2015, Proposition
4.2, assertion b)). We include a detailed proof of it for our reader’s convenience.

Lemma I.5.8. Using the above notations. Suppose 𝐹 is a �nite subset of Irr(H) and
put 𝑝𝐹 := ∑

𝑥 ∈𝐹 𝑝𝑥 ∈ 𝑐𝑐 (Ĥ). Then

∀𝑎 ∈ 𝑝𝐹𝑐𝑐 (Ĥ) =⇒ ‖FH (𝑎)‖ ≤ 2

(√︂∑︁
𝑥 ∈𝐹

(dim𝑥)2
)
‖𝑎‖H,0 . (I.5.7)
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Proof. We �rst give a neat reformulation of the Fourier transform as in the article of
Vergnioux (Vergnioux, 2007). Let 𝜏 be the unique linear form on 𝑐𝑐 (Ĥ), such that

∀𝑥 ∈ Irr(H), ∀𝐴𝑥 ∈ B(H𝑥 ), 𝜏 (𝐴𝑥 ) = (dim𝑥) TrB(H𝑥 ) (𝐴𝑥 ).

It is clear that 𝜏 is positive and tracial, and restricts to a positive form on every �nite
dimensional ∗-subalgebra (which is automatically a𝐶∗-algebra) of 𝑐𝑐 (Ĥ) (𝜏 is actually
the Haar weight of the unimodular discrete quantum group Ĥ, but we don’t need
this). For every 𝑎 ∈ 𝑐𝑐 (Ĥ), we denote the linear form 𝜏 (·𝑎) on 𝑐𝑐 (Ĥ) by 𝑎 · 𝜏 . Note
that if 𝑎 ∈ 𝑐𝑐 (Ĥ) is positive, so is 𝑎 · 𝜏 , since

(𝑎 · 𝜏) (𝑏∗𝑏) = 𝜏 (𝑏∗𝑏𝑎) = 𝜏 (𝑎1/2𝑏∗𝑏𝑎1/2) ≥ 0

for all 𝑏 ∈ 𝑐𝑐 (Ĥ). Using the commutativity of algebraic direct sum and tensor prod-
uct, we identify the tensor product 𝑐𝑐 (Ĥ) ⊗ Pol(H) with

alg⊕
𝑥 ∈Irr(H)

B(H𝑥 ) ⊗ Pol(H),

and we de�ne

𝑈 := (𝑢𝑥 )𝑥 ∈Irr(H) ∈
ℓ∞⊕

𝑥 ∈Irr(H)
B(H𝑥 ) ⊗ Pol(H).

It is clear that 𝑈 is unitary, and for every 𝑏 in the �nite dimensional 𝐶∗-algebra
𝑝𝐹𝑐𝑐 (Ĥ) =

∑
𝑥 ∈𝐹 B(H𝑥 ), we have𝑈𝑏 lies in the unital 𝐶∗-algebra⊕

𝑥 ∈𝐹
B(H𝑥 ) ⊗ 𝐶𝑟 (H), (I.5.8)

where𝐶𝑟 (H) is the𝐶∗-completion of Pol(H) using the𝐶∗-norm induced by the GNS
construction with respect to the Haar state on Pol(H).

With these notations �xed, formula (I.5.3) can be rewritten as

FH (𝑎) =
[
(𝑎 · 𝜏) ⊗ id

]
(𝑈 ), (I.5.9)

while formula (I.5.4) becomes

‖𝑎‖2H,0 = 𝜏 (𝑎∗𝑎). (I.5.10)

Suppose 𝑎 ∈ 𝑝𝐹𝑐𝑐 (Ĥ) from now on. We �rst treat the case where 𝑎 is positive. In
this case, it is clear that the mapping (𝑎 ·𝜏) ⊗ id is positive, and using (I.5.9), we have

‖FH (𝑎)‖ =


[(𝑎 · 𝜏) ⊗ id

]
(𝑈 )



 = 

[(𝑎 · 𝜏) ⊗ id
]
(𝑈𝐹 )



 ≤ ‖𝑎 · 𝜏 ‖ = 𝜏𝐹 (𝑎), (I.5.11)

where 𝑈𝐹 is the partial unitary 𝑝𝐹𝑈 , and 𝜏𝐹 is the restriction of 𝜏 onto the �nite
dimensional 𝐶∗-algebra 𝑝𝐹𝑐𝑐 (Ĥ). Denote the unit

∑
𝑥 ∈𝐹 idH𝑥

of this last 𝐶∗-algebra
by 𝑒𝐹 , then by the Cauchy-Schwartz inequality and (I.5.10), we have

[𝜏𝐹 (𝑎)]2 ≤ 𝜏 (𝑒𝐹 )𝜏 (𝑎∗𝑎) =
(∑︁
𝑥 ∈𝐹

(dim𝑥)2
)
‖𝑎‖2H,0 . (I.5.12)

Combining (I.5.11) and (I.5.12) proves

∀𝑎 ∈
(
𝑝𝐹𝑐𝑐 (Ĥ)

)
+
, ‖FH (𝑎)‖ ≤

(√︂∑︁
𝑥 ∈𝐹

(dim𝑥)2
)
‖𝑎‖H,0. (I.5.13)
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Finally, suppose 𝑎 is an arbitrary element in the𝐶∗-algebra 𝑝𝐹𝑐𝑐 (Ĥ). Decompos-
ing the real and imaginary parts of 𝑎 onto the sum of their positive and negative
parts, we can �nd 𝑎𝑘 ∈

(
𝑝𝐹𝑐𝑐 (Ĥ)

)
+
, 𝑘 = 1, 2, 3, 4, such that 𝑎 =

∑4
𝑘=1 𝑖

𝑘𝑎𝑘 . By (I.5.10),
we have

‖𝑎‖2H,0 =
4∑︁
𝑘=1

‖𝑎𝑘 ‖2H,0 .

Hence by (I.5.13) and the Cauchy-Schwartz inequality, we have

‖FH (𝑎)‖2 ≤
(

4∑︁
𝑘=1

‖FH (𝑎𝑘 )‖
)2

≤ 4
4∑︁
𝑘=1

‖FH (𝑎𝑘 )‖2

≤ 4

(∑︁
𝑥 ∈𝐹

(dim𝑥)2
) (

2∑︁
𝑘=1

‖𝑎𝑘 ‖2H,0

)
= 4

(∑︁
𝑥 ∈𝐹

(dim𝑥)2
)
‖𝑎‖2H,0,

which proves (I.5.7). �

Wenow de�ne property (𝑅𝐷) and polynomial growth of Ĥ in terms of the Fourier
transform and the Sobolev-0-norm, with the help of length functions.

Notations I.5.9. Let 𝑙 be a length function on Ĥ, for all 𝑛 ∈ N, we pose the following
central projections

𝑞𝑙,𝑛 :=
∑︁

𝑥 ∈Irr(H), 𝑛≤𝑙 (𝑥)<𝑛+1
𝑝𝑥 ∈ ℓ∞ (Ĥ),

𝑄𝑙,𝑛 :=
𝑛∑︁
𝑗=0

𝑞𝑙, 𝑗 =
∑︁

𝑥 ∈Irr(H), 𝑙 (𝑥)<𝑛+1
𝑝𝑥 ∈ ℓ∞ (Ĥ).

To use the more succinct language of (Woronowicz, 1991), 𝐿 := ∑
𝑥 ∈Irr(H) 𝑙 (𝑥)𝑝𝑥 de�nes

an unbounded element a�liated with the 𝐶∗-algebra 𝑐0 (Ĥ), and 𝑞𝑙,𝑛 (resp. 𝑄𝑙,𝑛) is the
spectral projection of 𝐿 associated with the interval [𝑛, 𝑛 + 1[ (resp. [0, 𝑛 + 1[).

Wehave a similar result as Proposition I.5.3 concerning the control of the norm of
the Fourier transform using the Sobolev-0-norm with the help of a length function.

Proposition I.5.10. Let H be a compact quantum group, 𝑙 : Irr(H) → R≥0 a length
function on Ĥ. The following are equivalent.

(a) There is a polynomial 𝑃 (𝑋 ) ∈ R[𝑋 ], such that for all 𝑛 ∈ N,

𝑎 ∈ 𝑞𝑙,𝑛𝑐𝑐 (Ĥ) =⇒ ‖FG (𝑎)‖ ≤ 𝑃 (𝑛)‖𝑎‖G,0.

(b) There is a polynomial 𝑄 (𝑋 ) ∈ R[𝑋 ], such that for all 𝑛 ∈ N,

𝑎 ∈ 𝑄𝑙,𝑛𝑐𝑐 (Ĥ) =⇒ ‖FG (𝑎)‖ ≤ 𝑄 (𝑛)‖𝑎‖G,0 .

Proof. It is clear that (b) implies (a). Suppose (a) holds, and let’s prove (b). Take 𝑎 ∈
𝑄𝑙,𝑛𝑐𝑐 (Ĥ). Put 𝑎 𝑗 := 𝑝𝑙, 𝑗𝑎 for 𝑗 = 0, . . . , 𝑛, then 𝑎0, 𝑎1, . . . , 𝑎𝑛 are mutually orthogonal
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in 𝑐𝑐 (Ĥ). Hence by (a), we have

‖FG (𝑎)‖ ≤
𝑛∑︁
𝑗=0



FG (𝑎 𝑗 )

 ≤
𝑛∑︁
𝑗=0

𝑃 ( 𝑗)


𝑎 𝑗

G,0

=

(
𝑛∑︁
0

[𝑃 ( 𝑗)]2
)1/2 ( 𝑛∑︁

𝑗=0



𝑎 𝑗

2G,0) =

(
𝑛∑︁
𝑗=0

[𝑃 ( 𝑗)]2
)1/2

‖𝑎‖G,0 .

This, together with Lemma I.5.1 applied to the polynomial [𝑃 (𝑋 )]2, implies (b). �

De�nition I.5.11. Suppose H is of Kac type, and 𝑙 : Irr(H) → R≥0 is a length
function on Ĥ. We say the pair

(
Ĥ , 𝑙

)
has the rapid decay property, or property

(𝑅𝐷) (or even simply (𝑅𝐷)), if any of the equivalent conditions in Proposition I.5.10
is satis�ed.

We say the discrete quantum group Ĥ, where H is a compact quantum group of
Kac type, has property (𝑅𝐷) if there exists a length function 𝑙 on Ĥ such that the pair
(Ĥ, 𝑙) has property (𝑅𝐷).

If 𝐻 is a classical discrete group, then the convolution algebra 𝐶𝑐 (𝐻 ) of �nitely
supported complex-valued functions on 𝐻 is a Hopf ∗-algebra, with the comultipli-
cation Δ𝐻 determined by Δ𝐻 (𝛿𝑥 ) = 𝛿𝑥 ⊗ 𝛿𝑥 for all 𝑥 ∈ 𝐻 . In fact, 𝐻 :=

(
𝐶𝑐 (𝐻 ),Δ𝐻

)
an algebraic compact quantum group (so𝐶𝑐 (𝐻 ) = Pol(𝐻 )), with the Haar state being
the tracial state sending 𝛿𝑥 to 𝛿𝑥,𝑒𝐻 ∈ C, where 𝑒𝐻 is the neutral element of 𝐻 . It is
easy to see that Irr(𝐻 ) is in canonical bijective correspondence with 𝐻 . Indeed, ev-
ery 𝑥 ∈ 𝐻 determines a one-dimensional unitary representation 𝑢𝑥 ∈ B(C) ⊗𝐶𝑐 (𝐻 )
of 𝐻 given by 𝑢𝑥 = idC ⊗𝛿𝑥 , and 𝑥 ↦→ [𝑢𝑥 ] is this canonical bijection from 𝐻 onto
Irr(𝐻 ). Now apply the above discussion to the compact quantum group𝐻 , we get the
notions of length functions, polynomial growth, (𝑅𝐷) for ̂̂

𝐻 . But ̂̂
𝐻 is just 𝐻 viewed

as a discrete quantum group, with 𝑐𝑐
(̂̂
𝐻

)
= 𝐶𝑐 (𝐻 ) if we identify 𝐻 with Irr(𝐻 ) as

we’ve just explained, thus De�nitions I.5.2, I.5.4, I.5.6 and I.5.11 give a corresponding
notion of length functions on 𝐻 , Fourier transform on 𝐻 and Sobolev-0-norm on 𝐻 ,
and polynomial growth and (𝑅𝐷) for𝐻 , which coincide with their classical counter-
parts in the group case (see (Jolissaint, 1990)). We record the precise form of these
notions for discrete groups in the following.

De�nition I.5.12. Let 𝐻 be a (discrete) group. A length function on 𝐻 is a map-
ping 𝑙 : 𝐻 → R≥0 such that (i) 𝑙 (𝑒𝐻 ) = 0; (ii) 𝑙 (𝑥) = 𝑙 (𝑥−1) for all 𝑥 ∈ 𝐻 ;
(iii) 𝑙 (𝑥𝑦) ≤ 𝑙 (𝑥) + 𝑙 (𝑦) for all 𝑥,𝑦 ∈ 𝐻 .

Suppose 𝑙 is length function on 𝐻 .

• We say (𝐻, 𝑙) has polynomial growth, if there is a polynomial 𝑃 (𝑋 ) ∈ R[𝑋 ],
such that for all 𝑛 ∈ N, we have |{𝑥 ∈ 𝐻 : 𝑙 (𝑥) ∈ [𝑛, 𝑛 + 1[}| ≤ 𝑃 (𝑛).

• We say (𝐻, 𝑙) has rapid decay (property (𝑅𝐷)), if there is a polynomial 𝑃 (𝑋 ) ∈
R[𝑋 ], such that for all 𝑛 ∈ N, and all 𝑎 ∈ 𝐶𝑐 (𝐻 ) such that 𝑙 (𝑥) ∈ [𝑛, 𝑛 + 1[
whenever 𝑎(𝑥) ≠ 0, we have ‖𝑎‖𝜆 ≤ 𝑃 (𝑛)‖𝑎‖2, where ‖𝑎‖𝜆 is the operator
norm of the convolution6 𝑎 ∗ (·) : ℓ2 (𝐻 ) → ℓ2 (𝐻 ), and ‖𝑎‖2 is the ℓ2-norm7 of
𝑎 viewed as in ℓ2 (𝐻 ).

6This is exactly the norm of the Fourier transform of 𝑎.
7This is exactly ‖𝑎 ‖ ̂̂

𝐻,0
.
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We remark that the interval [𝑛, 𝑛 + 1[ can also be replaced by the interval [0, 𝑛 + 1[.
Finally, 𝐻 is said to have polynomial growth (resp. (𝑅𝐷)) if there is a length

function 𝑙 on 𝐻 such that the pair (𝐻, 𝑙) has polynomial growth (resp. (𝑅𝐷)).

We refer the reader to the survey paper (Chatterji, 2017) and the references there
for many (non)examples, as well as a nice survey of our current knowledge and open
questions, concerning property (𝑅𝐷) for discrete groups. We mention in passing
some results here.

• (Gromov (Gromov, 1981)) Finitely generated a group has polynomial growth
if and only if it is virtually nilpotent (i.e. containing a nilpotent subgroup of
�nite index).

• (Jolissaint (Jolissaint, 1990)) For all discrete group 𝐻 , polynomial growth of 𝐻
implies that 𝐻 has (𝑅𝐷), and the converse also holds if 𝐻 is amenable.

• (Jolissaint (Jolissaint, 1990)) The group SL𝑛 (Z) has (𝑅𝐷) if and only if 𝑛 ≤ 2.
The free group F2 has (𝑅𝐷) (none of these groups has polynomial growth).

In the quantum case, Vergnioux showed in (Vergnioux, 2007) the following re-
sults:

• As in the classical case, a discrete quantum group Ĥ has polynomial growth
implies that Ĥ has (𝑅𝐷) (which can also be proved directly by Lemma I.5.8),
and the converse holds if Ĥ is coamenable (we won’t prove this result here, but
see Proposition I.5.13 for the proof of a special case).

• If 𝐻 is a real compact connected Lie group, then the dual 𝐻 has polynomial
growth (hence (𝑅𝐷)).

We track here a quick proof of the result of Vergnioux in the special case of the
dual of classical compact groups.

Proposition I.5.13. Suppose 𝐻 is a classical compact group, and 𝑙 is a length function
on 𝐻 . If

(
𝐻 , 𝑙

)
has (𝑅𝐷), then it has polynomial growth.

Proof. Let 𝑃 (𝑋 ) ∈ R[𝑋 ] satis�es

𝑎 ∈ 𝑞𝑙,𝑘𝑐𝑐 (𝐻 ) =⇒ ‖F𝐻 (𝑎)‖ ≤ 𝑃 (𝑘)‖𝑎‖𝐻,0

for all 𝑘 ∈ N. Let 𝜖 : 𝐶 (𝐻 ) → C be the character of the 𝐶∗-algebra 𝐶 (𝐻 ) given by
𝜑 ↦→ 𝜑 (𝑒𝐻 ). Since 𝑢 (𝑒𝐻 ) = id for any representation 𝑢 of 𝐻 , we have

∀𝑥 ∈ Irr(𝐻 ), 𝑎𝑥 ∈ B(H𝑥 ),
𝜖
(
(TrH𝑥

⊗ id)
[
𝑢𝑥 (𝑎𝑥 ⊗ 1)

] )
= (TrH𝑥

⊗𝜖)
[
𝑢𝑥 (𝑎𝑥 ⊗ 1)

]
= TrH (𝑎𝑥 ).

(I.5.14)

Put 𝑝𝐹 := ∑
𝑥 ∈𝐹 𝑝𝑥 ∈ 𝑞𝑙,𝑘𝑐𝑐 (𝐻 ). Take an arbitrary 𝑘 ∈ N, and a �nite subset 𝐹 of

{𝑥 ∈ Irr(𝐻 ) : 𝑘 ≤ 𝑙 (𝑥) < 𝑘 + 1}. Then by (I.5.14), we have

𝜖
(
F𝐻 (𝑝𝐹 )

)
=

∑︁
𝑥 ∈𝐹

(dim𝑥) TrH𝑥
(𝑝𝑥 ) =

∑︁
𝑥 ∈𝐹

(dim𝑥)2,

and
‖𝑝𝐹 ‖2𝐻,0 =

∑︁
𝑥 ∈𝐹

(dim𝑥) TrH (𝑝𝑥 ) =
∑︁
𝑥 ∈𝐹

(dim𝑥)2.
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Thus∑︁
𝑥 ∈𝐹

(dim𝑥)2 = 𝜖
(
FH (𝑝𝐹 )

)
≤ ‖FH (𝑝𝐹 )‖ ≤ 𝑃 (𝑘)‖𝑝𝐹 ‖𝐻,0 = 𝑃 (𝑘)

√︂∑︁
𝑥 ∈𝐹

(dim𝑥)2 .

Hence ∑︁
𝑥 ∈𝐹

(dim𝑥)2 ≤ [𝑃 (𝑘)]2.

As 𝐹 is taken arbitrarily, this forces∑︁
𝑥 ∈Irr(𝐻 ), 𝑘≤𝑙 (𝑥)<𝑘+1

(dim𝑥)2 ≤ 𝑄 (𝑘),

where 𝑄 (𝑋 ) = [𝑃 (𝑋 )]2 ∈ R[𝑋 ]. This proves that
(
𝐻 , 𝑙

)
indeed has polynomial

growth. �

Remark I.5.14. The quantum case of Proposition I.5.13 is proved in the same way
assuming the underlying compact quantum group is coamenable, thus the counit
is everywhere de�ned and hence is a character of the underlying 𝐶∗-algebra, whose
norm is thus bounded by 1 (we always have (id ⊗𝜖) (𝑢) = id for any �nite dimensional
unitary representation 𝑢 of a compact quantum group). This approach is due to
Vergnioux (cf. (Vergnioux, 2007, Proposition 4.4)).

Corollary I.5.15. Suppose 𝐻 is a classical compact group, 𝑙 is a length function on
𝐻,, then

(
𝐻 , 𝑙

)
has (𝑅𝐷) if and only if it has polynomial growth. In particular, 𝐻 has

(𝑅𝐷) if and only if it has polynomial growth.

Proof. This is clear by Proposition I.5.13 and Lemma I.5.8. �

We terminate this section with a technical result for classical compact groups,
which will play a vital role in the proof our result on (𝑅𝐷) for Ĝ.

Lemma I.5.16. Suppose 𝐻 is a compact group and 𝐾 is an open subgroup of 𝐻 . Let
𝑒𝐾 ∈ 𝐶 (𝐻 ) be the characteristic function of 𝐾 . For all 𝑎 ∈ 𝑐𝑐 (𝐾), there exists 𝑎 ∈ 𝑐𝑐 (𝐻 ),
such that (i) if 𝑎𝑝𝑦 ≠ 0 for some 𝑦 ∈ Irr(𝐻 ), then 𝑎𝑝𝑥 ≠ 0 for some 𝑥 ∈ Irr(𝐾) with
𝑦 ⊆ Ind𝐻𝐾 (𝑥); (ii) 𝑒𝐾F𝐻 (𝑎) = 𝔈𝐾 (F𝐾 (𝑎)), where 𝔈𝐾 : 𝐶 (𝐾) → 𝐶 (𝐻 ) is the unique
extension of functions by making the extension vanish outside 𝐾 ; (iii) ‖𝑎‖𝐻,0 ≤ ‖𝑎‖𝐾,0.

Proof. For every 𝑥 ∈ Irr(𝐾), 𝑦 ∈ Irr(𝐻 ), de�ne

𝑑𝑥,𝑦 := dimMor𝐻
(
𝑦, Ind𝐻𝐾 (𝑥)

)
= dimMor𝐻

(
Res𝐻𝐾 (𝑦), 𝑥

)
= dimMor𝐻

(
𝑥, Res𝐻𝐾 (𝑦)

)
.

By de�nition 𝑑𝑥,𝑦 ≠ 0 if and only if 𝑦 ⊆ Ind𝐻𝐾 (𝑥). Put

supp𝐻 (𝑥) :=
{
𝑦 ∈ Irr(𝐻 ) : 𝑦 ⊆ Ind𝐻𝐾 (𝑥)

}
=

{
𝑦 ∈ Irr(𝐻 ) : 𝑥 ⊆ Res𝐻𝐾 (𝑦)

}
,

and

supp𝐾 (𝑦) :=
{
𝑥 ∈ Irr(𝐾) : 𝑦 ⊆ Ind𝐻𝐾 (𝑥)

}
=

{
𝑥 ∈ Irr(𝐾) : 𝑥 ⊆ Res𝐻𝐾 (𝑦)

}
.
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Using the semisimplicity of the additive category Rep(𝐻 ), for each 𝑥 ∈ Irr(𝐾), one
can choose a family of pairwise orthogonal isometries 𝑠𝑖𝑥,𝑦 ∈ Mor𝐻

(
𝑢𝑦, Ind𝐻𝐾 (𝑢𝑥 )

)
,

𝑦 ∈ supp𝐻 (𝑥), 𝑖 = 1, . . . , 𝑑𝑥,𝑦 such that∑︁
𝑦∈supp𝐻 (𝑥)

𝑑𝑥,𝑦∑︁
𝑖=1

(
𝑠𝑖𝑥,𝑦

) (
𝑠𝑖𝑥,𝑦

)∗
= idK𝑥

, (I.5.15)

where K𝑥 is the �nite dimensional Hilbert space on which Ind𝐻𝐾 (𝑢𝑥 ) acts. For all
𝑥 ∈ Irr(𝐾), since

dimMor𝐾
(
𝑥, Res𝐻𝐾

(
Ind𝐻𝐾 (𝑥)

) )
= dimEnd𝐺

(
Ind𝐻𝐾 (𝑥)

)
≠ 0,

by Schur’s lemma, we are able to choose and �x an isometry

𝑟𝑥 ∈ Mor𝐾
(
𝑢𝑥 , Res𝐻𝐾

(
Ind𝐻𝐾 (𝑢𝑥 )

) )
.

With these notations, let 𝑎 be the unique element in ℓ∞ (𝐻 ) such that

∀𝑦 ∈ Irr(𝐻 ), 𝑎𝑝𝑦 =
∑︁

𝑥 ∈supp𝐾 (𝑦)

dim𝑥

dim𝑦

𝑑𝑥,𝑦∑︁
𝑖=1

(
𝑠𝑖𝑥,𝑦

)∗
𝑟𝑥 (𝑎𝑝𝑥 )𝑟 ∗𝑥

(
𝑠𝑖𝑥,𝑦

)
. (I.5.16)

By de�nition,

∀𝑥 ∈ Irr(𝐾), 𝑦 ∈ Irr(𝐻 ), 𝑥 ∈ supp𝐾 (𝑦) ⇐⇒ 𝑦 ∈ supp𝐾 (𝑥), (I.5.17)

thus
𝑎𝑝𝑦 ≠ 0 =⇒ ∃𝑥 ∈ supp(𝑎), 𝑦 ∈ supp𝐾 (𝑥).

This shows that the set{
𝑦 ∈ Irr(𝐻 ) : 𝑎𝑝𝑦 ≠ 0

}
⊆

⋃
𝑥 ∈supp(𝑎)

supp𝐻 (𝑥)

is �nite, and we in fact have 𝑎 ∈ 𝑐𝑐 (𝐺). We now show that 𝑎 has the desired Fourier
transform and Sobolev-0-norm.

By our choices of 𝑠𝑖𝑥,𝑦 and 𝑟𝑥 , we have

∀𝑥 ∈ Irr(𝐾), 𝑦 ∈ supp𝐻 (𝑥), 𝑖 = 1, . . . , 𝑑𝑥,𝑦,

𝑢𝑦
[(
𝑠𝑖𝑥,𝑦

)∗
⊗ 1

]
=

[(
𝑠𝑖𝑥,𝑦

)∗
⊗ 1

]
Ind𝐻𝐾 (𝑢𝑥 ),

(I.5.18)

and note that 𝐶 (𝐻 ) is commutative, we also have

∀𝑥 ∈ Irr(𝐾), (id ⊗𝑒𝐾 ) Ind𝐻𝐾 (𝑢𝑥 ) = Ind𝐻𝐾 (𝑢𝑥 ) (𝑟𝑥 ⊗ 𝑒𝐾 ) = (𝑟𝑥 ⊗ 1)𝑢𝑥 . (I.5.19)

Combining (I.5.18) and (I.5.19), we have

𝑒𝐾

{
(TrH𝑦

⊗ id)
(
𝑢𝑦

{[(
𝑠𝑖𝑥,𝑦

)∗
𝑟𝑥 (𝑎𝑝𝑥 )𝑟 ∗𝑥

(
𝑠𝑖𝑥,𝑦

)]
⊗ 1

})}
= 𝑒𝐾

{
(TrH𝑦

⊗ id)
({(

𝑠𝑖𝑥,𝑦

)∗
⊗ 1

}
Ind𝐻𝐾 (𝑥)

{[
𝑟𝑥 (𝑎𝑝𝑥 )𝑟 ∗𝑥

(
𝑠𝑖𝑥,𝑦

)]
⊗ 1

})}
= (TrH𝑦

⊗ id)
({(

𝑠𝑖𝑥,𝑦

)∗
⊗ 1

} {
Ind𝐻𝐾 (𝑥) (𝑟𝑥 ⊗ 𝑒𝐾 )

} {[
(𝑎𝑝𝑥 )𝑟 ∗𝑥

(
𝑠𝑖𝑥,𝑦

)]
⊗ 1

})
= (TrH𝑦

⊗ id)
({ [(

𝑠𝑖𝑥,𝑦

)∗
𝑟𝑥

]
⊗ 1

}
{𝑢𝑥 [(𝑎𝑝𝑥 ) ⊗ 1]}

{[
𝑟 ∗𝑥

(
𝑠𝑖𝑥,𝑦

)]
⊗ 1

})
= (TrH𝑦

⊗ id)
(
{𝑢𝑥 [(𝑎𝑝𝑥 ) ⊗ 1]}

{[
𝑟 ∗𝑥

(
𝑠𝑖𝑥,𝑦

) (
𝑠𝑖𝑥,𝑦

)∗
𝑟𝑥

]
⊗ 1

})
.

(I.5.20)
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By de�nition of the Fourier transform, (I.5.15), (I.5.16), (I.5.17) and (I.5.20), we
have

𝑒𝐾F𝐻 (𝑎) = 𝑒𝐾
∑︁

𝑦∈Irr(𝐻 )
(dim𝑦)

[
(TrH𝑦

⊗ id)
(
𝑢𝑦

(
𝑎𝑝𝑦 ⊗ 1

) )]
= 𝑒𝐾

∑︁
𝑦∈Irr(𝐻 )

∑︁
𝑥 ∈supp𝐾 (𝑦)

𝑑𝑥,𝑦∑︁
𝑖=1

(dim𝑥){
(TrH𝑦

⊗ id)
(
𝑢𝑦

{[(
𝑠𝑖𝑥,𝑦

)∗
𝑟𝑥 (𝑎𝑝𝑥 )𝑟 ∗𝑥

(
𝑠𝑖𝑥,𝑦

)]
⊗ 1

})}
=

∑︁
𝑥 ∈supp(𝑎)

∑︁
𝑦∈supp𝐻 (𝑥)

𝑑𝑥,𝑦∑︁
𝑖=1

(dim𝑥){
(TrH𝑦

⊗ id)
({ [(

𝑠𝑖𝑥,𝑦

)∗
𝑟𝑥

]
⊗ 1

}
{𝑢𝑥 [(𝑎𝑝𝑥 ) ⊗ 1]}

{[
𝑟 ∗𝑥

(
𝑠𝑖𝑥,𝑦

)]
⊗ 1

})}
=

∑︁
𝑥 ∈supp(𝑎)

(dim𝑥)
∑︁

𝑦∈supp𝐻 (𝑥)

𝑑𝑥,𝑦∑︁
𝑖=1{

(TrH𝑦
⊗ id)

(
{𝑢𝑥 [(𝑎𝑝𝑥 ) ⊗ 1]}

{[
𝑟 ∗𝑥

(
𝑠𝑖𝑥,𝑦

) (
𝑠𝑖𝑥,𝑦

)∗
𝑟𝑥

]
⊗ 1

})}
=

∑︁
𝑥 ∈supp(𝑎)

(dim𝑥)
{
(TrH𝑥

⊗ id)
({
𝑢𝑥 [(𝑎𝑝𝑥 ) ⊗ 1]

}{
(𝑟 ∗𝑥𝑟𝑥 ) ⊗ 1

})}
=

∑︁
𝑥 ∈supp(𝑎)

(dim𝑥) · 𝔈𝐾
[
(TrH𝑥

⊗ id) (𝑢𝑥 [(𝑎𝑝𝑥 ) ⊗ 1])
]
= 𝔈𝐾 (F𝐾 (𝑎)) .

(I.5.21)

Finally, since 𝑠 (𝑖)𝑥,𝑦 , 𝑟𝑥 are all isometries, we have

𝑟 ∗𝑥

(
𝑠𝑖𝑥,𝑦

) (
𝑠𝑖𝑥,𝑦

)∗
𝑟𝑥 ≤ idH𝑥

,

so by (I.5.16), and the mutual orthogonality of 𝑠𝑖𝑥,𝑦 , 𝑖 = 1, . . . , 𝑑 , we have

TrH𝑦

(
𝑎∗𝑎𝑝𝑦

)
=

∑︁
𝑥 ∈supp𝐾 (𝑦)

𝑑𝑥,𝑦∑︁
𝑖=1

(
dim𝑥

dim𝑦

)2
TrH𝑥

((
𝑠𝑖𝑥,𝑦

)∗
𝑟𝑥 (𝑎∗𝑝𝑥 )𝑟 ∗𝑥

(
𝑠𝑖𝑥,𝑦

)∗ (
𝑠𝑖𝑥,𝑦

)∗
𝑟𝑥 (𝑎𝑝𝑥 )𝑟 ∗𝑥

(
𝑠𝑖𝑥,𝑦

)∗)
≤

∑︁
𝑥 ∈supp𝐾 (𝑦)

𝑑𝑥,𝑦∑︁
𝑖=1

(
dim𝑥

dim𝑦

)2
TrH𝑥

((
𝑠𝑖𝑥,𝑦

)∗
𝑟𝑥 (𝑎∗𝑎𝑝𝑥 )𝑟 ∗𝑥

(
𝑠𝑖𝑥,𝑦

))
=

∑︁
𝑥 ∈supp𝐾 (𝑦)

𝑑𝑥,𝑦∑︁
𝑖=1

(
dim𝑥

dim𝑦

)2
TrH𝑥

(
(𝑎∗𝑎𝑝𝑥 )𝑟 ∗𝑥

(
𝑠𝑖𝑥,𝑦

) (
𝑠𝑖𝑥,𝑦

)∗
𝑟𝑥

)
.

(I.5.22)
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It follows from (I.5.17) and (I.5.22) that

‖𝑎‖2𝐻,0
=

∑︁
𝑦∈Irr(𝐻 )

(dim𝑦) TrH𝑦

(
𝑎∗𝑎𝑝𝑦

)
≤

∑︁
𝑦∈Irr(𝐻 )

(dim𝑦)
∑︁

𝑥 ∈supp𝐾 (𝑦)

𝑑𝑥,𝑦∑︁
𝑖=1

(
dim𝑥

dim𝑦

)2
TrH𝑥

((
𝑠𝑖𝑥,𝑦

)∗
𝑟𝑥 (𝑎∗𝑎𝑝𝑥 )𝑟 ∗𝑥

(
𝑠𝑖𝑥,𝑦

))
=

∑︁
𝑥 ∈supp(𝑎)

(dim𝑥)
∑︁

𝑦∈supp𝐻 (𝑥)

𝑑𝑥,𝑦∑︁
𝑖=1

(
dim𝑥

dim𝑦

)
TrH𝑥

(
(𝑎∗𝑎𝑝𝑥 )𝑟 ∗𝑥

(
𝑠𝑖𝑥,𝑦

) (
𝑠𝑖𝑥,𝑦

)∗
𝑟𝑥

)
≤

∑︁
𝑥 ∈supp(𝑎)

(dim𝑥)
∑︁

𝑦∈supp𝐻 (𝑥)

𝑑𝑥,𝑦∑︁
𝑖=1

TrH𝑥

(
(𝑎∗𝑎𝑝𝑥 )𝑟 ∗𝑥

(
𝑠𝑖𝑥,𝑦

) (
𝑠𝑖𝑥,𝑦

)∗
𝑟𝑥

)
(since 𝑦 ∈ supp𝐻 (𝑥) =⇒ 𝑥 ⊆ Res𝐻𝐾 (𝑦) =⇒ dim𝑥 ≤ dim𝑦)

=
∑︁

𝑥 ∈supp(𝑎)
(dim𝑥) TrH𝑥

(
𝑎∗𝑎𝑝𝑥𝑟

∗
𝑥𝑟𝑥

)
=

∑︁
𝑥 ∈supp(𝑎)

(dim𝑥) TrH𝑥
(𝑎∗𝑎𝑝𝑥 ) = ‖𝑎‖2𝐾,0.

(I.5.23)

The lemma is now established by (I.5.21) and (I.5.23). �

I.6 Macthed pair of length functions

We now study the length functions on Ĝ. Naturally, this is closely related to the
representation theory of G as presented in § I.4. Recall that for any 𝛽-orbit O , the
notation IrrO (𝐺) denotes the set of equivalency classes of O-representations of 𝐺 ,
and there is a dagger operation (·)† on ∐

O∈Orb𝛽 IrrO (𝐺) given by De�nition I.4.12.
We also recall our classi�cation bijection (Theorem I.4.9)

ℜ :
∐

O∈Orb𝛽
IrrO (𝐺) → Irr(G)

[𝑈 ] ∈ IrrO (𝐺) ↦→ [ℜO (𝑈 )]

preserves involution (Theorem I.4.13), where ℜO (𝑈 ) is given by the formula (I.4.6)
in Lemma I.4.4.

Suppose 𝑙 : Irr(G) → R≥0 is a length function. For each O ∈ Orb𝛽 , let 𝑙O :
IrrO (𝐺) → R≥0 be the composition of 𝑙 , ℜ and the inclusion

IrrO (𝐺) ↩→
∐

O∈Orb𝛽
IrrO (𝐺).

We also adopt Notations I.4.7, so in particular, the bijection𝛷 {𝑒Γ } given there allows
us to identify Irr{𝑒Γ } (𝐺) with Irr(𝐺), and we denote 𝑙 {𝑒Γ } by 𝑙𝐺 : Irr(𝐺) → R≥0 using
this identi�cation. On the other hand, for all O ∈ Orb𝛽 , let 𝜀O denote the trivial
O-representation of𝐺 , i.e. 𝜀O =

∑
𝑟,𝑠∈O 𝑒𝑟,𝑠 ⊗ 𝑣𝑟,𝑠 , so that [𝜀O] = 𝛷𝛾 ( [𝜀𝐺𝛾 ]) for every

𝛾 ∈ O . We de�ne 𝑙Γ : Γ → R≥0, 𝛾 ↦→ 𝑙𝛾 ·𝐺 ( [𝜀𝛾 ·𝐺 ]).
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Lemma I.6.1. Using the above notations, the following hold:

(a) 𝑙
𝐺
is a length function on 𝐺 and 𝑙Γ is a 𝛽-invariant length function on Γ;

(b) 𝑙 {𝑒Γ } ( [𝜀𝐺 ]) = 0;

(c) for all O ∈ Orb𝛽 and [𝑈 ] ∈ IrrO (𝐺), we have 𝑙O ( [𝑈 ]) = 𝑙O−1 ( [𝑈 †]);

(d) for 𝑖 = 1, 2, 3, letO𝑖 ∈ Orb𝛽 , and [𝑈𝑖 ] ∈ IrrO𝑖 (𝐺), with𝑈𝑖 =
∑
𝑟,𝑠∈O𝑖 𝑒𝑟,𝑠⊗𝑢

(𝑖)
𝑟,𝑠 be-

ing anO𝑖 -irreducibleO𝑖 -representation of𝐺 (see De�nition I.4.6) on ℓ2 (O𝑖 ) ⊗H𝑖 ,
if dimMor𝐺𝛾

(
𝑢
(3)
𝛾,𝛾 |𝐺𝛾 ,𝑈1 ×𝛾 𝑈2

)
≠ 0 for some (hence for all, by Lemma I.4.18)

𝛾 ∈ O3, then 𝑙O3 ( [𝑈3]) ≤ 𝑙O1 ( [𝑈1]) + 𝑙O2 ( [𝑈2]).

Proof. Since 𝑙 is a length function on 𝐺 , (a) and (c) are easy consequences of the
de�nitions of 𝑙

𝐺
, 𝑙Γ , 𝑙O and the fact that the classi�cation bijection ℜ is involution

preserving. (b) is a corollary of (a) (𝑙Γ is a length function on Γ). Assertion (d) is a
consequence of Theorem I.4.19 and the fact that 𝑙 is a length function. �

The above discussion motivates the following de�nition.

De�nition I.6.2. A family of mappings (𝑙O : IrrO (𝐺) → R≥0)O∈Orb𝛽 indexed by
Orb𝛽 is called a�ording, if conditions (b), (c) and (d) in Lemma I.6.1 are satis�ed.

Proposition I.6.3. Let 𝔏 be the set of length functions on Ĝ, and 𝔄 be the set of
a�ording family of mappings. Then

Φ : 𝔏 → 𝔄

𝑙 ↦→ (𝑙O)O∈Orb𝛽

is a well-de�ned bijection, where 𝑙O := 𝑙 ◦ℜ◦𝜄O with 𝜄O being the inclusion IrrO (𝐺) ↩→∐
O∈Orb𝛽 IrrO (𝐺).

Proof. That Φ is well-de�ned follows directly from Lemma I.6.1 and De�nition I.6.2.
Note that ⋃

O∈Orb𝛽
Image(ℜ ◦ 𝜄O) =

∐
O∈Orb𝛽

IrrO (𝐺),

since
∀O ∈ Orb𝛽 , Image(ℜ ◦ 𝜄O) = IrrO (𝐺).

By the de�nition of 𝑙O , this implies that that Φ is injective.
It remains to show that Φ is surjective. By the de�nition of Φ, this amounts to

prove that for every a�ording family (𝑙O)O∈Orb𝛽 ∈ 𝔄, the mapping 𝑙 : Irr(G) → R≥0

de�ned by [ℜO (𝑈 )] ↦→ 𝑙O ( [𝑈 ]) is a length function on Ĝ. With the representa-
tion theory (Theorem I.4.9, Theorem I.4.13 and Theorem I.4.19) of G in mind, it is
clear that the conditions in De�nition I.5.2 correspond exactly to the conditions in
De�nition I.6.2, hence 𝑙 is indeed a length function on Ĝ. �

Corollary I.6.4. If (𝑙O)O∈Orb𝛽 is an a�ording family of mappings, then 𝑙Γ : 𝛾 ↦→
𝑙𝛾 ·𝐺 ( [𝜀𝛾 ·𝐺 ]) is a 𝛽-invariant (i.e. 𝑙Γ (O) is a singleton for every O ∈ Orb𝛽 ) length func-
tion on 𝐺 , and 𝑙

𝐺
:= 𝑙 {𝑒Γ } is a length-function on 𝐺 .

Proof. This follows from Proposition I.6.3 and assertion (a) of Lemma I.6.1. �
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There is also a way of producing length functions on Ĝ from length functions on
Γ that are 𝛽-invariant.

Lemma I.6.5. Let 𝑙Γ be a length function on Γ. If 𝑙Γ is 𝛽-invariant, then the mapping
𝑙1 : Irr(G) → R≥0, [ℜO (𝑈 )] ↦→ 𝑙Γ (𝛾) where 𝛾 ∈ O is a well-de�ned length function
on Ĝ.

Proof. That 𝑙1 is well-de�ned follows from the 𝛽-invariance of 𝑙 . The fact that 𝑙1 is a
length function follows immediately from the representation theory (Theorem I.4.9,
Theorem I.4.13 and Theorem I.4.19) of G. �

To facilitate our discussion, we introduce some terminologies in the following
de�nitions, which will be useful later in the proofs of our results on (𝑅𝐷) and poly-
nomial growth of Ĝ.

De�nition I.6.6. Let F = (𝑙O)O∈Orb𝛽 be an a�ording family of mappings. Suppose
Φ is de�ned as in Proposition I.6.3. The length function 𝑙 := Φ−1 (F ) on Ĝ is called
the standard length function associated with F .

De�nition I.6.7. Let 𝑙Γ be the 𝛽-invariant length function on Γ as in Corollary I.6.4,
and 𝑙1 the length function on Ĝ as in Lemma I.6.5. We say that 𝑙1 is induced by 𝑙Γ .

De�nition I.6.8. Let F = (𝑙O)O∈Orb𝛽 be an a�ording family of mappings and(
𝑙Γ , 𝑙𝐺

)
is the matched pair of length functions a�orded by F . Let 𝑙 be the stan-

dard length function associated with F and 𝑙1 be the length function induced by 𝑙Γ .
The length function 𝑙 + 𝑙1 on Ĝ is called the in�ated length function associated with
F .

We want to study the permanence of (𝑅𝐷) and polynomial growth of the dual of
the bicrossed productG. For this purpose, the a�ording families of mappings contain
a little too much information, as we want to relate a length function on Ĝ to only two
length functions—one on 𝐺 and one on Γ—instead of a family of mappings indexed
by Orb𝛽 (but the a�ording families of mappings are still very relevant as they are
equivalent to length functions on Ĝ via Proposition I.6.3). To address this problem,
we introduce the notion of matched pair of length functions.

De�nition I.6.9. Let 𝑙
𝐺
be a length function on𝐺 , and 𝑙Γ be a length function on Γ,

we say that the pair
(
𝑙Γ , 𝑙𝐺

)
ismatched, if there exists an a�ording family ofmappings

(𝑙O : IrrO (𝐺) → R≥0)O∈Orb𝛽 such that

• for all [𝑈 ] ∈ Irr{𝑒Γ } (𝐺) = Irr(𝐺), we have 𝑙
𝐺
( [𝑈 ]) = 𝑙 {𝑒Γ } ( [𝑈 ]) ;

• for all O ∈ Orb𝛽 , the image 𝑙Γ (O) is the singleton 𝑙O ( [𝜀O]).

If this is the case, we say that the family
{
𝑙O : O ∈ Orb𝛽

}
a�ords the matching of(

𝑙Γ , 𝑙𝐺

)
.

De�nition I.6.10. Let Φ be as in Proposition I.6.3. Suppose 𝑙 is a length function on
Ĝ, both the a�ording family Φ(𝑙) and the matched pair

(
𝑙Γ , 𝑙𝐺

)
of length functions

a�orded by Φ(𝑙) are said to be induced by 𝑙 .



I.6. MACTHED PAIR OF LENGTH FUNCTIONS 47

Remark I.6.11. One sees immediately that every length function 𝑙 on Ĝ is the stan-
dard length associated with the matched pair (of length functions) induced by 𝑙 . On
the other hand, it is possible that a given matched pair of length functions can be
a�orded by more than one a�ording family of mappings, i.e induced by di�erent
length functions on Ĝ. Intuitively speaking, some information is lost when we pass
from a�ording family of mappings to matched pair of length functions.

We terminate our discussion ofmatched pairs of length functionswith the follow-
ing technical result, which is important in our characterization of both polynomial
growth and (𝑅𝐷) for Ĝ.

Lemma I.6.12. Let
(
𝑙Γ , 𝑙𝐺

)
be a matched pair of length functions that is a�orded by

some a�ording family (𝑙O)O∈Orb𝛽 . Let 𝑙1 denote length function on Ĝ induced by 𝑙Γ (Def-

inition I.6.7). Let 𝑙̃ denote the in�ated length function on Ĝ associated with (𝑙O)O∈Orb𝛽
(De�nition I.6.8). For every 𝑘 ∈ N, put 𝑞𝑘 := ∑

𝑥 ∈𝐹𝑘 𝑝𝑥 ∈ ℓ∞ (𝐺) where 𝐹𝑘 denotes the
set

{
𝑥 ∈ Irr(𝐺) : 𝑙

𝐺
(𝑥) < 𝑘 + 1

}
.

If
(
𝐺 , 𝑙

𝐺

)
has polynomial growth with 𝑄 (𝑋 ) ∈ R[𝑋 ] such that

∀𝑘 ∈ N,
∑︁

𝑥 ∈Irr(𝐺),𝑙 (𝑥)<𝑘+1
(dim𝑥)2 ≤ 𝑄 (𝑘),

then the following hold:

(a) for all 𝑘 ∈ N and 𝑎 ∈ 𝑄𝑙,𝑘𝑐𝑐 (𝐺), we have

‖F𝐺 (𝑎)‖ ≤
(√︁
𝑄 (𝑘)

)
‖𝑎‖𝐺,0; (I.6.1)

(b) for all 𝑦 ∈ Irr(G), we have

dim𝑦 ≤ 𝑄
(
b̃𝑙 (𝑦)c

)
; (I.6.2)

(c) for all 𝛾 ∈ O ∈ Orb𝛽 , let 𝛷𝛾 : Irr(𝐺𝛾 ) → IrrO (𝐺) be the bijection given in
Notations I.4.7. For each𝑘 ∈ N, put 𝐹𝛾,𝑘 :=

{
𝑤 ∈ Irr(𝐺𝛾 ) : 𝑙O

(
𝛷𝛾 (𝑤)

)
< 𝑘 + 1

}
,

and de�ne

𝐹O,𝑘 := 𝛷 (𝐹𝛾,𝑘 ) = {𝑧 ∈ IrrO (𝐺) : 𝑙O (𝑧) < 𝑘 + 1},

and

FO,𝑘 := ℜ
(
𝐹O,𝑘

)
=

{
𝑦 ∈ ℜ−1 (IrrO (𝐺)

)
: 𝑙 (𝑦) < 𝑘 + 1

}
⊆ Irr(G),

we have ∑︁
𝑦∈FO,𝑘

(dim𝑦)2 =
∑︁
𝑧∈𝐹O,𝑘

(dim 𝑧)2

= |O |2
∑︁
𝑤∈𝐹𝛾,𝑘

(dim𝑤)2 ≤ |O |2 ·𝑄
(
b𝑙Γ (𝛾)c + 𝑘 + 1

) (I.6.3)

Proof. For every 𝑘 ∈ N, put 𝐹𝑘 = {𝑥 ∈ Irr(𝐺) : 𝑙 (𝑥) < 𝑘 + 1}, then by Lemma I.5.8,
we have

𝑎 ∈ 𝑄𝑙,𝑘𝑐𝑐 (𝐺) =⇒ ‖F𝐺 (𝑎)‖2 ≤
( ∑︁
𝑥 ∈𝐹𝑘

dim𝑥2

)
‖𝑎‖2𝐺,0 = 𝑄 (𝑘)‖𝑎‖2𝐺,0. (I.6.4)
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This proves (a).
For all 𝑦 ∈ Irr(G), there is a unique O ∈ Orb𝛽 , and an O-irreducible representa-

tionO-representation𝑈 =
∑
𝑟,𝑠∈O 𝑒𝑟,𝑠 ⊗𝑢𝑟,𝑠 on ℓ2 (O) ⊗H , such that𝑦 = [ℜO (𝑈 )] =

ℜ
(
[𝑈 ]

)
. Take a 𝛾 ∈ O , and denote the irreducible representation 𝑢𝛾,𝛾 |𝐺𝛾 of𝐺𝛾 by 𝑢𝛾 .

We know 𝛾−1 ∈ O−1 ∈ Orb𝛽 , hence 𝑒Γ ∈ O−1O . By Proposition I.4.2 assertion (e),
and Theorem I.4.15, assertion (b), the characters of the O-representation 𝑈 and the
twisted product 𝜀O−1 ×𝑒Γ 𝑈 (which is also a representation of 𝐺𝑒Γ = 𝐺) coincide,
hence 𝑈 and 𝜀O−1 ×𝑒Γ 𝑈 are equivalent as representations of 𝐺 . Recall that 𝑈 is also
equivalent to Ind𝐺𝐺𝛾 (𝑢𝛾 ) (Proposition I.4.2, assertion (e)), we have

𝑈 ' Ind(𝑢𝛾 ) ' 𝜀O−1 ×𝑒Γ 𝑈 . (I.6.5)

By (I.6.5), we see that

∀𝑥 ∈ Irr(𝐺), dimMor𝐺 (𝑥, [𝑈 ]) = dimMor𝐺𝛾
(
Res𝐺𝐺𝛾 (𝑥) , [𝑢𝛾 ]

)
= dimMor𝐺𝛾

(
[𝑢𝛾 ] , Res𝐺𝐺𝛾 (𝑥)

)
≤ dim𝑥 .

(I.6.6)

De�ne

supp(𝑈 ) := {𝑥 ∈ Irr(𝐺) : 𝑥 ⊆ [𝑈 ]} = {𝑥 ∈ Irr(𝐺) : dimMor𝐺 (𝑥, [𝑈 ]) ≠ 0}.

Since the family (𝑙O)O∈Orb𝛽 is a�ording, and it a�ords
(
𝑙Γ , 𝑙𝐺

)
, by (I.6.5) again, we

have (recall the identi�cation of Irr{𝑒Γ } (𝐺) with Irr(𝐺))

∀𝑥 ∈ supp(𝑈 ), 𝑙
𝐺
(𝑥) = 𝑙 {𝐺 } (𝑥) ≤ 𝑙O−1 ( [𝜀O−1 ]) + 𝑙O ( [𝑈 ])

= 𝑙Γ (𝛾−1) + 𝑙 (𝑦) = 𝑙Γ (𝛾) + 𝑙 (𝑦) = 𝑙̃ (𝑦).
(I.6.7)

Combining (I.6.6) and (I.6.7), we have

dim𝑦 = dim𝑈 =
∑︁

𝑥 ∈supp(𝑈 )
(dim𝑥) ·

(
dimMor𝐺 (𝑥, [𝑈 ])

)
≤

∑︁
𝑥 ∈supp(𝑈 )

(dim𝑥)2 ≤
∑︁

𝑥 ∈Irr(𝐺),𝑙
𝐺
(𝑥) ≤𝑙̃ (𝑦)

(dim𝑥)2

≤
b̃𝑙 (𝑦) c∑︁
𝑗=0

𝑃 ( 𝑗) = 𝑄
(
b̃𝑙 (𝑦)c

)
.

(I.6.8)

This proves (b).
We now establish (c). Recall that for any two O-representations 𝑈1,𝑈2, the re-

lation 𝑈1 ∼O 𝑈2 implies 𝑈1 ' 𝑈2 as representations of 𝐺 . Thus let Rep(𝐺) denote
the set of equivalency classes of �nite dimensional unitary representations of𝐺 , the
mapping

𝜌O : IrrO (𝐺) → Rep(𝐺)
[𝑈 ] ↦→ [𝑈 ]

is well-de�ned8. It is clear from the proof of (a) that for every 𝑤 ∈ Irr(𝐺𝛾 ), we have
(𝜌O ◦𝛷𝛾 ) (𝑤) = Ind𝐺𝐺𝛾 (𝑤). Thus

𝑤 ∈ 𝐹𝛾,𝑘 =⇒ 𝛷𝛾 (𝑤) ∈ 𝐹O,𝑘

by (I.6.7)
=======⇒ ∀𝑥 ∈ supp

(
Ind𝐺𝐺𝛾 (𝑤)

)
, 𝑙
𝐺
(𝑥) < 𝑙Γ (𝛾) + 𝑘 + 1.

(I.6.9)

8However, in general 𝜌O is neither injective nor surjective
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But for all 𝑥 ∈ Irr(𝐺), we have 𝑥 ⊆ Ind𝐺𝐺𝛾 (𝑤) if and only if 𝑤 ⊆ Res𝐺
𝐺𝛾

(𝑥), thus as
subsets of Irr(𝐺𝛾 ), we have

𝐹𝛾,𝑘 ⊆
⋃

𝑥 ∈Irr(𝐺),
𝑙
𝐺
(𝑥)<𝑙Γ (𝛾 )+𝑘+1

supp
(
Res𝐺𝐺𝛾 (𝑥)

)
.

Hence 𝐹𝛾,𝑘 is �nite, and 𝑞𝛾,𝑘 := ∑
𝑤∈𝐹𝛾,𝑘 𝑝𝑤 is a central projection in 𝑐𝑐 (𝐺𝛾 ). A simple

calculation shows that

F𝐺𝛾 (𝑞𝛾,𝑘 ) =
∑︁
𝑤∈𝐹𝛾,𝑘

(dim𝑤)𝜒 (𝑤). (I.6.10)

By Lemma I.5.16 and (I.6.9), there exists a 𝑞𝛾,𝑘 ∈ 𝑐𝑐 (𝐺) with 𝑣𝛾,𝛾F𝐺 (𝑞𝛾,𝑘 ) = F𝐺𝛾 (𝑞𝛾,𝑘 ),

𝑞𝛾,𝑘

𝐺,0 ≤


𝑞𝛾,𝑘

𝐺𝛾 ,0, and 𝑙𝐺 (𝑥) < 𝑙Γ (𝛾) + 𝑘 + 1 whenever 𝑞𝛾,𝑘𝑝𝑥 ≠ 0. Since

[𝜒 (𝑤)] (𝑒𝐺 ) = dim𝑤 , by (I.6.10) and (a), we have[ ∑︁
𝑤∈𝐹𝛾,𝑘

(dim𝑤)2
]2

=

[ ∑︁
𝑤∈𝐹𝛾,𝑘

(dim𝑤) {[𝜒 (𝑤)] (𝑒𝐺 )}
]2

≤





 ∑︁
𝑤∈𝐹𝛾,𝑘

(dim𝑤)𝜒 (𝑤)





2 = 

F𝐺𝛾 (𝑞𝛾,𝑘 )

2

=


𝑣𝛾,𝛾F𝐺 (𝑞𝛾,𝑘 )

2

≤


F𝐺 (𝑞𝛾,𝑘 )

2 ≤ 𝑄 (

b𝑙Γ (𝛾)c + 𝑘 + 1
)

𝑞𝛾,𝑘

2𝐺,0

≤ 𝑄
(
b𝑙Γ (𝛾)c + 𝑘 + 1

)

𝑞𝛾,𝑘

2𝐺𝛾 ,0
= 𝑄

(
b𝑙Γ (𝛾)c + 𝑘 + 1

) ∑︁
𝑤∈𝐹𝛾,𝑘

(dim𝑤)2.

(I.6.11)

Now (c) follows from (I.6.11) by noting that dimℜ
(
𝛷 (𝑤)

)
= dim𝛷𝛾 (𝑤) = |O | ·

dim𝑤 . �

I.7 Polynomial growth of Ĝ

We begin by giving a necessary condition for a pair
(
Ĝ , 𝑙

)
to have polynomial

growth.

Proposition I.7.1. Suppose 𝑙 is a length function on Ĝ. Let
(
𝑙Γ , 𝑙𝐺

)
be matched pair

of length functions induced by 𝑙 . If 𝑃 (𝑋 ) ∈ R[𝑋 ] and

∀𝑘 ∈ N, 𝑎 ∈ 𝑞𝑙,𝑘𝑐𝑐 (Ĝ) =⇒
��{𝑦 ∈ Irr(G) : 𝑘 ≤ 𝑙 (𝑦) < 𝑘 + 1

}�� ≤ 𝑃 (𝑘),

then for all 𝑘 ∈ N, we have

{𝛾 ∈ Γ : 𝑘 ≤ 𝑙Γ (𝛾) < 𝑘 + 1} ≤ 𝑃 (𝑘), (I.7.1)

and ∑︁
𝑥 ∈Irr(𝐺), 𝑘≤𝑙

𝐺
(𝑥)<𝑘+1

(dim𝑥)2 ≤ 𝑃 (𝑘). (I.7.2)
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Proof. Let (𝑙O)O∈Orb𝛽 be the a�ording family induced by 𝑙 . For every class 𝑥 of
{𝑒Γ}-representation of 𝐺 (i.e. 𝑥 ∈ Irr{𝑒Γ } (𝐺)), we have 𝑙 {𝑒Γ } (𝑥) = 𝑙

(
ℜ(𝑥)

)
as well as

dim𝑥 = dimℜ(𝑥). We identify Irr{𝑒Γ } (𝐺) with Irr(𝐺) using𝛷𝑒Γ as in Notations I.4.7.
Note that the classi�cation bijection ℜ preserves dimensions, we have

∀𝑛 ∈ N, ℜ

({
𝑥 ∈ Irr(𝐺) : 𝑙

𝐺
(𝑥) = 𝑙 {𝑒Γ } (𝑥) = 𝑙

(
ℜ(𝑥)

)
∈ [𝑛, 𝑛 + 1[

})
⊆

{
𝑦 ∈ Irr(G) : 𝑙 (𝑦) ∈ [𝑛, 𝑛 + 1[

}
,

which clearly implies (I.7.2). Moreover, for all 𝑛 ∈ N, we have����{𝛾 ∈ Γ : 𝑙Γ (𝛾) = 𝑙𝛾 ·𝐺 ( [𝜀𝛾 ·𝐺 ]) = 𝑙
(
ℜ( [𝜀𝛾 ·𝐺 ])

)
∈ [𝑛, 𝑛 + 1[

}����
=

∑︁
𝛾 ∈Γ,

𝑙 (ℜ( [𝜀𝛾 ·𝐺 ])) ∈[𝑛,𝑛+1[

1 =
∑︁

O∈Orb𝛽 ,
𝑙
(
ℜ( [𝜀O ])

)
=𝑙O ( [𝜀O ]) ∈[𝑛,𝑛+1[

|O |

≤
∑︁

𝑦∈Irr(G),
𝑛≤𝑙 (𝑦)<𝑛+1

(dim𝑦)2 ≤ 𝑃 (𝑛),

where the �rst inequality follows from the fact that dim𝑦 ≥ |O | ≥ 1 if 𝑦 lies in
ℜ

(
IrrO (𝐺)

)
, and the second inequality holds because of our choice of the polynomial

𝑃 (𝑋 ). This establishes (I.7.1). �

The following result is a close converse9 to Proposition I.7.1.

Proposition I.7.2. Suppose
(
𝑙Γ , 𝑙𝐺

)
is a matched pair of length functions. If

𝑃 (𝑋 ), 𝑄 (𝑋 ) ∈ R[𝑋 ]

satisfy ��{𝛾 ∈ Γ : 𝑙Γ (𝛾) < 𝑘 + 1
}�� ≤ 𝑃 (𝑘),

and (see Notations I.5.9)

𝑏 ∈ 𝑄𝑙
𝐺
,𝑘𝑐𝑐 (𝐺) =⇒ ‖F𝐺 (𝑏)‖ ≤ 𝑄 (𝑘)‖𝑏‖𝐺,0

for all 𝑘 ∈ N, then for all 𝑘 ∈ N, we have∑︁
𝑦∈Irr(G), 𝑙̃ (𝑦)<𝑘+1

(dim𝑦)2 ≤ [𝑃 (𝑘)]3𝑄 (2𝑘 + 2), (I.7.3)

where 𝑙̃ is the in�ated length function associated with any a�ording family that a�ords(
𝑙Γ , 𝑙𝐺

)
.

Proof. Let (𝑙O)O∈Orb𝛽 be an a�ording family that a�ords
(
𝑙Γ , 𝑙𝐺

)
and 𝑙̃ is the associ-

ated in�ated length function on Ĝ. Take any 𝑘 ∈ N. For all O ∈ Orb𝛽 , de�ne

𝑅O,𝑘 :=
{
𝑧 ∈ IrrO (𝐺) : 𝑙̃

(
ℜ(𝑧)

)
< 𝑘 + 1

}
⊆ IrrO (𝐺),

9Note that we will use the in�ated length function instead of the standard length function associated
with the corresponding a�ording family.
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and
𝐹𝑘 :=

{
O ∈ Orb𝛽 : 𝑅O,𝑘 ≠ ∅

}
.

Using the classi�cation bijection ℜ : ∐O∈Orb𝛽 IrrO (𝐺) → Irr(G), we obtain{
𝑦 ∈ Irr(G) : 𝑙̃ (𝑦) < 𝑘 + 1

}
=

∐
O∈𝐹𝑘

ℜ
(
𝑅O,𝑘

)
. (I.7.4)

If 𝑅O,𝑘 ≠ ∅, then for all 𝛾 ∈ O , 𝑧 ∈ 𝑅O,𝑘 , we have

𝑙Γ (𝛾) ≤ 𝑙O (𝑧) + 𝑙Γ (𝛾) = 𝑙̃
(
ℜ(𝑧)

)
< 𝑘 + 1. (I.7.5)

Hence
𝑧 ∈

∐
O∈𝐹𝑘

𝑅O,𝑘 =⇒ 𝑙O (𝑧) < 𝑘 + 1, (I.7.6)

and ∐
O∈𝐹𝑘

O ⊆ {𝛾 ∈ Γ : 𝑙Γ (𝛾) < 𝑘 + 1}.

Consequently, ∑︁
O∈𝐹𝑘

|O | ≤ 𝑃 (𝑘).

In particular, |𝐹𝑘 | ≤ 𝑄 (𝑘) and |O | ≤ 𝑃 (𝑘) wheneverO ∈ 𝐹𝑘 . Hence, by Lemma I.6.12,
(I.7.5) and (I.7.6), we have∑︁

𝑦∈Irr(G),
𝑙̃ (𝑦)<𝑘+1

(dim𝑦)2 =
∑︁

O∈𝐹𝑘

∑︁
𝑧∈𝑅O,𝑘

(dimℜ(𝑧))2 =
∑︁

O∈𝐹𝑘

∑︁
𝑧∈𝑅O,𝑘

(dim 𝑧)2

≤
∑︁

O∈𝐹𝑘

∑︁
𝑧∈IrrO (𝐺),
𝑙O (𝑧)<𝑘+1

(dim 𝑧)2 ≤
∑︁

O∈𝐹𝑘
|O |2𝑄 (2𝑘 + 2)

≤
∑︁

O∈𝐹𝑘
[𝑃 (𝑘)]2𝑄 (2𝑘 + 2) ≤ [𝑃 (𝑘)]3𝑄 (2𝑘 + 2).

This proves (I.7.3). �

We have the following characterization of the polynomial growth of Ĝ.

Theorem I.7.3 (Permanence of polynomial growth). The following are equivalent:

(a) Ĝ has polynomial growth;

(b) there exists a matched pair of length functions
(
𝑙
𝐺
, 𝑙Γ

)
, such that both

(
𝐺 , 𝑙

𝐺

)
and (Γ , 𝑙Γ) have polynomial growth.

Proof. That (b) implies (a) follows from Proposition I.7.1, and the reverse implication
follows from Proposition I.7.2. �
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I.8 Rapid decay of Ĝ

Obviously the study of (𝑅𝐷) of Ĝ requires a more detailed study of the Fourier trans-
form and the Sobolev-0-norm as de�ned in § I.5, as well as their interplay with the
bicrossed product construction. To facilitate our discussion, let’s �x some notations
and then prove some preparatory results. In the following, we will freely use the
results in § I.4, § I.5 and § I.6 without further explanations.

We �rst �x a choice function 𝜃 : Orb𝛽 → Γ such that 𝜃 (O) ∈ O for all O ∈ Orb𝛽 .
Then for all 𝛾 ∈ Γ, we write 𝜃𝛾 := 𝜃 (𝛾 · 𝐺), then choose and �x a 𝜎𝜃 (𝛾) ∈ 𝐺𝛾,𝜃𝛾 .
It is clear that whenever 𝑟, 𝑠 ∈ O ∈ Orb𝛽 , the mapping 𝑔 ↦→ 𝜎𝜃 (𝑟 )𝑔[𝜎𝜃 (𝑠)]−1 is a
well-de�ned homeomorphism from 𝐺𝑟,𝑠 onto 𝐺𝜃 (O) = 𝐺𝜃𝛾 for every 𝛾 ∈ O , which
we denoted by𝜓𝜃𝑟,𝑠 . Thus

𝑣𝜃 (O),𝜃 (O) ◦𝜓𝜃𝑟,𝑠 = 𝑣𝜃𝛾 ,𝜃𝛾 ◦𝜓𝜃𝑟,𝑠 = 𝑣𝑟,𝑠 .

Now for every O ∈ Orb𝛽 , choose and �x a complete set of representatives(
𝑢𝑧 : 𝐺𝜃 (O) → B(H𝑧)

)
𝑧∈IrrO (𝐺)

of Irr(𝐺𝜃 (O) ), such that for all 𝑧 ∈ IrrO (𝐺), the O-irreducible O-representation

𝑈 𝑧 :=
∑︁
𝑟,𝑠∈O

𝑒𝑟,𝑠 ⊗ 𝑢𝑧𝑟,𝑠 ∈ B
(
ℓ2 (O)

)
⊗ B(H𝑧) ⊗ Pol(𝐺) (I.8.1)

lies in 𝑧, where 𝑢𝑧𝑟,𝑠 ∈ B(H𝑧) ⊗ Pol(𝐺) ⊆ 𝐶 (𝐺,B(H𝑧)) is the unique extension of
𝑢𝑧 ◦ 𝜓𝜃𝑟,𝑠 : 𝐺𝑟,𝑠 → B(H𝑧) by letting 𝑢𝑧𝑟,𝑠 (𝑔) = 0 when 𝑔 ∉ 𝐺𝑟,𝑠 . We denote such
extensions using 𝜄𝑟,𝑠 : 𝐶 (𝐺𝑟,𝑠 ) → 𝐶 (𝐺), hence

𝜄𝑟,𝑠 (𝑢𝑧 ◦𝜓𝜃𝑟,𝑠 ) = 𝑢𝑧𝑟,𝑠 .

Thus ∐
O∈Orb𝛽

{ℜO (𝑈 𝑧) : 𝑧 ∈ IrrO (𝐺)}

is a complete set of representatives for Irr(H).
For convenience, wemay and do suppose that

{
𝑢𝑧1 : 𝑧1 ∈ O1

}
=

{
𝑢𝑧2 : 𝑧2 ∈ O2

}
if 𝐺𝜃 (O1) = 𝐺𝜃 (O2) , whenever O1,O2 ∈ Orb𝛽 , as well as 𝑢 [𝜀O ] = 𝜀O in the choices
above.

In the following, when we talk about the Fourier transform and the Sobolev-
0-norm on 𝑐𝑐 ( �𝐺𝜃 (O) ) for all O ∈ Orb𝛽 , we always mean the corresponding con-
structions with respect to the complete set of representatives {𝑢𝑧 : 𝑧 ∈ IrrO (𝐺)} of
Irr(𝐺𝜃 (O) ). We recall that𝐺 = 𝐺𝜃 ( {𝑒Γ }) . And of course, the Fourier transform and the
Sobolev-0-norm on 𝑐𝑐 (Ĝ) is taken with respect to the complete set of representatives∐

O∈Orb𝛽
{ℜO (𝑈 𝑧) : 𝑧 ∈ IrrO (𝐺)}

of Irr(G).
Using these notations, for all O ∈ Orb𝛽 , we have

𝑐𝑐 ( �𝐺𝜃 (O) ) =
alg⊕

𝑧∈IrrO
B(H𝑧), (I.8.2)

ℓ∞ ( �𝐺𝜃 (O) ) =
ℓ∞⊕

𝑧∈IrrO
B(H𝑧). (I.8.3)
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Note that Irr(G) is parameterized by 𝑧 ∈ IrrO (𝐺) ↦→ [ℜO (𝑈 𝑧)] where O runs
through Orb𝛽 , we have

𝑐𝑐 (Ĝ) =
alg⊕

O∈Orb𝛽

alg⊕
𝑧∈IrrO (𝐺)

B
(
ℓ2 (O)

)
⊗ B(H𝑧)

=

alg⊕
O∈Orb(𝛽)

B
(
ℓ2 (O)

)
⊗ 𝑐𝑐 ( �𝐺𝜃 (O) ),

(I.8.4)

ℓ∞ (Ĝ) =
ℓ∞⊕

O∈Orb𝛽

ℓ∞⊕
𝑧∈IrrO (𝐺)

B
(
ℓ2 (O)

)
⊗ B(H𝑧)

=
ℓ∞⊕

O∈Orb(𝛽)
B

(
ℓ2 (O)

)
⊗ ℓ∞ ( �𝐺𝜃 (O) ),

(I.8.5)

where we’ve freely used some canonical identi�cations.
Each 𝑎 ∈ 𝑐𝑐 (Ĝ) has a unique decomposition

𝑎 =
∑︁

O∈Orb𝛽

∑︁
𝑧∈IrrO (𝐺)

∑︁
𝑟,𝑠∈O

𝑒𝑟,𝑠 ⊗ 𝑎𝑧𝑟,𝑠 , (I.8.6)

where each 𝑎𝑧𝑟,𝑠 ∈ B(H𝑧), and all but �nitely many of them are 0. For each 𝑟, 𝑠 ∈
O ∈ Orb𝛽 , we put

𝑎𝑟,𝑠 :=
∑︁

𝑧∈IrrO (𝐺)
𝑎𝑧𝑟,𝑠 ∈ 𝑐𝑐,O (Ĝ). (I.8.7)

Lemma I.8.1. Using the above notations, for each 𝑎 ∈ 𝑐𝑐 (Ĝ), we have

FG (𝑎) =
∑︁

O∈Orb𝛽
|O |

∑︁
𝑟,𝑠∈O

𝑢𝑟 𝜄𝑟,𝑠

(
F𝐺𝜃 (O) (𝑎𝑠,𝑟 ) ◦𝜓𝜃𝑟,𝑠

)
, (I.8.8)

and
‖𝑎‖2G,0 =

∑︁
O∈Orb𝛽

|O |
∑︁
𝑟,𝑠∈O



𝑎𝑟,𝑠

2𝐺𝜃 (O),0
. (I.8.9)

Proof. By de�nition, for all 𝑟, 𝑠 ∈ O ∈ Orb𝛽 and 𝑧 ∈ IrrO (𝐺), we have

ℜO (𝑈 𝑧)
∑︁
𝑟,𝑠∈O

𝑒𝑟,𝑠 ⊗ 𝑎𝑧𝑟,𝑠 ⊗ 1 =

( ∑︁
𝑟,𝑠∈O

𝑒𝑟,𝑠 ⊗ (id ⊗𝑢𝑟 )𝑢𝑟,𝑠

) ( ∑︁
𝑟,𝑠∈O

𝑒𝑟,𝑠 ⊗ 𝑎𝑧𝑟,𝑠 ⊗ 1

)
=

∑︁
𝑟,𝑠

𝑒𝑟,𝑠 ⊗
∑︁
𝑡 ∈O

(id ⊗𝑢𝑟 )𝑢𝑟,𝑡 (𝑎𝑧𝑡,𝑠 ⊗ 1),

and

(TrH𝑧
⊗ id)

[
𝑢𝑧𝑟,𝑠 (𝑎𝑧𝑠,𝑟 ⊗ 1)

]
= (TrH𝑧

⊗ id)
[
𝜄𝑟,𝑠 (𝑢𝑧 ◦𝜓𝜃𝑟,𝑠 ) (𝑎𝑧𝑠,𝑟 ⊗ 1)

]
= 𝜄𝑟,𝑠

(
(TrH𝑧

⊗ id)
[
(𝑢𝑧 ◦𝜓𝜃𝑟,𝑠 ) (𝑎𝑧𝑠,𝑟 ⊗ 1)

] )
= 𝜄𝑟,𝑠

({
(TrH𝑧

⊗ id)
[
𝑢𝑧 (𝑎𝑧𝑠,𝑟 ⊗ 1)

]}
◦𝜓𝜃𝑟,𝑠

)
.
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Hence

FG (𝑎)
=

∑︁
O∈Orb𝛽

∑︁
𝑧∈IrrO (𝐺)

|O | (dimH𝑧){
(Trℓ2 (O) ⊗ TrH𝑧

⊗ id)
[
ℜO (𝑈 𝑧)

∑︁
𝑟,𝑠∈O

(𝑒𝑟,𝑠 ⊗ 𝑎𝑧𝑟,𝑠 ⊗ 1)
]}

=
∑︁

O∈Orb𝛽

∑︁
𝑧∈IrrO (𝐺)

|O | (dimH𝑧)

∑︁
𝑟,𝑠∈O

(Trℓ2 (O) ⊗ TrH𝑧
⊗ id)

[
𝑒𝑟,𝑠 ⊗

∑︁
𝑡 ∈O

(id ⊗𝑢𝑟 )𝑢𝑧𝑟,𝑡 (𝑎𝑧𝑡,𝑠 ⊗ 1)
]

=
∑︁

O∈Orb𝛽

∑︁
𝑧∈IrrO (𝐺)

|O | (dimH𝑧)
∑︁
𝑟,𝑡 ∈O

(TrH𝑧
⊗ id)

[
(id ⊗𝑢𝑟 )𝑢𝑧𝑟,𝑡 (𝑎𝑧𝑡,𝑟 ⊗ 1)

]
=

∑︁
O∈Orb𝛽

|O |
∑︁
𝑟,𝑠∈O

𝑢𝑟
∑︁

𝑧∈OrbO (𝐺)
(dimH𝑧)

{
(TrH𝑧

⊗ id)
[
𝑢𝑧𝑟,𝑠 (𝑎𝑧𝑠,𝑟 ⊗ 1)

]}
=

∑︁
O∈Orb𝛽

|O |
∑︁
𝑟,𝑠∈O

𝑢𝑟∑︁
𝑧∈OrbO (𝐺)

(dimH𝑧)𝜄𝑟,𝑠
({
(TrH𝑧

⊗ id)
[
𝑢𝑧 (𝑎𝑧𝑠,𝑟 ⊗ 1)

]}
◦𝜓𝜃𝑟,𝑠

)
=

∑︁
O∈Orb𝛽

|O |
∑︁
𝑟,𝑠∈O

𝑢𝑟

𝜄𝑟,𝑠

({ ∑︁
𝑧∈OrbO (𝐺)

(dimH𝑧) (TrH𝑧
⊗ id)

[
𝑢𝑧 (𝑎𝑧𝑠,𝑟 ⊗ 1)

]}
◦𝜓𝜃𝑟,𝑠

)
=

∑︁
O∈Orb𝛽

|O |
∑︁
𝑟,𝑠∈O

𝑢𝑟 𝜄𝑟,𝑠

(
F𝐺𝜃 (O) (𝑎𝑠,𝑟 ) ◦𝜓𝜃𝑟,𝑠

)
.

This proves (I.8.8).
We also have

‖𝑎‖2G,0 =
∑︁

O∈Orb𝛽

∑︁
𝑧∈IrrO (𝐺)

|O | (dimH𝑧)

(Trℓ2 (O) ⊗ TrH𝑧
)
([ ∑︁
𝑟,𝑠∈O

𝑒𝑟,𝑠 ⊗ 𝑎𝑧𝑟,𝑠

]∗ [ ∑︁
𝑟,𝑠∈O

𝑒𝑟,𝑠 ⊗ 𝑎𝑧𝑟,𝑠

])
=

∑︁
O∈Orb𝛽

∑︁
𝑧∈IrrO (𝐺)

|O | (dimH𝑧)

(Trℓ2 (O) ⊗ TrH𝑧
)
( ∑︁
𝑟,𝑠∈O

𝑒𝑟,𝑠 ⊗
∑︁
𝑡 ∈O

(𝑎𝑧𝑡,𝑟 )∗ (𝑎𝑧𝑡,𝑠 )
)

=
∑︁

O∈Orb𝛽
|O |

∑︁
𝑟,𝑡 ∈O

∑︁
𝑧∈IrrO (𝐺)

(dimH𝑧) TrH𝑧

(
(𝑎𝑧𝑡,𝑟 )∗ (𝑎𝑧𝑡,𝑟 )

)
=

∑︁
O∈Orb𝛽

|O |
∑︁
𝑟,𝑡 ∈O



𝑎𝑡,𝑟 

2𝐺𝜃 (O)
,

which proves (I.8.9). �

Recall Notations I.5.9, and we are ready to prove the following result.
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Proposition I.8.2. Let
(
𝑙Γ , 𝑙𝐺

)
be a matched pair of length functions. Suppose

𝑃 (𝑋 ), 𝑄 (𝑋 ) ∈ R[𝑋 ]

such that

∀𝑘 ∈ N, 𝜉 ∈ 𝑄𝑙Γ,𝑘𝐶𝑐 (Γ) =⇒ ‖𝜉 ‖𝜆 ≤ 𝑃 (𝑘)‖𝑎‖2, (I.8.10)

∀𝑘 ∈ N,
∑︁

𝑥 ∈Irr(𝐺), 𝑙
𝐺
(𝑥)<𝑘+1

(dim𝑥)2 ≤ 𝑄 (𝑘). (I.8.11)

Then
∀𝑘 ∈ N, 𝑎 ∈ 𝑄

𝑙̃ ,𝑘
𝑐𝑐 (𝐺) =⇒ ‖FG (𝑎)‖ ≤ 𝑅(𝑘)‖𝑎‖G,0, (I.8.12)

where 𝑙̃ is the in�ated length function associated with any a�ording family that a�ords(
𝑙Γ , 𝑙𝐺

)
, and

𝑅(𝑘) = 𝑃 (𝑘)
√︁
𝑄 (𝑘)𝑄 (𝑘 + 1). (I.8.13)

Proof. Take any a�ording family (𝑙O)O∈Orb𝛽 that a�ords
(
𝑙Γ , 𝑙𝐺

)
and let 𝑙̃ (resp. 𝑙 ) be

the in�ated (resp. standard) length function associated with (𝑙O)O∈Orb𝛽 .
Recall that 𝜏 is the Haar state on A = Pol(G). Let ‖ · ‖𝜏,2 be the norm on A

when A is viewed as an inner-product space with the inner product induced by 𝜏 .
By the GNS construction for compact quantum groups with respect to the Haar state,
(I.8.12) is equivalent to

∀𝑎 ∈ 𝑄
𝑙̃ ,𝑘
𝑐𝑐 (Ĝ), 𝑏 ∈ A =⇒ ‖FG (𝑎)𝑏‖𝜏,2 ≤ 𝑅(𝑘)‖𝑎‖G,0‖𝑏‖𝜏,2. (I.8.14)

Now �x arbitrarily 𝑎 and 𝑏 in (I.8.14). We pose

∀𝑟, 𝑠 ∈ O ∈ Orb𝛽 , 𝜑𝑟,𝑠 := |O | ·
[
𝜄𝑟,𝑠

(
F𝐺𝜃 (O) (𝑎𝑠,𝑟 ) ◦𝜓𝜃𝑟,𝑠

)]
∈ 𝑣𝑟,𝑠 Pol(𝐺). (I.8.15)

Then by Lemma I.8.1, we have

FG (𝑎) =
∑︁

O∈Orb𝛽

∑︁
𝑟,𝑠∈O

𝑢𝑟𝜑𝑟,𝑠 ∈ Pol(G) = A . (I.8.16)

On the other hand, using the direct sum decomposition (I.4.12) in Theorem I.4.9, there
exists𝜓𝑟,𝑠 ∈ 𝑣𝑟,𝑠 Pol(𝐺) for all 𝑟, 𝑠 ∈ O ∈ Orb𝛽 , such that

𝑏 =
∑︁

O∈Orb𝛽

∑︁
𝑟,𝑠∈O

𝑢𝑟𝜓𝑟,𝑠 ∈ A . (I.8.17)

Using the decomposition (I.4.12) again, we can �nd a �nite subset 𝐹 ⊆ Orb𝛽 , such
that (I.8.16) and (I.8.17) can be rewritten respectively as

FG (𝑎) =
∑︁

𝑟 ∈𝜃 (𝐹 )

∑︁
𝑠∈𝑟 ·𝐺

𝑢𝑟𝜑𝑟,𝑠 =
∑︁

𝑟 ∈𝜃 (𝐹 )
𝑢𝑟𝜑𝑟 , (I.8.18)

and
𝑏 =

∑︁
𝑟 ∈𝜃 (𝐹 )

∑︁
𝑠∈𝑟 ·𝐺

𝑢𝑟𝜓𝑟,𝑠 =
∑︁

𝑟 ∈𝜃 (𝐹 )
𝑢𝑟𝜓𝑟 , (I.8.19)

where

𝜑𝑟 :=
∑︁
𝑠∈𝑟 ·𝐺

𝜑𝑟,𝑠 ∈ Pol(𝐺), (I.8.20)

𝜓𝑟 :=
∑︁
𝑠∈𝑟 ·𝐺

𝜓𝑟,𝑠 ∈ Pol(𝐺). (I.8.21)
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Hence by (I.8.18) and (I.8.19), we have

FG (𝑎)𝑏 =
∑︁

𝑟,𝑠∈𝜃 (𝐹 )
𝑢𝑟𝑠 [𝛼∗𝑠 (𝜑𝑟 )]𝜓𝑠 =

∑︁
𝑡 ∈𝜃 (𝐹 )2

𝑢𝑡
∑︁

𝑟,𝑠∈𝜃 (𝐹 ), 𝑟𝑠=𝑡
𝛼∗𝑠 (𝜑𝑟 )𝜓𝑠 . (I.8.22)

Recall 𝜏 is the Haar state on (𝐶 (𝐺),Δ), so we use ‖ · ‖𝜏,2 to denote the 𝐿2-norm on
𝐺 with respect to the Haar integral 𝜏 . We also use ‖ · ‖∞ to denote the 𝐿∞ norm on
𝐶 (𝐺). To simplify our calculation, we introduce

𝜑 :=
∑︁

𝑟 ∈𝜃 (𝐹 )
‖𝜑𝑟 ‖∞𝛿𝑟 ∈ 𝐶𝑐 (Γ) (I.8.23)

𝜓 :=
∑︁

𝑟 ∈𝜃 (𝐹 )
‖𝜓𝑟 ‖𝜏,2𝛿𝑟 ∈ 𝐶𝑐 (Γ). (I.8.24)

For each �xed 𝑟 ∈ 𝜃 (𝐹 ), the clopen sets 𝐺𝑟,𝑠 , 𝑠 ∈ 𝑟 · 𝐺 are disjoint. It follows that
the functions𝜓𝑟,𝑠 ∈ 𝑣𝑟,𝑠 Pol(𝐺), 𝑠 ∈ 𝑟 ·𝐺 are mutually orthogonal with respect to the
Haar integral 𝜏 . By de�nition,

‖𝜓 ‖22 =
∑︁

𝑟 ∈𝜃 (𝐹 )
‖𝜓𝑟 ‖2𝜏,2 =

∑︁
𝑟 ∈𝜃 (𝐹 )

∑︁
𝑠∈𝑟 ·𝐺



𝜓𝑟,𝑠

2𝜏,2 = ‖𝑏‖2
𝜏,2 . (I.8.25)

As 𝛼∗𝑠 (𝜑𝑟 ) = 𝜑𝑟 ◦ 𝛼𝑠 , we always have


𝛼∗𝑠 (𝜑𝑟 )

 = ‖𝜑𝑟 ‖. Using 𝑎 ∈ 𝑄

𝑙̃ ,𝑘
𝑐𝑐 (Ĝ), we have

supp(𝑎) :=
{
𝑦 ∈ Irr(G) : 𝑎𝑝𝑦 ≠ 0

}
=

∐
O∈𝐹

{
[ℜO (𝑧)] : 𝑙Γ

(
𝜃 (O)

)
+ 𝑙

(
[ℜO (𝑧)]

)
= 𝑙̃

(
[ℜO (𝑧)]

)
< 𝑘 + 1

}
,

(I.8.26)

which implies that
∀O ∈ 𝐹, 𝑙Γ

(
𝜃 (O)

)
< 𝑘 + 1. (I.8.27)

Combining (I.8.25), (I.8.27) and (I.8.10), we have

‖𝜙 ∗𝜓 ‖2 ≤ ‖𝜑 ‖𝜆 ‖𝜓 ‖2 ≤ 𝑃 (𝑘)‖𝜑 ‖2 · ‖𝜓 ‖2 = 𝑃 (𝑘)‖𝜑 ‖2 · ‖𝑏‖𝜏,2 . (I.8.28)

Since A𝛾 = 𝑢𝛾 Pol(𝐺) are pairwise orthogonal as 𝛾 runs through Γ, it follows
from (I.8.28), (I.8.22) and (I.8.10) that

‖FG (𝑎)𝑏‖2𝜏,2 =
∑︁

𝑡 ∈𝜃 (𝐹 )2






 ∑︁
𝑟,𝑠∈𝜃 (𝐹 ), 𝑟𝑠=𝑡

𝛼∗𝑠 (𝜑𝑟 )𝜓𝑠






2
𝜏,2

≤
∑︁

𝑡 ∈𝜃 (𝐹 )2

{ ∑︁
𝑟,𝑠∈𝜃 (𝐹 ),𝑟𝑠=𝑡



𝛼∗𝑠 (𝜑𝑟 )

∞‖𝜓𝑠 ‖2

}2

=
∑︁

𝑡 ∈𝜃 (𝐹 )2

{ ∑︁
𝑟,𝑠∈𝜃 (𝐹 ),𝑟𝑠=𝑡

‖𝜑𝑟 ‖∞‖𝜓𝑠 ‖2

}2

= ‖𝜑 ∗𝜓 ‖22

≤ [𝑃 (𝑘)]2‖𝜑 ‖22‖𝑏‖2𝜏,2.

(I.8.29)

We now estimate ‖𝜑 ‖2. Recall that for all O ∈ Orb𝛽 , and(
𝑢𝑧 : 𝐺𝜃 (O) → B(H𝑧)

)
𝑧∈IrrO (𝐺)



I.8. RAPID DECAY OF Ĝ 57

is a complete set of representatives for Irr(𝐺𝜃 (O) ). Using (I.8.26) and Lemma I.5.16
again, we can �nd a 𝑎𝑠,𝑡 ∈ 𝑐𝑐 (𝐺) whenever 𝑟 ∈ 𝜃 (𝐹 ) and 𝑠 ∈ 𝑟 ·𝐺 , such that

𝑣𝑟,𝑟F𝐺 (𝑎𝑠,𝑟 ) = 𝜄𝑟,𝑟
(
F𝐺𝑟 (𝑎𝑠,𝑟 )

)
,



𝑎𝑠,𝑟 

𝐺,0 ≤ 

𝑎𝑠,𝑟 

𝐺𝑟 ,0; (I.8.30)

and for all 𝑥 ∈ Irr(𝐺), if 𝑎𝑠,𝑟𝑝𝑥 ≠ 0, then there exists O ∈ 𝐹 and 𝑧 ∈ IrrO (𝐺), such
that

𝑎𝑠,𝑡𝑝 [𝑢𝑧 ] ≠ 0, and 𝑥 ⊆ Ind𝐺𝐺𝑟 ( [𝑢𝑧]) = [𝑈 𝑧] = [𝜀O−1 ×𝑒𝐺 𝑈 𝑧] .

In particular, 𝑙̃ (ℜ(𝑧)) < 𝑘 + 1 since 𝑎 ∈ 𝑄
𝑙̃ ,𝑘
𝑐𝑐 (Ĝ). Hence the family (𝑙O)O∈Orb𝛽 being

a�ording implies that for all 𝑥 ∈ Irr(𝐺), we have

𝑎𝑠,𝑡𝑝𝑥 ≠ 0 =⇒ 𝑙
𝐺
(𝑥) ≤ 𝑙Γ

(
[𝜃 (O)]−1

)
+ 𝑙O (𝑧)

= 𝑙Γ
(
𝜃 (O)

)
+ 𝑙

(
[ℜ(𝑧)]

)
= 𝑙̃ (ℜ(𝑧)) < 𝑘 + 1.

(I.8.31)

Using the disjointness of𝐺𝑟,𝑠 , 𝑠 ∈ 𝑟 ·𝐺 for every �xed 𝑟 ∈ 𝜃 (𝐹 ), as well as (I.8.31),
(I.8.30), (I.8.15) and Lemma I.6.12 point (a), we have

∀𝑟 ∈ 𝜃 (𝐹 ), ‖𝜑𝑟 ‖∞ =






 ∑︁
𝑠∈𝑟 ·𝐺

𝜑𝑟,𝑠







∞
= max
𝑠∈𝑟 ·𝐺



𝜙𝑟,𝑠

∞
= |𝑟 ·𝐺 | max

𝑠∈𝑟 ·𝐺




F𝐺𝑟 (𝑎𝑠,𝑟 ) ◦𝜓𝜃𝑟,𝑠


 = |𝑟 ·𝐺 | max
𝑠∈𝑟 ·𝐺



F𝐺𝑟 (𝑎𝑠,𝑟 )


= |𝑟 ·𝐺 | max

𝑠∈𝑟 ·𝐺



𝑣𝑟,𝑟F𝐺 (𝑎𝑠,𝑟 )

 ≤ |𝑟 ·𝐺 | max
𝑠∈𝑟 ·𝐺



F𝐺 (𝑎𝑠,𝑟 )


≤ |𝑟 ·𝐺 |

√︁
𝑄 (𝑘)

(
max
𝑠∈𝑟 ·𝐺



𝑎𝑠,𝑟 

𝐺𝑟 ,0)
≤ |𝑟 ·𝐺 |

√︁
𝑄 (𝑘)

(
max
𝑠∈𝑟 ·𝐺



𝑎𝑠,𝑟 

𝐺𝑟 ,0)
(I.8.32)

Now for each �xed 𝑟 ∈ 𝜃 (𝐹 ), either 𝑎𝑠,𝑟 = 0 for all 𝑠 ∈ 𝑟 · 𝐺 , in which case
max𝑠∈𝑟 ·𝐺



𝑎𝑠,𝑟 

𝐺𝑟 ,0 = 0; or there is some 𝑠 ∈ 𝑟 · 𝐺 with 𝑎𝑠,𝑟 ≠ 0, in which case
there exists 𝑧𝑟 ∈ Irr𝑟 ·𝐺 (𝐺) with 𝑎𝑧𝑟𝑠,𝑟 ≠ 0, hence

𝑙Γ (𝑟 ) + 𝑙𝑟 ·𝐺 (𝑧𝑟 ) = 𝑙̃
(
ℜ( [𝑈 𝑧𝑟 ])

)
< 𝑘 + 1,

and Lemma I.6.12 point (b) implies that

|𝑟 ·𝐺 | ≤ |𝑟 ·𝐺 | dim 𝑧𝑟 = dimℜ( [𝑈 𝑧𝑟 ]) ≤ 𝑄
( ⌊̃
𝑙
(
ℜ( [𝑈 𝑧𝑟 ])

) ⌋ )
≤ 𝑄 (𝑘 + 1).

Thus by (I.8.32), we always have

∀𝑟 ∈ 𝜃 (𝐹 ), ‖𝜑𝑟 ‖2∞ ≤ |𝑟 ·𝐺 |2𝑄 (𝑘)
(
max
𝑠∈𝑟 ·𝐺



𝑎𝑠,𝑟 

2𝐺𝑟 ,0)
≤ 𝑄 (𝑘)𝑄 (𝑘 + 1)

(
max
𝑠∈𝑟 ·𝐺

(
|𝑟 ·𝐺 | ·



𝑎𝑠,𝑟 

2𝐺𝑟 ,0)) . (I.8.33)
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It follows from Lemma I.8.1 and (I.8.33) that

‖𝜑 ‖22 =
∑︁

𝑟 ∈𝜃 (𝐹 )
‖𝜑𝑟 ‖2∞ ≤

∑︁
𝑟 ∈𝜃 (𝐹 )

𝑄 (𝑘)𝑄 (𝑘 + 1)
(
max
𝑠∈𝑟 ·𝐺

(
|𝑟 ·𝐺 | ·



𝑎𝑠,𝑟 

2𝐺𝑟 ,0))
≤ 𝑄 (𝑘)𝑄 (𝑘 + 1)

∑︁
O∈𝐹

|O |
∑︁
𝑟,𝑠∈O



𝑎𝑟,𝑠

2𝐺𝜃 (O) ,0

= 𝑄 (𝑘)𝑄 (𝑘 + 1)
∑︁

O∈Orb𝛽
|O |

∑︁
𝑟,𝑠∈O



𝑎𝑟,𝑠

2𝐺𝜃 (O) ,0

= 𝑄 (𝑘)𝑄 (𝑘 + 1)‖𝑎‖2G,0.

(I.8.34)

Finally, it follows from (I.8.34), (I.8.25) and (I.8.29) that

∀𝑏 ∈ A , ‖FG (𝑎)𝑏‖𝜏,2 ≤ 𝑃 (𝑘)
√︁
𝑄 (𝑘)𝑄 (𝑘 + 1)‖𝑎‖2G,0‖𝑏‖𝜏,2 .

This establishes (I.8.14) with 𝑅(𝑘) given by (I.8.13), hence �nishes the proof. �

We also have a necessary condition for Ĝ to have (𝑅𝐷).

Proposition I.8.3. Let 𝑙 be a length function on Ĝ. Let
(
𝑙Γ , 𝑙𝐺

)
the matched pair of

length functions induced by 𝑙 . If 𝑃 (𝑋 ) ∈ R[𝑋 ] satis�es

∀𝑘 ∈ N, 𝑎 ∈ 𝑞𝑙,𝑘𝑐𝑐 (Ĝ) =⇒ ‖FG (𝑎)‖ ≤ 𝑃 (𝑘)‖𝑎‖G,0, (I.8.35)

then

∀𝑘 ∈ N, 𝑏 ∈ 𝑞𝑙
𝐺
,𝑘𝑐𝑐 (𝐺) =⇒ ‖F𝐺 (𝑎)‖ ≤ 𝑃 (𝑘)‖𝑎‖𝐺,0, (I.8.36)

and

∀𝑘 ∈ N, 𝜉 ∈ 𝑞𝑙Γ,𝑘𝐶𝑐 (Γ) =⇒ ‖𝜉 ‖𝜆 ≤ 𝑃 (𝑘)‖𝜉 ‖2, (I.8.37)

where

𝑞𝑙Γ,𝑘 :=
∑︁

𝛾 ∈Γ, 𝑘≤𝑙Γ (𝛾 )<𝑘+1
𝛿𝛾 ∈ ℓ∞ (Γ).

Proof. Let (𝑙O)O∈Orb𝛽 be the a�ording family induced by 𝑙 , and let
(
𝑙Γ , 𝑙𝐺

)
be the

matched pair of length functions induced by 𝑙 , so
(
𝑙Γ , 𝑙𝐺

)
is a�orded by (𝑙O)O∈Orb𝛽 .

As usual, we identify Irr{𝑒Γ } (𝐺) with Irr(𝐺) using the bijection𝛷𝑒Γ in Notations I.4.7.
Since 𝑙

(
ℜ(𝑥)

)
= 𝑙

𝐺
(𝑥) and dimℜ(𝑥) = dim𝑥 for all 𝑥 ∈ Irr(𝐺), it is clear (I.8.36)

follows directly from (I.8.35).
It su�ces now to show (I.8.37). Indeed, take any 𝑘 ∈ N, and any 𝜉 ∈ 𝑞𝑙Γ,𝑘𝐶𝑐 (Γ),

which amounts to say that 𝜉 is supported in {𝛾 ∈ Γ : 𝑙Γ (𝛾) ∈ [𝑘, 𝑘 + 1[}. We pose
𝜉 to be the unique element in ℓ∞ (Ĝ) with 𝜉𝑝𝑦 = 0 unless 𝑦 = ℜ( [𝜀O]) for some
O ∈ Orb𝛽 , in which case

𝜉𝑝𝑦 = 𝜉𝑝ℜ( [𝜀O ]) =
1
|O |

∑︁
𝛾 ∈O

𝜉 (𝛾)𝑒𝛾,𝛾 ∈ B
(
ℓ2 (O)

)
.
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Since 𝜉 is �nitely supported, we have in fact 𝜉 ∈ 𝑐𝑐 (Ĝ). We now have (recall that
𝜀O =

∑
𝑟,𝑠∈O 𝑒𝑟,𝑠 ⊗ 𝑣𝑟,𝑠 )

FG (𝜉) =
∑︁

O∈Orb𝛽

dimℜ( [𝜀O])
|O |{

(Trℓ2 (O) ⊗ id)
([ ∑︁
𝑟,𝑠∈O

𝑒𝑟,𝑠 ⊗ 𝑢𝑟𝑣𝑟,𝑠

] [∑︁
𝛾 ∈O

𝜉 (𝛾)𝑒𝛾,𝛾 ⊗ 1

])}
=

∑︁
O∈Orb𝛽

𝜉 (𝛾)𝑢𝛾𝑣𝛾,𝛾 =
∑︁

𝛾 ∈supp(𝜉)
𝜉 (𝛾)𝑢𝛾𝑣𝛾,𝛾 ,

(I.8.38)

and 


 𝜉 


2
G,0

=
∑︁

O∈Orb𝛽

dimℜ( [𝜀O])
|O |2

Trℓ2 (O)

(∑︁
𝛾 ∈O

𝜉 (𝛾)𝜉 (𝛾)𝑒𝛾,𝛾

)
=

∑︁
𝛾 ∈supp(𝜉)

𝜉 (𝛾)𝜉 (𝛾)
|𝛾 ·𝐺 | ≤

∑︁
𝛾 ∈supp(𝜉)

|𝜉 (𝛾) |2 = ‖𝜉 ‖22.
(I.8.39)

Moreover, we have

𝛾 ∈ O ∈ Orb𝛽 =⇒ 𝑙
(
ℜ( [𝜀O])

)
= 𝑙O ( [𝜀O]) = 𝑙Γ (𝛾).

Thus 𝜉 is supported in
{
𝑦 ∈ Irr(G) : 𝑙 (𝑦) ∈ [𝑘, 𝑘 + 1[

}
. It follows from (I.8.38),

(I.8.39), and our choice of 𝑃 (𝑋 ) that




 ∑︁
𝛾 ∈supp(𝜉)

𝜉 (𝛾)𝑢𝛾𝑣𝛾,𝛾






 = 


FG (𝜉)


 ≤ 𝑃 (𝑘)



 𝜉 




G,0
≤ 𝑃 (𝑘)‖𝜉 ‖2. (I.8.40)

Let 𝐶∗
𝑟 (Γ) be the 𝐶∗-algebra in B

(
ℓ2 (Γ)

)
generated by 𝜆𝛾 : ℓ2 (Γ) → ℓ2 (Γ),

𝛿𝑟 ↦→ 𝛿𝛾𝑟 , where 𝛾 runs through Γ. Then Pol(Γ̂) = Vect
{
𝜆𝛾 : 𝛾 ∈ Γ

}
is a dense

∗-subalgebra of 𝐶∗
𝑟 (Γ). One checks immediately that

Pol(G) = A → Pol(Γ̂)
𝑢𝛾𝜑 ↦→ 𝜑 (𝑒𝐺 )𝜆𝛾

is a morphism from the algebraic compact quantum group Γ̂ to G, hence extends
uniquely to a unital ∗-morphism of 𝐶∗-algebras

Ψ : 𝐶𝑟 (G) = Γ n𝛼,red 𝐶 (𝐺) → 𝐶∗
𝑟 (Γ).

In particular, ‖Ψ‖ ≤ 1. Posing 𝜆(𝜉) := ∑
𝛾 ∈supp(𝜉) 𝜉 (𝛾)𝜆𝛾 , we have

𝜆(𝜉) = Ψ

( ∑︁
𝛾 ∈supp(𝜉)

𝜉 (𝛾)𝑢𝛾𝑒𝛾,𝛾

)
,

which, by (I.8.40), implies that

‖𝜉 ‖𝜆 = ‖𝜆(𝜉)‖ ≤





 ∑︁
𝛾 ∈supp(𝜉)

𝜉 (𝛾)𝑢𝛾𝑒𝛾,𝛾






 ≤ 𝑃 (𝑘)‖𝜉 ‖2.

This proves (I.8.37) and �nishes the proof. �
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We �nally have the following characterization of property (𝑅𝐷) for Ĝ.

Theorem I.8.4 (Permanence of rapid decay). The following are equivalent:

(a) Ĝ has (𝑅𝐷);

(b) there exists a matched pair of length functions
(
𝑙
𝐺
, 𝑙Γ

)
, such that

(
𝐺 , 𝑙

𝐺

)
has

polynomial growth and (Γ , 𝑙Γ) has (𝑅𝐷);

(c) there exists a matched pair of length functions
(
𝑙
𝐺
, 𝑙Γ

)
, such that both

(
𝐺 , 𝑙

𝐺

)
and (Γ , 𝑙Γ) has (𝑅𝐷).

Proof. By Corollary I.5.15, (b) and (c) are equivalent. By Proposition I.8.2, we have
(b) implies (a). By Proposition I.8.3, we have (a) implies (c). �



Chapter II

Representation theory of semidirect
products of a compact quantum
group with a �nite group

Introduction

It is often the case that one can retrieve signi�cant information about representations
of a group𝐺 from representations of some subgroups of𝐺 . As a trivial example, the
study of representations of a direct product𝐺 ×𝐻 of groups of𝐺 and𝐻 can be easily
reduced to the study of representations of 𝐺 and 𝐻 separately. However, when one
replaces direct products with the more ubiquitous semidirect products, the situation
quickly becomes complicated. To get a taste of this complication, the classic (Serre,
1977, §8.2) treats representations of a semidirect product 𝐺 o 𝐻 in the special case
where 𝐺,𝐻 are both �nite and 𝐺 is abelian.

In the setting of locally compact groups and their unitary representations, via the
theories of systems of imprimitivity, induced representations, projective representa-
tions (a.k.a. ray representations), etc., George Mackey developed a heavy machinery
of techniques, often referred as Mackey’s analysis, Mackey’s machine or the little
group method (which is also due to Wigner), to attack such kind of problems. Subse-
quent works based on Mackey’s analysis emerge rapidly, making it one of the most
powerful tools to study unitary representations of locally compact groups. For an
introduction of this development, we refer the reader to (Mackey, 1958; 1952; 1949;
Fell andDoran, 1988; Kaniuth and Taylor, 2013) among the large volumes of literature
on this subject.

The author’s own interest of this subject comes from the joint work (Fima and
Wang, 2018) with Pierre Fima. In (Fima and Wang, 2018), we systematically studied
the permanence of property (RD) and polynomial growth of the dual of a bicrossed
product of a matched pair consisting of a second countable compact group and a
countable discrete group. The natural subsequent question of constructing examples
of nontrivial bicrossed products with or without (RD) leads one to study closely the
representation theory of semidirect products 𝐺 o Λ of a compact group 𝐺 with a
�nite group Λ. More precisely, as required by the study of length functions relevant
to these properties, we need a classi�cation of all irreducible unitary representations
of 𝐺 o Λ, the conjugate (which, when we adopt the point of view of topological
quantum groups as in this chapter, is also the contragredient since classic groups are
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of Kac type) of irreducible representations in terms of this classi�cation, and most
importantly, the fusion rules of𝐺 oΛ, i.e. how the tensor product of two irreducible
representations decomposes into a direct sum of irreducible representations. While
the �rst two questions can be settled using Mackey’s machine as mentioned above,
the fusion rules, however, to the best of the author’s limited knowledge, are never
calculated in the literature.

This chapter treats these questions in themore general setting of semidirect prod-
ucts of the form G o Λ, where G is a compact quantum group and Λ a �nite group.
However, instead of using systems of imprimitivity, we introduce the notion of rep-
resentation parameters (see De�nition II.9.8), which appears naturally when we try
to analyze the rigid 𝐶∗-tensor category Rep(G o Λ). Roughly speaking, a represen-
tation parameter is a triple (𝑢,𝑉 , 𝑣), where 𝑢 is an irreducible representation of G on
some �nite dimensional Hilbert space H ,𝑉 is a unitary projective representation of
a certain subgroup Λ0 of Λ on the same space H , and 𝑣 is a unitary projective rep-
resentation of the same Λ0 on some other �nite dimensional Hilbert space, such that
𝑉 is covariant with 𝑢 in a certain sense, and 𝑉 and 𝑣 have opposing cocycles. Here,
the subgroup Λ0 arises as an isotropy subgroup of a natural action Λy Irr(G), and
the projective representation 𝑉 is then determined by Schur’s lemma on irreducible
representations.

As the precise formulation of our main results are long and complicated, we give
here only a crude summary of these results in terms of representation parameters
(see De�nition II.9.8) mentioned above.

(A) Up to equivalence, irreducible unitary representations of G o Λ are classi�ed
by (equivalence classes of) representation parameters (see Theorem II.12.1 for
the precise formulation);

(B) The classi�cation in (A) is compatible with the conjugate operation— the con-
jugate1of an irreducible representation of GoΛ parameterized by some repre-
sentation parameter (𝑢,𝑉 , 𝑣) is itself parameterized by the conjugate of (𝑢,𝑉 , 𝑣)
(see Theorem II.13.5 for the precise formulation);

(C) The fusion rules of GoΛ is calculated by summing a series of incidence num-
bers, where all of these numbers can be calculated using unitary projective
representations of some suitable subgroup of Λ through an explicit reduction
procedure (see Theorem II.15.1 for the precise formulation), where the reduc-
tion procedure itself is determined by the representation theory of G and the
action of Λ acting onG, with respect to which we form the semidirect product.

While (A) and (B) may well be regarded as the quantum analogue of the corre-
sponding results of Mackey’s analysis in the classical case of groups, our result (C)
is new, even in the case where G is another �nite group. We should mention that
our main idea of this chapter starts with reformulating Rep(G) as a semisimple rigid
𝐶∗-tensor category for an arbitrary compact quantum group G, which is the modern
point of view; however, Mackey’s ingenious ideas, such as studying the dynamics of
a naturally appeared group action on the representations of a normal subgroup, and
using projective representations of the isotropy subgroups of this action, still play
an essential part in the development of this theory.

1The conjugate should not be confused with the contragredient, with the contragredient not neces-
sarily unitary if the quantum group is not unimodular (of Kac-type).
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We now describe the organization of this chapter. The numerous sections of this
chapter are roughly divided into the following four parts. In the �rst part (§ II.1 and
§ II.2), we lay out the basic properties and constructions of the objects to be studied in
this chapter—semidirect products of a compact quantum group by a �nite group and
their unitary representations. In § II.2, the problem of describing unitary representa-
tions of these semidirect products is reduced to the study of the so-called covariant
pair of representations for each of the factors. The second part (§§ II.3- II.6) gives a
self-contained treatment of induced representation which will be used later in this
chapter. We are aware that there are already much more general theory for induced
representations in the quantum setting, e.g. (Kustermans, 2002) based on the classic
work (Rie�el, 1974). Moreover S. Vaes has generalizes a large part of Mackey’s the-
ory of imprimitivity to locally compact quantum groups in (Vaes, 2005). Besides the
obvious reason for �xing the notations, the treatment of the induced representation
here is specially tailored to the various calculations in the later half of this chapter.
The third part (§§ II.7-II.11) is the technical core of this chapter. The treatment here is
largely inspired byWoronowicz’s Krein-Tannaka reconstruction (Woronowicz, 1988)
of a compact quantum group from its representation category. Here instead of di-
rectly attacking the representation category RepG o Λ of the semidirect product, we
introduce and study a family of rigid 𝐶∗-tensor categories (called the category of
covariant systems of representations and denoted by CSRΛ0 with respect to some
suitable subgroup of Λ), each of which has a simpler structure. Combining the infor-
mation we have on these simpler 𝐶∗-tensor categories allows us not only to classify
the irreducible unitary representations ofGoΛ, but also to calculate the fusion rules
of GoΛ. The details of this classi�cation and calculation are given in the fourth part
(§§ II.12-II.15).

Before we proceed further, we feel that we should say a little more about § II.1
for the experts. We emphasize our construction of semidirect products as the ax-
iomatically more elaborate algebraic compact quantum groups, the theory of which
is developed by van Daele (Van Daele, 1998; 1996; 1994), instead of the more mod-
ern and standard formulation, due to Woronowicz (Woronowicz, 1998; 1988; 1987),
using 𝐶∗-algebras. Of course, these two approaches are essentially equivalent—one
passes from Woronowicz’s approach to van Daele’s via the Peter-Weyl theory for
compact quantum groups, and from van Daele’s approach to Woronowicz’s via the
famous GNS construction with respect to the Haar integral. The reasons we prefer
van Daele’s algebraic theory here are two-fold: on the one hand, one has the ad-
vantage of having direct access to the Haar state and the antipode, as well as the
polynomial algebra, which are powerful tools for our purposes of studying the rep-
resentations of these objects (or corepresentations if one insists on viewing these
essentially analytic objects as Hopf algebras); on the other hand, when one tries to
restrict representations to certain (quantum) subgroups of these semidirect products,
as we will do later, one will need to use the counit, which is always everywhere de-
�ned in the more elaborate algebraic approach of van Daele, but is merely densely
de�ned if the compact quantum group in the sense of Woronowicz is not universal.
We also point out here that the term semidirect product in the quantum setting has an
unfortunate ambiguity. Nowadays many use this term to refer to the crossed prod-
uct, as �rst de�ned and studied by S. Wang2 (Wang, 1995). In the case of classical
groups, it is long known that this crossed product construction yields the convolu-
tion algebra of the semidirect of groups. So if we believe classic compact groups are

2who has no direct relation to the author, as Wang is a very common Chinese surname.
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exactly compact quantum groups whose algebra is commutative, then this is not the
correct formulation for semidirect products, even though these are closely related
via the convolution operation (which is a manifestation of the quantum version of
Pontryagin’s duality as developed in (Kustermans and Vaes, 2000), preceded bymany
important works along the lines of the Kac’s program, a history of which is described
in the introduction of the above article). To bemore precise, this crossed product of S.
Wang is in fact a special case of the bicrossed product as described in (Vaes and Vain-
erman, 2003) where one of the actions for the matched pair is trivial; what we call
semidirect in this chapter is a special case of the double crossed product as described
in (Baaj and Vaes, 2005) where again one of the actions for the matched pair is trivial.
We don’t pursue the full generality of the bicrossed product construction and double
crossed product construction here, but merely point out that they are all based on the
notion of matched pair of (quantum) groups ((Majid, 1990b; 1991),(Takeuchi, 1981)).
We also mention in passing works such as (Baaj and Skandalis, 1993), (Majid, 1990a),
(Singer, 1972), (Yamanouchi, 2000), and (Vaes and Vainerman, 2003) in the direction
of bicrossed products, and works such as (Baaj and Skandalis, 1993), (Majid, 1990a)
and (Baaj and Vaes, 2005) in the direction of double crossed products. We hope these
backgrounds provide some justi�cation of our choice of terminology for semidirect
products by its consistency with the classical group case. We also note that represen-
tation theory for compact bicrossed products (which includes the crossed product as
a special case) of a matched pair of classical groups are thoroughly investigated in
the author’s joint work with P. Fima (Fima and Wang, 2018), and as one can see by
comparing the results there and the results of this chapter, the representation theory
for semidirect products are signi�cantly more delicate than crossed products, even
for classical �nite groups.

We conclude this introduction by making some conventions. All representations
and projective representations in this chapter are �nite dimensional. All of them are
unitary, except the contragredient of a unitary representation, whichmay not be uni-
tary when the compact quantum group is not of Kac-type. We also assume all (pro-
jective) representations are over a �nite dimensional Hilbert space instead of a mere
complex vector space. Terminologies and notations concerning compact quantum
groups and 𝐶∗-tensor categories are largely in consistent with those in (Neshveyev
and Tuset, 2013). We also use freely the Peter-Weyl theory for projective repre-
sentations of �nite groups as presented in (Cheng, 2015). We also freely use the
Heyenmann-Sweedler notation in performing calculations on comultiplications. The
unitary group of unitary transformations from a Hilbert space H to itself is denoted
byU(H ). From § II.8 on, T denotes the circle group, i.e. the abelian compact group
{𝑧 ∈ C : |𝑧 | = 1} viewed as a subgroup of C×. Since we often view a representation
of compact quantum groups as an operator, we denote the tensor product of repre-
sentations using × instead of ⊗, as the latter is reserved to denote tensor products
of spaces, algebras, linear operators, etc. Finally, throughout this chapter, we �x a
compact quantum group G = (𝐴,Δ), a �nite group Λ, and an antihomomorphism of
groups 𝛼∗ : Λ → Aut

(
𝐶 (G),Δ

)
, where Aut

(
𝐶 (G),Δ

)
is the subgroup3 of Aut

(
𝐶 (G)

)
consisting of automorphisms of the 𝐶∗-algebra 𝐶 (G) that intertwines the comulti-

3Note that the notation Aut(G) has a certain ambiguity which we try to avoid: one the one hand,
if we let G to be a classical compact group, then elements of Aut(G) are group automorphisms, and the
group law of Aut(G) is given by composition of set-theoretic mappings; on the other hand, if we viewG as
a Hopf-𝐶∗-algebra, say

(
𝐶 (G),Δ

)
, then Aut(G) can also be mean the automorphism group of this Hopf-

𝐶∗-algebra, whose group law is given by composition of Hopf algebraic-morphisms. This is the reason we
prefer the more cumbersome notation Aut

(
𝐶 (G),Δ

)
instead of the ambiguous but more succinct Aut(G) .
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plication Δ.

II.1 Semidirect product of a compact quantum group with a
�nite group

Let G = (𝐴,Δ) be a compact quantum group, Λ a �nite group. An action of Λ on G
via quantum automorphisms is an antihomomorphism 𝛼∗ : Λ → Aut

(
𝐶 (G),Δ

)
. One

can then form the semi-direct Go𝛼∗ Λ, or simply GoΛ if the action 𝛼∗ is clear from
the context, which is again a compact quantum group. The underlying 𝐶∗-algebra
A of G o Λ is 𝐴 ⊗ 𝐶 (Λ), and the comultiplication Δ̃ on A is determined by

Δ̃(𝑎 ⊗ 𝛿𝑟 ) =
∑︁
𝑠∈Λ

[
(id𝐴 ⊗𝛼∗𝑠 )Δ(𝑎)

]
13 (𝛿𝑠 ⊗ 𝛿𝑠−1𝑟 )24 ∈ 𝐴 ⊗ 𝐶 (Λ) ⊗ 𝐴 ⊗ 𝐶 (Λ) (II.1.1)

for any 𝑎 ∈ 𝐴 and 𝑟 ∈ Λ. As we’ve mentioned at the end of the introduction, from
now on, G, Λ and the action 𝛼∗ are �xed until the end of the chapter.

It is clear that Δ̃ is a unital ∗-morphism. We now check that in the six-fold tensor
product 𝐴 ⊗ 𝐶 (Λ) ⊗ 𝐴 ⊗ 𝐶 (Λ) ⊗ 𝐴 ⊗ 𝐶 (Λ), we have

∀𝑎 ∈ 𝐴, 𝑟 ∈ Λ, (id ⊗ id ⊗Δ̃) [Δ̃(𝑎 ⊗ 𝛿𝑟 )] = (Δ̃ ⊗ id ⊗ id) [Δ̃(𝑎 ⊗ 𝛿𝑟 )], (II.1.2)

i.e. our new comultiplication Δ̃ is coassociative. Indeed, put Δ(2) := (id ⊗Δ)Δ =

(Δ ⊗ id)Δ, since 𝛼∗𝑠 ∈ Aut
(
𝐶 (G),Δ

)
for all 𝑠 ∈ Λ, we have (𝛼∗𝑠 ⊗ 𝛼∗𝑠 ) ◦ Δ = Δ ◦ 𝛼∗𝑠 ,

(id ⊗ id ⊗Δ̃) [Δ̃(𝑎 ⊗ 𝛿𝑟 )]

= (id ⊗ id ⊗Δ̃)
(∑︁
𝑠∈Λ

[(id ⊗𝛼∗𝑠 )Δ(𝑎)]13 (𝛿𝑠 ⊗ 𝛿𝑠−1𝑟 )24

)
=

∑︁
𝑠,𝑡 ∈Λ

{[(
id ⊗𝛼∗𝑠 ⊗ (𝛼∗𝑡 ◦ 𝛼∗𝑠 )

)
(id ⊗Δ)Δ

]
(𝑎)

}
135

(𝛿𝑠 ⊗ 𝛿𝑡 ⊗ 𝛿𝑡−1𝑠−1𝑟 )246

=
∑︁
𝑠,𝑡 ∈Λ

{[
(id ⊗𝛼∗𝑠 ⊗ 𝛼∗𝑠𝑡 )Δ(2) ] (𝑎)}

135
(𝛿𝑠 ⊗ 𝛿𝑡 ⊗ 𝛿𝑡−1𝑠−1𝑟 )246 .

(II.1.3)

On the other hand,

(Δ̃ ⊗ id ⊗ id) [Δ̃(𝑎 ⊗ 𝛿𝑟 )]

= (Δ̃ ⊗ id ⊗ id)
(∑︁
𝑠∈Λ

[(id ⊗𝛼∗𝑠 )Δ(𝑎)]13 (𝛿𝑠 ⊗ 𝛿𝑠−1𝑟 )24

)
=

∑︁
𝑠,𝑡 ∈Λ

{[
(id ⊗𝛼∗𝑡 ⊗ 𝛼∗𝑠 ) (Δ ⊗ id)Δ

]
(𝑎)

}
135

(𝛿𝑡 ⊗ 𝛿𝑡−1𝑠 ⊗ 𝛿𝑠−1𝑟 )246

(𝑠 ′ = 𝑡, 𝑡 ′ = 𝑡−1𝑠 ⇐⇒ 𝑠 = 𝑠 ′𝑡 ′, 𝑡 = 𝑠 ′)

=
∑︁
𝑠′,𝑡 ′∈Λ

{[
(id ⊗𝛼∗𝑠′ ⊗ 𝛼∗𝑠′𝑡 ′)Δ(2) ] (𝑎)}

135
(𝛿𝑠′ ⊗ 𝛿𝑡 ′ ⊗ 𝛿𝑡 ′−1𝑠′−1𝑟 )246 .

(II.1.4)

Now (II.1.2) follows from (II.1.3) and (II.1.4).
Since Pol(G) ⊗𝐶 (Λ) is dense in 𝐴 ⊗𝐶 (Λ), in order to prove that GoΛ is indeed

a compact quantum group, it su�ces to show that (Pol(G) ⊗𝐶 (Λ), Δ̃) is an algebraic
compact quantum group, i.e. a Hopf ∗-algebra with an invariant state (called the Haar
state or Haar integral).
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First of all, since 𝛼∗𝑠 ∈ Aut
(
𝐶 (G),Δ

)
for all 𝑠 ∈ Λ, we have 𝛼∗𝑠

(
Pol(G)

)
= Pol(G),

and Δ̃ indeed restricts to a well-de�ned comultiplication on Pol(G) ⊗ 𝐶 (Λ).
Let 𝜖, 𝑆 be the counit and the antipode respectively for the Hopf ∗-algebra Pol(G).

Denoting the neutral element of the group Λ by 𝑒 , we de�ne

𝜖 : Pol(G) ⊗ 𝐶 (Λ) → C∑︁
𝑟 ∈Λ

𝑥𝑟 ⊗ 𝛿𝑟 ↦→ 𝜖 (𝑥𝑒 ), (II.1.5)

and

𝑆 : Pol(G) ⊗ 𝐶 (Λ) → Pol(G) ⊗ 𝐶 (Λ)∑︁
𝑟 ∈Λ

𝑥𝑟 ⊗ 𝛿𝑟 ↦→
∑︁
𝑟 ∈Λ

𝛼∗𝑟 (𝑆 (𝑥𝑟 )) ⊗ 𝛿𝑟−1 =
∑︁
𝑟 ∈Λ

𝑆 (𝛼∗
𝑟−1 (𝑥𝑟−1 )) ⊗ 𝛿𝑟 .

(II.1.6)

Since 𝜖 is a ∗-morphism of algebras, so is 𝜖 . Moreover, for any 𝑥 ∈ Pol(G) and 𝑟 ∈ Λ,
we have

(𝜖 ⊗ id)Δ̃(𝑥 ⊗ 𝛿𝑟 ) = (𝜖 ⊗ id)
∑︁
𝑠∈Λ

∑︁
𝑥 (1) ⊗ 𝛿𝑠 ⊗ 𝛼∗𝑠 (𝑥 (2) ) ⊗ 𝛿𝑠−1𝑟

=
∑︁

𝜖 (𝑥 (1) )𝛼∗𝑒 (𝑥 (2) ) ⊗ 𝛿𝑟 =
∑︁

𝜖 (𝑥 (1) )𝑥 (2) ⊗ 𝛿𝑟 = 𝑥 ⊗ 𝛿𝑟
=

∑︁
𝑥 (1)𝜖 (𝑥 (2) ) ⊗ 𝛿𝑟 =

∑︁
𝑥 (1)𝜖 (𝛼∗𝑟 (𝑥 (2) )) ⊗ 𝛿𝑟

= (id ⊗𝜖)
∑︁
𝑠∈Λ

∑︁
𝑥 (1) ⊗ 𝛿𝑠 ⊗ 𝛼∗𝑠 (𝑥 (2) ) ⊗ 𝛿𝑠−1𝑟 = (id ⊗𝜖)Δ̃(𝑥 ⊗ 𝛿𝑟 ).

Hence 𝜖 is the counit for Δ̃. Let𝑚 : Pol(𝐺) ⊗ Pol(𝐺) → Pol(𝐺) be the multiplication
map, and𝑚 the multiplication map on Pol(G) ⊗ 𝐶 (Λ), then

𝑚(𝑆 ⊗ id)Δ̃(𝑥 ⊗ 𝛿𝑟 ) =𝑚(𝑆 ⊗ id)
∑︁
𝑠∈Λ

∑︁
𝑥 (1) ⊗ 𝛿𝑠 ⊗ 𝛼∗𝑠 (𝑥 (2) ) ⊗ 𝛿𝑠−1𝑟

=𝑚
∑︁
𝑠∈Λ

∑︁
𝛼∗𝑠 (𝑆 (𝑥 (1) )) ⊗ 𝛿𝑠−1 ⊗ 𝛼∗𝑠 (𝑥 (2) ) ⊗ 𝛿𝑠−1𝑟

=
∑︁
𝑠∈Λ

[
𝑚(𝑆 ⊗ id) (𝛼∗𝑠 ⊗ 𝛼∗𝑠 )Δ(𝑥)

]
⊗ 𝛿𝑠−1 · 𝛿𝑠−1𝑟

= 𝛿𝑒,𝑟
∑︁
𝑠∈Λ

[
𝑚(𝑆 ⊗ id)Δ(𝛼∗𝑠 (𝑥))

]
⊗ 𝛿𝑠−1

= 𝛿𝑒,𝑟
∑︁
𝑠∈Λ

𝜖 (𝛼∗𝑠 (𝑥))1𝐴 ⊗ 𝛿𝑠−1

= 𝛿𝑒,𝑟𝜖 (𝑥)1𝐴 ⊗
∑︁
𝑠∈Λ

𝛿𝑠−1

= 𝛿𝑒,𝑟𝜖 (𝑥)1𝐴 ⊗ 1𝐶 (Λ) = 𝜖 (𝑥 ⊗ 𝛿𝑟 )1𝐴 ⊗ 1𝐶 (Λ) .

Similarly, since for any 𝑠 ∈ Λ,

𝛼∗
𝑠−1𝑟𝑆𝛼

∗
𝑠 = 𝛼

∗
𝑠−1𝑟𝛼

∗
𝑠 𝑆 = 𝛼∗𝑟 𝑆,
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we have

𝑚(id ⊗𝑆)Δ̃(𝑥 ⊗ 𝛿𝑟 ) =𝑚(id ⊗𝑆)
∑︁
𝑠∈Λ

∑︁
𝑥 (1) ⊗ 𝛿𝑠 ⊗ 𝛼∗𝑠 (𝑥 (2) ) ⊗ 𝛿𝑠−1𝑟

=𝑚
∑︁
𝑠∈Λ

∑︁
𝑥 (1) ⊗ 𝛿𝑠 ⊗ (𝛼∗

𝑠−1𝑟𝑆𝛼
∗
𝑠 ) (𝑥 (2) ) ⊗ 𝛿𝑟−1𝑠

=𝑚
∑︁
𝑠∈Λ

∑︁
𝑥 (1) ⊗ 𝛿𝑠 ⊗ (𝛼∗𝑟 𝑆) (𝑥2) ⊗ 𝛿𝑟−1𝑠

= 𝛿𝑒,𝑟
∑︁
𝑠∈Λ

∑︁
𝑥 (1) [𝑆 (𝑥 (2) )] ⊗ 𝛿𝑠 = 𝛿𝑒,𝑟

∑︁
𝑠∈Λ

𝜖 (𝑥)1𝐴 ⊗ 𝛿𝑠

= 𝛿𝑒,𝑟𝜖 (𝑥)1𝐴 ⊗ 1𝐶 (Λ) = 𝜖 (𝑥 ⊗ 𝛿𝑟 )1𝐴 ⊗ 1𝐶 (Λ) .

Therefore, 𝑆 is the antipode for (Pol(G) ⊗ 𝐶 (Λ), Δ̃).
It remains to construct the Haar state on the Hopf ∗-algebra Pol(G) ⊗ 𝐶 (Λ).

Suppose ℎ : 𝐴 → C is the Haar state on G, de�ne

ℎ̃ : Pol(G) ⊗ 𝐶 (Λ) → C∑︁
𝑟

𝑥𝑟 ⊗ 𝛿𝑟 ↦→ |Λ|−1
∑︁
𝑟 ∈Λ

ℎ(𝑥𝑟 ). (II.1.7)

It is obvious that ℎ̃ is a state. For any 𝑥 ∈ Pol(G), 𝑟 ∈ Λ,

(ℎ̃ ⊗ id)Δ̃(𝑥 ⊗ 𝛿𝑟 ) = |Λ|−1
∑︁
𝑠∈Λ

∑︁
ℎ(𝑥 (1) )𝛼∗𝑠 (𝑥 (2) ) ⊗ 𝛿𝑠−1𝑟

= |Λ|−1
∑︁
𝑠∈Λ

𝛼∗𝑠
(∑︁

ℎ(𝑥 (1) )𝑥 (2)
)
⊗ 𝛿𝑠−1𝑟

= |Λ|−1
∑︁
𝑠∈Λ

𝛼∗𝑠 (ℎ(𝑥)1𝐴) ⊗ 𝛿𝑠−1𝑟

= |Λ|−1ℎ(𝑥)
∑︁
𝑠∈Λ

1𝐴 ⊗ 𝛿𝑠−1𝑟

= ℎ̃(𝑥 ⊗ 𝛿𝑟 )1𝐴 ⊗ 1𝐶 (Λ) .

The uniqueness of the Haar state implies that ℎ ◦ 𝛼∗𝑠 = ℎ for any 𝑠 ∈ Λ, hence

(id ⊗ℎ̃)Δ̃(𝑥 ⊗ 𝛿𝑟 ) = |Λ|−1
∑︁
𝑠∈Λ

∑︁
𝑥 (1)ℎ

(
𝛼∗𝑠 (𝑥 (2) )

)
⊗ 𝛿𝑠

= |Λ|−1
∑︁
𝑠∈Λ

∑︁
𝑥 (1)ℎ(𝑥 (2) ) ⊗ 𝛿𝑠

= |Λ|−1ℎ(𝑥)1𝐴 ⊗
∑︁
𝑠∈Λ

𝛿𝑠

= ℎ̃(𝑥 ⊗ 𝛿𝑟 )1𝐴 ⊗ 1𝐶 (Λ) .

Therefore, ℎ̃ is indeed the Haar state on (Pol(G) ⊗𝐶 (Λ), Δ̃). So far, we’ve established
that (Pol(G) ⊗ 𝐶 (Λ), Δ̃) is an algebraic compact quantum group (cf. (Timmermann,
2008, chapter 3)).

Now the density of Pol(G) ⊗ 𝐶 (Λ) in 𝐴 ⊗ 𝐶 (Λ) implies that (𝐴 ⊗ 𝐶 (Λ), Δ̃) is
indeed a compact quantum group, with

Pol(G o Λ) = Pol(G) ⊗ 𝐶 (Λ), (II.1.8)

and Haar state (which we still denote by ℎ̃)

ℎ̃ : 𝐴 ⊗ 𝐶 (Λ) → C∑︁
𝑥𝑟 ⊗ 𝛿𝑟 ↦→ |Λ|−1

∑︁
𝑟 ∈Λ

ℎ(𝑥𝑟 ). (II.1.9)
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Furthermore, we’ve seen that the counit 𝜖 and the antipode 𝑆 of the Hopf ∗-algebra
Pol(G o Λ) are given by (II.1.5) and (II.1.6) respectively (cf. (Timmermann, 2008,
§5.4.2)).

De�nition II.1.1. Using the above notations, it is well-known that the analytic com-
pact quantum group (A , Δ̃) and the algebraic compact quantum group (𝐴⊗𝐶 (Λ), Δ̃)
are equivalent descriptions of the same object, which we call the semidirect prod-
uct of G and Λ with respect to the action 𝛼∗, and is denoted by G o𝛼∗ Λ, or simply
G o Λ if the underlying action 𝛼∗ is clear from context.

Remark II.1.2. There is a faster way of establishing G o Λ as a compact quantum
group, which we refer to as the analytic approach. Namely, one might use (II.1.1)
directly to de�ne a comultiplication on the 𝐶∗-algebra 𝐴 ⊗ 𝐶 (Λ) and show that this
comultiplication satisfy the density condition in the de�nition of a compact quantum
group in the sense of Woronowicz (cf. (Woronowicz, 1998)). We prefer the more
algebraic approach presented above as it provides more insight for our purpose of
studying representations ofGoΛ. As an illustration, from our treatment, one knows
immediately that Pol(G o Λ) = Pol(G) o Λ, a fact that is not clear from the faster
analytic approach.

Remark II.1.3. WhenG comes from a genuine compact group𝐺 , it is easy to check
via Gelfand theory that the antihomomorphism 𝛼∗ : Λ → Aut

(
𝐶 (G),Δ

)
comes from

the pull-back of a group morphism 𝛼 : Λ → Aut
(
𝐶 (G),Δ

)
, and G o Λ is exactly the

compact group 𝐺 o𝛼 Λ viewed as a compact quantum group, where the group law
on 𝐺 × Λ is de�ned by

∀𝑔, ℎ ∈ 𝐺, 𝑟, 𝑠 ∈ Λ, (𝑔, 𝑟 ) (ℎ, 𝑠) =
(
𝑔𝛼𝑟 (ℎ), 𝑟𝑠

)
.𝑞 (II.1.10)

In treating the dual objects of some rigid 𝐶∗-tensor to be presented later, the
following result will be useful.

Proposition II.1.4. The compact quantum group G o Λ is of Kac type if and only if
G is of Kac type.

Proof. Of the many equivalent characterization for a compact quantum group to be
of Kac type4, we use the fact that such a quantum group is of Kac type if and only
if the antipode of its polynomial algebra preserves adjoints. The proposition now
becomes trivial in view of (II.1.6). �

II.2 A �rst look at unitary representations of G o Λ

A unitary representation 𝑈 of a classic compact semidirect product 𝐺 o Λ is deter-
mined by the restrictions 𝑈𝐺 and 𝑈Λ on the subgroups 𝐺 × 1Λ ' 𝐺 and 1𝐺 × Λ ' Λ
respectively. It is easy to see that (cf. (II.1.10))

∀𝑔 ∈ 𝐺, 𝑟 ∈ Λ, 𝑈𝐺 (𝛼𝑟 (𝑔))𝑈Λ (𝑟 ) = 𝑈 (𝛼𝑟 (𝑔), 𝑟 )
= 𝑈 ((1, 𝑟 ) (𝑔, 1)) = 𝑈Λ (𝑟 )𝑈𝐺 (𝑔).

(II.2.1)

Conversely, suppose 𝑈𝐺 , 𝑈Λ are unitary representations on the same Hilbert space
of 𝐺 and Λ respectively, if (II.2.1) is satis�ed, then 𝑈 (𝑔, 𝑟 ) := 𝑈𝐺 (𝑔)𝑈Λ (𝑟 ) de�nes a

4see e.g. (Neshveyev and Tuset, 2013, §1.7)
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unitary representation of 𝐺 o Λ. When 𝐺 is replaced by a general compact quan-
tum group G, even though the “elements” of G are no longer available, one can still
establish a reasonable quantum analogue. We begin with a simple lemma.

Lemma II.2.1. Let 𝜖 be the counit for Pol(G), 𝜖Λ the counit for𝐶 (Λ), then 𝜖 ⊗ id𝐶 (Λ) is
a Hopf ∗-algebra morphism from Pol(G) ⊗𝐶 (Λ) onto𝐶 (Λ), and idPol(G) ⊗𝜖Λ is a Hopf
∗-algebra morphism from Pol(G) ⊗ 𝐶 (Λ) onto Pol(G).

Proof. Since the antipodes are ∗-morphisms of involutive algebras, it su�ces to check
that both morphisms preserve comultiplication.

Take any 𝑎 ∈ Pol(G), 𝑟 ∈ Λ, we have

[(𝜖 ⊗ id) ⊗ (𝜖 ⊗ id)]ΔGoΛ (𝑎 ⊗ 𝛿𝑟 )
=

∑︁
𝑠∈Λ

∑︁
𝜖 (𝑎 (1) )𝜖 (𝛼∗𝑠 (𝑎 (2) ))𝛿𝑠 ⊗ 𝛿𝑠−1𝑟

=
∑︁
𝑠∈Λ

∑︁
𝜖 (𝑎 (1) )𝜖 (𝑎 (2) )𝛿𝑠 ⊗ 𝛿𝑠−1𝑟

=
∑︁
𝑠∈Λ

𝜖 (𝑎)𝛿𝑠 ⊗ 𝛿𝑠−1𝑡 = ΔΛ (𝜖 ⊗ id) (𝑎 ⊗ 𝛿𝑟 ),

where ΔΛ is the comultiplication for Λ viewed as a compact quantum group. Thus
𝜖 ⊗ id preserves comultiplication. On the other hand, note that 𝜖Λ (𝛿𝑟 ) = 𝛿𝑟,1Λ , we
have

[(id ⊗𝜖Λ) ⊗ (id ⊗𝜖Λ)]ΔG⊗Λ (𝑎 ⊗ 𝛿𝑟 )
=

∑︁
𝑠∈Λ

𝛿𝑠,1Λ𝛿𝑠−1𝑟,1Λ
∑︁

𝑎 (1) ⊗ 𝛼∗𝑠 (𝑎 (2) )

= 𝛿𝑟,1Λ
∑︁

𝑎 (1) ⊗ 𝑎 (2)
= 𝛿𝑟,1ΛΔ(𝑎) = Δ[(id ⊗𝜖Λ) (𝑎 ⊗ 𝛿𝑟 )] .

Thus id ⊗𝜖Λ preserves comultiplication too. �

Let 𝑈 ∈ B(H ) ⊗ Pol(G) ⊗ 𝐶 (Λ) be a �nite dimensional unitary representation
of G o Λ. De�ne the unitaries

ResG (𝑈 ) : = (idB(H ) ⊗ idPol(G) ⊗𝜖Λ) (𝑈 ) ∈ B(H ) ⊗ Pol(G),

and
ResΛ (𝑈 ) : = (idB(H ) ⊗𝜖G ⊗ id𝐶 (Λ) ) (𝑈 ) ∈ B(H ) ⊗ 𝐶 (Λ).

Then by Lemma II.2.1, we see that ResG (𝑈 ) is a �nite dimensional unitary repre-
sentation of G and ResΛ (𝑈 ) a �nite dimensional unitary representation of Λ. We
call ResG (𝑈 ) (resp. ResΛ (𝑈 )) the restriction of 𝑈 to G (resp. Λ). For reasons to be
explained presently, we also write𝑈G for ResG (𝑈 ) and𝑈Λ for ResΛ (𝑈 ).

Proposition II.2.2. Using the above notations, we have

∀𝑟0 ∈ Λ, (𝑈Λ (𝑟0) ⊗ 1𝐴)𝑈G = [(idB(H ) ⊗𝛼∗𝑟0 ) (𝑈G)] (𝑈Λ (𝑟0) ⊗ 1𝐴) (II.2.2)

in B(H ) ⊗ Pol(G). Moreover,

𝑈 = (𝑈G)12 (𝑈Λ)13 ∈ B(H ) ⊗ Pol(G) ⊗ 𝐶 (Λ). (II.2.3)
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Conversely, suppose𝑈G and𝑈Λ are �nite dimensional unitary representations of G
andΛ respectively on the sameHilbert spaceH , if𝑈G and𝑈Λ satisfy (II.2.2), then (II.2.3)
de�nes a �nite dimensional unitary representation𝑈 of G o Λ on H . Moreover,

𝑈G = (idB(H ) ⊗ idPol(G) ⊗𝜖Λ) (𝑈 ) ∈ B(H ) ⊗ Pol(G), (II.2.4a)

𝑈Λ = (idB(H ) ⊗𝜖G ⊗ id𝐶 (Λ) ) (𝑈 ) ∈ B(H ) ⊗ 𝐶 (Λ). (II.2.4b)

Proof. Let 𝑑 = dimH , and �x a Hilbert basis (𝑒1, . . . , 𝑒𝑑 ) for H . Let (𝑒𝑖 𝑗 , 𝑖, 𝑗 =

1, . . . , 𝑑) be the corresponding matrix units (i.e. 𝑒𝑖 𝑗 ∈ B(H ) is characterized by
𝑒𝑖 𝑗 (𝑒𝑘 ) = 𝛿 𝑗,𝑘𝑒𝑖 ). Then there is a unique 𝑈𝑖 𝑗 ∈ Pol(G) ⊗ 𝐶 (Λ) for each pair of 𝑖, 𝑗 ,
such that

𝑈 =
∑︁
𝑖, 𝑗

𝑒𝑖 𝑗 ⊗ 𝑈𝑖 𝑗 ,

with each 𝑈𝑖 𝑗 decomposed further as 𝑈𝑖 𝑗 =
∑
𝑟 ∈Λ𝑈𝑖 𝑗,𝑟 ⊗ 𝛿𝑟 , where each 𝑈𝑖 𝑗,𝑟 ∈

Pol(G). Since 𝑈 is a �nite dimensional unitary representation of G o Λ, for any
𝑖, 𝑗 ∈ {1, . . . , 𝑑}, we have

ΔGoΛ (𝑈𝑖 𝑗 ) =
𝑑∑︁
𝑘=1

𝑈𝑖𝑘 ⊗ 𝑈𝑘 𝑗 , (II.2.5)

where in Pol(G) ⊗ 𝐶 (Λ) ⊗ Pol(G) ⊗ 𝐶 (Λ), we have

ΔGoΛ (𝑈𝑖 𝑗 ) =
∑︁

𝑟,𝑠,𝑡 ∈Λ,
𝑟=𝑠𝑡

[
(id𝐴 ⊗𝛼∗𝑠 )Δ(𝑈𝑖 𝑗,𝑟 )

]
13 (1𝐴 ⊗ 𝛿𝑠 ⊗ 1𝐴 ⊗ 𝛿𝑡 )

=
∑︁
𝑠,𝑡 ∈Λ

[
(id𝐴 ⊗𝛼∗𝑠 )Δ(𝑈𝑖 𝑗,𝑠𝑡 )

]
13 (1𝐴 ⊗ 𝛿𝑠 ⊗ 1𝐴 ⊗ 𝛿𝑡 )

(II.2.6)

and
𝑑∑︁
𝑘=1

𝑈𝑖𝑘 ⊗ 𝑈𝑘 𝑗 =
𝑑∑︁
𝑘=1

∑︁
𝑠,𝑡 ∈Λ

𝑈𝑖𝑘,𝑠 ⊗ 𝛿𝑠 ⊗ 𝑈𝑘 𝑗,𝑡 ⊗ 𝛿𝑡 . (II.2.7)

Comparing (II.2.5), (II.2.6) and (II.2.7), we get

(id𝐴 ⊗𝛼∗𝑠 )Δ(𝑈𝑖 𝑗,𝑠𝑡 ) =
𝑑∑︁
𝑘=1

𝑈𝑖𝑘,𝑠 ⊗ 𝑈𝑘 𝑗,𝑡 ∈ 𝐴 ⊗ 𝐴 (II.2.8)

or equivalently (by applying (id𝐴 ⊗𝛼∗
𝑠−1

) on both sides)

Δ(𝑈𝑖 𝑗,𝑠𝑡 ) =
𝑑∑︁
𝑘=1

𝑈𝑖𝑘,𝑠 ⊗ 𝛼∗𝑠−1 (𝑈𝑘 𝑗,𝑡 ) (II.2.9)

for every 𝑠, 𝑡 ∈ Λ. Since (id ⊗𝜖)Δ = id = (𝜖 ⊗ id)Δ, we have

𝑈𝑖 𝑗,𝑠𝑡 =
𝑑∑︁
𝑘=1

𝜖 (𝑈𝑖𝑘,𝑠 )𝛼∗𝑠−1 (𝑈𝑘 𝑗,𝑡 ) =
𝑑∑︁
𝑘=1

𝜖 (𝑈𝑘 𝑗,𝑠 )𝑈𝑖𝑘,𝑡 (II.2.10)

for any 𝑖, 𝑗 ∈ {1, . . . , 𝑑}, 𝑠, 𝑡 ∈ Λ.
We have 𝜖Λ (𝛿𝑟 ) = 𝛿𝑟,1Λ , thus by de�nition

𝑈G =
𝑑∑︁

𝑖, 𝑗=1
𝑒𝑖 𝑗 ⊗ 𝑈𝑖 𝑗,1Λ ∈ B(H ) ⊗ Pol(G). (II.2.11)
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Similarly,

𝑈Λ =
∑︁
𝑟 ∈Λ

𝑑∑︁
𝑖, 𝑗=1

𝜖 (𝑈𝑖 𝑗,𝑟 )𝑒𝑖 𝑗 ⊗ 𝛿𝑟 ∈ B(H ) ⊗ 𝐶 (Λ). (II.2.12)

Thus

𝑈Λ (𝑟0) =
𝑑∑︁

𝑖, 𝑗=1
𝜖 (𝑈𝑖 𝑗,𝑟0 )𝑒𝑖 𝑗 ∈ B(H ). (II.2.13)

Hence,

(𝑈Λ (𝑟0) ⊗ 1𝐴)𝑈G =
𝑑∑︁

𝑖, 𝑗,𝑘,𝑙=1
𝛿 𝑗,𝑘𝜖 (𝑈𝑖 𝑗,𝑟0 )𝑒𝑖𝑙 ⊗ 𝑈𝑘𝑙,1Λ

=
𝑑∑︁

𝑖,𝑙=1
𝑒𝑖𝑙 ⊗

𝑑∑︁
𝑘=1

𝜖 (𝑈𝑖𝑘,𝑟0 )𝑈𝑘𝑙,1Λ

=
𝑑∑︁

𝑖,𝑙=1
𝑒𝑖𝑙 ⊗ 𝛼∗𝑟0

(
𝑑∑︁
𝑘=1

𝜖 (𝑈𝑖𝑘,𝑟0 )𝛼∗𝑟−10 (𝑈𝑘𝑙,1Λ )
)

=
𝑑∑︁

𝑖,𝑙=1
𝑒𝑖𝑙 ⊗ 𝛼∗𝑟0 (𝑈𝑖𝑙,𝑟0 )

(II.2.14)

where the last equality follows from (II.2.10); and

[(id ⊗𝛼∗𝑟0 )𝑈G] (𝑈Λ (𝑟0) ⊗ 1𝐴) =
𝑑∑︁

𝑖, 𝑗,𝑘,𝑙=1
𝛿 𝑗,𝑘𝜖 (𝑈𝑘𝑙,𝑟0 )𝑒𝑖𝑙 ⊗ 𝛼∗𝑟0 (𝑈𝑖𝑘,1Λ )

=
∑︁
𝑖,𝑙=1

𝑒𝑖𝑙 ⊗
𝑑∑︁
𝑘=1

𝜖 (𝑈𝑘𝑙,𝑟0 )𝛼∗𝑟0 (𝑈𝑖𝑘,1Λ )

=
∑︁
𝑖,𝑙=1

𝑒𝑖𝑙 ⊗ 𝛼∗𝑟0

(
𝑑∑︁
𝑘=1

𝜖 (𝑈𝑖𝑘,𝑟0 )𝑈𝑘 𝑗,1Λ

)
=

∑︁
𝑖,𝑙=1

𝑒𝑖𝑙 ⊗ 𝛼∗𝑟0 (𝑈𝑖𝑙,𝑟0 )

(II.2.15)

where (II.2.10) is used again in the last equality.
Combining (II.2.14) and (II.2.15) �nishes the proof of (II.2.2).
By (II.2.11), (II.2.12) and (II.2.10), one has

(𝑈G)12 (𝑈Λ)13 =
𝑑∑︁

𝑖, 𝑗,𝑘,𝑙=1

∑︁
𝑟 ∈Λ

𝛿 𝑗,𝑘𝜖 (𝑈𝑘𝑙,𝑟 )𝑒𝑖𝑙 ⊗ 𝑈𝑖 𝑗,1Λ ⊗ 𝛿𝑟

=
𝑑∑︁

𝑖,𝑙=1
𝑒𝑖𝑙 ⊗

∑︁
𝑟 ∈Λ

(
𝑑∑︁
𝑘=1

𝜖 (𝑈𝑘𝑙,𝑟 )𝑈𝑖𝑘,1Λ

)
⊗ 𝛿𝑟

=
𝑑∑︁

𝑖,𝑙=1
𝑒𝑖𝑙 ⊗

∑︁
𝑟 ∈Λ

𝑈𝑖𝑙,𝑟 ⊗ 𝛿𝑟 = 𝑈

(II.2.16)

in B(H ) ⊗ Pol(G) ⊗ 𝐶 (Λ). This proves (II.2.3).
Conversely, suppose 𝑈G and 𝑈Λ are unitary representations on some �nite di-

mensional Hilbert space H . We still use (𝑒1, . . . , 𝑒𝑑 ) to denote a Hilbert basis for H ,
where 𝑑 = dimH , and (𝑒𝑖 𝑗 , 𝑖, 𝑗 = 1, . . . , 𝑑) the corresponding matrix unit of B(H ).
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Then for each pair 𝑖, 𝑗 , one has a unique 𝑢𝑖 𝑗 ∈ Pol(G) and a unique 𝑓𝑖 𝑗 ∈ 𝐶 (Λ), such
that𝑈G =

∑
𝑖, 𝑗 𝑒𝑖 𝑗 ⊗𝑢𝑖 𝑗 ,𝑈Λ =

∑
𝑖 𝑗 𝑒𝑖 𝑗 ⊗ 𝑓𝑖 𝑗 . By suitably choosing the basis (𝑒1, . . . , 𝑒𝑑 ),

we may and do assume 𝜖 (𝑢𝑖 𝑗 ) = 𝛿𝑖, 𝑗 . Since these are representations, we have

Δ(𝑢𝑖 𝑗 ) =
𝑑∑︁
𝑘=1

𝑢𝑖𝑘 ⊗ 𝑢𝑘 𝑗 , (II.2.17a)

ΔΛ (𝑓𝑖 𝑗 ) =
𝑑∑︁
𝑘=1

𝑓𝑖𝑘 ⊗ 𝑓𝑘 𝑗 . (II.2.17b)

By de�nition,

𝑈 =
𝑑∑︁

𝑖, 𝑗,𝑘,𝑙=1
𝛿 𝑗𝑘𝑒𝑖𝑙 ⊗ 𝑢𝑖 𝑗 ⊗ 𝑓𝑘𝑙 =

𝑑∑︁
𝑖, 𝑗=1

𝑒𝑖 𝑗 ⊗ 𝑈𝑖 𝑗 (II.2.18)

with

𝑈𝑖 𝑗 =
𝑑∑︁
𝑘=1

𝑢𝑖𝑘 ⊗ 𝑓𝑘 𝑗 =
∑︁
𝑟 ∈Λ

𝑑∑︁
𝑘=1

𝑓𝑘 𝑗 (𝑟 )𝑢𝑖𝑘 ⊗ 𝛿𝑟 . (II.2.19)

Since𝑈G and𝑈Λ are unitary, so is𝑈 . Using 𝜖 (𝑢𝑖 𝑗 ) = 𝛿𝑖, 𝑗 , one has

(idB(H ) ⊗𝜖 ⊗ id𝐶 (Λ) ) (𝑈 ) =
𝑑∑︁

𝑖, 𝑗=1
𝑒𝑖 𝑗 ⊗

𝑑∑︁
𝑘=1

𝛿𝑖,𝑘 𝑓𝑘 𝑗 =
𝑑∑︁
𝑖, 𝑗

𝑒𝑖 𝑗 ⊗ 𝑓𝑖 𝑗 = 𝑈Λ . (II.2.20)

This proves (II.2.4b). The proof of (II.2.4a) is more involved and must resort to con-
dition (II.2.2), which using the above notations, translates to

∀𝑟 ∈ Λ,
∑︁
𝑖, 𝑗

𝑒𝑖 𝑗 ⊗
∑︁
𝑘

𝑓𝑖𝑘 (𝑟 )𝑢𝑘 𝑗 =
∑︁
𝑖, 𝑗

𝑒𝑖 𝑗 ⊗
∑︁
𝑘

𝑓𝑘 𝑗 (𝑟 )𝛼∗𝑟 (𝑢𝑖𝑘 ), (II.2.21)

or equivalently,

∀𝑟 ∈ Λ, 𝑖, 𝑗 ∈ {1, . . . , 𝑑},
𝑑∑︁
𝑘=1

𝑓𝑖𝑘 (𝑟 )𝑢𝑘 𝑗 =
𝑑∑︁
𝑘=1

𝑓𝑘 𝑗 (𝑟 )𝛼∗𝑟 (𝑢𝑖𝑘 ). (II.2.22)

Since𝑈Λ (1Λ) = idH , one has 𝑓𝑖 𝑗 (1Λ) = 𝛿𝑖, 𝑗 . Taking 𝑟 = 1Λ in (II.2.22) yields

(idB(H ) ⊗ idPol(G) ⊗𝜖Λ) (𝑈 ) =
𝑑∑︁

𝑖, 𝑗=1
𝑒𝑖 𝑗 ⊗

𝑑∑︁
𝑘=1

𝑓𝑘 𝑗 (1Λ)𝑢𝑖𝑘

=
𝑑∑︁

𝑖, 𝑗=1
𝑒𝑖 𝑗 ⊗

𝑑∑︁
𝑘=1

𝛿𝑘,𝑗𝑢𝑖𝑘 =
𝑑∑︁

𝑖, 𝑗=1
𝑒𝑖 𝑗 ⊗ 𝑢𝑖 𝑗 = 𝑈G,

(II.2.23)

which proves (II.2.4a). To �nishes the proof of the proposition, it remains to check
that the unitary𝑈 is indeed a representation of G o Λ.
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Using (II.2.17a), (II.2.19) and (II.2.22), one has

ΔGoΛ (𝑈𝑖 𝑗 ) =
∑︁
𝑟 ∈Λ

∑︁
𝑠∈Λ

[
(idPol(G) ⊗𝛼∗𝑠 )Δ

(
𝑑∑︁
𝑘=1

𝑓𝑘 𝑗 (𝑟 )𝑢𝑖𝑘

)]
13

(𝛿𝑠 ⊗ 𝛿𝑠−11)24

=
∑︁
𝑟,𝑠∈Λ

𝑑∑︁
𝑘,𝑙=1

𝑓𝑘 𝑗 (𝑟 )𝑢𝑖𝑙 ⊗ 𝛿𝑠 ⊗ 𝛼∗𝑠 (𝑢𝑙𝑘 ) ⊗ 𝛿𝑠−1𝑟

=
∑︁
𝑟,𝑠∈Λ

𝑑∑︁
𝑙=1

𝑢𝑖𝑙 ⊗ 𝛿𝑠 ⊗
[
𝑑∑︁
𝑘=1

𝑓𝑘 𝑗 (𝑟 )𝛼∗𝑠 (𝑢𝑙𝑘 )
]
⊗ 𝛿𝑠−1𝑟

=
∑︁
𝑠,𝑡 ∈Λ

𝑑∑︁
𝑘,𝑙=1

𝑢𝑖𝑙 ⊗ 𝛿𝑠 ⊗
[
𝑓𝑘 𝑗 (𝑠𝑡)𝛼∗𝑠 (𝑢𝑙𝑘 )

]
⊗ 𝛿𝑡

=
∑︁
𝑠,𝑡 ∈Λ

𝑑∑︁
𝑘,𝑙=1

𝑢𝑖𝑙 ⊗ 𝛿𝑠 ⊗
[
𝑑∑︁
ℎ=1

𝑓ℎ𝑗 (𝑡) 𝑓𝑘ℎ (𝑠)𝛼∗𝑠 (𝑢𝑙𝑘 )
]
⊗ 𝛿𝑡

=
∑︁
𝑠,𝑡 ∈Λ

𝑑∑︁
ℎ,𝑙=1

𝑢𝑖𝑙 ⊗ 𝛿𝑠 ⊗
[
𝑓ℎ𝑗 (𝑡)

𝑑∑︁
𝑘=1

𝑓𝑘ℎ (𝑠)𝛼∗𝑠 (𝑢𝑙𝑘 )
]
⊗ 𝛿𝑡

=
∑︁
𝑠,𝑡 ∈Λ

𝑑∑︁
ℎ,𝑙=1

𝑢𝑖𝑙 ⊗ 𝛿𝑠 ⊗
[
𝑓ℎ𝑗 (𝑡)

𝑑∑︁
𝑘=1

𝑓𝑙𝑘 (𝑠)𝑢𝑘ℎ

]
⊗ 𝛿𝑡

=
𝑑∑︁

ℎ,𝑘,𝑙=1
𝑢𝑖𝑙 ⊗ 𝑓𝑙𝑘 ⊗ 𝑢𝑘ℎ ⊗ 𝑓ℎ𝑗

=
𝑑∑︁
ℎ=1

(
𝑑∑︁
𝑙=1

𝑢𝑖𝑙 ⊗ 𝑓𝑙𝑘

)
⊗

(
𝑑∑︁
𝑘=1

𝑢𝑘ℎ ⊗ 𝑓ℎ𝑗

)
=

𝑑∑︁
ℎ=1

𝑈𝑖ℎ ⊗ 𝑈ℎ𝑗 .

(II.2.24)

Thus𝑈 is indeed a (unitary) representation. �

De�nition II.2.3. Let 𝑈G ∈ B(H ) ⊗ Pol(G) be a �nite dimensional unitary rep-
resentation of G, 𝑈Λ ∈ B(H ) ⊗ 𝐶 (Λ) a �nite dimensional unitary representation
of Λ on the same space H , we say 𝑈G and 𝑈Λ are covariant if they satisfy condi-
tion (II.2.2).

We track here a simple criterion for two representations to be covariant using
matrix units and matrix coe�cients.

Proposition II.2.4. Let 𝑈G ∈ B(H ) ⊗ Pol(G), 𝑈Λ ∈ B(H ) ⊗ 𝐶 (Λ) be �nite-
dimensional unitary representations ofG andΛ respectively. Let (𝑒1, . . . , 𝑒𝑑 ) be aHilbert
basis of H , 𝑒𝑖 𝑗 ∈ B(H ) the operator with 𝑒𝑖 𝑗 (𝑒𝑘 ) = 𝛿 𝑗,𝑘𝑒𝑖 , and 𝑈G =

∑
𝑖, 𝑗 𝑒𝑖 𝑗 ⊗ 𝑢𝑖 𝑗 ,

𝑈Λ =
∑
𝑖, 𝑗 𝑒𝑖 𝑗 ⊗ 𝑓𝑖 𝑗 , then𝑈G and𝑈Λ are covariant if and only if

∀𝑟 ∈ Λ, 𝑖, 𝑗 ∈ {1, . . . , 𝑑},
𝑑∑︁
𝑘=1

𝑓𝑖𝑘 (𝑟 )𝑢𝑘 𝑗 =
𝑑∑︁
𝑘=1

𝑓𝑘 𝑗 (𝑟 )𝛼∗𝑟 (𝑢𝑖𝑘 ). (II.2.25)

Proof. This is just a restatement of condition (II.2.2). �

By Proposition II.2.2, unitary representations of G o Λ, at least the �nite dimen-
sional ones, correspond bijectively to pairs of covariant unitary representations of G
and Λ.
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II.3 Principal subgroups of G o Λ

De�nition II.3.1. Let H = (𝐵,Δ𝐵), K = (𝐶,Δ𝐶 ) be compact quantum groups, we
say K is isomorphic to a closed quantum subgroup of H, or simply K is a closed
subgroup of H, if there exists a surjective mapping 𝜑 : Pol(H) → Pol(K) such that 𝜑
is a morphism of Hopf ∗-algebras.

When H is universal, then De�nition II.3.1 can be reformulated as the existence
of a surjective unital 𝐶∗-algebra morphism 𝜑 : 𝐵 → 𝐶 such that (𝜑 ⊗ 𝜑)Δ𝐵 = Δ𝐶𝜑 .

In the context of compact quantumgroups, wewill use the terms “quantum closed
subgroup” and “closed subgroup”, sometimes even “subgroup”, interchangeablywith-
out further explanation.

Remark II.3.2. If H and K are commutative, i.e. they come from genuine compact
groups, then K being isomorphic to a closed subgroup, says exactly that there exists
a continuous injective map 𝜑∗ from Spec(𝐶), the underlying space of the compact
group K, into Spec(𝐵), the underlying space of the compact group H, such that 𝜑∗
preserves multiplication. Thus the above de�nition for closed (quantum) subgroups
is consistent with the classical case of compact groups.

Recall that G = (𝐴,Δ), 𝐶 (G o Λ) = 𝐴 ⊗ 𝐶 (Λ), and Pol(G o Λ) = 𝐶 (G) o𝐶 (Λ).

Proposition II.3.3. Let Λ0 be a subgroup of Λ, then the mapping

𝜑 : 𝐴 ⊗ 𝐶 (Λ) → 𝐴 ⊗ 𝐶 (Λ0)∑︁
𝑟 ∈Λ

𝑎𝑟 ⊗ 𝛿𝑟 ↦→
∑︁
𝑟 ∈Λ0

𝑎𝑟 ⊗ 𝛿𝑟

is a unital surjective morphism5 of 𝐶∗-algebras that also intertwines the comultiplica-
tions on G o Λ0 and G o Λ. In particular, G o Λ0 is a closed subgroup of G o Λ.

Proof. Obviously 𝜑 is a unital surjective morphism of𝐶∗-algebras. We need to show
that 𝜑 intertwines the comultiplication Δ̃ on G o Λ and the comultiplication Δ̃0 on
G o Λ0. For this, by density, it su�ces to prove that the restriction

𝜑 : Pol(G) ⊗ 𝐶 (Λ) → Pol(G) ⊗ 𝐶 (Λ0)∑︁
𝑟 ∈Λ

𝑎𝑟 ⊗ 𝛿𝑟 ↦→
∑︁
𝑟 ∈Λ0

𝑎𝑟 ⊗ 𝛿𝑟 (II.3.1)

intertwines the comultiplications. Indeed, given an arbitrary 𝑎𝑟 ∈ Pol(𝐺) for any
𝑟 ∈ Λ, note that for any 𝑎 ∈ Pol(G) and 𝜆 ∈ Λ, 𝜑 (𝑎 ⊗ 𝛿𝜆) = 0 whenever 𝜆 ∉ Λ0, we
have

(𝜑 ⊗ 𝜑)Δ̃
(∑︁
𝑟 ∈Λ

𝑎𝑟 ⊗ 𝛿𝑟

)
= (𝜑 ⊗ 𝜑)

∑︁
𝑟 ∈Λ

∑︁
𝑠∈Λ

∑︁
(𝑎𝑟 ) (1) ⊗ 𝛿𝑠 ⊗ 𝛼∗𝑠

(
(𝑎𝑟 ) (2)

)
⊗ 𝛿𝑠−1𝑟

=
∑︁
𝑟 ∈Λ0

∑︁
𝑠∈Λ0

∑︁
(𝑎𝑟 ) (1) ⊗ 𝛿𝑠 ⊗ 𝛼∗𝑠

(
(𝑎𝑟 ) (2)

)
⊗ 𝛿𝑠−1𝑟

(Since 𝑠, 𝑠−1𝑟 ∈ Λ0 implies 𝑟 = 𝑠 (𝑠−1𝑟 ) ∈ Λ0)

= Δ̃0

(∑︁
𝑟 ∈Λ0

𝑎𝑟 ⊗ 𝛿𝑟

)
= Δ̃0𝜑

(∑︁
𝑟 ∈Λ

𝑎𝑟 ⊗ 𝛿𝑟

)
.

(II.3.2)

5Note that 𝛿𝑟 has di�erent meanings when viewed as functions in𝐶 (Λ) and in𝐶 (Λ0)
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This shows that 𝜑 indeed intertwines comultiplications and �nishes the proof. �

De�nition II.3.4. A closed subgroup of G o Λ of the form G o Λ0, where Λ0 is a
subgroup Λ, is called a principal subgroup of G o Λ.

Remark II.3.5. If we let 𝑝0 =
∑
𝑟 ∈Λ0 𝛿𝑟 ∈ 𝐶 (Λ), then 𝑝0 is a projection in 𝐶 (Λ),

thus 1 ⊗ 𝑝0 is a central projection in 𝐴 ⊗ 𝐶 (Λ). The morphism 𝜑 is in fact given
by the “compression” map (1 ⊗ 𝑝0) (·) (1 ⊗ 𝑝0). Essentially, these data says that the
principal subgroup G o Λ0 is in fact an open subgroup of G o Λ. As we don’t really
need the general theory of open subgroups of topological quantum groups in this
chapter, we won’t recall the relevant notions here and refer the interested reader
to the articles (Daws et al., 2012; Kalantar et al., 2016) for a treatment in the more
general setting of locally compact quantum groups.

Corollary II.3.6. Using the notations in Proposition II.3.3, if𝑈 ∈ B(H ) ⊗ 𝐴 ⊗𝐶 (Λ)
is a (unitary) representation of G o Λ, then (id ⊗𝜑) (𝑈 ) is a (unitary) representation of
G o Λ0.

Proof. This follows directly from the fact that the restriction of the mapping 𝜑 as
speci�ed in (II.3.1) is a morphism of Hopf ∗-algebras. �

De�nition II.3.7. Using the above notations, the representation (id ⊗𝜑) (𝑈 ) is called
the restriction of𝑈 to G o Λ0, and is denoted by𝑈 |GoΛ0 .

Remark II.3.8. Again, when G is an classical compact group 𝐺 , we recover the
classical notion of restriction of a representation of 𝐺 o Λ to the subgroup 𝐺 o Λ0.

There is a natural “conjugate” relation between principal subgroups of the form
GoΛ0 where Λ0 is a subgroup of Λ, which will be used to simplify some calculations
in our later treatment of representations. This relation is described in the following
proposition.

Proposition II.3.9. Let Λ0 be a subgroup of Λ, 𝑟 ∈ Λ, Ad𝑟 : Λ0 → 𝑟Λ0𝑟
−1 the isomor-

phism 𝑠 ↦→ 𝑟𝑠𝑟−1. Then 𝛼∗𝑟 ⊗ Ad∗𝑟 is an isomorphism of compact quantum groups from
G o Λ0 to G o 𝑟Λ0𝑟

−1.

Proof. By density, it su�ces to prove that the unital ∗-isomorphism

𝛼∗𝑟 ⊗ Ad∗𝑟 : Pol(G) ⊗ 𝐶 (𝑟Λ0𝑟
−1) → Pol(G) ⊗ 𝐶 (Λ0)

of involutive algebras preserves comultiplication. To �x the notations, let Δ0 (resp.
Δ𝑟 ) be the comultiplication on Pol(G) ⊗ 𝐶 (Λ0) (resp. Pol(G) ⊗ 𝐶 (𝑟Λ0𝑟

−1)). For any
𝑥 ∈ Pol(G), 𝜆 ∈ Λ0, we have

(𝛼∗𝑟 ⊗ Ad∗𝑟 ⊗𝛼∗𝑟 ⊗ Ad∗𝑟 )Δ𝑟 (𝑥 ⊗ 𝛿𝑟𝜆𝑟−1 )
=

∑︁
𝜇∈Λ0

[ (
𝛼∗𝑟 ⊗ (𝛼∗𝑟𝛼∗𝑟𝜇𝑟−1 )

)
Δ(𝑥)

]
13
((Ad∗𝑟 𝛿𝑟𝜇𝑟−1 ) ⊗ (Ad∗𝑟 𝛿𝑟𝜇−1𝜆𝑟−1 ))24

=
∑︁
𝜇∈Λ0

[ (
𝛼∗𝑟 ⊗ 𝛼∗𝑟𝜇

)
Δ(𝑥)

]
13 ((Ad

∗
𝑟 𝛿𝑟𝜇𝑟−1 ) ⊗ (Ad∗𝑟 𝛿𝑟𝜇−1𝜆𝑟−1 ))24

=
∑︁
𝜇∈Λ0

[ (
(id ⊗𝛼∗𝜇) [(𝛼∗𝑟 ⊗ 𝛼∗𝑟 )Δ(𝑥)]

) ]
13 (𝛿𝜇 ⊗ 𝛿𝜇−1𝜆)24

=
∑︁
𝜇∈Λ0

[ (
(id ⊗𝛼∗𝜇)Δ(𝛼∗𝑟 (𝑥))

) ]
13 (𝛿𝜇 ⊗ 𝛿𝜇−1𝜆)24

= Δ0
(
𝛼∗𝑟 (𝑥) ⊗ 𝛿𝜆

)
= [Δ0 (𝛼∗𝑟 ⊗ Ad∗𝑟 )] (𝑥 ⊗ 𝛿𝑟𝜆𝑟−1 ).

(II.3.3)
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Thus 𝛼∗𝑟 ⊗ Ad∗𝑟 indeed preserves comultiplication. �

II.4 Induced representations of principal subgroups

We begin by describing an outline of our approach to induced representations of
principal subgroups ofGoΛ. LetΛ0 be a subgroup ofΛ,𝑈 ∈ B(H )⊗Pol(G)⊗𝐶 (Λ0)
a �nite dimensional unitary representation of G o Λ0. We want to construct the
induced representation IndGoΛGoΛ0

(𝑈 ) of the larger quantum group G o Λ. The idea of
the construction goes as follows: by the results in § II.2, we know 𝑈 is determined
by its restrictions 𝑈G = ResG (𝑈 ) and 𝑈Λ0 = ResΛ0 (𝑈 ). While one may not be able
to directly extend the representation𝑈Λ0 of Λ0 to a representation of Λ on the same
space H , we do have the right-regular representation𝑊Λ of Λ on ℓ2 (Λ) ⊗ H using
the group structure of Λ. On the other hand, the direct sum𝑊G of various copies of
𝑈G placed suitably in ℓ2 (Λ) ⊗ H will give a representation of G on ℓ2 (Λ) ⊗ H . It
is then easy to check that𝑊G and𝑊Λ are covariant, thus determine a representation
𝑊 of G o Λ on ℓ2 (Λ) ⊗ H . To retrieve the information of 𝑈Λ0 , which is implicitly
encoded in the H factor of ℓ2 (Λ) ⊗ H , we consider the subspace K of ℓ2 (Λ) ⊗ H
consisting of vectors which behave in a covariant way with the representation 𝑈Λ0

on H . More precisely, K is de�ned by

K =

{∑︁
𝑟 ∈Λ

𝛿𝑟 ⊗ 𝜉𝑟 : ∀𝑟0 ∈ Λ0,∀𝑟 ∈ Λ, 𝜉𝑟0𝑟 = 𝑈Λ0 (𝑟0)𝜉𝑟

}
. (II.4.1)

One checks that K is an invariant subspace for both 𝑊Λ and 𝑊G, hence K is a
subrepresentation𝑊 of𝑊 , andwe de�ne𝑊 to be the induced representation Ind(𝑈 ).
We now proceed to carry out this idea precisely.

De�nition II.4.1. Let 𝑈 , H , Λ0 retain their meanings as above, and let (𝑒𝑟,𝑠 ; 𝑟, 𝑠 ∈
Λ) be the matrix unit of B(ℓ2 (Λ)) associated with the standard Hilbert basis (𝛿𝑟 ; 𝑟 ∈
Λ) for ℓ2 (Λ), i.e. 𝑒𝑟,𝑠𝛿𝑡 = 𝛿𝑠,𝑡𝛿𝑟 for all 𝑟, 𝑠, 𝑡 ∈ Λ. The right regular representation𝑊Λ

of Λ on ℓ2 ⊗ H is an operator in B(ℓ2 (Λ)) ⊗ B(H ) ⊗ 𝐶 (Λ) de�ned by

𝑊Λ =
∑︁
𝑟,𝑠∈Λ

𝑒𝑟𝑠−1,𝑟 ⊗ idH ⊗𝛿𝑠 . (II.4.2)

It is easy to see that if we regard ℓ2 (Λ)⊗H as ℓ2 (Λ,H ), then for any 𝑠 ∈ Λ,𝑊Λ (𝑠)
is the operator in B(ℓ2 (Λ,H )) sending each 𝐹 : Λ → H to 𝐹 ◦𝑅𝑠 , where 𝑅𝑠 : Λ → Λ
is the right multiplication by 𝑠 . Hence𝑊Λ is indeed a unitary representation of Λ on
ℓ2 (Λ)⊗H . By de�nition, for any 𝑠 ∈ Λ, the unitary operator𝑊Λ (𝑠) ∈ U(ℓ2 (Λ)⊗H )
is characterized by

𝑊Λ (𝑠) : ℓ2 (Λ) ⊗ H → ℓ2 (Λ) ⊗ H

𝛿𝑟 ⊗ 𝜉 ↦→ 𝛿𝑟𝑠−1 ⊗ 𝜉,
(II.4.3)

or equivalently

𝑊Λ (𝑠) : ℓ2 (Λ) ⊗ H → ℓ2 (Λ) ⊗ H∑︁
𝑟 ∈Λ

𝛿𝑟 ⊗ 𝜉𝑟 ↦→
∑︁
𝑟 ∈Λ

𝛿𝑟𝑠−1 ⊗ 𝜉𝑟 =
∑︁
𝑟 ∈Λ

𝛿𝑟 ⊗ 𝜉𝑟𝑠 . (II.4.4)
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Proposition II.4.2. Using the above notations, the unitary operator

𝑊G :=
∑︁
𝑠∈Λ

𝑒𝑠,𝑠 ⊗ [(id ⊗𝛼∗𝑠 ) (𝑈G)] ∈ B(ℓ2 (Λ)) ⊗ B(H ) ⊗ Pol(G) (II.4.5)

is a unitary representation ofG on ℓ2 (Λ) ⊗H . Furthermore, for every 𝑠 ∈ Λ, 𝛿𝑠 ⊗H is
invariant under𝑊G, and the subrepresentation 𝛿𝑠 ⊗H of𝑊G is unitarily equivalent to
the unitary representation (id ⊗𝛼∗𝑠 ) (𝑈G) of G. In particular,𝑊G ' ⊕

𝑠∈Λ (id ⊗𝛼∗𝑠 ) (𝑈G).

Proof. For each 𝑠 ∈ Λ, since 𝛼∗𝑠 ∈ Aut
(
𝐶 (G),Δ

)
, the unitary operator (id ⊗𝛼∗𝑠 ) (𝑈G)

is indeed a representation of G on H . It is easy to see that

𝑒𝑠,𝑠 (ℓ2 (Λ)) ⊗ H = C𝛿𝑠 ⊗ H = 𝛿𝑠 ⊗ H ,

hence 𝑒𝑠,𝑠 ⊗ idH is the orthogonal projection in B(ℓ2 (Λ) ⊗ H ) onto the subspace
𝛿𝑠 ⊗H of ℓ2 (Λ) ⊗H (Here and below, we abuse the notation 𝛿𝑠 ⊗H to denote the
subspace {𝛿𝑠 ⊗ 𝜉 : 𝜉 ∈ H } of ℓ2 (Λ) ⊗ H ). We also have the intertwining relation

(𝑒𝑠,𝑠 ⊗ idH ⊗1𝐴)𝑊G = 𝑒𝑠,𝑠 ⊗ [(id ⊗𝛼∗𝑠 ) (𝑈G)] =𝑊G (𝑒𝑠,𝑠 ⊗ idH ⊗1𝐴). (II.4.6)

Now the theorem follows from (II.4.6), the direct sum decomposition

ℓ2 (Λ) ⊗ H =
⊕
𝑠∈Λ

𝑒𝑠,𝑠 (ℓ2 (Λ)) ⊗ H =
⊕
𝑠∈Λ

𝛿𝑠 ⊗ H , (II.4.7)

and the obvious fact that the unitary operator 𝛿𝑠 ⊗H → H , 𝛿𝑠 ⊗ 𝜉 ↦→ 𝜉 intertwines
the representation (id ⊗𝛿𝑠 ) (𝑈G) and the subrepresentation of𝑊G determined by the
subspace 𝛿𝑠 ⊗ H of ℓ2 (Λ) ⊗ H . �

Proposition II.4.3. The representations𝑊G and𝑊Λ are covariant.

Proof. For any 𝑠 ∈ Λ, by de�nition,

𝑊Λ (𝑠) =
∑︁
𝑟 ∈Λ

𝑒𝑟𝑠−1,𝑟 ⊗ idH ∈ B(ℓ2 (Λ)) ⊗ B(H ) = B(ℓ2 (Λ) ⊗ H ). (II.4.8)

Thus (
𝑊Λ (𝑠) ⊗ 1

)
𝑊G

=

(∑︁
𝑟 ∈Λ

𝑒𝑟𝑠−1,𝑟 ⊗ idH ⊗1𝐴

) ∑︁
𝑡 ∈Λ

𝑒𝑡,𝑡 ⊗ [(id ⊗𝛼∗𝑡 ) (𝑈G)]

=
∑︁
𝑟,𝑡 ∈Λ

𝛿𝑟,𝑡𝑒𝑟𝑠−1,𝑡 ⊗ [(id ⊗𝛼∗𝑡 ) (𝑈G)] =
∑︁
𝑟 ∈Λ

𝑒𝑟𝑠−1,𝑟 ⊗ [(id ⊗𝛼∗𝑟 ) (𝑈G)]

= (id ⊗ id ⊗𝛼∗𝑠 )
∑︁
𝑟 ∈Λ

𝑒𝑟𝑠−1,𝑟 ⊗ [(id ⊗𝛼∗
𝑟𝑠−1 ) (𝑈G)]

= (id ⊗ id ⊗𝛼∗𝑠 )
[(∑︁
𝑡 ∈Λ

𝑒𝑡,𝑡 ⊗ [(idH ⊗𝛼∗𝑡 ) (𝑈G)]
) (∑︁

𝑟 ∈Λ
𝑒𝑟𝑠−1,𝑟 ⊗ idH ⊗1𝐴

)]
= [(id ⊗ id ⊗𝛼∗𝑠 ) (𝑊G)]

(
𝑊Λ (𝑠) ⊗ 1

)
.

(II.4.9)

This proves that𝑊G and𝑊Λ are indeed covariant. �
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Corollary II.4.4. The unitary operator

𝑊 : = (𝑊G)123 (𝑊Λ)124 =
∑︁
𝑟,𝑠,𝑡 ∈Λ

𝑒𝑡,𝑡𝑒𝑟𝑠−1,𝑟 ⊗ [(id ⊗𝛼∗𝑡 ) (𝑈G)] ⊗ 𝛿𝑠

=
∑︁
𝑟,𝑠∈Λ

𝑒𝑟𝑠−1,𝑟 ⊗ [(id ⊗𝛼∗
𝑟𝑠−1 ) (𝑈G)] ⊗ 𝛿𝑠

∈ B(ℓ2 (Λ)) ⊗ B(H ) ⊗ Pol(G) ⊗ 𝐶 (Λ)

(II.4.10)

is a representation of G o Λ on ℓ2 (Λ) ⊗ H .

Proof. This follows from Proposition II.2.2 and Proposition II.4.3. �

We now proceed to prove the invariance of the subspace K de�ned in (II.4.1)
under𝑊G and𝑊Λ.

Lemma II.4.5. Using the above notations, the following hold:

(a) the orthogonal projection 𝜋 ∈ B(ℓ2 (Λ) ⊗ H ) with range K is given by6 the
following formula:

𝜋 : ℓ2 (Λ) ⊗ H → ℓ2 (Λ) ⊗ H

𝛿𝑟 ⊗ 𝜉 ↦→ |Λ0 |−1
∑︁
𝑟0∈Λ0

𝛿𝑟0𝑟 ⊗ 𝑈Λ0 (𝑟0)𝜉 . (II.4.11)

In other words,
𝜋 = |Λ0 |−1

∑︁
𝑟0∈Λ0

∑︁
𝑠∈Λ

𝑒𝑟0𝑠,𝑠 ⊗ 𝑈Λ0 (𝑟0); (II.4.12)

(b) K is invariant under both𝑊G and𝑊Λ, i.e.

(𝜋 ⊗ 1)𝑊G =𝑊G (𝜋 ⊗ 1) = (𝜋 ⊗ 1)𝑊G (𝜋 ⊗ 1), (II.4.13a)

(𝜋 ⊗ 1)𝑊Λ =𝑊Λ (𝜋 ⊗ 1) = (𝜋 ⊗ 1)𝑊Λ (𝜋 ⊗ 1). (II.4.13b)

In particular, we have

(𝜋 ⊗ 1 ⊗ 1)𝑊 =𝑊 (𝜋 ⊗ 1 ⊗ 1) = (𝜋 ⊗ 1 ⊗ 1)𝑊 (𝜋 ⊗ 1 ⊗ 1). (II.4.14)

Proof. It is easy to see that 𝜋 (ℓ2 (Λ) ⊗ H ) is precisely K and 𝜋K = idK . To �nish
the proof of (a), it su�ces to check that 𝜋 is self-adjoint (or even stronger, positive).
Since

(𝜋 (𝛿𝑟 ⊗ 𝜉𝑟 ), 𝛿𝑟 ⊗ 𝜉𝑟 ) = |Λ0 |−1
∑︁
𝑟0∈Λ0

(
𝛿𝑟0𝑟 ⊗ 𝑈Λ0 (𝑟0)𝜉, 𝛿𝑟 ⊗ 𝜉

)
= |Λ0 |−1‖𝜉 ‖2 ≥ 0,

(II.4.15)

𝜋 is indeed positive.

6Recall that we’ve identi�ed B(ℓ2 (Λ) ⊗ H ) with B(ℓ2 (Λ)) ⊗ B(H )
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We now prove (b). The invariance of K under𝑊Λ (equation (II.4.13b)) follows
from (II.4.1) and (II.4.4). We now prove the invariance of K under𝑊G (equation
(II.4.13a)). By the de�nitions of 𝜋 and𝑊G, we have

|Λ0 | (𝜋 ⊗ 1)𝑊G
=

∑︁
𝑟0∈Λ0

∑︁
𝑟,𝑠∈Λ

(
𝑒𝑟0𝑠,𝑠 ⊗ 𝑈Λ0 (𝑟0) ⊗ 1

) (
𝑒𝑟,𝑟 ⊗ [(id ⊗𝛼∗𝑟 ) (𝑈G)]

)
=

∑︁
𝑟 ∈Λ

(id ⊗ id ⊗𝛼∗𝑟 )
( ∑︁
𝑟0∈Λ0

∑︁
𝑠∈Λ

𝑒𝑟0𝑠,𝑠𝑒𝑟,𝑟 ⊗
[ (
𝑈Λ0 (𝑟0) ⊗ 1

)
𝑈G

] )
=

∑︁
𝑟 ∈Λ

(id ⊗ id ⊗𝛼∗𝑟 )
( ∑︁
𝑟0∈Λ0

𝑒𝑟0𝑟,𝑟 ⊗
[ (
𝑈Λ0 (𝑟0) ⊗ 1

)
𝑈G

] )
;

(II.4.16)

and

|Λ0 |𝑊G (𝜋 ⊗ 1)

=
∑︁
𝑟0∈Λ0

∑︁
𝑟,𝑠∈Λ

(
𝑒𝑟,𝑟 ⊗

[
(id ⊗𝛼∗𝑟 ) (𝑈G)

] ) (
𝑒𝑟0𝑠,𝑠 ⊗ 𝑈Λ0 (𝑟0) ⊗ 1

)
=

∑︁
𝑟0∈Λ0

∑︁
𝑟,𝑠∈Λ

(id ⊗ id ⊗𝛼∗𝑟 )
(
𝑒𝑟,𝑟𝑒𝑟0𝑠,𝑠 ⊗

[
𝑈G (𝑈Λ0 (𝑟0) ⊗ 1)

] )
=

∑︁
𝑟0∈Λ0

∑︁
𝑠∈Λ

(id ⊗ id ⊗𝛼∗𝑟0𝑠 )
(
𝑒𝑟0𝑠,𝑠 ⊗

[
𝑈G (𝑈Λ0 (𝑟0) ⊗ 1)

] )
=

∑︁
𝑠∈Λ

(id ⊗ id ⊗𝛼∗𝑠 )
[
(id ⊗ id ⊗𝛼∗𝑟0 )

( ∑︁
𝑟0∈Λ0

𝑒𝑟0𝑠,𝑠 ⊗
[
𝑈G (𝑈Λ0 (𝑟0) ⊗ 1)

] )]
=

∑︁
𝑠∈Λ

(id ⊗ id ⊗𝛼∗𝑠 )
( ∑︁
𝑟0∈Λ0

𝑒𝑟0𝑠,𝑠 ⊗
( [
(id ⊗𝛼∗𝑟0 ) (𝑈G)

]
(𝑈Λ0 (𝑟0) ⊗ 1)

))
=

∑︁
𝑠∈Λ

(id ⊗ id ⊗𝛼∗𝑠 )
( ∑︁
𝑟0∈Λ0

𝑒𝑟0𝑠,𝑠 ⊗
[ (
𝑈Λ0 (𝑟0) ⊗ 1

)
(𝑈G)

] )
,

(II.4.17)

where the last equality used the covariance of 𝑈G and 𝑈Λ. Combining (II.4.16) and
(II.4.17) proves

(𝜋 ⊗ 1)𝑊G =𝑊G (𝜋 ⊗ 1), (II.4.18)
from which (II.4.13a) follows by noting that 𝜋 is a projection. Now (II.4.14) follows
from (II.4.13a), (II.4.13b) and (II.4.10). This proves (b). �

Proposition II.4.6. Using the above notations, let 𝑐𝜋 : B(ℓ2 (Λ) ⊗ H ) → B(K ) be
the compression by the projection 𝜋 (i.e. the graph of 𝑐𝜋 (𝐴) is the intersection of the
graph of 𝜋𝐴𝜋 with K × K ), then the following holds:

(a) the unitary operator

𝑊 =
(
𝑐𝜋 ⊗ idPol(G) ⊗ id𝐶 (Λ)

) (
𝑊G

)
∈ B(K ) ⊗ Pol(G) ⊗ 𝐶 (Λ)

is a unitary representation of G o Λ on K ;

(b) The subrepresentation K of𝑊G (resp.𝑊Λ) is given by𝑊G = (𝑐𝜋 ⊗ id)
(
𝑊G

)
(resp.𝑊Λ = (𝑐𝜋 ⊗ id)

(
𝑊Λ

)
), and

𝑊G = ResG (𝑊 ), 𝑊Λ = ResΛ (𝑊 ). (II.4.19)
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Proof. This follows from Proposition II.2.2, Corollary II.4.4, Lemma II.4.5 and the
de�nition of subrepresentations. �

De�nition II.4.7. Using the above notations, we call𝑊 the induced representation
of 𝑈 , and denote it by IndGoΛGoΛ0

(𝑈 ), or simply Ind(𝑈 ) when the underlying compact
quantum groups G o Λ0 and G o Λ are clear from context.

II.5 Some character formulae

Let Λ0 be a subgroup of Λ, 𝑈 a �nite dimensional unitary representation of G o Λ0,
IndGoΛGoΛ0

(𝑈 ) the induced representation of the global compact quantum group G o
Λ. In this section, we aim to calculate the character of the induced representation
IndGoΛGoΛ0

(𝑈 ). The approach adopted here emphasizes the underlying group action
of Λ on the characters of the conjugacy class of the principal subgroup G o Λ0 as
described in Proposition II.3.9.

For any subgroup Λ1 and any 𝑓0 ∈ 𝐶 (Λ1), we use 𝐸Λ1 (𝑓0) to denote the function
in 𝐶 (Λ) with [𝐸Λ1 (𝑓0)] (𝑟 ) = 0 if 𝑟 ∉ Λ1 and [𝐸Λ1 (𝑓0)] (𝑟 ) = 𝑓0 (𝑟 ) if 𝑟 ∈ Λ1. Then
𝐸Λ1 : 𝐶 (Λ1) → 𝐶 (Λ) is a morphism of𝐶∗-algebras, which is not unital unless Λ1 = Λ,
in which case 𝐸Λ1 = id𝐶 (Λ) . By Proposition II.3.9, we have an action

Λy
{
G o 𝑟Λ0𝑟

−1 : 𝑟 ∈ Λ
}

𝑠 ↦→
{
G o 𝑟Λ0𝑟

−1 ↦→ G o 𝑠𝑟Λ0 (𝑠𝑟 )−1
} (II.5.1)

of Λ on the set of subgroups of GoΛ conjugate to GoΛ0 via elements in Λ (the term
conjugate is justi�ed by considering the case when G is a genuine compact group).

Our main result in this section is the following proposition.

Proposition II.5.1. Let Λ0 be a subgroup of Λ,𝑈 ∈ B(H ) ⊗ Pol(G) ⊗𝐶 (Λ0) a �nite
dimensional unitary representation ofGoΛ0,𝑊 the induced representation IndGoΛGoΛ0

(𝑈 ).
Suppose 𝜒 is the character of the unitary representation 𝑈 of G o Λ0, and for each 𝑟 ,
de�ne

𝑟 ·𝑈 := (idH ⊗𝛼∗
𝑟−1 ⊗ Ad∗

𝑟−1 ) (𝑈 ) ∈ B(H ) ⊗ Pol(G) ⊗ 𝐶 (𝑟Λ0𝑟
−1). (II.5.2)

Then 𝑟 ·𝑈 is a unitary representation ofGo𝑟Λ0𝑟
−1 with 1·𝑈 = 𝑈 , and (𝑟𝑠) ·𝑈 = 𝑟 · (𝑠 ·𝑈 )

for all 𝑟, 𝑠 ∈ Λ. Denote the character of 𝑟 ·𝑈 by 𝜒𝑟 (so 𝜒1Λ = 𝜒), then

𝜒𝑊 = |Λ0 |−1
∑︁
𝑟 ∈Λ

(id𝐴 ⊗𝐸𝑟Λ0𝑟−1 )𝜒𝑟 , (II.5.3)

where 𝜒𝑊 is the character of𝑊 .

Proof. That 𝑟 ·𝑈 is a �nite dimensional unitary representation of Go 𝑟Λ0𝑟
−1 follows

from the fact (Proposition II.3.9) that

𝛼∗𝑟 ⊗ Ad∗𝑟 : 𝐴 ⊗ 𝑟−1Λ0𝑟 → 𝐴 ⊗ Λ0

is an isomorphism of compact quantum groups for any 𝑟 ∈ Λ. The identities 1Λ ·𝑈 =

𝑈 and 𝑟 · (𝑠 ·𝑈 ) = (𝑟𝑠) ·𝑈 follows directly from de�nitions. We proceed to prove the
character formula (II.5.3).

For any 𝑟 ∈ Λ, let (𝑟 ·𝑈 )G be the restriction of 𝑟 · 𝑈 to G, and (𝑟 ·𝑈 )𝑟Λ0𝑟−1 the
restriction of 𝑟 ·𝑈 to 𝑟Λ0𝑟

−1. We denote the character of (𝑟 ·𝑈 )G (resp. (𝑟 ·𝑈 )𝑟Λ0𝑟−1 )
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by 𝜒𝑟,G (resp. 𝜒𝑟,𝑟Λ0𝑟−1 ). One easily checks that 𝜒𝑟,G = 𝛼∗
𝑟−1

(𝜒1Λ,G) and 𝜒𝑟,𝑟Λ0𝑟−1 =

Ad∗
𝑟−1 (𝜒1Λ,Λ0 ). Fix a Hilbert basis (𝑒1, . . . , 𝑒𝑑 ) for H , and let (𝑒𝑖 𝑗 , 𝑖, 𝑗 = 1, . . . , 𝑑) be the

corresponding matrix unit for B(H ). Using this matrix unit, we can write

𝑈G =
𝑑∑︁

𝑖, 𝑗=1
𝑒𝑖, 𝑗 ⊗ 𝑢𝑖 𝑗 , 𝑢𝑖 𝑗 ∈ Pol(G); (II.5.4a)

𝑈Λ0 =
∑︁
𝑟0∈Λ0

𝑈Λ0 (𝑟0) ⊗ 𝛿𝑟0 . (II.5.4b)

Let 𝑒𝑟,𝑠 , 𝜋 , K , 𝑊G, 𝑊Λ, 𝑊G and𝑊Λ have the same meaning as in § II.4, then the
construction in § II.4 tells us that

𝜒𝑊 = (Trℓ2 (Λ) ⊗ TrH ⊗ id𝐴 ⊗ id𝐶 (Λ) )
[
𝜋12 · (𝑊G)123 · 𝜋12 · (𝑊Λ)124 · 𝜋12

]
. (II.5.5)

In the following calculations, we often omit the subscripts of the trace functions Tr
on ℓ2 (Λ) or on H , and also the subscripts for the multiplicative neutral element 1 of
various algebras, whenever it is a trivial task to decipher to which trace and multi-
plicative neutral element we are referring. The same goes with id without subscripts.

Note that for any 𝑟, 𝑠 ∈ Λ, Ad∗𝑟 (𝛿𝑠 ) = 𝛿𝑟−1𝑠𝑟 . With these preparations, we now
have

𝜒𝑟 = (𝛼∗
𝑟−1 ⊗ Ad∗

𝑟−1 ) (𝜒)

= (𝛼∗
𝑟−1 ⊗ Ad∗

𝑟−1 )
(
𝑑∑︁

𝑖, 𝑗=1

∑︁
𝑟0∈Λ0

Tr
(
𝑒𝑖, 𝑗𝑈Λ0 (𝑟0)

)
𝑢𝑖 𝑗 ⊗ 𝛿𝑟0

)
=

𝑑∑︁
𝑖, 𝑗=1

∑︁
𝑟0∈Λ0

Tr
(
𝑒𝑖, 𝑗𝑈Λ0 (𝑟0)

)
𝛼∗
𝑟−1 (𝑢𝑖 𝑗 ) ⊗ 𝛿𝑟𝑟0𝑟−1 .

(II.5.6)

By (II.4.4), (II.4.10) and (II.4.12), we deduce from (II.5.5) that

|Λ0 |3𝜒𝑊 =
∑︁

𝑎0,𝑏0,𝑐0∈Λ0

∑︁
𝑎,𝑏,𝑐∈Λ

∑︁
𝑟,𝑠,𝑡 ∈Λ

𝑑∑︁
𝑖, 𝑗=1

Tr(𝑒𝑎0𝑎,𝑎𝑒𝑟,𝑟𝑒𝑏0𝑏,𝑏𝑒𝑠𝑡−1,𝑠𝑒𝑐0𝑐,𝑐 )

Tr
(
𝑈Λ0 (𝑎0)𝑒𝑖, 𝑗𝑈Λ0 (𝑏0)𝑈Λ0 (𝑐0)

)
𝛼∗𝑟 (𝑢𝑖 𝑗 ) ⊗ 𝛿𝑡 .

(II.5.7)

On the right side of the above sum, the �rst trace doesn’t vanish if and only if it is 1,
which happens exactly when

𝑎 = 𝑟 = 𝑏0𝑏, 𝑏 = 𝑠𝑡−1, 𝑠 = 𝑐0𝑐, 𝑎0𝑎 = 𝑐

⇐⇒ 𝑏 = 𝑏−10 𝑎, 𝑐 = 𝑎0𝑎, 𝑟 = 𝑎, 𝑠 = 𝑐0𝑎0𝑎, 𝑡 = 𝑏
−1𝑠 = 𝑎−1𝑏0𝑐0𝑎0𝑎.

(II.5.8)
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Using this condition in (II.5.7), we get

|Λ0 |3𝜒𝑊

=
∑︁

𝑎0,𝑏0,𝑐0∈Λ0

∑︁
𝑎∈Λ

𝑑∑︁
𝑖, 𝑗=1

Tr
(
𝑈Λ0 (𝑎0)𝑒𝑖, 𝑗𝑈Λ0 (𝑏0)𝑈Λ0 (𝑐0)

)
𝛼∗𝑎 (𝑢𝑖 𝑗 ) ⊗ 𝛿𝑎−1𝑏0𝑐0𝑎0𝑎

=
∑︁

𝑎0,𝑏0,𝑐0∈Λ0

∑︁
𝑎∈Λ

𝑑∑︁
𝑖, 𝑗=1

Tr
(
𝑒𝑖, 𝑗𝑈Λ0 (𝑏0)𝑈Λ0 (𝑐0)𝑈Λ0 (𝑎0)

)
𝛼∗𝑎 (𝑢𝑖 𝑗 ) ⊗ 𝛿𝑎−1𝑏0𝑐0𝑎0𝑎

=
∑︁

𝑎0,𝑏0,𝑐0∈Λ0

∑︁
𝑎∈Λ

𝑑∑︁
𝑖, 𝑗=1

Tr
(
𝑒𝑖, 𝑗𝑈Λ0 (𝑏0𝑐0𝑎0)

)
𝛼∗𝑎 (𝑢𝑖 𝑗 ) ⊗ 𝛿𝑎−1𝑏0𝑐0𝑎0𝑎

= |Λ0 |2
∑︁
𝑎∈Λ

∑︁
𝑟0∈Λ0

𝑑∑︁
𝑖, 𝑗=1

Tr
(
𝑒𝑖, 𝑗𝑈Λ0 (𝑟0)

)
𝛼∗𝑎 (𝑢𝑖 𝑗 ) ⊗ 𝛿𝑎−1𝑟0𝑎

= |Λ0 |2
∑︁
𝑟 ∈Λ

(id ⊗𝐸𝑟−1Λ0𝑟 ) (𝜒𝑟 ),

(II.5.9)

where the last line uses (II.5.6) and the change of variable 𝑟 = 𝑎−1. Dividing |Λ0 |3 on
both sides of (II.5.9) proves (II.5.3). �

Corollary II.5.2. Using the notations in Proposition II.5.1,𝑈 and 𝑟 ·𝑈 induce equivalent
unitary representations of G o Λ for all 𝑟 ·𝑈 .

Proof. By Proposition II.5.1, we see that Ind(𝑈 ) and Ind(𝑟 · 𝑈 ) have the same char-
acter. �

It is worth pointing out that there are in fact many repetitions in the terms of the
right side of formula (II.5.3), as is shown by the following lemma.

Lemma II.5.3. Using the notations of Proposition II.5.1, the following holds:

(a) for any 𝑟 ∈ Λ, we have

(id ⊗𝐸𝑟Λ0𝑟−1 )𝜒𝑟 =
(
𝛼∗
𝑟−1 ⊗ Ad∗

𝑟−1
) [

(id ⊗𝐸Λ0 ) (𝜒)
]
; (II.5.10)

in Pol(G) ⊗ 𝐶 (Λ);

(b) for any 𝑟, 𝑠 ∈ Λ, if 𝑟−1𝑠 ∈ Λ0, i.e. 𝑟Λ0 = 𝑠Λ0 and 𝑟Λ0𝑟
−1 = 𝑠Λ0𝑠

−1, then

(id ⊗𝐸𝑟Λ0𝑟−1 )𝜒𝑟 = (id ⊗𝐸𝑠Λ0𝑠−1 )𝜒𝑠 (II.5.11)

in Pol(G) ⊗ 𝐶 (Λ). In particular,

𝜒𝑟 = 𝜒𝑠 , (II.5.12)

or equivalently, 𝑟 · 𝑈 and 𝑠 · 𝑈 are unitarily equivalent unitary representations
of the same compact quantum group G o 𝑟Λ0𝑟

−1.

Proof. Using the same notations as in the proof of Proposition II.5.1, it is clear that

(𝑟 ·𝑈 )G =
𝑑∑︁

𝑖, 𝑗=1
𝑒𝑖, 𝑗 ⊗ 𝛼∗𝑟−1 (𝑢𝑖 𝑗 ), (II.5.13a)
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(𝑟 ·𝑈 )𝑟Λ0𝑟−1 =
∑︁
𝑟0∈Λ0

𝑈Λ0 (𝑟0) ⊗ 𝛿𝑟𝑟0𝑟−1 . (II.5.13b)

Calculating in Pol(G) ⊗ 𝐶 (Λ), we have

(id ⊗𝐸𝑟Λ0𝑟−1 )𝜒𝑟 =
𝑑∑︁

𝑖, 𝑗=1

∑︁
𝑟0∈Λ0

Tr
(
𝑒𝑖, 𝑗𝑈Λ0 (𝑟0)

)
⊗ 𝛼∗

𝑟−1 (𝑢𝑖 𝑗 ) ⊗ 𝛿𝑟𝑟0𝑟−1

=
(
𝛼∗
𝑟−1 ⊗ Ad∗

𝑟−1
) 𝑑∑︁
𝑖, 𝑗=1

∑︁
𝑟0∈Λ0

Tr
(
𝑒𝑖, 𝑗𝑈Λ0 (𝑟0)

)
⊗ 𝑢𝑖 𝑗 ⊗ 𝛿𝑟0

=
(
𝛼∗
𝑟−1 ⊗ Ad𝑟−1

) [
(id ⊗𝐸Λ0 )𝜒

]
.

(II.5.14)

This proves (a).
By (a), to establish (b), it su�ces to show that

∀𝑠0 ∈ Λ0, (id ⊗𝐸Λ0 )𝜒 =
(
𝛼∗𝑠0 ⊗ Ad∗𝑠0

) [
(id ⊗𝐸Λ0 )𝜒

]
. (II.5.15)

Calculating the right side gives(
𝛼∗𝑠0 ⊗ Ad∗𝑠0

) [
(id ⊗𝐸Λ0 )𝜒

]
=

𝑑∑︁
𝑖, 𝑗=1

∑︁
𝑟0∈Λ0

Tr
(
𝑒𝑖, 𝑗𝑈Λ0 (𝑟0)

)
⊗ 𝛼∗𝑠0 (𝑢𝑖 𝑗 ) ⊗ 𝛿𝑠−10 𝑟0𝑠0

=
𝑑∑︁

𝑖, 𝑗=1

∑︁
𝑟0∈Λ0

Tr
(
𝑒𝑖, 𝑗𝑈Λ0 (𝑠0𝑟0𝑠−10 )

)
⊗ 𝛼∗𝑠0 (𝑢𝑖 𝑗 ) ⊗ 𝛿𝑟0

=
𝑑∑︁

𝑖, 𝑗=1

∑︁
𝑟0∈Λ0

Tr
(
𝑈 (𝑟0)𝑈Λ0 (𝑠−10 )𝑒𝑖, 𝑗𝑈 (𝑠0)

)
⊗ 𝛼∗𝑠0 (𝑢𝑖 𝑗 ) ⊗ 𝛿𝑟0 .

(II.5.16)

Since𝑈Λ0 and𝑈G are covariant, we have

𝑑∑︁
𝑖, 𝑗

𝑈 (𝑠0)𝑒𝑖, 𝑗 ⊗ 𝑢𝑖 𝑗 =
𝑑∑︁

𝑖, 𝑗=1
𝑒𝑖, 𝑗𝑈 (𝑠0) ⊗ 𝛼∗𝑠0 (𝑢𝑖 𝑗 ). (II.5.17)

Combining (II.5.16) and (II.5.17), we have(
𝛼∗𝑠0 ⊗ Ad∗𝑠0

) [
(id ⊗𝐸Λ0 )𝜒

]
=

𝑑∑︁
𝑖, 𝑗=1

∑︁
𝑟0∈Λ0

Tr
(
𝑈 (𝑟0)𝑈Λ0 (𝑠−10 )𝑒𝑖, 𝑗𝑈 (𝑠0)

)
⊗ 𝛼∗𝑠0 (𝑢𝑖 𝑗 ) ⊗ 𝛿𝑟0

=
𝑑∑︁

𝑖, 𝑗=1

∑︁
𝑟0∈Λ0

Tr
(
𝑈 (𝑟0)𝑈Λ0 (𝑠−10 )𝑈 (𝑠0)𝑒𝑖, 𝑗

)
⊗ 𝑢𝑖 𝑗 ⊗ 𝛿𝑟0

=
𝑑∑︁

𝑖, 𝑗=1

∑︁
𝑟0∈Λ0

Tr
(
𝑈 (𝑟0)𝑒𝑖, 𝑗

)
⊗ 𝑢𝑖 𝑗 ⊗ 𝛿𝑟0

=
𝑑∑︁

𝑖, 𝑗=1

∑︁
𝑟0∈Λ0

Tr
(
𝑒𝑖, 𝑗𝑈 (𝑟0)

)
⊗ 𝑢𝑖 𝑗 ⊗ 𝛿𝑟0

= (id ⊗𝐸Λ0 )𝜒.

(II.5.18)

This establishes (II.5.15) and proves (b). �
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Remark II.5.4. By Lemma II.5.3 (b) and Proposition II.5.1, one can in fact choose any
complete set 𝐿 ⊆ Λ of representatives of the left coset space Λ/Λ0, and the character
formula (II.5.3) can then be written more concisely as

𝜒𝑊 =
∑︁
𝑟 ∈𝐿

(id𝐴 ⊗𝐸𝑟Λ0𝑟−1 )𝜒𝑟 . (II.5.19)

In the classical case where G is a genuine compact group, one can easily check that
the usual character formula for the representation induced by a representation of an
open subgroup takes the form (II.5.19). The reason we prefer (II.5.3) is that it does
not involve a seemingly arbitrary choice of a complete set of representatives 𝐿 for
Λ/Λ0, and thus, in the author’s opinion, is more aesthetically pleasing. One might
also use this choice of left coset representatives to fabric the induced representation.
However, in ourmore symmetric approach (cf. § II.4), everything seemsmore natural,
and the underlying group action of Λ on the various characters 𝜒𝑟 , 𝑟 ∈ Λ becomes
more transparent in (II.5.3), and we hope this hidden symmetry will keep the reader
from losing himself/herself in the details of the tedious calculations to be presented
later.

II.6 Dimension of the intertwiner space of induced
representations

LetΘ,Ξ be subgroups of Λ,𝑈 ∈ B(H ) ⊗Pol(G) ⊗𝐶 (Θ) a �nite dimensional unitary
representation of G o Θ,𝑊 ∈ B(H ) ⊗ Pol(G) ⊗ 𝐶 (Ξ) a �nite dimensional unitary
representation of G o Ξ. For the sake of brevity, we denote the induced represen-
tation IndGoΛGoΘ (𝑈 ) simply by Ind(𝑈 ), and Ind(𝑊 ) has the similar obvious meaning.
Equippedwith the character formula established in § II.5, one naturally wonders how
can we calculate dimMorGoΛ

(
Ind(𝑈 ), Ind(𝑊 )

)
in terms of some simpler data. This

section focuses on this calculation, and the result here will play an important role
in proving the irreducibility of some induced representations (as it turns out, these
are all irreducible representations of G o Λ up to equivalence) as well as our later
calculation of the fusion rules.

For any representation 𝜌 , we use 𝜒 (𝜌) to denote the character of the represen-
tation. We denote the Haar state on G by ℎ, and the Haar state on G o Λ0 by ℎΛ0

whenever Λ0 is a subgroup of Λ.
By the general representation theory of compact quantum groups, we have

dimMorGoΛ
(
Ind(𝑈 ), Ind(𝑊 )

)
= ℎΛ

(
[𝜒 (Ind(𝑈 ))]∗ [𝜒 (Ind(𝑊 ))]

)
. (II.6.1)

By Proposition II.5.1, for each 𝑟 ∈ Λ, we have a representation 𝑟 · 𝑈 (resp. 𝑟 ·𝑊 ) of
G o 𝑟Θ𝑟−1 (resp. G o 𝑟Ξ𝑟−1), and combined with (II.6.1), we have

dimMorG (Ind(𝑈 ), Ind(𝑊 ))

=
1

|Θ| · |Ξ|
∑︁
𝑟,𝑠∈Λ

ℎΛ ( [(id ⊗𝐸𝑟Θ𝑟−1 )𝜒 (𝑟 ·𝑈 )]∗ [(id ⊗𝐸𝑠Ξ𝑠−1 )𝜒 (𝑠 ·𝑊 )]) . (II.6.2)

Notations II.6.1. To simplify our notations, let Λ(𝑟, 𝑠) := 𝑟Θ𝑟−1 ∩ 𝑠Ξ𝑠−1 for any
𝑟, 𝑠 ∈ Λ.

Lemma II.6.2. Using the above notations, for any 𝑟, 𝑠 ∈ Λ, we have

ℎΛ ( [(id ⊗𝐸𝑟Θ𝑟−1 )𝜒 (𝑟 ·𝑈 )]∗ [(id ⊗𝐸𝑠Ξ𝑠−1 )𝜒 (𝑠 ·𝑊 )])

=
1

[Λ : Λ(𝑟, 𝑠)] dimMorGoΛ(𝑟,𝑠)
(
(𝑟 ·𝑈 ) |GoΛ(𝑟,𝑠) , (𝑠 ·𝑊 ) |GoΛ(𝑟,𝑠)

)
.

(II.6.3)
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Proof. For any subgroup Λ0 of Λ, whenever 𝑓 ∈ Pol(G), 𝑟0 ∈ Λ0, by (II.1.7) in § II.1,
we have

ℎΛ (𝑓 ⊗ 𝛿𝑟0 ) =
1
|Λ|ℎ(𝑓 ) =

1
[Λ : Λ0]

ℎΛ0 (𝑓 ⊗ 𝛿𝑟0 ). (II.6.4)

Hence,
ℎΛ ◦ (id ⊗𝐸Λ0 ) =

1
[Λ : Λ0]

ℎΛ0 . (II.6.5)

By de�nition and a straightforward calculation, we have

(id ⊗𝐸𝑟Θ𝑟−1 )𝜒 (𝑟 ·𝑈 ) =
∑︁

𝑡 ∈𝑟Θ𝑟−1
(Tr ⊗ id)

(
(𝑟 ·𝑈 )G

(
(𝑟 ·𝑈 )𝑟Θ𝑟−1 (𝑡) ⊗ 1

) )
⊗ 𝛿𝑡 , (II.6.6a)

(id ⊗𝐸𝑠Ξ𝑠−1 )𝜒 (𝑠 ·𝑊 ) =
∑︁

𝑡 ∈𝑠Ξ𝑠−1
(Tr ⊗ id)

(
(𝑠 ·𝑊 )G

(
(𝑠 ·𝑊 )𝑠Ξ𝑠−1 (𝑡) ⊗ 1

) )
⊗ 𝛿𝑡 . (II.6.6b)

It follows from (II.6.6a) and (II.6.6b) that

[(id ⊗𝐸𝑟Θ𝑟−1 )𝜒 (𝑟 ·𝑈 )]∗ [(id ⊗𝐸𝑠Ξ𝑠−1 )𝜒 (𝑠 ·𝑊 )]

=
∑︁

𝑡 ∈Λ(𝑟,𝑠)

{[
(Tr ⊗ id)

(
(𝑟 ·𝑈 )G

(
(𝑟 ·𝑈 )𝑟Θ𝑟−1 (𝑡) ⊗ 1

) ) ]∗
[
(Tr ⊗ id)

(
(𝑠 ·𝑊 )G

(
(𝑠 ·𝑊 )𝑠Ξ𝑠−1 (𝑡) ⊗ 1

) ) ] }
⊗ 𝛿𝑡

= (id ⊗𝐸Λ(𝑟,𝑠) )
( [
𝜒

(
(𝑟 ·𝑈 ) |GoΛ(𝑟,𝑠)

) ]∗ [
𝜒

(
(𝑠 ·𝑊 ) |GoΛ(𝑟,𝑠)

) ] )
.

(II.6.7)

Taking Λ0 = Λ(𝑟, 𝑠) in (II.6.5) and combining with (II.6.7) proves (II.6.3). �

Proposition II.6.3. Using the above notations, we have

dimMorGoΛ
(
Ind(𝑈 ), Ind(𝑊 )

)
=

1
|Θ| · |Ξ|

∑︁
𝑟,𝑠∈Λ

1
[Λ : Λ(𝑟, 𝑠)]

dimMorGoΛ(𝑟,𝑠)
(
(𝑟 ·𝑈 ) |GoΛ(𝑟,𝑠) , (𝑠 ·𝑊 ) |GoΛ(𝑟,𝑠)

)
.

(II.6.8)

Proof. This follows directly from the formula (II.6.2) and Lemma II.6.2. �

Corollary II.6.4. Let Λ0 be a subgroup of Λ, 𝑈 a unitary representation of G o Λ0,
then the following are equivalent:

(a) the unitary representation Ind(𝑈 ) of G o Λ is irreducible;

(b) for any 𝑟, 𝑠 ∈ Λ, posing Λ(𝑟, 𝑠) = 𝑟Λ0𝑟
−1 ∩ 𝑠Λ0𝑠

−1, we have

dimMorGoΛ(𝑟,𝑠)
(
(𝑟 ·𝑈 ) |GoΛ(𝑟,𝑠) , (𝑠 ·𝑈 ) |GoΛ(𝑟,𝑠)

)
= 𝛿𝑟Λ0,𝑠Λ0 ; (II.6.9)

(c) 𝑈 is irreducible, and

∀𝑟, 𝑠 ∈ Λ, 𝑟−1𝑠 ∉ Λ0

=⇒ dimMorGoΛ(𝑟,𝑠)
(
(𝑟 ·𝑈 ) |GoΛ(𝑟,𝑠) , (𝑠 ·𝑈 ) |GoΛ(𝑟,𝑠)

)
= 0.

(II.6.10)

In particular, if any of the above conditions holds, then𝑈 itself is irreducible.
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Proof. If 𝑟−1𝑠 ∈ Λ0, then 𝑟Λ0𝑟
−1 = 𝑠Λ0𝑠

−1, so Λ(𝑟, 𝑠) = 𝑟Λ0𝑟
−1 = 𝑠Λ0𝑠

−1. By Proposi-
tion II.3.9, we see that

dimMorGo𝑟Λ0𝑟−1
(
𝑟 ·𝑈 , 𝑟 ·𝑈

)
= dimMorGoΛ0 (𝑈 ,𝑈 ). (II.6.11)

By Proposition II.6.3, Lemma II.5.3, and the above, we have

dimMorG
(
Ind(𝑈 ), Ind(𝑈 )

)
=

1
|Λ0 |2

∑︁
𝑟,𝑠∈Λ,
𝑟−1𝑠∈Λ0

1
[Λ : 𝑟Λ0𝑟−1]

dimMorGo𝑟Λ0𝑟−1
(
𝑟 ·𝑈 , 𝑠 ·𝑈

)
+ 1
|Λ0 |2

∑︁
𝑟,𝑠∈Λ,
𝑟−1𝑠∉Λ0

1
[Λ : Λ(𝑟, 𝑠)] dimMorGoΛ(𝑟,𝑠)

(
(𝑟 ·𝑈 ) |GoΛ(𝑟,𝑠) , (𝑠 ·𝑈 ) |GoΛ(𝑟,𝑠)

)
=

1
|Λ0 |2

∑︁
𝑟,𝑠∈Λ,
𝑟−1𝑠∈Λ0

dimMorGo𝑟Λ0𝑟−1
(
𝑟 ·𝑈 , 𝑟 ·𝑈

)
+ 1
|Λ0 |2

∑︁
𝑟,𝑠∈Λ,
𝑟−1𝑠∉Λ0

1
[Λ : Λ(𝑟, 𝑠)] dimMorGoΛ(𝑟,𝑠)

(
(𝑟 ·𝑈 ) |GoΛ(𝑟,𝑠) , (𝑠 ·𝑈 ) |GoΛ(𝑟,𝑠)

)
=

1
|Λ0 |2

∑︁
𝑟,𝑠∈Λ,
𝑟−1𝑠∈Λ0

1
[Λ : Λ0]

dimGoΛ0 (𝑈 ,𝑈 )

+ 1
|Λ0 |2

∑︁
𝑟,𝑠∈Λ,
𝑟−1𝑠∉Λ0

1
[Λ : Λ(𝑟, 𝑠)] dimMorGoΛ(𝑟,𝑠)

(
(𝑟 ·𝑈 ) |GoΛ(𝑟,𝑠) , (𝑠 ·𝑈 ) |GoΛ(𝑟,𝑠)

)
=

|Λ| · |Λ0 |
|Λ0 |2 · [Λ : Λ0]

dimMorGoΛ0 (𝑈 ,𝑈 )

+ 1
|Λ0 |2

∑︁
𝑟,𝑠∈Λ,
𝑟−1𝑠∉Λ0

1
[Λ : Λ(𝑟, 𝑠)] dimMorGoΛ(𝑟,𝑠)

(
(𝑟 ·𝑈 ) |GoΛ(𝑟,𝑠) , (𝑠 ·𝑈 ) |GoΛ(𝑟,𝑠)

)
.

Since |Λ| · |Λ0 | = |Λ0 |2 · [Λ : Λ0] and

dimMorGo𝑟Λ0𝑟−1
(
𝑟 ·𝑈 , 𝑠 ·𝑈

)
= dimMorGo𝑟Λ0𝑟−1

(
𝑟 ·𝑈 , 𝑟 ·𝑈

)
= dimMorGoΛ0 (𝑈 ,𝑈 ) = dimEndGoΛ0 (𝑈 )

(II.6.12)

whenever 𝑟−1𝑠 ∈ Λ0 by Lemma II.5.3 and Proposition II.3.9, the above calculation
yields

dimEndGoΛ (Ind(𝑈 )) = dimEndGoΛ0 (𝑈 ) + 1
|Λ0 |2

∑︁
𝑟,𝑠∈Λ,
𝑟−1𝑠∉Λ0

𝑑 (𝑟, 𝑠)
[Λ : Λ(𝑟, 𝑠)] , (II.6.13)

where

𝑑 (𝑟, 𝑠) := dimMorGoΛ(𝑟,𝑠)
(
(𝑟 ·𝑈 ) |GoΛ(𝑟,𝑠) , (𝑠 ·𝑈 ) |GoΛ(𝑟,𝑠)

)
. (II.6.14)

The corollary follows from (II.6.12) (II.6.13), (II.6.14) and the fact that a representation
is irreducible if and only if the dimension of the space of its self-intertwiners is 1. �

Remark II.6.5. Corollary II.6.4 is the quantum analogue for Mackey’s criterion for
irreducibility.
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II.7 The 𝐶∗-tensor category CSRΛ0

We begin by recalling the notations in Proposition II.5.1: for any unitary represen-
tation𝑈G ∈ B(H ) ⊗ Pol(G) of G on some �nite dimensional Hilbert space H , and
any 𝑟 ∈ Λ, let 𝑟 ·𝑈G be the unitary representation (idH ⊗𝛼∗

𝑟−1
) (𝑈G) ofG on the same

spaceH . It is easy to see that this de�nes a left group action of Λ on the proper class
of all unitary representations of G, and by passing to quotients, this representation
induces an action of Λ on Irr(G). From now on, whenever we talk about Λ acting
on a unitary representation 𝑈G of G, or on some class 𝑥 ∈ Irr(G), we always mean
these actions.

De�nition II.7.1. A subgroup Λ0 of Λ is called a general isotropy subgroup if there
is some 𝑛 ∈ N, such that Λ0 is an isotropy subgroup (subgroup of stabilizer for some
point) for the 𝑛-fold product [Irr(G)]𝑛 as a Λ-set; in other words, if there exists an
𝑛-tuple (𝑥1, . . . , 𝑥𝑛) with all 𝑥𝑖 ∈ Irr(G), such that

Λ0 = {𝑟 ∈ Λ : ∀𝑖 = 1, . . . , 𝑛, 𝑟 · 𝑥𝑖 = 𝑥𝑖 } = ∩𝑛𝑖=1Λ𝑥𝑖 .

The �nite (recall that Λ is �nite) family of all general isotropy subgroups of Λ is
denoted by Giso (Λ).

The following proposition is an immediate consequence of properties of Λ-sets
and De�nition II.7.1.

Proposition II.7.2. The family Giso (Λ) is stable under intersection and conjugation
by elements of Λ. �

De�nition II.7.3. Let Λ0 be a general isotropy subgroup of Λ. A covariant system
of representations (or CSR for short) subordinate to Λ0 is a triple (H , 𝑢,𝑤), where

• H is a �nite dimensional Hilbert space;

• 𝑢 is a unitary representation of G on H ;

• 𝑤 is a unitary representation of Λ0 on H ,

such that𝑢 and𝑤 are covariant. In this chapter, CSRs are often denoted by bold faced
uppercase letters like A,B,C, . . .(mostly S) with possible subscripts.

By Proposition II.2.2, the covariant systems of representations subordinate to a
general isotropy subgroup Λ0 correspond bijectively to the class of unitary represen-
tations of G o Λ0, via

(H , 𝑢,𝑤) ↦→ 𝑢12𝑤13

in one direction, and
𝑈H ↦→ (H ,𝑈H ,G,𝑈H ,Λ0 )

in the other, where H is the underlying space of the representation 𝑈H of G o Λ0,
and 𝑈H ,G, 𝑈H ,Λ0 are the restrictions of 𝑈H to G and Λ0 respectively. Using this
bijection, we can transport the rigid 𝐶∗-tensor category structure on Rep(G o Λ0)–
the category of all �nite dimensional unitary representations of G o Λ0, to the class
of covariant systems of representations subordinate to Λ0, thereby getting a rigid
𝐶∗-tensor category CSRΛ0 whose objects are CSRs subordinate to Λ0.

To make this transport of categorical structures less tautological, we make a con-
venient characterization of the morphisms in CSRΛ0 .
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Proposition II.7.4. Fix a general isotropy subgroup Λ0 of Λ. For 𝑖 = 1, 2, let S𝑖 =

(H𝑖 , 𝑢𝑖 ,𝑤𝑖 ) be a CSR subordinate to Λ0, 𝑈𝑖 = (𝑢𝑖 )12 (𝑤𝑖 )13 the corresponding unitary
representation of G o Λ0, 𝑆 ∈ B(H1,H2). Then 𝑆 ∈ MorGoΛ0

(
𝑈1,𝑈2

)
if and only if

𝑆 ∈ MorG (𝑢1, 𝑢2) ∩MorΛ0 (𝑤1,𝑤2). (II.7.1)

Proof. The condition is easily seen to be su�cient. Indeed, if condition (II.7.1) holds,
then

(𝑆 ⊗ 1)𝑤1 = 𝑤2 (𝑆 ⊗ 1), (𝑆 ⊗ 1)𝑢1 = 𝑢2 (𝑆 ⊗ 1). (II.7.2)

Thus

(𝑆 ⊗ 1 ⊗ 1)𝑈1 = (𝑆 ⊗ 1 ⊗ 1) (𝑢1)12 (𝑤1)13 = (𝑢2)12 (𝑆 ⊗ 1 ⊗ 1) (𝑤1)13
= (𝑢2)12 (𝑤2)13 (𝑆 ⊗ 1 ⊗ 1) = 𝑈2 (𝑆 ⊗ 1 ⊗ 1).

(II.7.3)

This means exactly 𝑆 ∈ MorG (𝑈1,𝑈2).
To show the necessity of this condition, let 𝜖G : Pol(G) → C be the counit of

the Hopf-∗-algebra, 𝜖Λ0 : 𝐶 (Λ0) → C the counit for the Hopf ∗-algebra 𝐶 (Λ0). Since
𝑈𝑖 ∈ B(H𝑖 ) ⊗ Pol(G) ⊗ 𝐶 (Λ0) for 𝑖 = 1, 2 and 𝑆 ∈ MorGoΛ0 (𝑈1,𝑈2), we have

(𝑆 ⊗ 1 ⊗ 1)𝑈1 = 𝑈2 (𝑆 ⊗ 1 ⊗ 1). (II.7.4)

Applying id ⊗ id ⊗𝜖Λ0 on both sides of (II.7.4) yields

(𝑆 ⊗ 1)𝑢1 = 𝑢2 (𝑆 ⊗ 1), (II.7.5)

which means 𝑆 ∈ MorG (𝑢1, 𝑢2). Applying id ⊗𝜖G ⊗ id on both sides of (II.7.4) yields

(𝑆 ⊗ 1)𝑤1 = 𝑤1 (𝑆 ⊗ 1), (II.7.6)

which means 𝑆 ∈ MorΛ0 (𝑤1,𝑤2). �

We now de�ne a pair of functors,

RΛ0 : CSRΛ0 → Rep(G o Λ0) and SΛ0 : Rep(G o Λ0) → CSRΛ0

between CSRΛ0 and Rep(GoΛ0) that re�ects the transport of categorical structures
discussed above. On the object level, for any (H , 𝑢,𝑤) ∈ CSRΛ0 , let RΛ0 (𝑢,𝑤)
be the representation 𝑢12𝑤13 of G o Λ0 on H ; for any unitary representation 𝑈 ∈
Rep(GoΛ0) onH𝑈 , letSΛ0 (𝑈 ) be the CSR (H𝑈 ,𝑈G,𝑈Λ0 ) where𝑈G (resp.𝑈Λ0 ) is the
restriction of 𝑈 onto G (resp. Λ0). On the morphism level, both RΛ0 and SΛ0 act as
identity. By Proposition II.7.4 and Proposition II.2.2, RΛ0 and SΛ0 are indeed well-
de�ned functors inverses to each other, and they are �ber functors (exact unitary
tensor functors (Neshveyev and Tuset, 2013, §§2.1, 2.2)) simply because the rigid𝐶∗-
tensor category structure on CSRΛ0 is transported from that of Rep(G o Λ0) via
SΛ0 .

Proposition II.7.5. For 𝑖 = 1, 2, let S𝑖 = (H𝑖 , 𝑢𝑖 ,𝑤𝑖 ) ∈ CSRΛ0 , 𝑈𝑖 = RΛ0 (S𝑖 ) ∈
Rep(G o Λ0), then

SΛ0 (𝑈1 ×𝑈2) = (H1 ⊗ H2, 𝑢1 × 𝑢2,𝑤1 ×𝑤2) = S1 ⊗ S2. (II.7.7)
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Proof. By de�nition of the tensor product of representations,𝑈1×𝑈2 is the represen-
tation of G o Λ0 de�ned by

𝑈1 ×𝑈2 = (𝑈1)134 (𝑈2)234 ∈ B(H1) ⊗ B(H2) ⊗ Pol(G) ⊗ 𝐶 (Λ0), (II.7.8)

where we identi�ed B(H1) ⊗ B(H2) with B(H1 ⊗ H2) canonically.
The restriction of𝑈1 ×𝑈2 onto G is

(id ⊗ id ⊗ id ⊗𝜖Λ0 ) (𝑈1 ×𝑈2)
= (id ⊗ id ⊗ id ⊗𝜖Λ0 ) ((𝑈1)134) (id ⊗ id ⊗ id ⊗𝜖Λ0 ) ((𝑈2)234)
= (𝑢1)13 (𝑢2)23 = 𝑢1 × 𝑢2 ∈ B(H1) ⊗ B(H2) ⊗ Pol(G).

(II.7.9)

Similarly, the restriction of𝑈1 ×𝑈2 onto Λ0 is

(id ⊗ id ⊗𝜖G ⊗ id) (𝑈1 ×𝑈2)
= (id ⊗ id ⊗𝜖G ⊗ id) ((𝑈1)134) (id ⊗ id ⊗𝜖G ⊗ id) ((𝑈2)234)
= (𝑤1)13 (𝑤 (2) )23 = 𝑤1 ×𝑤2 ∈ B(H1) ⊗ B(H2) ⊗ 𝐶 (Λ0).

(II.7.10)

Now (II.7.7) follows from (II.7.9), (II.7.10) and the de�nition of the tensor product in
CSRΛ0 . �

Proposition II.7.6. For 𝑖 = 1, 2, let S𝑖 = (H , 𝑢𝑖 ,𝑤𝑖 ) ∈ CSRΛ0 , 𝑈𝑖 := RΛ0 (S𝑖 ) ∈
Rep(G o Λ0), then

SΛ0 (𝑈1 ⊕ 𝑈2) = (H1 ⊕ H2, 𝑢1 ⊕ 𝑢2,𝑤1 ⊕𝑤2) = S1 ⊕ S2. (II.7.11)

Proof. The proof use the same restriction technique as in the proofs of Proposi-
tion II.7.4 and Proposition II.7.5, which is even simpler in this case. �

Until now, we’ve shown that the morphisms, tensor products, and direct sums
all behave as expected in CSRΛ0 . The description of the dual of a CSR when G is of
non-Kac type requires a bit further work on the so-called modular operator, as we
presently discuss.

Recall that the contragredient representation 𝑈 𝑐 of a unitary representation 𝑈
of G o Λ0 on some �nite dimensional Hilbert space H is de�ned as 𝑈 𝑐 = ( 𝑗 ⊗
idPol(G) ⊗𝐶 (Λ0) ) (𝑈 ∗), where 𝑗 : B(H ) → B(H ) is de�ned as𝑇 ↦→ 𝑇 ∗, withH being
the conjugate Hilbert space of H , and 𝑇 ∗ meaning 𝑇 ∗ viewed as a linear mapping
from H to H . Note that 𝑗 : B(H ) → B(H ), 𝑇 ↦→ 𝑇 ∗ is linear, antimultiplicative
and positive (in particular, it preserves adjoints). If G is of non-Kac type, so is GoΛ0
by Proposition II.1.4, in which case𝑈 𝑐 might not be unitary, which is exactly why the
“modular” operator 𝜌𝑈 is necessary to express the dual object of SΛ0 (𝑈 ) in CSRΛ0

as presented in Proposition II.7.7.

Proposition II.7.7. Let S = (H , 𝑢,𝑤) ∈ CSRΛ0 ,𝑈 = RΛ0 (S) ∈ Rep(GoΛ0),𝑈 𝑐 the
contragredient representation of𝑈 on the conjugate space H of H . If 𝜌𝑈 is the unique
invertible positive operator inMorGoΛ0 (𝑈 ,𝑈 𝑐𝑐 ) (which we call modular operator) such
that Tr(· 𝜌𝑈 ) = Tr(· 𝜌−1

𝑈
) on EndGoΛ0 (𝑈 ), so that

𝑈 =
{
[ 𝑗 (𝜌𝑈 )]1/2 ⊗ 1Pol(G) ⊗ 1𝐶 (Λ0)

}
𝑈 𝑐

{
[ 𝑗 (𝜌𝑈 )]−1/2 ⊗ 1Pol(G) ⊗ 1𝐶 (Λ0)

}
(II.7.12)
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is the conjugate representation of 𝑈 , then the dual of S is given by S = (H , 𝑢 ′,𝑤 ′),
where

𝑢 ′ = ( 𝑗 (𝜌𝑈 )1/2 ⊗ 1)𝑢𝑐 ( 𝑗 (𝜌𝑈 )−1/2 ⊗ 1),
𝑤 ′ = ( 𝑗 (𝜌𝑈 )1/2 ⊗ 1)𝑤𝑐 ( 𝑗 (𝜌𝑈 )−1/2 ⊗ 1).

(II.7.13)

Note that 𝑤𝑐 = 𝑤 as Λ is a �nite (compact) group. In particular, if G is of Kac-type,
then 𝑢𝑐 = 𝑢, 𝜌𝑈 = 1, and S = (H , 𝑢,𝑤).

Proof. By de�nition, 𝑆 = SΛ0 (𝑈 ), thus

𝑢 ′ = (idB(H ) ⊗ idPol(G) ⊗𝜖Λ0 ) (𝑈 )
= (id ⊗ id ⊗𝜖Λ0 )

[
( 𝑗 (𝜌𝑈 )1/2 ⊗ 1 ⊗ 1)𝑈 𝑐 ( 𝑗 (𝜌𝑈 )−1/2 ⊗ 1 ⊗ 1)

]
= (id ⊗ id ⊗𝜖Λ0 )

(
( 𝑗 (𝜌𝑈 )1/2 ⊗ 1 ⊗ 1)

[( 𝑗 ⊗ idPol(G) ⊗ id𝐶 (Λ0) ) (𝑈 ∗)] ( 𝑗 (𝜌𝑈 )−1/2 ⊗ 1 ⊗ 1)
)

= ( 𝑗 (𝜌𝑈 )1/2 ⊗ 1)
[
( 𝑗 ⊗ id ⊗𝜖Λ0 ) (𝑈 ∗)

]
( 𝑗 (𝜌𝑈 )−1/2 ⊗ 1)

= ( 𝑗 (𝜌𝑈 )1/2 ⊗ 1)
[
( 𝑗 ⊗ id ⊗𝜖Λ0 ) (𝑈 )

]∗ ( 𝑗 (𝜌𝑈 )−1/2 ⊗ 1)
= ( 𝑗 (𝜌𝑈 )1/2 ⊗ 1)

[
( 𝑗 ⊗ id) (𝑢)

]∗ ( 𝑗 (𝜌𝑈 )−1/2 ⊗ 1)
= ( 𝑗 (𝜌𝑈 )1/2 ⊗ 1)

[
( 𝑗 ⊗ id) (𝑢∗)

]
( 𝑗 (𝜌𝑈 )−1/2 ⊗ 1)

= ( 𝑗 (𝜌𝑈 )1/2 ⊗ 1)𝑢𝑐 ( 𝑗 (𝜌𝑈 )−1/2 ⊗ 1).

The expression for 𝑤 ′ is proved analogously by applying idB(H ) ⊗𝜖Pol(G) ⊗ id𝐶 (Λ0)
on (II.7.12). Finally, if G is of Kac-type, then 𝜌𝑈 = idH = 1. �

Remark II.7.8. The “modular” operator 𝜌𝑈 of the representation𝑈 is derived from
the representation theory of G o Λ0 instead of the representation theory of G and
(projective) representation theory of Λ0. This makes the description of S in Propo-
sition II.7.7 quite unsatisfactory in the non-unimodular case. This being said, we
point out that as far as the fusion rules of G o Λ0 are concerned, the duals of a
su�ciently large family of CSRs admit a much more satisfactory description (see
Proposition II.13.3).

Of course, the description of the dual in CSRΛ0 is much easier ifG is of Kac-type,
as is clearly seen from the last part of Proposition II.7.7.

II.8 Group actions and projective representations

Fix a Λ0 ∈ Giso (Λ). Via the functors SΛ0 and RΛ0 , we see that the problem classi-
fying of irreducible representations of G o Λ0 are essentially the same as classifying
simple CSRs in CSRΛ0 . Thus for the moment, it might be too much to hope there
exists a satisfactory description of all simple CSRs in CSRΛ0 . However, as we will
see in § II.9, if we restrict our attention to the so-called stably pure simple CSRs in
CSRΛ0 , then such a description is indeed achievable via the theory of unitary projec-
tive representations of Λ0. This section studies how such projective representations
arise naturally from the action of Λ on irreducible representations of G, as well as
establishes some basic properties of these projective representations. The results
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here will be used in § II.9 to describe the structure of stably pure CSRs in CSRΛ0

(Proposition II.9.5 and Proposition II.9.6).
We begin with a simple observation which is a trivial quantum analogue of one of

the most basic ingredients of theMackey analysis. Let𝑈G be a unitary representation
ofG on some �nite dimensional Hilbert spaceH . Since 𝛼∗ : Λ → Aut

(
𝐶 (G),Δ

)
is an

antihomomorphism of groups, we know that (idB(H ) ⊗𝛼∗𝑟−1 ) (𝑈G) is again a unitary
representation ofG on the same spaceH , and we denote this new representation by
𝑟 ·𝑈G as we did in Proposition II.5.1. One checks that (𝑟𝑠) ·𝑈G = 𝑟 · (𝑠 ·𝑈G). Thus this
de�nes a left action of the group Λ on the (proper) class of all unitary representation
of G, which is easily seen to preserve irreducibility and pass to a well-de�ned action
of Λ on the set Irr(G) by letting 𝑟 · [𝑢] = [𝑟 · 𝑢], where 𝑟 ∈ Λ, 𝑢 is an irreducible
unitary representation of G and [𝑢] is the equivalence class of 𝑢 in Irr(G). Take
another unitary representation𝑊G of G on some other �nite dimensional Hilbert
space K . For any 𝑟, 𝑠 ∈ Λ and any 𝑇 ∈ B(H ,K ), we have

𝑇 ∈ MorG (𝑟 ·𝑈G,𝑊G)
⇐⇒𝑊G (𝑇 ⊗ 1) = (𝑇 ⊗ 1) (id ⊗𝛼∗

𝑟−1 ) (𝑈G)
⇐⇒ [(id ⊗𝛼∗

𝑠−1 ) (𝑊G)] (𝑇 ⊗ 1) = (𝑇 ⊗ 1) (id ⊗𝛼∗(𝑠𝑟 )−1 ) (𝑈G)

⇐⇒ 𝑇 ∈ MorG (𝑠𝑟 ·𝑈G, 𝑠 ·𝑊G).

(II.8.1)

Now take any irreducible unitary representation 𝑢 of G on some �nite dimen-
sional Hilbert space H . Let 𝑥 = [𝑢] ∈ Irr(G), and

Λ𝑥 = {𝑟 ∈ Λ : 𝑟 · 𝑥 = 𝑥},

i.e. Λ𝑥 is the isotropy subgroup of Λ �xing 𝑥 . Then for any 𝑟0 ∈ Λ𝑥 , 𝑢 and 𝑟0 · 𝑢 are
equivalent by de�nition, hence there exists a unitary 𝑉 (𝑟0) ∈ U(H ) intertwining
𝑟0 · 𝑢 and 𝑢, in other words,(

𝑉 (𝑟0) ⊗ 1
)
(id ⊗𝛼∗

𝑟−10
) (𝑢) = 𝑢

(
𝑉 (𝑟0) ⊗ 1

)
, (II.8.2)

which is clearly equivalent to

∀𝑟0 ∈ Λ𝑥 ,
(
𝑉 (𝑟0) ⊗ 1

)
𝑢 = [(id ⊗𝛼∗𝑟0 ) (𝑢)]

(
𝑉 (𝑟0) ⊗ 1

)
. (II.8.3)

It is remarkable that (II.8.3) takes exactly the same form as the covariance condi-
tion (II.2.2) when we de�ne covariant representations in § II.2. Now if we choose
a

𝑉 (𝑟0) ∈ MorG (𝑟0 · 𝑢,𝑢) ∩ U(H ) (II.8.4)

for each 𝑟0 ∈ Λ𝑥 , then for any 𝑠0 ∈ Λ𝑥 , by (II.8.1), we have

𝑉 (𝑟0) ∈ MorG (𝑠0𝑟0 ·𝑢, 𝑠0 ·𝑢), 𝑉 (𝑠0) ∈ MorG (𝑠0 ·𝑢,𝑢), 𝑉 (𝑠0𝑟0) ∈ MorG (𝑠0𝑟0 ·𝑢,𝑢),

thus

∀𝑟0, 𝑠0 ∈ Λ𝑥 , 𝑉 (𝑠0𝑟0) [𝑉 (𝑟0)]∗ [𝑉 (𝑠0)]∗ ∈ MorG (𝑢,𝑢) ∩ U(H ) = T · idH . (II.8.5)

This means that 𝑉 : Λ𝑥 → U(H ) is a unitary projective representation (Def-
inition II.8.1) of Λ𝑥 on H , which satis�es the covariant condition (II.8.3) for each
𝑟0 ∈ Λ𝑥 .
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To facilitate our discussion, we digress now to give a brief summary of some ba-
sic terminologies of the theory of group cohomology which we will use (cf. (Brown,
1994)). We regard T as a trivial module over any �nite group when considering uni-
tary projective representations of �nite groups. For any �nite group Γ, an 𝑛-cochain
on Γ with coe�cients in T, or simply an 𝑛-cochain (on Γ), as we won’t consider coef-
�cient module other that the trivial module T, is a mapping from the 𝑛-fold product
Γ𝑛 = Γ × · · · × Γ to T. Let𝐶𝑛 (Γ,T) be the abelian group of 𝑛-cochains on Γ, 𝑍 2 (Γ,T)
the subgroup of 2-cocycles on Γ, i.e. mappings 𝜔 : Γ × Γ → T satisfying the cocycle
condition

∀𝑟, 𝑠, 𝑡 ∈ Γ, 𝜔 (𝑟, 𝑠𝑡)𝜔 (𝑠, 𝑡) = 𝜔 (𝑟, 𝑠)𝜔 (𝑟𝑠, 𝑡). (II.8.6)

The mapping

𝛿 : 𝐶1 (Γ,T) → 𝑍 2 (Γ,T)

b ↦→
{
(𝑟, 𝑠) ∈ Γ × Γ ↦→ b(𝑟 )b(𝑠)

b(𝑟𝑠)

} (II.8.7)

is easily checked to be a well-de�ned groupmorphism. We use 𝐵2 (Γ,T) to denote the
image of𝛿 , and the 2-cocycles in𝐵2 (Γ,T) are called 2-coboundaries of Γ. The quotient
group𝑍 2 (Γ,T)/𝐵2 (Γ,T) is called the second cohomology group of Γ with coe�cients
in the trivial Γ-module T, and is denoted by𝐻 2 (Γ,T). Elements in𝐻 2 (Γ,T) are called
cohomology class. Note that ker(𝛿) is exactly the group of characters on Γ, i.e. group
morphisms from Γ to T.

De�nition II.8.1. Let Γ be a group, H a �nite dimensional Hilbert space, a projec-
tive representation of Γ on H is a mapping𝑉 : Γ → U(H ) such that𝑉 (𝑒Γ) = idH ,
and there exists a 2-cochain 𝜔 ∈ 𝐶2 (Γ,T), such that

∀𝑟, 𝑠 ∈ Γ, 𝜔 (𝑟, 𝑠)𝑉 (𝑟, 𝑠) = 𝑉 (𝑟 )𝑉 (𝑠) . (II.8.8)

It is easy to check that such𝜔 is uniquely determined by𝑉 , and it is in fact a 2-cocylce,
with the additional property (which follows from our assumption𝑉 (𝑒Γ) = idH ) that

∀𝛾 ∈ Γ, 𝜔 (𝑒Γ, 𝛾) = 𝜔 (𝛾, 𝑒Γ) = 1 ∈ T. (II.8.9)

We call 𝜔 the cocylce (or Schur multiplier after Schur who introduced them in his
work on projective representations (Schur, 1904)) of the projective representation𝑉 .

We will freely use the character theory and the Peter Weyl theory of projective
representations of �nite groups, and we refer the reader to (Cheng, 2015) for the
proofs.

We track here the following easy results for convenience of the reader.

Lemma II.8.2. Let Γ be a �nite group, 𝑉 : Γ → U(H ) a �nite dimensional unitary
projective representation of Γ with cocycle𝜔 . If𝜔 ′ ∈ [𝜔] ∈ 𝐻 2 (Γ,T), then there exists a
mapping b : Γ → T, such that b𝑉 : Γ → U(H ), 𝛾 ↦→ b(𝛾)𝑉 (𝛾) is a unitary projective
representation with cocycle 𝜔 ′.

Proof. Since 𝜔 ′ ∈ [𝜔], there is a mapping b : Γ → T such that 𝜔 ′ = (𝛿b)𝜔 , and
obviously, b𝑉 is a unitary projective representation with (𝛿b)𝜔 = 𝜔 ′ as its cocycle.

�
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Lemma II.8.3. Let Γ be a �nite group, 𝑉 : Γ → U(H ) a �nite dimensional uni-
tary projective representation of Γ with cocycle 𝜔 , and let b : Γ → T be an arbitrary
mapping. The following hold:

(a) b𝑉 : Γ → U(H ), 𝛾 ↦→ b(𝛾)𝑉 (𝛾) is a projective representation with cocycle
(𝛿b)𝜔 ;

(b) b𝑉 and 𝑉 have the same cocycle if and only if b ∈ ker(𝛿), i.e. b is a character of
Γ;

(c) b𝑉 is irreducible if and only if 𝑉 is irreducible.

Proof. It is clear that (a) and (b) are direct consequences of the relevant de�nitions.
We now prove (c). If we denote the character of𝑉 by 𝜒𝑉 , then the character of b𝑉 is
b𝜒𝑉 . Hence

dimMorΓ (b𝑉 , b𝑉 ) =
1
|Γ |

∑︁
𝛾 ∈Γ

b(𝛾)𝜒𝑉 (𝛾)b(𝛾)𝜒𝑉 (𝛾)

=
1
|Γ |

∑︁
𝛾 ∈Γ

𝜒𝑉 (𝛾)𝜒𝑉 (𝛾) = dimMorΓ (𝑉 ,𝑉 ),
(II.8.10)

and b𝑉 is irreducible if and only if 𝑉 is. �

Remark II.8.4. If b is a character of Γ, and 𝑉 : Γ → U(H ) an irreducible unitary
projective representation, then b𝑉 is also an irreducible unitary projective represen-
tation with the same cocycle as that of 𝑉 . Note that |b(𝛾) | = 1 for all 𝛾 ∈ Γ, we
have

dimMorΓ (b𝑉 ,𝑉 ) =
1
|Γ |

∑︁
𝛾 ∈Γ

b(𝛾)𝜒𝑉 (𝛾)𝜒𝑉 (𝛾)

≤ 1
|Γ |

∑︁
𝛾 ∈Γ

𝜒𝑉 (𝛾)𝜒𝑉 (𝛾) = dimMorΓ (𝑉 ,𝑉 ) = 1.
(II.8.11)

with equality holds if and only if b(𝛾) = 1 whenever 𝜒𝑉 (𝛾) ≠ 0. If equality doesn’t
hold in (II.8.11), then dimMorΓ (b𝑉 ,𝑉 ) must be 0 since it is a natural number. There-
fore, whenever Γ is not trivial, it is possible that b𝑉 and 𝑉 are irreducible unitary
projective representations with the same cocycle but not equivalent. Thus one must
be careful not to confuse our de�nition of projective representation with the more
naive de�nition where one simply replaces GL(H ) by PGL(H ) as the target model
group. For us, how we lift from PGL(H ) to GL(H ) does matter, even if we keep
the cocycle in the process.

After this digression, we now resume our discussion. Using terminologies in the
theory of group cohomology, and regarding T as the trivial Λ𝑥 -module, we see that
the 2-cocycle 𝜔𝑥 ∈ 𝐶2 (Λ𝑥 ,T) of the unitary projective representation 𝑉 of Λ𝑥 is
determined up to a 2-boundary in 𝐵2 (Λ𝑥 ,T), because each unitary operator 𝑉 (𝑟0),
𝑟0 ∈ Λ𝑥 is uniquely determined up to a scalar multiple in T (Schur’s lemma plus the
unitarity of 𝑉 (𝑟0)). In other words, [𝜔𝑥 ] ∈ 𝐻 2 (Λ𝑥 ,T) is a well-de�ned cohomology
class of Λ𝑥 with coe�cients in T.

Conversely, let 𝑢 be an irreducible unitary representation of G on some �nite
dimensional Hilbert space H , and 𝑥 = [𝑢] ∈ Irr(G). If Λ0 is a subgroup of Λ,
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𝑉 : Λ0 → U(H ) a unitary projection representation of Λ0 such that 𝑢 and𝑉 satisfy
the covariance condition (II.8.3), then

∀𝑟0 ∈ Λ0, 𝑉 (𝑟0) ∈ MorG (𝑟0 · 𝑢,𝑢).

In particular, Λ0 �xes 𝑥 = [𝑢] under the action Λ y Irr(G). Repeat the above
reasoning shows that (II.8.5) still holds.

We summarize the above discussion in the following proposition, which proves
slightly more.

Proposition II.8.5. Let 𝑢 be an irreducible unitary representation of G on some �nite
dimensional Hilbert space H , 𝑥 = [𝑢] ∈ Irr(G), Λ𝑥 the isotropy group �xing 𝑥 (under
the action Λy Irr(G)). For any 𝑟0 ∈ Λ𝑥 , choose a unitary 𝑉 (𝑟0) according to (II.8.4).
Then

(a) 𝑉 : Λ𝑥 → U(H ), 𝑟0 ↦→ 𝑉 (𝑟0) is a unitary projective representation satisfying
the covariance condition (II.8.3);

(b) let 𝜔 ∈ 𝐶2 (Λ0,T) be the 2-cocycle of 𝑉 , then the cohomology class 𝑐𝑥 : = [𝜔] ∈
𝐻 2 (Λ𝑥 ,T) depends only on 𝑥 , i.e. it does not depend on any particular choice of
𝑢 ∈ 𝑥 .

Conversely, if𝑉0 : Λ0 → U(H ) is a unitary projective representation of some subgroup
Λ0 of Λ that satis�es the covariance condition (II.8.3), then

(c) for every 𝑟0 ∈ Λ0, the condition (II.8.4) holds;

(d) Λ0 ⊆ Λ𝑥 ;

(e) there is a choice of 𝑉 : Λ𝑥 → U(H ) satisfying (II.8.3) such that 𝑉 |Λ0 = 𝑉0;

(f) let 𝜔0 ∈ 𝐶2 (Λ0,T) be the 2-cocycle of 𝑉0, then [𝜔0] is the image of 𝑐𝑥 under the
morphism of groups

𝐻 2 (Λ0 ↩→ Λ𝑥 ) : 𝐻 2 (Λ𝑥 ,T) → 𝐻 2 (Λ0,T).

Proof. The above discussion already establishes (a), (c) and (d). Assertion (e) fol-
lows from (a) and (c), while (f) follows from (e). Moreover, we’ve seen that [𝜔] ∈
𝐻 2 (Λ𝑥 ,T) does not depend on the choice of 𝑉 . For any𝑤 ∈ 𝑥 , there exists a unitary
intertwiner 𝑈 ∈ MorG (𝑢,𝑤). It is trivial to check that 𝑉𝑤 (𝑟0) = 𝑈𝑉 (𝑟0)𝑈 ∗ de�nes a
unitary projective representation of Λ𝑥 such that

𝑉𝑤 (𝑟0) ∈ MorG (𝑟0 ·𝑤,𝑤).

Since 𝑉𝑤 and 𝑉 are unitarily equivalent projective representations of Λ𝑥 , the 2-
cocycle of 𝑉𝑤 coincides with 𝜔—the 2-cocycle of 𝑉 . This proves that 𝑐𝑥 = [𝜔] ∈
𝐻 2 (Λ𝑥 ,T) indeed depends only on 𝑥 and not on any particular choice of 𝑢 ∈ 𝑥 . This
proves (b) and �nishes the proof of the proposition. �

De�nition II.8.6. Using the notations in Proposition II.8.5, we call the cohomology
class [𝜔] ∈ 𝐻 2 (Λ𝑥 ,T) the cohomology class associated with 𝑥 = [𝑢] ∈ Irr(G),
and we denote [𝜔] by 𝑐𝑥 . If Λ0 is a subgroup of Λ𝑥 , the cohomology class [𝜔0] ∈
𝐻 2 (Λ0,T) is called the restriction of the cohomology class 𝑐𝑥 on Λ0, and is denoted
by 𝑐𝑥,Λ0 .
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Obviously, 𝑐𝑥,Λ0 depends on Λ0 and 𝑥 , and 𝑐𝑥,Λ0 = 𝑐𝑥 if Λ0 = Λ𝑥 . To apply the
character theory of projective representations, we need to suitably rescale the projec-
tive representations in question so that they share the same cocycle (and not merely
the same cohomology class for their cocycles). In the case where the representation
𝑢 ∈ B(H ) ⊗ Pol(G) of G is irreducible, and𝑉 : Λ0 → U(H ) is a unitary projective
representation satisfying the covariance condition (II.8.3), such a rescaling is implicit
in the choice of 𝑉 (𝑟0) ∈ MorG (𝑟0 · 𝑢,𝑢) for each 𝑟0 ∈ Λ0. However, Remark II.8.4
tells us we should take extra care if we want to talk about equivalence class of these
projective representations once we do the rescaling.

We �nish this section with an easy result.

Proposition II.8.7. Let 𝑥 ∈ Irr(G), 𝑢 ∈ 𝑥 , Λ0 a subgroup of Λ𝑥 , 𝑐0 ∈ 𝐻 2 (Λ0,T) is
the image of the cohomology class 𝑐𝑥 ∈ 𝐻 2 (Λ𝑥 ,T) associated with 𝑥 under 𝐻 2 (Λ0 ↩→
Λ𝑥 ,T). Then for any 2-cocycle 𝜔0 ∈ 𝑐0, there exists a unitary projective representation
𝑉 of the isotropy subgroup Λ0 with cocycle 𝜔0, such that 𝑉 and 𝑢 are covariant, and
such 𝑉 is unique up to rescaling by a character of Λ0.

Proof. This is clear from Proposition II.8.5, Lemma II.8.2 and Lemma II.8.3. �

II.9 Pure, stable, distinguished CSRs and representation
parameters

Recall that for any �nite dimensional representation𝑢 ofG, the support of𝑢, denoted
by supp(𝑢), is the set

{𝑥 ∈ Irr(G) : dimGMorG (𝑥, [𝑢]) ≠ 0}

where [𝑢] is the class of unitary representations of G equivalent to 𝑢. We call 𝑢 pure
if supp(𝑢) is a singleton.

De�nition II.9.1. Fix a Λ0 ∈ Giso (Λ), S = (H , 𝑢,𝑤) ∈ CSRΛ0 , we call S

• pure, if 𝑢 is pure;

• stable, if 𝑟 · [𝑢] (= [𝑟 · 𝑢]) = [𝑢] for all 𝑟 ∈ Λ0;

• stably pure, if it is both pure and stable;

• maximally stable, if

Λ0 = {𝑟 ∈ Λ : 𝑟 · [𝑢] = [𝑢]};

• simple, if S is a simple object in CSRΛ0 ;

• distinguished, if it is maximally stable, pure and simple.

As remarked earlier, while it is not reasonable for the moment to hope for a
satisfactory description of all simple CSRs in CSRΛ0 , it is possible to describe simple
CSRs that are stably pure using unitary projective representations of Λ0. Somewhat
surprisingly, one can even describe all stably pure CSRs, even the non-simple ones,
in this way. To achieve the latter, we introduce the following de�nitions, which are
closely related to the materials in § II.8.
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De�nition II.9.2. Let Λ0 ∈ Giso (Λ). Suppose 𝑢 is a unitary representation of G
on some �nite dimensional Hilbert space H , and 𝑉 : Λ0 → U(H ) is a unitary
projective representation of Λ0. We say 𝑢 and 𝑉 are covariant if they satisfy the
covariance condition (II.8.3), or equivalently 𝑉 (𝑟0) ∈ MorG (𝑟0 · 𝑢,𝑢) for all 𝑟0 ∈ Λ0.

De�nition II.9.3. Let 𝑥 ∈ Irr(G), Λ0 ∈ Giso (Λ) with Λ0 ⊆ Λ𝑥 , 𝑢 ∈ 𝑥 , 𝜔0 ∈ 𝑐𝑥,Λ0 (see
De�nition II.8.6), then a unitary projective representation 𝑉 of Λ0 that is covariant
with 𝑢 is said to be a covariant projective Λ0-representation of 𝑢 (with cocycle 𝜔0).

Remark II.9.4. In the setting of De�nition II.9.3, �x any covariant projective Λ0-
representation𝑉 of𝑢 with cocycle𝜔0, the set of covariant projectiveΛ0-representations
of 𝑢 with multiplier 𝜔0 is in bijective correspondence with the group of characters
of Λ0, via b ↦→ b𝑉 (see Lemma II.8.2 and Lemma II.8.3).

Proposition II.9.5 (Structure of stably pure CSR). Fix a Λ0 ∈ Giso (Λ), let S =

(H , 𝑢,𝑤) be a stably pure CSR in CSRΛ0 𝑥 ∈ Irr(G) is the support point of 𝑢, 𝑢0 ∈ 𝑥
a representation on some �nite dimensional Hilbert space H0, 𝑛 is the multiplicity of 𝑢0
in 𝑢,𝑉0 a covariant projective Λ0-representation of 𝑢, then there exists a unique unitary
projective representation 𝑣0 : Λ0 → U(C𝑛) of Λ0 on C𝑛 , such that the following hold:

(a) 𝑉0 and 𝑣0 have opposing cocycles;

(b) S0 = (C𝑛 ⊗ H0, 𝜖𝑛 × 𝑢0, 𝑣0 × 𝑉0) is a CSR in CSRΛ0 , where 𝜖𝑛 is the trivial
representation of G on C𝑛 ;

(c) S0 and S are isomorphic in CSRΛ0 .

Proof. Uniqueness is almost clear once we �nish the proof of existence, which we
do now. Let 𝑈 be a unitary intertwiner from 𝑢 to 𝜖𝑛 ⊗ 𝑢0. Noting that 𝑢 is pure and
replacing Swith𝑈 S𝑈 ∗ if necessary, we may assume H = C𝑛 ⊗H0 and𝑢 = 𝜖𝑛 ×𝑢0 =
(𝑢0)23. For any 𝑟0 ∈ Λ0, we claim that there exists a unique 𝑣0 (𝑟0) ∈ B(C𝑛) such that
𝑤 (𝑟0) = 𝑣0 (𝑟0) ⊗ 𝑉0 (𝑟0). Admitting the claim for the moment, the unitarity of 𝑣0 (𝑟0)
follows from the unitarity of 𝑤 (𝑟0) and 𝑉0 (𝑟0), and 𝑤 being a representation and 𝑉0
being a projective representation force 𝑣0 to be a unitary projective representation
with a cocycle opposing to the cocycle of 𝑉0. Thus the proposition follows from the
claim, which we now prove. Since B(C𝑛 ⊗ H0) = B(C𝑛) ⊗ B(H0) by the usual
identi�cation, there exists an𝑚 ∈ N, 𝐴1, . . . , 𝐴𝑚 ∈ B(C𝑛) and 𝐵1, . . . , 𝐵𝑚 ∈ B(H0),
such that

𝑤 (𝑟0) =
𝑚∑︁
𝑖=1

𝐴𝑖 ⊗ 𝐵𝑖 . (II.9.1)

Furthermore, we can and do choose these operators so that 𝐴1, . . . , 𝐴𝑚 are linearly
independent in B(C𝑛). Since 𝑢 and𝑤 are covariant, we have(

𝑤 (𝑟0) ⊗ 1
)
𝑢 =

[
(idH ⊗𝛼∗𝑟0 )𝑢

] (
𝑤 (𝑟0) ⊗ 1

)
. (II.9.2)

Substituting 𝑢 = (𝑢0)23 and (II.9.1) in (II.9.2) yields

𝑚∑︁
𝑖=1

𝐴𝑖 ⊗ [(𝐵𝑖 ⊗ 1)𝑢0]

=
𝑚∑︁
𝑖=1

𝐴𝑖 ⊗
( [
(idH0 ⊗𝛼∗𝑟0 )𝑢0

] (
𝐵𝑖 ⊗ 1

) )
∈ B(C𝑛) ⊗ B(H0) ⊗ Pol(G).

(II.9.3)
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Since 𝐴1, . . . , 𝐴𝑚 are linearly independent, there exists linear functionals 𝑙1, . . . , 𝑙𝑚
on B(C𝑛) such that 𝑙𝑖 (𝐴 𝑗 ) = 𝛿𝑖, 𝑗 . Applying 𝑙𝑖 ⊗ idH0 ⊗ idPol(G) on (II.9.3) shows that
for each 𝑖 = 1, . . . ,𝑚,

(𝐵𝑖 ⊗ 1)𝑢0 =
[
(id ⊗𝛼∗𝑟0 )𝑢0

]
(𝐵𝑖 ⊗ 1), (II.9.4)

or equivalently
𝐵𝑖 ∈ MorG (𝑟0 · 𝑢0, 𝑢0) = C𝑉0 (𝑟0) . (II.9.5)

Now the claim follows from (II.9.1) and (II.9.5). �

Conversely, we have

Proposition II.9.6. Fix a Λ0 ∈ Giso (Λ), 𝑥 ∈ Irr(G) with Λ0 ⊆ Λ𝑥 . Take a 𝑢 ∈
𝑥 acting on some �nite dimensional Hilbert space H , and a covariant projective Λ0-
representation 𝑉 of 𝑢, then for any unitary projective representation 𝑣 : Λ0 → U(K )
of Λ0 with cocycle opposing the cocycle of 𝑉 , the unitary representation 𝑣 × 𝑉 of Λ0
is covariant with the unitary representation idK ⊗𝑢 = 𝜖K × 𝑢 of G, where 𝜖K is the
trivial representation of G on K , i.e. (K ⊗ H , 𝜖K ×𝑢, 𝑣 ×𝑉 ) is a stably pure CSR in
CSRΛ0 .

Proof. Since 𝑉 and 𝑢 are covariant, for any 𝑟0 ∈ Λ0, we have(
𝑉 (𝑟0) ⊗ 1

)
𝑢 =

[
(id ⊗𝛼∗𝑟0 )𝑢

] (
𝑉 (𝑟0) ⊗ 1

)
. (II.9.6)

The proposition follows by tensoring 𝑣 (𝑟0) on the left in (II.9.6). �

By Proposition II.9.5 and Proposition II.9.6, we now have a satisfactory descrip-
tion of stably pure CSRs in CSRΛ0—from any irreducible representation 𝑢 of G on
H such that Λ0 · [𝑢] = [𝑢], one choose a covariant projective Λ0-representation 𝑉
of 𝑢 with some cocycle 𝜔 , then any unitary projective representation 𝑣 of Λ0 with
cocycle 𝜔−1 = 𝜔 gives rise to a stably pure CSR in CSRΛ0 , namely S(𝑢,𝑉 , 𝑣) =

(K ⊗ H , 𝜖K ×𝑢, 𝑣 ×𝑉 ); and all stably pure CSRs in CSRΛ0 arise in this way up to
isomorphism.

Remark II.9.7. Using the above notations, while it is true that 𝑉 is determined by
𝑢 to a great extent due to the restriction of Schur’s lemma, it is still not completely
determined (see Proposition II.8.7), and a choice of this 𝑉 is vitally relevant as is
demonstrated by Remark II.8.4 applied to 𝑣 . This is why 𝑉 can not be suppressed in
our notation S(𝑢,𝑉 , 𝑣).

De�nition II.9.8. Let Λ0 ∈ Giso (Λ). A triple (𝑢,𝑉 , 𝑣) is called a representation
parameter for G o Λ associated with Λ0, if it the following hold:

• 𝑢 is an irreducible unitary representation of G on some �nite dimensional
Hilbert space H ;

• 𝑉 is a covariant projective Λ0-representation of 𝑢;

• 𝑣 is a unitary projective representation of Λ0 (possibly on Hilbert spaces other
than H ), such that 𝑣 and 𝑉 have opposing cocycles.

If (𝑢,𝑉 , 𝑣) is a representation parameter, the stably pure CSRS(𝑢,𝑉 , 𝑣) in CSRΛ0

is called the CSR parametrized by the representation parameter (𝑢,𝑉 , 𝑣). If further-
more the unitary projective representation 𝑣 is irreducible, we say the representation
parameter (𝑢,𝑉 , 𝑣) is irreducible.
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Thus Proposition II.9.5 immediately implies the following corollary.

Corollary II.9.9. Fix a Λ0 ∈ Giso (Λ), then every stably pure CSR associated with Λ0
is parameterised by some representation parameter associated with Λ0. �

De�nition II.9.10. Fix a Λ0 ∈ Giso (Λ). Let 𝑢 be an irreducible unitary represen-
tation of G such that Λ0 · [𝑢] = [𝑢], 𝑉1 and 𝑉2 are two covariant projective Λ0-
representations of 𝑢, the unique mapping b : Λ0 → T such that 𝑉2 = b𝑉1 is called
the 𝑢-transitional mapping from𝑉1 to𝑉2 (note that we do not require𝑉1 and𝑉2 to
have the same cocycle here).

Proposition II.9.11. Fix a Λ0 ∈ Giso (Λ). For 𝑖 = 1, 2, let (𝑢𝑖 ,𝑉𝑖 , 𝑣𝑖 ) be a representation
parameter associated with Λ0, 𝑈𝑖 denote the unitary representation RΛ0

(
S(𝑢𝑖 ,𝑉𝑖 , 𝑣𝑖 )

)
of G o Λ0, then the following holds:

(a) if [𝑢1] ≠ [𝑢2] in Irr(G), then dimMorGoΛ0 (𝑈1,𝑈2) = 0;

(b) if 𝑢1 = 𝑢2 = 𝑢, and b : Λ0 → T the 𝑢-transitional map from 𝑉1 to 𝑉2, then

dimMorGoΛ0 (𝑈1,𝑈2) = dimMorΛ0 (𝑣1, b𝑣2) . (II.9.7)

Proof. Letℎ be the Haar state ofG, by (II.1.7), the Haar stateℎΛ0 ofGoΛ0 is the linear
functional on𝐴⊗𝐶 (Λ0) de�ned by 𝑎⊗𝛿𝑟0 ↦→ |Λ0 |−1ℎ(𝑎), where 𝑎 ∈ 𝐴, 𝑟0 ∈ Λ0 (recall
that 𝐴 = 𝐶 (G)).

Suppose [𝑢1] ≠ [𝑢2]. For any 𝑖 = 1, 2, by choosing a Hilbert space basis for the
representation of 𝑢𝑖 , one can write 𝑢𝑖 as a square matrix

(
𝑢
(𝑖)
𝑗𝑘

)
over Pol(G) ⊆ 𝐴, and

𝑉𝑖 as a matrix
(
𝑉

(𝑖)
𝑗𝑘

)
over 𝐶 (Λ0) of the same size of

(
𝑢
(𝑖)
𝑗𝑘

)
. Then the character 𝜒𝑖 of

𝑈𝑖 is given by

𝜒𝑖 =
∑︁
𝑟0∈Λ0

𝑛𝑖∑︁
𝑗=1

Tr(𝑣𝑖 )
(
𝑛𝑖∑︁
𝑘=1

𝑉
(𝑖)
𝑘 𝑗

(𝑟0)𝑢 (𝑖)
𝑗𝑘

)
⊗ 𝛿𝑟0 ∈ Pol(G) ⊗ 𝐶 (Λ0). (II.9.8)

The orthogonality relation for the nonequivalent irreducible representations 𝑢1 and
𝑢2 implies that

∀𝑗1, 𝑘1, 𝑗2, 𝑘2, ℎ

( (
𝑢
(1)
𝑗1𝑘1

)∗
𝑢
(2)
𝑗2𝑘2

)
= 0. (II.9.9)

Hence, by (II.9.8) and (II.9.9),

dimMorGoΛ0 (𝑈1,𝑈2) = ℎΛ0

(
𝜒1𝜒2

)
= |Λ0 |−1

∑︁
𝑟0∈Λ0

𝑛1∑︁
𝑗1,𝑘1=1

𝑛2∑︁
𝑗2,𝑘2=1

Tr
(
𝑣1 (𝑟0)

)
Tr

(
𝑣2 (𝑟0)

)
𝑉

(1)
𝑘1 𝑗1

(𝑟0)𝑉 (2)
𝑘2 𝑗2

(𝑟0)ℎ
( (
𝑢
(1)
𝑗1𝑘1

)∗
𝑢
(2)
𝑗2𝑘2

)
= 0.

(II.9.10)

This proves (a).
Under the hypothesis of (b), using the same notations as in the previous para-

graph, we have 𝑛1 = 𝑛2 = dim𝑈 . We may assume that 𝑒 (1)
𝑗

= 𝑒
(2)
𝑗

= 𝑒 𝑗 , hence 𝑢 𝑗𝑘 :=
𝑢
(1)
𝑗𝑘

= 𝑢
(2)
𝑗𝑘

for all possible 𝑗, 𝑘 . Note that 𝑉2 = b𝑉1, and S(𝑢,𝑉2, 𝑣2) = S(𝑢,𝑉1, b𝑣2)
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because b𝑉1 × 𝑣2 = 𝑉1 × b𝑣2, we may assume that 𝑉2 = 𝑉1 = 𝑉 and b = 1, with
𝑉𝑗𝑘 := 𝑉 (1)

𝑗𝑘
= 𝑉

(2)
𝑗𝑘

∈ 𝐶 (Λ0) for all possible 𝑗, 𝑘 . Let 𝜌 be the unique invertible posi-
tive operator in MorG (𝑢,𝑢𝑐𝑐 ) such that Tr(· 𝜌) = Tr(· 𝜌−1) on EndG (𝑢). With these
assumptions, by (II.9.10), the orthogonality relation takes the form

ℎ(𝑢∗𝑖 𝑗𝑢𝑘𝑙 ) =
𝛿 𝑗,𝑙

(
𝜌−1

)
𝑘𝑖

dim𝑞𝑈
(II.9.11)

where dim𝑞𝑈 = Tr(𝜌) = Tr(𝜌−1) is the quantum dimension of 𝑈 (see (Neshveyev
and Tuset, 2013, §1.4)). Since 𝜌 is positive, we might choose the basis 𝑒1, . . . , 𝑒𝑛 to
diagonize 𝜌 , so that 𝜌𝑘𝑖 =

(
𝜌−1

)
𝑘𝑖

= 0 whenever 𝑘 ≠ 𝑖 . Using this basis, (II.9.11) and
(II.9.10), we have

dimMorGoΛ0 (𝑈1,𝑈2)

= |Λ0 |−1
∑︁
𝑟0∈Λ0

𝑛∑︁
𝑗1,𝑘1=1

𝑛∑︁
𝑗2,𝑘2=1

Tr
(
𝑣1 (𝑟0)

)
Tr

(
𝑣2 (𝑟0)

)
·𝑉𝑘1 𝑗1 (𝑟0)𝑉𝑘2 𝑗2 (𝑟0)ℎ

( (
𝑢 𝑗1𝑘1

)∗
𝑢 𝑗2𝑘2

)
= |Λ0 |−1

∑︁
𝑟0∈Λ0

𝑛∑︁
𝑗1,𝑘1=1

𝑛∑︁
𝑗2,𝑘2=1

Tr
(
𝑣1 (𝑟0)

)
Tr

(
𝑣2 (𝑟0)

)
𝑉𝑘1 𝑗1 (𝑟0)𝑉𝑘2 𝑗2 (𝑟0)

·
𝛿 𝑗1, 𝑗2𝛿𝑘1,𝑘2

(
𝜌−1

)
𝑗2 𝑗1

dim𝑞𝑈

= |Λ0 |−1Tr
(
𝑣1 (𝑟0)

)
Tr

(
𝑣2 (𝑟0)

) ∑︁
𝑟0∈Λ0

𝑛∑︁
𝑗=1

{
𝑛∑︁
𝑘=1

𝑉𝑘 𝑗 (𝑟0)𝑉𝑘 𝑗 (𝑟0)
} (

𝜌−1
)
𝑗 𝑗

dim𝑞𝑈

(Note that 𝑉 (𝑟0) is unitary)

= |Λ0 |−1
∑︁
𝑟0∈Λ0

Tr
(
𝑣1 (𝑟0)

)
Tr

(
𝑣2 (𝑟0)

) ∑𝑛
𝑗=1

(
𝜌−1

)
𝑗 𝑗

dim𝑞𝑈

= |Λ0 |−1
∑︁
𝑟0∈Λ0

Tr
(
𝑣1 (𝑟0)

)
Tr

(
𝑣2 (𝑟0)

)
= dimMorΛ0 (𝑣1, 𝑣2).

(II.9.12)

This proves (b). �

The following corollary is now clear.

Corollary II.9.12. Fix a Λ0 ∈ Giso (Λ). Let (𝑢,𝑉 , 𝑣) be a representation parameter
associated with Λ0, then the representation RΛ0

(
S(𝑢,𝑉 , 𝑣)

)
of G o Λ0 is irreducible if

and only if the representation parameter (𝑢,𝑉 , 𝑣) is irreducible. �

II.10 Distinguished representation parameters and
distinguished representations

Fix a Λ0 ∈ Giso (Λ). For any unitary projective representation 𝑉 : Λ0 → U(H ) of
Λ0, and any 𝑟 ∈ Λ, de�ne 𝑟 ·𝑉 to be the unitary projective representation of 𝑟Λ0𝑟

−1 on
H sending 𝑠0 = 𝑟𝑟0𝑟−1 ∈ 𝑟Λ0𝑟

−1 to (𝑉 ◦Ad𝑟−1 ) (𝑠0) = 𝑉 (𝑟0). Then (𝑟𝑠) ·𝑉 = 𝑟 · (𝑠 ·𝑉 )
for all 𝑟, 𝑠 ∈ Λ with 1Λ ·𝑉 = 𝑉 , in other words, this de�nes an action of the group Λ
on the class of all unitary projective representations of general isotropy subgroups
of Λ.
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It is easy to see from Proposition II.3.9 that whenever S = (H , 𝑢,𝑤) ∈ CSRΛ0 ,
the triple 𝑟 · S = (H , 𝑟 ·𝑢, 𝑟 ·𝑤) is a CSR in CSR𝑟Λ0𝑟−1 . If𝑈 = RΛ0 (S) is the unitary
representation of G o Λ0, then it is easy to see by restriction that R𝑟Λ0𝑟−1 (𝑟 · S) is
the unitary representation 𝑟 ·𝑈 = (id ⊗𝛼∗

𝑟−1
⊗ Ad∗

𝑟−1 ) (𝑈 ) of G o 𝑟Λ0𝑟
−1, as described

in Proposition II.5.1. Thus by Corollary II.4.4, we see that Ind(𝑈 ) and Ind(𝑟 ·𝑈 ) are
equivalent representations of G o Λ.

Similarly, for any representation parameter (𝑢,𝑉 , 𝑣) associated with Λ0 and any
𝑟 ∈ Λ, the triple (𝑟 ·𝑢, 𝑟 ·𝑉 , 𝑟 ·𝑣) is a representation parameter associated with 𝑟Λ0𝑟

−1,
which we denoted by 𝑟 · (𝑢,𝑉 , 𝑣). This clearly de�nes an Λ-action on the proper class
of all representation parameters associated with any group in some conjugacy class
of a general isotropy subgroup ofΛ. A simple calculation shows that (recallS(𝑢,𝑉 , 𝑣)
is the CSR parameterized by (𝑢,𝑉 , 𝑣))

∀𝑟 ∈ Λ, 𝑟 · S(𝑢,𝑉 , 𝑣) = S
(
𝑟 · (𝑢,𝑉 , 𝑣)

)
. (II.10.1)

De�nition II.10.1. Let (𝑢,𝑉 , 𝑣) be a representation parameter associated with some
Λ0 ∈ Giso (Λ), the induced representation Ind

(
RΛ0

(
S(𝑢,𝑉 , 𝑣)

) )
of GoΛ is called the

representation of G o Λ parameterized by (𝑢,𝑉 , 𝑣).

Proposition II.10.2. Let (𝑢,𝑉 , 𝑣) be a representation parameter associated with some
Λ0 ∈ Giso (Λ). Then for any 𝑟 ∈ Λ, the representation parameters (𝑢,𝑉 , 𝑣) and 𝑟 ·
(𝑢,𝑉 , 𝑣) parameterize equivalent representations of G o Λ.

Proof. Since RΛ0

(
S(𝑢,𝑉 , 𝑣)

)
and R𝑟Λ0𝑟−1

(
𝑟 ·S(𝑢,𝑉 , 𝑣)

)
induces equivalent represen-

tations of G o Λ, the proposition now follows from equation (II.10.1) and De�ni-
tion II.10.1. �

Proposition II.10.3. Fix a Λ0 ∈ Giso (Λ). Let (𝑢,𝑉 , 𝑣) be an irreducible representation
parameter associated with Λ0, 𝑈 denote the representation RΛ0

(
S(𝑢,𝑉 , 𝑣)

)
. If Λ0 =

Λ [𝑢 ] , then the the induced representation Ind(𝑈 ) of G o Λ is irreducible.

Proof. By Corollary II.6.4, the proposition amounts to show that

∀𝑟, 𝑠 ∈ Λ,

𝑟−1𝑠 ∉ Λ0 =⇒ dimMorGoΛ(𝑟,𝑠)
(
(𝑟 ·𝑈 ) |GoΛ(𝑟,𝑠) , (𝑠 ·𝑈 ) |GoΛ(𝑟,𝑠)

)
= 0,

(II.10.2)

where Λ(𝑟, 𝑠) = 𝑟Λ0𝑟
−1 ∩ 𝑠Λ0𝑠

−1. Since Λ0 = Λ [𝑢 ] , by the de�nition of Λ [𝑢 ] , we
have [𝑟 · 𝑢] ≠ [𝑠 · 𝑢] whenever 𝑟−1𝑠 ∉ Λ0. Now condition (II.10.2) holds by Proposi-
tion II.9.11. �

De�nition II.10.4. Fix a Λ0 ∈ Giso (Λ), an irreducible representation parameter
(𝑢,𝑉 , 𝑣) associated with Λ0 is called distinguished if Λ0 = Λ [𝑢 ] . When this is the
case, the irreducible unitary representation Ind(𝑈 ) ofGoΛ is called distinguished,
where𝑈 is the unitary representation RΛ0

(
S(𝑢,𝑉 , 𝑣)

)
of G o Λ0.

Remark II.10.5. The associated group of a distinguished representation parameter
must be an isotropy subgroup of Λ for the action Λ y Irr(G). More precisely, a
representation parameter (𝑢,𝑉 , 𝑣) is distinguished if and only if its associated group
is exactly the isotropy subgroup of [𝑢] ∈ Irr(G) under the action Λ y Irr(G). As
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we will see presently, in the formulation of our results on the classi�cation of irre-
ducible representations of G o Λ and the conjugation on Irr(G), only distinguished
representation parameters are needed. This makes one wonder why we pose the
family of general isotropy subgroup Giso (Λ) instead of only isotropy subgroups. The
main reason we need general isotropy subgroups of Λ is that in proving these re-
sults, as well as the formulation and the proof of the fusion rules, we need to express
the dimensions of various intertwiner spaces. The calculation of the dimensions of
these intertwiner spaces will rely on Proposition II.6.3, which clearly requires us to
consider the intersections of isotropy subgroups, i.e. general isotropy subgroups.

De�nition II.10.6. Let Λ0 be an isotropy subgroup of Λ for the action Λy Irr(G).
Suppose (𝑢1,𝑉1, 𝑣1) and (𝑢2,𝑉2, 𝑣2) are two distinguished representation parameters
associatedwithΛ0. If the CSRsS(𝑢1,𝑉1, 𝑣1) andS(𝑢2,𝑉2, 𝑣2) are isomorphic inCSRΛ0 ,
we say (𝑢1,𝑉1, 𝑣1) and (𝑢2,𝑉2, 𝑣2) are equivalent.

The following proposition serves to characterize equivalence of distinguished
representation parameters in some more concrete ways.

Proposition II.10.7. Let Λ0 be an isotropy subgroup of Λ for the action Λy Irr(G),
(𝑢1,𝑉1, 𝑣1) and (𝑢2,𝑉2, 𝑣2) two distinguished representation parameters associated with
Λ0. The following are equivalent:

(a) (𝑢1,𝑉1, 𝑣1) and (𝑢2,𝑉2, 𝑣2) are equivalent;

(b) (𝑢1,𝑉1, 𝑣1) and (𝑢2,𝑉2, 𝑣2) parameterize equivalent representations of G o Λ0;

(c) there exists a mapping b : Λ0 → T such that b𝑉1 and 𝑉2 share the same cocycle,
and both MorG (𝑢1, 𝑢2) ∩MorΛ0 (b𝑉1,𝑉2) and MorΛ0 (𝑣1, b𝑣2) are nonzero;

(d) there exists a mapping b : Λ0 → T such that b𝑉1 and 𝑉2 share the same cocy-
cle, and bothMorG (𝑢1, 𝑢2) ∩MorΛ0 (b𝑉1,𝑉2) andMorΛ0 (𝑣1, b𝑣2) contain unitary
operators.

Proof. The equivalence of (a) and (b) follows directly from the de�nitions. It is also
clear that (d) implies (c). If (c) holds, and

0 ≠ 𝑆 ∈ MorG (𝑢1, 𝑢2) ∩MorΛ0 (b𝑉1,𝑉2),
and 0 ≠ 𝑇 ∈ MorΛ0 (𝑣1, b𝑣2) = MorΛ0 (b−1𝑣1, 𝑣2),

(II.10.3)

then both 𝑆 and 𝑇 are invertible by Schur’s lemma as 𝑢1, 𝑢2, b−1𝑣1, 𝑣2 are all irre-
ducible. Since 𝑢1, 𝑢2, b𝑉1,𝑉2, 𝑣1, b𝑣2 are all unitary, we have

0 ≠ Υ𝑆 ∈ MorG (𝑢1, 𝑢2) ∩MorΛ0 (b𝑉1,𝑉2), and 0 ≠ Υ𝑇 ∈ MorΛ0 (𝑣1, b𝑣2), (II.10.4)

where 𝑆 = Υ𝑆 |𝑆 | is the polar decomposition of 𝑆 , and 𝑇 = Υ𝑇 |𝑇 | the polar decompo-
sition of 𝑇 . As 𝑆,𝑇 are invertible, Υ𝑆 and Υ𝑇 are unitary. This proves that (c) implies
(d).

Let K𝑖 be the representation space of 𝑣𝑖 for 𝑖 = 1, 2. By de�nition, S(𝑢𝑖 ,𝑉𝑖 , 𝑣𝑖 ) =
(idK𝑖

⊗𝑢, 𝑣𝑖 ×𝑉𝑖 ), and b−1𝑣𝑖 × b𝑉𝑖 = 𝑣𝑖 ×𝑉𝑖 for any mapping b : Λ0 → T. If (c) holds,
let 𝑆 , 𝑇 be operators as in (II.10.3), then

𝑇 ⊗ 𝑆 ∈ MorG (idK1 ⊗𝑢1, idK2 ⊗𝑢2) ∩MorΛ0 (𝑣1 ×𝑉1, 𝑣2 ×𝑉2). (II.10.5)
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Now (a) follows from (II.10.5), Proposition II.7.4 and the fact that both 𝑆 and 𝑇 are
invertible. Thus (c) implies (a).

We conclude the proof by showing (a) implies (d). By Schur’s lemma, and the
irreducibility of 𝑢1 and 𝑢2, it is easy to see that

MorG (idK1 ⊗𝑢1, idK2 ⊗𝑢2) = B(K1,K2) ⊗ MorG (𝑢1, 𝑢2). (II.10.6)

Suppose (a) holds. Then the intertwiner space given by the intersection in (II.10.5) is
nonzero, and

MorG (𝑢1, 𝑢2) = C𝑊𝑟 (II.10.7)

for some unitary operator𝑊𝑟 . By (II.10.6) and (a), there exists a unitary𝑊𝑙 ∈ B(K1,K2)
such that

𝑊𝑙 ⊗𝑊𝑟 ∈ MorΛ0 (𝑣1 ×𝑉1, 𝑣2 ×𝑉2) = MorΛ0

(
(b−1𝑣1) × (b𝑉1), 𝑣2 ×𝑉2

)
. (II.10.8)

By (II.10.7), both𝑊𝑟𝑉1𝑊
∗
𝑟 and 𝑉2 are covariant projective Λ0-representations of 𝑢2.

Thuswe can take a𝑢2-transitionalmapping b from𝑊𝑟𝑉1𝑊
∗
𝑟 to𝑉2 (seeDe�nition II.9.10),

i.e. a mapping b : Λ0 → T such that

𝑊𝑟 (b𝑉1)𝑊 ∗
𝑟 = b(𝑊𝑟𝑉1𝑊

∗
𝑟 ) = 𝑉2, (II.10.9)

which forces the cocycles of b𝑉1 and 𝑉2 coincide, and

𝑊𝑟 ∈ MorΛ0 (b𝑉1,𝑉2) ∩MorG (𝑢1, 𝑢2). (II.10.10)

Now (II.10.8) and (II.10.10) forces

𝑊𝑙 ∈ MorΛ0 (b−1𝑣1, 𝑣2) = MorΛ0 (𝑣1, b𝑣2). (II.10.11)

Thus (d) holds by (II.10.10) and (II.10.11). �

II.11 Density of matrix coe�cients of distinguished
representations

The aim of this section is to show that the linear span of matrix coe�cients of dis-
tinguished representations of G o Λ is exactly Pol(G) ⊗ 𝐶 (Λ), hence is dense in
𝐶 (G o Λ) = 𝐴 ⊗ 𝐶 (Λ) in particular. As a consequence, any irreducible unitary rep-
resentation of G o Λ is equivalent to a distinguished one.

The following lemma essentially establishes the density of the linear span of ma-
trix coe�cients of distinguished representations of G o Λ in 𝐶 (G o Λ) = 𝐴 ⊗ 𝐶 (Λ).

Lemma II.11.1. Let 𝑢 be an irreducible unitary representation of G on some �nite
dimensional Hilbert space H , 𝑥 = [𝑢] ∈ Irr(G), 𝑉 the covariant projective Λ𝑥 -
representation of𝑢 with cocycle𝜔 . Let𝑀 (𝑢) denote the linear subspace of Pol(G)⊗𝐶 (Λ)
spanned by matrix coe�cients of distinguished representations of GoΛ parameterized
by distinguished representation parameters of the form (𝑢,𝑉 , 𝑣), where 𝑣 runs through
all irreducible unitary projective representations of Λ𝑥 with cocycle 𝜔−1 = 𝜔 . For any
𝑟 ∈ Λ, suppose𝑀𝑐 (𝑟 ·𝑢) is the linear subspace of Pol(G) spanned by matrix coe�cients
of 𝑟 · 𝑢, then

𝑀 (𝑢) =
∑︁
𝑟 ∈Λ

𝑀𝑐 (𝑟 · 𝑢) ⊗ 𝐶 (Λ) =
(∑︁
𝑟 ∈Λ

𝑀𝑐 (𝑟 · 𝑢)
)
⊗ 𝐶 (Λ). (II.11.1)
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Proof. Take any irreducible unitary projective representation 𝑣 of Λ𝑥 on some �-
nite dimensional Hilbert space K with cocycle 𝜔 , then (𝑢,𝑉 , 𝑣) is a distinguished
representation parameter. The distinguished CSR S(𝑢,𝑉 , 𝑣) subordinate to Λ𝑥 pa-
rameterized by (𝑢,𝑉 , 𝑣) is given by

S(𝑢,𝑉 , 𝑣) = (K ⊗ H , idK ⊗𝑢, 𝑣 ×𝑉 ) (II.11.2)

by de�nition. Let 𝑈 = RΛ0

(
S(𝑢,𝑉 , 𝑣)

)
, then the distinguished representation𝑊 =

Ind(𝑈 ) of GoΛ parameterized by (𝑢,𝑉 , 𝑣) is obtained as follows by the construction
of induced representations presented in § II.4. First we de�ne a unitary representa-
tion

𝑊 =
∑︁
𝑟,𝑠∈Λ

𝑒𝑟𝑠−1,𝑟 ⊗ idK ⊗[(idH ⊗𝛼∗
𝑟𝑠−1 ) (𝑢)] ⊗ 𝛿𝑠

∈ B(ℓ2 (Λ)) ⊗ B(K ) ⊗ B(H ) ⊗ Pol(G) ⊗ 𝐶 (Λ)
(II.11.3)

of G o Λ on ℓ2 (Λ) ⊗ K ⊗ H . The subspace

H(𝑢,𝑉 ,𝑣) =

{∑︁
𝑟 ∈Λ

𝛿𝑟 ⊗ 𝜁𝑟 : 𝜁𝑟 ∈ K ⊗ H , and 𝜁𝑟0𝑟 =
(
𝑣 (𝑟0) ⊗ 𝑉 (𝑟0)

)
𝜁𝑟

for all 𝑟0 ∈ Λ0, 𝑟 ∈ Λ

}
(II.11.4)

of ℓ2 (Λ) ⊗ K ⊗ H is invariant under𝑊 and𝑊 is the subrepresentation H(𝑢,𝑉 ,𝑣)
of𝑊 . Recall (Lemma II.4.5) that the projection 𝜋 ∈ B(ℓ2 (Λ) ⊗ K ⊗ H ) with range
H𝑢,𝑉 ,𝑣 is given by

𝜋 =
1

|Λ𝑥 |
∑︁
𝑟0∈Λ𝑥

∑︁
𝑠∈Λ

𝑒𝑟0𝑠,𝑠 ⊗ 𝑣 (𝑟0) ⊗ 𝑉 (𝑟0). (II.11.5)

Since vectors of the form 𝛿𝑟 ⊗ 𝜉 ⊗ 𝜂, 𝑟 ∈ Λ, 𝜉 ∈ K , 𝜂 ∈ H span ℓ2 (Λ) ⊗ K ⊗ H ,
the matrix coe�cients of𝑊 is spanned by elements of Pol(G) ⊗ 𝐶 (Λ) of the form

𝑐 (𝑣 ; 𝑟, 𝑠, 𝜉1, 𝜉2, 𝜂1, 𝜂2)
= (𝜔𝜋 (𝛿𝑟 ⊗𝜉1⊗𝜂1),𝜋 (𝛿𝑠 ⊗𝜉2⊗𝜂2) ⊗ idPol(G) ⊗ id𝐶 (Λ) ) (𝑊 )
= (𝜔𝛿𝑟 ⊗𝜉1⊗𝜂1,𝛿𝑠 ⊗𝜉2⊗𝜂2 ⊗ id ⊗ id)

(
(𝜋 ⊗ 1 ⊗ 1)𝑊 (𝜋 ⊗ 1 ⊗ 1)

)
= (𝜔𝛿𝑟 ⊗𝜉1⊗𝜂1,𝛿𝑠 ⊗𝜉2⊗𝜂2 ⊗ id ⊗ id)

(
𝑊 (𝜋 ⊗ 1 ⊗ 1)

)
,

(II.11.6)

where the last equality follows from Lemma II.4.5, and𝜔𝑥,𝑦 is the linear form 〈 · 𝑥 , 𝑦〉.
By (II.11.3) and (II.11.5), we see that

|Λ0 | ·
[
𝑊 (𝜋 ⊗ 1 ⊗ 1)

]
(𝛿𝑟 ⊗ 𝜉1 ⊗ 𝜂1 ⊗ 1 ⊗ 1)

=
∑︁

𝑟 ′,𝑠′,𝑡 ∈Λ,
𝑟0∈Λ𝑥

[
𝑒𝑟 ′𝑠′−1,𝑟 ′𝑒𝑟0𝑡,𝑡 ⊗ 𝑣 (𝑟0) ⊗

( (
(𝑠 ′𝑟 ′−1) · 𝑢

) (
𝑉 (𝑟0) ⊗ 1

) )
⊗ 𝛿𝑠′

]
· (𝛿𝑟 ⊗ 𝜉1 ⊗ 𝜂1 ⊗ 1 ⊗ 1)

(Only terms with 𝑡 = 𝑟 , and 𝑟 ′ = 𝑟0𝑡 = 𝑟0𝑟 can be nonzero)

=
∑︁
𝑠′∈Λ

∑︁
𝑟0∈Λ𝑥

𝛿𝑟0𝑟𝑠′−1 ⊗ [𝑣 (𝑟0)𝜉1] ⊗
[ (
(𝑠 ′𝑟−1𝑟−10 ) · 𝑢

) (
𝑉 (𝑟0)𝜂1 ⊗ 1

) ]
⊗ 𝛿𝑠′ .

(II.11.7)

Note that 𝑟0𝑟𝑠 ′−1 = 𝑠 ⇐⇒ 𝑠 ′ = 𝑠−1𝑟0𝑟 ⇐⇒ 𝑠 ′𝑟−1𝑟−10 = 𝑠−1, by (II.11.6) and (II.11.7),
we have

𝑐 (𝑣 ; 𝑟, 𝑠, 𝜉1, 𝜉2, 𝜂1, 𝜂2) =
∑︁
𝑟0∈Λ𝑥

𝜔𝜉1,𝜉2
(
𝑣 (𝑟0)

) [
(𝜔𝑉 (𝑟0)𝜂1,𝜂2⊗ id) (𝑠−1 ·𝑢)

]
⊗𝛿𝑠−1𝑟0𝑟 . (II.11.8)
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For any 𝑟0 ∈ Λ𝑥 , we have

𝜔𝜉1,𝜉2
(
𝑣 (𝑟0)

)
∈ C and

[
(𝜔𝑉 (𝑟0)𝜂1,𝜂2 ⊗ id) (𝑠−1 · 𝑢)

]
∈ 𝑀𝑐 (𝑠−1 · 𝑢). (II.11.9)

By (II.11.8) and (II.11.9), we have

𝑐 (𝑣 ; 𝑟, 𝑠, 𝜉1, 𝜉2, 𝜂1, 𝜂2) ∈ 𝑀𝑐 (𝑠−1 · 𝑢) ⊗ 𝐶 (Λ), (II.11.10)

which proves that

𝑀 (𝑢) ⊆
∑︁
𝑟 ′∈Λ

𝑀𝑐 (𝑟 ′ · 𝑢) ⊗ 𝐶 (Λ) =
(∑︁
𝑟 ′∈Λ

𝑀𝑐 (𝑟 ′ · 𝑢)
)
⊗ 𝐶 (Λ). (II.11.11)

It remains to establish the reverse inclusion, which is easily seen to be equivalent to
show that for any 𝑟1, 𝑟2 ∈ Λ, we have

𝑀 (𝑢) ⊇ 𝑀𝑐 (𝑟1 · 𝑢) ⊗ 𝛿𝑟2 . (II.11.12)

By the general theory of projective representations, there exists irreducible uni-
tary projective representations 𝑣1, . . . , 𝑣𝑚 on K1, . . . ,K𝑚 respectively, all with cocy-
cle 𝜔 , and 𝜉 (𝑖)1 , 𝜉

(𝑖)
2 ∈ K𝑖 , such that

𝑚∑︁
𝑖=1

(
𝜔
𝜉
(𝑖 )
1 ,𝜉

(𝑖 )
2

⊗ id
)
(𝑣𝑖 ) = 𝛿𝑒 ∈ 𝐶 (Λ𝑥 ). (II.11.13)

By (II.11.8) and (II.11.13), we see that for any 𝑟, 𝑠 ∈ Λ, and any 𝜂1, 𝜂2 ∈ H , 𝑀 (𝑢)
contains

𝑛∑︁
𝑖=1

𝑐 (𝑣𝑖 ; 𝑟, 𝑠𝜉 (𝑖)1 , 𝜉
(𝑖)
2 , 𝜂1, 𝜂2)

=
∑︁
𝑟0∈Λ𝑥

𝛿𝑒 (𝑟0)
[
(𝜔𝑉 (𝑟0)𝜂1,𝜂2 ⊗ id) (𝑠−1 · 𝑢)

]
⊗ 𝛿𝑠−1𝑟0𝑟

(Only terms with 𝑟0 = 𝑒 can be nonzero, and 𝑉 (𝑒) = idH )
=

[
(𝜔𝜂1,𝜂2 ⊗ id) (𝑠−1 · 𝑢)

]
⊗ 𝛿𝑠−1𝑟 .

(II.11.14)

Taking 𝑠 = 𝑟−11 and 𝑟 = 𝑠𝑟2 = 𝑟−11 𝑟2 in (II.11.14) proves (II.11.12) and �nishes the proof
of the lemma. �

Proposition II.11.2. The linear span of matrix coe�cients of distinguished represen-
tations of GoΛ in Pol(G) ⊗𝐶 (Λ) is Pol(G) ⊗𝐶 (Λ) itself. In particular, every unitary
irreducible representation of G o Λ is unitarily equivalent to a distinguished one.

Proof. The �rst assertion follows from Lemma II.11.1, and the second assertion fol-
lows from the �rst and the orthogonality relations of irreducible representations of
G o Λ. �

II.12 Classi�cation of irreducible representations of G o Λ

For each isotropy subgroup Λ0 of Λ, let 𝔇Λ0denotes the collection of equivalence
classes of distinguished representation parameters associated with Λ0. By Proposi-
tion II.10.7, the mapping

ΨΛ0 : 𝔇Λ0 → Irr(G o Λ)
[(𝑢,𝑉 , 𝑣)] ↦→ RΛ0

(
S(𝑢,𝑉 , 𝑣)

) (II.12.1)
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is well-de�ned and injective. In particular,𝔇Λ0 is a set (instead of a proper class). Let
𝔇 be the collection of equivalence classes of distinguished representation parameters
associated with any isotropy subgroup of Λ. By de�nition,𝔇 is the disjoint union of
𝔇Λ0 as Λ0 runs through all isotropy subgroups of Λ, hence 𝔇 is also a set. For any
[(𝑢,𝑉 , 𝑣)] ∈ 𝔇Λ0 and any 𝑟 ∈ Λ, 𝑟 · [(𝑢,𝑉 , 𝑣)] = [𝑟 · (𝑢,𝑉 , 𝑣)] is a well-de�ned class
in 𝔇𝑟Λ0𝑟−1 . This de�nes an action of Λ on 𝔇. We are now ready to state and prove
the classi�cation of irreducible representations of G o Λ.

Theorem II.12.1 (Classi�cation of irreducible representations of G o Λ). The map-
ping

Ψ : 𝔇 → Irr(G o Λ)

[(𝑢,𝑉 , 𝑣)] ∈ 𝔇Λ0 ↦→ ΨΛ0

(
[(𝑢,𝑉 , 𝑣)]

)
= Ind

(
RΛ0

(
S(𝑢,𝑉 , 𝑣)

) ) (II.12.2)

is surjective, and the �bers of Ψ are exactly the Λ-orbits in𝔇.

Proof. By Proposition II.11.2, Ψ is surjective. By Corollary II.5.2 and (II.10.1), each
Λ-orbits in 𝔇 maps to the same point under Ψ. It remains to show that if (𝑢𝑖 ,𝑉𝑖 , 𝑣𝑖 )
is a distinguished representation parameter with associated subgroup Λ𝑖 for 𝑖 = 1, 2,
and

Ψ
(
[(𝑢1,𝑉1, 𝑣1)]

)
= Ψ

(
[(𝑢2,𝑉2, 𝑣2)]

)
, (II.12.3)

then there exists an 𝑟0 ∈ Λ, such that

𝑟0 · [(𝑢1,𝑉1, 𝑣1)] = [(𝑢2,𝑉2, 𝑣2)] ∈ 𝔇Λ2 . (II.12.4)

Let S𝑖 = S(𝑢𝑖 ,𝑉𝑖 , 𝑣𝑖 ), 𝑈𝑖 = RΛ𝑖 (S𝑖 ) for 𝑖 = 1, 2. If [𝑢2] ∉ Λ · [𝑢1], then by Proposi-
tion II.9.11, we have

∀𝑟, 𝑠 ∈ Λ, dimMorGoΛ(𝑟,𝑠)
(
(𝑟 ·𝑈1) |GoΛ(𝑟,𝑠) , (𝑠 ·𝑈2) |GoΛ(𝑟,𝑠)

)
= 0, (II.12.5)

where Λ(𝑟, 𝑠) = 𝑟Λ1𝑟
−1 ∩ 𝑠Λ2𝑠

−1. This is because (𝑟 · 𝑈1) |GoΛ(𝑟,𝑠) is parameterized
by the representation parameter (𝑢1,𝑉1 |Λ(𝑟,𝑠) , 𝑣1 |Λ(𝑟,𝑠) ) associated with Λ(𝑟, 𝑠), and a
similar assertion holds for (𝑠 ·𝑈2) |GoΛ(𝑟,𝑠) . Thus

dimMorGoΛ
(
Ind(𝑈1), Ind(𝑈2)

)
= 0 (II.12.6)

by Proposition II.6.3, which contradicts (II.12.3).
Thus [𝑢2] ∈ Λ · [𝑢1], by replacing [(𝑢1,𝑉1, 𝑣1)] with 𝑟0 · [(𝑢1,𝑉1, 𝑣1)] for some

𝑟0 ∈ Λ if necessary, we may assume without loss of generality that [𝑢1] = [𝑢2] ∈
Irr(G), and Λ1 = Λ2, which we now denote by Λ0. It remains to prove that under
this assumption, we have

[(𝑢1,𝑉1, 𝑣1)] = [(𝑢2,𝑉2, 𝑣2)] ∈ 𝔇Λ0 (II.12.7)

Since when 𝑟−1𝑠 ∉ Λ0 if and only if 𝑟 · [𝑢1] ≠ 𝑠 · [𝑢2], we have

∀𝑟, 𝑠 ∈ Λ, 𝑟−1𝑠 ∉ Λ0 =⇒ dimMorGoΛ(𝑟,𝑠)
(
(𝑟 ·𝑈1) |GoΛ(𝑟,𝑠) , (𝑟 ·𝑈2) |GoΛ(𝑟,𝑠)

)
= 0.

(II.12.8)
Note that when 𝑟−1𝑠 ∈ Λ0, we have Λ(𝑟, 𝑠) = 𝑟Λ0𝑟

−1 = 𝑠Λ0𝑠
−1, and [Λ : Λ(𝑟, 𝑠)] =

[Λ : Λ0]. By (II.12.3), (II.12.8) and Proposition II.6.3, we have

1 =
1

|Λ0 |2 [Λ : Λ0]
∑︁
𝑟,𝑠∈Λ,
𝑟−1𝑠∈Λ0

dimMorGo𝑟Λ0𝑟−1
(
𝑟 ·𝑈1, 𝑠 ·𝑈2

)
. (II.12.9)
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Since 𝑟 ·𝑈1, 𝑠 ·𝑈2 are both irreducible, we have

𝑟−1𝑠 ∈ Λ0 =⇒ dimMorGo𝑟Λ0𝑟−1
(
𝑟 ·𝑈1, 𝑠 ·𝑈2

)
= 0 or 1. (II.12.10)

Note that there are |Λ0 |2 [Λ : Λ0] = |Λ| · |Λ0 | terms on the right side of (II.12.9),
(II.12.10) forces

𝑟−1𝑠 ∈ Λ0 =⇒ dimMorGo𝑟Λ0𝑟−1
(
𝑟 ·𝑈1, 𝑠 ·𝑈2

)
= 1. (II.12.11)

In particular, taking 𝑟 = 𝑠 = 1Λ in (II.12.11) shows that𝑈1 and𝑈2 are equivalent, hence
(II.12.7) holds by Proposition II.10.7. This �nishes the proof of the theorem. �

II.13 The conjugate representation of distinguished
representations

We now study the conjugation of irreducible representations of G o Λ in terms of
the classi�cation presented in Theorem II.12.1. There is a small complication here
in the non-Kac type case, where the contragredient of a unitary representation need
not be unitary. Resolving this kind of question involves the modular operator, just
as in Proposition II.7.7.

We begin with a simple lemma on linear operators.

Lemma II.13.1. Let H be a Hilbert space,𝑈 , 𝑃 ∈ B(H ) such that𝑈 is unitary, 𝑃 is
invertible and positive, if 𝑃𝑈𝑃−1 is unitary, then 𝑃𝑈𝑃−1 = 𝑈 , i.e. 𝑃 commutes with𝑈 .

Proof. Let 𝑉 = 𝑃𝑈𝑃−1. We have

𝑃𝑈 ∗𝑃−1 = 𝑃𝑈 −1𝑃−1 = 𝑉 −1 = 𝑉 ∗ = 𝑃−1𝑈 ∗𝑃 . (II.13.1)

Thus𝑈 ∗ commuteswith the positive operator 𝑃2. Hence𝑈 ∗ commuteswith (𝑃2)1/2 =
𝑃 , i.e.𝑈 ∗𝑃 = 𝑃𝑈 ∗. Taking adjoints of this proves 𝑃𝑈 = 𝑈𝑃 . �

Proposition II.13.2. Let𝑢 be an irreducible unitary representation ofG,Λ0 a subgroup
of the isotropy subgroupΛ [𝑢 ] ,𝑉 a covariant projectiveΛ0-representation of𝑢. Then any
operator 𝜌 ∈ MorG (𝑢,𝑢𝑐𝑐 ) commutes with 𝑉 (i.e. 𝜌𝑉 (𝑟0) = 𝑉 (𝑟0)𝜌 for all 𝑟0 ∈ Λ0).

Proof. Since 𝑢 is irreducible, MorG (𝑢,𝑢𝑐𝑐 ) is a one dimensional space spanned by an
invertible positive operator ((Neshveyev and Tuset, 2013, Lemma 1.3.12)). By de�-
nition (see (Neshveyev and Tuset, 2013, Proposition 1.4.4 and De�nition 1.4.5)), the
conjugation 𝑢 of 𝑢 is given by

𝑢 =
(
𝑗 (𝜌𝑢)1/2 ⊗ 1

)
𝑢𝑐

(
𝑗 (𝜌𝑢)−1/2 ⊗ 1

)
, (II.13.2)

where 𝜌𝑢 is the unique positive operator in MorG (𝑢,𝑢𝑐𝑐 ) with Tr(𝜌𝑢) = Tr(𝜌−1𝑢 ).
Since MorG (𝑢,𝑢𝑐𝑐 ) = C𝜌𝑢 , it su�ces to show that 𝜌𝑢 commutes with 𝑉 .

Since 𝑢, 𝑉 are covariant, we have

∀𝑟0 ∈ Λ0,
(
𝑉 (𝑟0) ⊗ 1

)
(𝑟0 · 𝑢) = 𝑢

(
𝑉 (𝑟0) ⊗ 1

)
. (II.13.3)

Taking the adjoint of both sides of (II.13.3) then applying 𝑗 ⊗ id, we get

∀𝑟0 ∈ Λ0,
(
𝑉 𝑐 (𝑟0) ⊗ 1

)
(𝑟0 · 𝑢𝑐 ) = 𝑢𝑐

(
𝑉 𝑐 (𝑟0) ⊗ 1

)
, (II.13.4)



II.13. THE CONJUGATE REPRESENTATION OF DISTINGUISHED
REPRESENTATIONS 107

where
𝑉 𝑐 = ( 𝑗 ⊗ id) (𝑉 −1) = ( 𝑗 ⊗ id) (𝑉 ∗) (II.13.5)

is the contragredient of 𝑉 , and

𝑢𝑐 = ( 𝑗 ⊗ id) (𝑢−1) = ( 𝑗 ⊗ id) (𝑢∗) (II.13.6)

the contragredient of 𝑢. We pose

𝑉 =
(
𝑗 (𝜌𝑢)1/2 ⊗ 1

)
𝑉 𝑐

(
𝑗 (𝜌𝑢)−1/2 ⊗ 1

)
, (II.13.7)

then by (II.13.4) and (II.13.2), we have

∀𝑟0 ∈ Λ0,
(
𝑉 (𝑟0) ⊗ 1

)
(𝑟0 · 𝑢) = 𝑢

(
𝑉 (𝑟0) ⊗ 1

)
. (II.13.8)

Thus for any 𝑟0 ∈ Λ0, 𝑉 (𝑟0) ∈ MorG (𝑟0 · 𝑢,𝑢), which is a one dimensional space
spanned by a unitary operator since both 𝑟0 · 𝑢 and 𝑢 are irreducible unitary repre-
sentations of G. Note that 𝑉 𝑐 (𝑟0) = 𝑗

(
𝑉 (𝑟0)∗

)
is unitary, by (II.13.7), we have

det
(
𝑉 (𝑟0)

)
= det

(
𝑗 (𝜌𝑢)1/2𝑉 𝑐 (𝑟0) 𝑗 (𝜌𝑢)−1/2

)
= det

(
𝑉 𝑐 (𝑟0)

)
∈ T. (II.13.9)

This forces 𝑉 (𝑟0) to be unitary since it is a scalar multiple of a unitary operator.
Applying Lemma II.13.1 to (II.13.7) (evaluated on each 𝑟0 ∈ Λ0), we see that

𝑉 𝑐 = 𝑉 =
(
𝑗 (𝜌𝑢)1/2 ⊗ 1

)
𝑉 𝑐

(
𝑗 (𝜌𝑢)−1/2 ⊗ 1

)
. (II.13.10)

Applying 𝑗 ⊗ id to the inverse of both sides of (II.13.10) and note that 𝑉 𝑐𝑐 = 𝑉 , we
see that

𝑉 = 𝑉 𝑐𝑐 = (𝜌1/2𝑢 ⊗ 1)𝑉 𝑐𝑐 (𝜌−1/2𝑢 ⊗ 1) = (𝜌1/2𝑢 ⊗ 1)𝑉 (𝜌−1/2𝑢 ⊗ 1), (II.13.11)

i.e. 𝜌1/2𝑢 (hence 𝜌𝑢 ) commutes with 𝑉 . �

Proposition II.13.3. Let (𝑢,𝑉 , 𝑣) be a representation parameter associated with some
Λ0 ∈ Giso (Λ),𝑈 is the unitary representation ofGoΛ0 parameterized by (𝑢,𝑉 , 𝑣), then
the following hold:

(a) (𝑢,𝑉 𝑐 , 𝑣𝑐 ) is also a representation parameter;

(b) 𝜌𝑈 = idH𝑣
⊗𝜌𝑢 , where 𝜌𝑈 (resp. 𝜌𝑢 ) is themodular operator for the representation

𝑈 (resp. 𝑢);

(c) 𝑈 is parameterized by (𝑢,𝑉 𝑐 , 𝑣𝑐 ).

Proof. As we’ve seen in Proposition II.13.2 and its proof, we have 𝑉 (𝑟0) ∈ MorG (𝑟0 ·
𝑢,𝑢) for all 𝑟0 ∈ Λ0, thus 𝑉 𝑐 = 𝑉 is covariant with 𝑢. Since

∀𝑟0 ∈ Λ0, (𝑣𝑐 ×𝑉 𝑐 ) (𝑟0) = 𝑗
(
[𝑣 (𝑟0)]−1 ⊗ [𝑉 (𝑟0)]−1

)
= 𝑗

(
{[(𝑣 ×𝑉 )] (𝑟0)}−1

) (II.13.12)

𝑣𝑐 × 𝑉 𝑐 is the contragredient of the unitary representation 𝑣 × 𝑉 of Λ0, hence is a
unitary representation itself. Thus 𝑣𝑐 and 𝑉 𝑐 are unitary projective representations
with opposing cocycles. This proves (a).
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To prove (b), by the characterizing property of 𝜌𝑈 , it su�ces to show that the
invertible positive operator id ⊗𝜌𝑢 satis�es

id ⊗𝜌𝑢 ∈ MorG (𝑈 ,𝑈 𝑐𝑐 ) (II.13.13)

and (by Proposition II.7.4 and Schur’s lemma applied to the irreducible representation
𝑢)

Tr((·) (id ⊗𝜌𝑢)) = Tr((·) (id ⊗𝜌−1𝑢 ))
∈ EndGoΛ0 (𝑈 ) = EndG (id ⊗𝑢) ∩ EndΛ0 (𝑣 ×𝑉 ) ⊆ B(H𝑣) ⊗ C id .

(II.13.14)

Since Tr(𝜌𝑢) = Tr(𝜌−1𝑢 ), (II.13.14) holds. We now prove (II.13.13). As is seen in the
proof of Proposition II.13.2, condition (II.13.3) holds, and a similar calculation by
applying 𝑗 ⊗ id to the inverse of both sides of (II.13.3) yields (note that 𝑉 𝑐𝑐 = 𝑉 ),

∀𝑟0 ∈ Λ0,
(
𝑉 (𝑟0) ⊗ 1

)
(𝑟0 · 𝑢𝑐𝑐 ) = 𝑢𝑐𝑐

(
𝑉 (𝑟0) ⊗ 1

)
. (II.13.15)

By de�nition, we have

𝑈 = (id ⊗𝑢)123 (𝑣 ×𝑉 )124 = (id ⊗𝑢 ⊗ 1)𝑣14𝑉24
∈ B(H𝑣) ⊗ B(H𝑢) ⊗ Pol(G) ⊗ 𝐶 (Λ0).

(II.13.16)

Thus
𝑈 𝑐 = ( 𝑗 ⊗ 𝑗 ⊗ id ⊗ id) (𝑈 −1) = (id ⊗𝑢𝑐 ⊗ 1)𝑣𝑐14𝑉 𝑐24, (II.13.17)

and
𝑈 𝑐𝑐 = (id ⊗𝑢𝑐𝑐 ⊗ 1)𝑣𝑐𝑐14𝑉 𝑐𝑐24 = (id ⊗𝑢𝑐𝑐 ⊗ 1)𝑣14𝑉24. (II.13.18)

By (II.13.16), (II.13.18) and Proposition II.13.2, we have

(id ⊗𝜌𝑢 ⊗ 1 ⊗ 1)𝑈 = (id ⊗𝜌𝑢 ⊗ 1 ⊗ 1) (id ⊗𝑢 ⊗ 1)𝑣14𝑉24
= (id ⊗𝑢𝑐𝑐 ⊗ 1)𝑣14 [(id ⊗𝜌𝑢 ⊗ 1 ⊗ 1)𝑉24]
= (id ⊗𝑢𝑐𝑐 ⊗ 1)𝑣14𝑉24 (id ⊗𝜌𝑢 ⊗ 1 ⊗ 1)
= 𝑈 𝑐𝑐 (id ⊗𝜌𝑢 ⊗ 1 ⊗ 1).

(II.13.19)

This proves (II.13.13) and �nishes the proof of (b).
By Proposition II.7.7 and (b), 𝑈 corresponds to the CSR (H𝑢, 𝑢

′,𝑤 ′) in CSRΛ0 ,
where H𝑢 is the underlying �nite dimensional Hilbert space of 𝑢,

𝑢 ′ = (id ⊗ 𝑗 (𝜌)1/2 ⊗ 1) (id ⊗𝑢𝑐 ) (id ⊗ 𝑗 (𝜌)−1/2 ⊗ 1) = id ⊗𝑢, (II.13.20)

and

𝑤 ′ = (id ⊗ 𝑗 (𝜌)1/2 ⊗ 1) (𝑣𝑐13𝑉 𝑐23) (id ⊗ 𝑗 (𝜌)−1/2 ⊗ 1)
= 𝑣𝑐13 [(id ⊗ 𝑗 (𝜌)1/2 ⊗ 1)𝑉 𝑐23 (id ⊗ 𝑗 (𝜌)1/2 ⊗ 1)]
= 𝑣𝑐13𝑉

𝑐
23 = 𝑣

𝑐 ×𝑉 𝑐 .
(II.13.21)

Thus the CSR (H𝑢, 𝑢
′,𝑤 ′), and consequently𝑈 , is indeed parameterized by (𝑢, 𝑣𝑐 ,𝑉 𝑐 ),

which proves (c). �

Proposition II.13.2 motivates the following de�nition.
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De�nition II.13.4. Let (𝑢,𝑉 , 𝑣) be a representation parameter associated with some
Λ0 ∈ Giso (Λ), the representation parameter (𝑢,𝑉 𝑐 , 𝑣𝑐 ) is called the conjugate of
(𝑢,𝑉 , 𝑣).

By Proposition II.10.7 and Corollary II.9.12, it is clear that the conjugation of
an irreducible representation parameter is irreducible, and [(𝑢,𝑉 , 𝑣)] = [(𝑢,𝑉 𝑐 , 𝑣𝑐 )]
gives a well-de�ned mapping (·) : 𝔇 → 𝔇. The following theorem describes how
the conjugate representation of irreducible (unitary) representation of G o Λ looks
like in terms of the classi�cation given in Theorem II.12.1.

Theorem II.13.5. Let [(𝑢,𝑉 , 𝑣)] ∈ 𝔇, 𝑥 = Ψ( [(𝑢,𝑉 , 𝑣)]) ∈ Irr(G o Λ), then

𝑥 = Ψ( [(𝑢,𝑉 , 𝑣)]) = Ψ( [(𝑢,𝑉 𝑐 , 𝑣𝑐 )]). (II.13.22)

Proof. This follows immediately from Proposition II.13.3 and the character formula
(II.5.3) for representations induced from representations of principal subgroups of
G o Λ. �

II.14 The incidence numbers

Wenow turn our attention to the fusion rules ofGoΛ. We de�ne and study incidence
numbers in this section, and use these numbers to express the fusion rules in § II.15.

De�nition II.14.1. For 𝑖 = 1, 2, 3, let Λ𝑖 ∈ Giso (Λ). Suppose 𝑈𝑖 is a unitary repre-
sentation of GoΛ𝑖 , and 𝑟𝑖 ∈ Λ, then the incidence number of (𝑟1, 𝑟2, 𝑟3) relative to
(𝑈1,𝑈2,𝑈3), denoted by𝑚𝑈1,𝑈2,𝑈3 (𝑟1, 𝑟2, 𝑟3), is de�ned by

𝑚𝑈1,𝑈2,𝑈3 (𝑟1, 𝑟2, 𝑟3)
= dimMorGoΛ0

(
(𝑟1 ·𝑈1) |GoΛ0 , (𝑟2 ·𝑈2) |GoΛ0 × (𝑟3 ·𝑈3) |GoΛ0

)
,

(II.14.1)

where Λ0 = ∩3
𝑖=1𝑟𝑖Λ𝑖𝑟

−1
𝑖 .

We now aim to express the incidence numbers in terms of characters. Let Θ,Ξ
be two subgroups of Λwith Θ ⊆ Ξ. Recall that𝐶 (G) = 𝐴. Suppose 𝐹 =

∑
𝑟 ∈Ξ 𝑎𝑟 ⊗ 𝛿𝑟 ,

𝑎𝑟 ∈ 𝐴 is an element of 𝐶 (G) ⊗ 𝐶 (Ξ) = 𝐴 ⊗ 𝐶 (Ξ). We use 𝐹 |GoΘ to denote the
element ∑

𝑟 ∈Θ 𝑎𝑟 ⊗ 𝛿𝑟 in G o Θ, and call it the restriction of 𝐹 to G o Θ. A simple
calculation shows that this restriction operation gives a surjective unital morphism
of 𝐶∗-algebras from 𝐶 (G o Ξ) = 𝐴 ⊗ 𝐶 (Ξ) to 𝐶 (G o Θ) = 𝐴 ⊗ 𝐶 (Θ) that also pre-
serves comultiplication, thus allows us to view G o Θ as a closed subgroup of G o Ξ
in the sense of De�nition II.3.1. Recall that we also have the extension morphism
𝐸Λ0 : 𝐶 (Λ0) → 𝐶 (Λ), 𝛿𝑟0 ↦→ 𝛿𝑟0 for every subgroup Λ0 of Λ, which simply sends each
function in 𝐶 (Λ0) to its unique extension in 𝐶 (Λ) that vanishes outside Λ0. Finally,
we useℎΛ0 to denote theHaar state onGoΛ0. For 𝑖 = 1, 2, 3, letΛ𝑖 ∈ Giso (Λ). Suppose
𝑈𝑖 is a unitary representation ofGoΛ𝑖 , 𝜒𝑖 is the character of𝑈𝑖 . LetΛ0 = ∩3

𝑖=1𝑟𝑖Λ𝑖𝑟
−1
𝑖 .

Then we have the following formula to calculate the incidence numbers in terms of
characters.

∀𝑟1, 𝑟2, 𝑟3 ∈ Λ, 𝑚𝑈1,𝑈2,𝑈3 (𝑟1, 𝑟2, 𝑟3)

= ℎΛ0
(
(𝑟1 · 𝜒1) |GoΛ0 (𝑟2 · 𝜒2) |GoΛ0 (𝑟3 · 𝜒3) |GoΛ0

)
.

(II.14.2)
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Proposition II.14.2. Using the above notations, the incidence number𝑚𝑈1,𝑈2,𝑈3 (𝑠1, 𝑠2, 𝑠3)
depends only on the classes [𝑈1], [𝑈2], [𝑈3] of equivalent unitary representations and
the left cosets 𝑟1Λ1, 𝑟2Λ2, 𝑟3Λ3.

Proof. Note that for any 𝑖 = 1, 2, 3, 𝑠𝑖Λ𝑖𝑠−1𝑖 = 𝑟𝑖Λ𝑖𝑟
−1
𝑖 whenever 𝑟−1𝑖 𝑠𝑖 ∈ Λ𝑖 . The

proposition follows from (II.14.2) and Lemma II.5.3 (b). �

By Proposition II.14.2, we see immediately that the following de�nition is well-
de�ned.

De�nition II.14.3. For 𝑖 = 1, 2, 3, letΛ𝑖 ∈ Giso (Λ). Suppose 𝑥𝑖 is a class of equivalent
unitary representations ofGoΛ𝑖 , and 𝑧𝑖 ∈ Λ/Λ𝑖 is a left coset of Λ𝑖 in Λ, then the in-
cidence number of (𝑧1, 𝑧2, 𝑧3) relative to (𝑥1, 𝑥2, 𝑥3), denoted by𝑚𝑥1,𝑥2,𝑥3 (𝑧1, 𝑧2, 𝑧3),
is de�ned by

𝑚𝑥1,𝑥2,𝑥3 (𝑧1, 𝑧2, 𝑧3) =𝑚𝑈1,𝑈2,𝑈3 (𝑟1, 𝑟2, 𝑟3) (II.14.3)

where𝑈𝑖 ∈ 𝑥𝑖 , 𝑟𝑖 ∈ 𝑧𝑖 for 𝑖 = 1, 2, 3.

The rest of this section is devoted to the calculation of the incidence number
(II.14.3) in terms of more basic ingredients when 𝑥𝑖 = ΦΛ𝑖 (𝔭𝑖 ) for some 𝔭𝑖 ∈ 𝔇Λ𝑖 (see
§ II.12), as this will be the case we need in the calculation of fusion rules for GoΛ in
§ II.15. We begin with a result on the structure of unitary projective representations
of some Λ0 ∈ Giso (Λ) that are covariant with some unitary representation of G.

Lemma II.14.4. Fix a Λ0 ∈ Giso (Λ). Let 𝑢0 be an irreducible unitary representation
of G, [𝑢0] ∈ Irr(G) the class of 𝑢0, such that Λ0 ⊆ Λ [𝑢0 ] . Suppose 𝑢 is a unitary
representation of G, 𝑉 : Λ0 → U(H𝑢) is a unitary projective representation covariant
with 𝑢, 𝑝 is the minimal central projection in EndG (𝑢) corresponding to the maximal
pure subrepresentation of 𝑢 supported by [𝑢0] ∈ Irr(G). Let 𝑞 = 1 − 𝑝 , then 𝑉 is
diagonalizable along 𝑝 in the sense that

(𝑝 ⊗ 1)𝑉 = 𝑉 (𝑝 ⊗ 1), (𝑞 ⊗ 1)𝑉 = 𝑉 (𝑞 ⊗ 1),
and (𝑝 ⊗ 1)𝑉 (𝑞 ⊗ 1) = (𝑞 ⊗ 1)𝑉 (𝑝 ⊗ 1) = 0.

(II.14.4)

Proof. Since 𝑉 and 𝑢 are covariant, we have

∀𝑟0 ∈ Λ0,
(
𝑉 (𝑟0) ⊗ 1

)
(𝑟0 · 𝑢) = 𝑢

(
𝑉 (𝑟0) ⊗ 1

)
. (II.14.5)

Note that 𝑝 ∈ EndG (𝑢) = EndG (𝑟0 · 𝑢) (see (II.8.1)), then for every 𝑟0 ∈ Λ0, it follows
that (

[𝑝𝑉 (𝑟0)𝑞] ⊗ 1
)
[(𝑞 ⊗ 1) (𝑟0 · 𝑢)] = (𝑝 ⊗ 1)

(
𝑉 (𝑟0) ⊗ 1

)
(𝑞 ⊗ 1) (𝑟0 · 𝑢)

= (𝑝 ⊗ 1)
(
𝑉 (𝑟0) ⊗ 1

)
(𝑟0 · 𝑢) (𝑞 ⊗ 1) = (𝑝 ⊗ 1)𝑢

(
𝑉 (𝑟0) ⊗ 1

)
(𝑞 ⊗ 1)

= [(𝑝 ⊗ 1)𝑢] (𝑝 ⊗ 1)
(
𝑉 (𝑟0) ⊗ 1

)
(𝑞 ⊗ 1) = [(𝑝 ⊗ 1)𝑢]

(
[𝑝𝑉 (𝑟0)𝑞] ⊗ 1

)
.

(II.14.6)

Let 𝑢𝑝 (resp. 𝑢𝑞) be the subrepresentation of 𝑢 corresponding to 𝑝 (resp. 𝑞), then
𝑟−10 · 𝑢𝑝 is equivalent to 𝑢𝑝 for all 𝑟0 ∈ Λ0 since Λ0 ⊆ Λ [𝑢 ] , and

MorG (𝑟0 · 𝑢𝑞, 𝑢𝑝 ) = MorG (𝑢𝑞, 𝑟−10 · 𝑢𝑝 ) = MorG (𝑢𝑞, 𝑢𝑝 ) = 0. (II.14.7)

By (II.14.6), the operator 𝑝𝑉 (𝑟0)𝑞, when viewed as an operator from 𝑝 (H𝑢) to𝑞(H𝑢),
intertwines 𝑟0 · 𝑢𝑞 and 𝑢𝑝 . Thus by (II.14.7),

∀𝑟0 ∈ Λ0, 𝑝𝑉 (𝑟0)𝑞 = 0. (II.14.8)
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Similarly,
∀𝑟0 ∈ Λ0, 𝑞𝑉 (𝑟0)𝑝 = 0. (II.14.9)

Hence

𝑝𝑉 (𝑟0) = 𝑝𝑉 (𝑟0) (𝑝 + 𝑞) = 𝑝𝑉 (𝑟0)𝑝 = (𝑝 + 𝑞)𝑉 (𝑟0)𝑝 = 𝑉 (𝑟0)𝑝, (II.14.10)

and similarly,

𝑞𝑉 (𝑟0) = 𝑞𝑉 (𝑟0) (𝑝 + 𝑞) = 𝑞𝑉 (𝑟0)𝑞 = (𝑝 + 𝑞)𝑉 (𝑟0)𝑞 = 𝑉 (𝑟0)𝑞. (II.14.11)

Now (II.14.4) follows from equations (II.14.8), (II.14.9), (II.14.10), and (II.14.11). �

We also need to generalize the notion of representation parameter a little, as the
natural candidate of the “tensor product” of two representation parameters need not
be a representation parameter, but it still possesses the same covariant property.

De�nition II.14.5. Let Λ0 ∈ Giso (Λ), we call a triple (𝑢,𝑉 , 𝑣) a generalized repre-
sentation parameter ((GRP) for short) associated with Λ0, if the following hold:

(a) 𝑉 is a unitary projective representation of Λ0 on H𝑢 , such that

∀𝑟0 ∈ Λ0, 𝑉 (𝑟0) ∈ MorG (𝑟0 · 𝑢,𝑢); (II.14.12)

(b) 𝑣 is a unitary projective representation (on some other �nite dimensional Hilbert
space H𝑣) of Λ0, such that the cocycles of 𝑣 and 𝑉 are opposite to each other.

Proposition II.14.6. If (𝑢,𝑉 , 𝑣) is a GRP associated with some Λ0 ∈ Giso (Λ), then
(H𝑣 ⊗ H𝑢, id ⊗𝑢, 𝑣 ×𝑉 ) ∈ CSRΛ0 .

Proof. The proof of Proposition II.9.6 applies almost verbatim here. �

De�nition II.14.7. If (𝑢,𝑉 , 𝑣) is a GRP associated with Λ0 ∈ Giso (Λ), then the CSR
S := (H𝑣 ⊗ H𝑢, id ⊗𝑢, 𝑣 × 𝑉 ) associated with Λ0 and the unitary representation
RΛ0 (S) of G o Λ0 are said to be parameterized by (𝑢,𝑉 , 𝑣).

We now describe a reduction process for generalized representation parameters,
which leads to our desired calculation of the incidence numbers using more basic
ingredients—the dimension of a certain intertwiner space of two projective repre-
sentations of some generalized isotropy subgroup of Λ.

Proposition II.14.8. Fix a Λ0 ∈ Giso (Λ). Let (𝑢,𝑉 , 𝑣) be a GRP associated with Λ0,
𝑥 ∈ Irr(G) such that Λ0 ⊆ Λ𝑥 , and 𝑢0 ∈ 𝑥 . Suppose 𝑝 is the minimal central projection
of EndG (𝑢) corresponding to the maximal pure subrepresentation of 𝑢 supported by 𝑥 .
The following holds:

(a) (𝑢𝑝 ,𝑉𝑝 , 𝑣) is a GRP, where 𝑢𝑝 (resp. 𝑉𝑝 ) is the subrepresentation of 𝑢 (resp. 𝑉 ) on
𝑝 (H𝑢);

(b) let 𝑛 ∈ N be the multiplicity of 𝑥 in𝑢,𝑉0 a covariant projective Λ0-representation
of 𝑢0, then up to unitary equivalence, there exists a unique unitary projective
representation 𝑉1 of Λ0 on C𝑛 , such that 𝑉𝑝 is unitarily equivalent to 𝑉1 ×𝑉0;
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(c) (𝑢0,𝑉0, 𝑣×𝑉1) is representation parameter, and the CSR (H𝑣 ⊗𝑝 (H𝑢), id ⊗𝑢𝑝 , 𝑣×
𝑉𝑝 ) parameterized by (𝑢𝑝 ,𝑉𝑝 , 𝑣) is isomorphic to the CSRS(𝑢0,𝑉0, 𝑣×𝑉1) param-
eterized by (𝑢0,𝑉0, 𝑣×𝑉1) in the category CSRΛ0 . In particular, the representation
parameter (𝑢0,𝑉0, 𝑣 × 𝑉1) and the GRP (𝑢𝑝 ,𝑉𝑝 , 𝑣 × 𝑉𝑝 ) parameterize equivalent
unitary representations of G o Λ0.

Proof. By Lemma II.14.4, 𝑢𝑝 and 𝑉𝑝 are covariant. Since 𝑉𝑝 is a subrepresentation of
𝑉 , it has the same cocycle as𝑉 , hence𝑉𝑝 and 𝑣 have opposing cocycles. This proves
(a).

The proof of (b) parallels that of Proposition II.9.5. Since 𝑢𝑝 is equivalent to a di-
rect sumof𝑛 copies of𝑢0, thus there exists a unitary operator𝑈 ∈ MorG (idC𝑛 ⊗𝑢0, 𝑢𝑝 ).
Replace (𝑢𝑝 ,𝑉𝑝 , 𝑣) with (𝑈 ∗𝑢𝑝𝑈 ,𝑈 ∗𝑉𝑝𝑈 , 𝑣) if necessary, wemay assume𝑢𝑝 = C𝑛⊗𝑢0.
Repeat the proof of Proposition II.9.5 with the small modi�cation of replacing the
unitary representation𝑤 there with the unitary projective representation𝑉𝑝 , we see
that there exists a unique unitary projective representation 𝑉1 : Λ0 → U(C𝑛), such
that 𝑉𝑝 = 𝑉1 ×𝑉0. This proves (b).

By (b) and its proof, we may suppose 𝑢𝑝 = idC𝑛 ⊗𝑢0. Note that the CSR param-
eterized by (𝑢𝑝 ,𝑉𝑝 , 𝑣) is exactly (idH𝑣

⊗ idC𝑛 ⊗𝑢0, 𝑣 × 𝑉𝑝 ), which coincides exactly
with the CSR parameterized by (idC𝑛⊗H𝑣

⊗𝑢0,𝑉0, 𝑣 ×𝑉1) since 𝑣 ×𝑉𝑝 = 𝑣 ×𝑉1 ×𝑉0.
This proves (c). �

De�nition II.14.9. Using the notation of Proposition II.14.8, the representation pa-
rameter (𝑢0,𝑉0, 𝑣 ×𝑉1) is called a reduction of the GRP (𝑢,𝑉 , 𝑣) along (𝑢0,𝑉0).

Remark II.14.10. Since𝑉1 is determined up to unitary equivalence, so is the reduc-
tion (𝑢0,𝑉0, 𝑣 ×𝑉1).

The following result describes the incidence numbers𝑚 [𝑈1 ], [𝑈2 ], [𝑈3 ] (𝑧1, 𝑧2, 𝑧3) in
terms of the dimension of the intertwiner space of some projective representations
of Λ0.

Proposition II.14.11. Suppose we are given the following data for each 𝑖 = 1, 2, 3:

• a Λ𝑖 ∈ Giso (Λ), a left coset 𝑧𝑖 in Λ/Λ𝑖 and a 𝑟𝑖 ∈ 𝑧𝑖 ;

• a representation parameter (𝑢𝑖 ,𝑉𝑖 , 𝑣𝑖 ) associated with Λ𝑖 ;

• the unitary representation𝑈𝑖 of G o Λ𝑖 parameterized by (𝑢𝑖 ,𝑉𝑖 , 𝑣𝑖 ).

Let Λ0 = ∩3
𝑖=1𝑟𝑖Λ𝑖𝑟

−1
𝑖 = ∩3

𝑖=1𝑧𝑖Λ𝑖𝑧
−1
𝑖 . Suppose(

𝑟1 · 𝑢1, (𝑟1 ·𝑉1) |Λ0 , (𝑟2 · 𝑣2) |Λ0 × (𝑟3 · 𝑣3) |Λ0 ×𝑉
)

is the reduction of the GRP(
(𝑟2 · 𝑢2) × (𝑟3 · 𝑢3), (𝑟2 ·𝑉2) |Λ0 × (𝑟3 ·𝑉3) |Λ0 , (𝑟2 · 𝑣2) |Λ0 × (𝑟3 · 𝑣3) |Λ0

)
along

(
𝑟1 · 𝑢1, (𝑟1 ·𝑉1) |Λ0

)
. Then the unitary projective representations (𝑟1 · 𝑣1) |Λ0 and

(𝑟2 · 𝑣2) |Λ0 × (𝑟3 · 𝑣3) |Λ0 ×𝑉

of Λ0 have the same cocycle, and

𝑚 [𝑈1 ], [𝑈2 ], [𝑈3 ] (𝑧1, 𝑧2, 𝑧3)
= dimMorΛ0

(
(𝑟1 · 𝑣1) |Λ0 , (𝑟2 · 𝑣2) |Λ0 × (𝑟3 · 𝑣3) |Λ0 ×𝑉

)
.

(II.14.13)
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Proof. It is easy to check that
(
(𝑟2 ·𝑢2) × (𝑟3 ·𝑢3), (𝑟2 ·𝑉2) |Λ0 × (𝑟3 ·𝑉3) |Λ0 , (𝑟2 · 𝑣2) |Λ0 ×

(𝑟3 · 𝑣3) |Λ0

)
is indeed a generalized representation parameter. Take the minimal cen-

tral projection 𝑝 of EndG
(
(𝑟2 · 𝑢2) × (𝑟3 · 𝑢3)

)
corresponding to the maximal pure

subrepresentation 𝑢𝑝 of (𝑟2 · 𝑢2) × (𝑟3 · 𝑢3) that is supported by [𝑟1 · 𝑢1] ∈ Irr(G).
Suppose 𝑞 = 1−𝑝 . By Lemma II.14.4, 𝑞 also corresponds to a subrepresentation 𝑢𝑞 of
(𝑟2 ·𝑢2) × (𝑟3 ·𝑢3) on 𝑞(H𝑢2 ⊗H𝑢3 ). Similarly, let𝑉𝑝 (resp.𝑉𝑞) be the subrepresenta-
tion of the unitary projective representation (𝑟2 ·𝑣2) |Λ0 × (𝑟3 ·𝑣3) |Λ0 on 𝑝 (H𝑢2 ⊗H𝑢3 )
(resp. 𝑞(H𝑢2 ⊗H3)). Let𝑈𝑝 (resp.𝑈𝑞) be the representation of GoΛ0 parameterized
by the GRP (𝑢𝑝 ,𝑉𝑝 , (𝑟2 · 𝑣2) |Λ0 × (𝑟3 · 𝑣3) |Λ0 ) (resp. (𝑢𝑞,𝑉𝑞, (𝑟2 · 𝑣2) |Λ0 × (𝑟3 · 𝑣3) |Λ0 )).
By construction, the unitary representation𝑈 of GoΛ0 parameterized by

(
(𝑟2 ·𝑢2) ×

(𝑟3 ·𝑢3), (𝑟2 ·𝑉2) |Λ0 × (𝑟3 ·𝑉3) |Λ0 , (𝑟2 · 𝑣2) |Λ0 × (𝑟3 · 𝑣3) |Λ0

)
is the direct sum of𝑈𝑝 and

𝑈𝑞 . By de�nition,

𝑚 [𝑈1 ], [𝑈2 ], [𝑈3 ] (𝑧1, 𝑧2, 𝑧3) = dimMorGoΛ0 (𝑈1,𝑈 )
= dimMorGoΛ0 (𝑈1,𝑈𝑝 ) + dimMorGoΛ0 (𝑈1,𝑈𝑞).

(II.14.14)

From our construction, the matrix coe�cients of 𝑢𝑝 and 𝑢𝑞 are orthogonal with re-
spect to the Haar state ℎ ofG. Thus the proof of Proposition II.9.11 (a) applies almost
verbatim, and shows that

dimMorGoΛ0 (𝑈1,𝑈𝑞) = 0. (II.14.15)

On the other hand, the cocycles of both (𝑟1 ·𝑣1) |Λ0 and (𝑟2 ·𝑣2) |Λ0 × (𝑟3 ·𝑣3) |Λ0 ×𝑉 are
both opposite to that of (𝑟1 ·𝑉1) |Λ0 by the reduction process described above, hence
these cocycles coincide. By Proposition II.9.11 (b) and Proposition II.14.8 (c), we have

dimMorGoΛ0 (𝑈1,𝑈𝑝 ) = dimMorΛ0

(
(𝑟1 ·𝑣1) |Λ0 , (𝑟2 ·𝑣2) |Λ0×(𝑟3 ·𝑣3) |Λ0×𝑉

)
. (II.14.16)

Now (II.14.13) follows from (II.14.15) and (II.14.16). �

II.15 Fusion rules

We now calculate the fusion rules of G o Λ. From the classi�cation theorem (The-
orem II.12.1), up to unitary equivalence, all unitary irreducible representations of
G o Λ are distinguished. Thus the task falls to the calculation of

dimMorG
(
Ind(𝑈1), Ind(𝑈2) × Ind(𝑈3)

)
, (II.15.1)

where, for 𝑖 = 1, 2, 3, 𝑈𝑖 is the irreducible unitary representation of G o Λ𝑖 parame-
terized (see De�nition II.10.1 and De�nition II.10.4) by some distinguished represen-
tation parameter (𝑢𝑖 ,𝑉𝑖 , 𝑣𝑖 ) associated with Λ𝑖 (recall that Λ𝑖 = Λ [𝑢𝑖 ] since (𝑢𝑖 ,𝑉𝑖 , 𝑣𝑖 )
is distinguished). Let ℎ be the Haar state on𝐶 (G) = 𝐴. For any subgroup Λ0 of Λ, we
use ℎΛ0 to denote the Haar state on𝐶 (GoΛ0) = 𝐴⊗𝐶 (Λ0), and 𝐸Λ0 : 𝐶 (Λ0) → 𝐶 (Λ)
denotes the linear embedding such that 𝛿𝑟0 ∈ 𝐶 (Λ0) ↦→ 𝛿𝑟0 ∈ 𝐶 (Λ)(the extension of
functions in 𝐶 (Λ0) to functions in 𝐶 (Λ) that vanishes outside Λ0). In particular, ℎΛ
is the Haar state on 𝐶 (G o Λ) = 𝐴 ⊗ 𝐶 (Λ). For 𝑖 = 1, 2, 3, let 𝜒𝑖 = (Tr ⊗ id) (𝑈𝑖 ) ∈
𝐴 ⊗ 𝐶 (Λ𝑖 ) be the character of 𝑈𝑖 , and 𝑟 · 𝜒𝑖 is de�ned to be the character of the
representation 𝑟 ·𝑈𝑖 of G o 𝑟Λ𝑖𝑟−1.

Using these notations, by Proposition II.5.1, we have the following formula for
the character of Ind(𝑈𝑖 ),

∀𝑖 = 1, 2, 3, 𝜒 (Ind(𝑈𝑖 )) = |Λ𝑖 |−1
∑︁
𝑟𝑖 ∈Λ

(id ⊗𝐸𝑟𝑖Λ𝑖𝑟−1𝑖 ) (𝑟𝑖 · 𝜒𝑖 ). (II.15.2)
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Thus
dimMorGoΛ

(
Ind(𝑈1), Ind(𝑈2) × Ind(𝑈3)

)
= ℎΛ

(
𝜒 (Ind(𝑈1)) [𝜒 (Ind(𝑈2))] [𝜒 (Ind(𝑈3))]

)
=

∑︁
𝑟1,𝑟2,𝑟3

ℎΛ
(
𝜒 (𝑟1, 𝑟2, 𝑟3)

)
|Λ1 | · |Λ2 | · |Λ3 |

,

(II.15.3)

where
𝜒 (𝑟1, 𝑟2, 𝑟3)

= (id ⊗𝐸𝑟1Λ1𝑟
−1
1
) (𝑟1 · 𝜒1) [(id ⊗𝐸𝑟2Λ2𝑟

−1
2
) (𝑟2 · 𝜒2)] [(id ⊗𝐸𝑟3Λ3𝑟

−1
3
) (𝑟3 · 𝜒3)] .

(II.15.4)

IfΘ,Ξ are subgroups of ΛwithΘ ⊆ Ξ, and∑
𝑟 ∈Ξ 𝑎𝑟 ⊗𝛿𝑟 is an arbitrary element of

𝐴⊗𝐶 (Ξ) with all 𝑎𝑟 ∈ 𝐴, we call the element∑𝑟 ∈Θ 𝑎𝑟 ⊗𝛿𝑟 of𝐴⊗𝐶 (Θ) the restriction
of ∑𝑟 ∈Ξ 𝑎𝑟 ⊗ 𝛿𝑟 and denote it by (∑𝑟 ∈Ξ 𝑎𝑟 ⊗ 𝛿𝑟 ) |GoΘ. Recall that

ℎΛ0 = [Λ : Λ0] · ℎΛ ◦ (id ⊗𝐸Λ0 ) (II.15.5)

for any subgroup Λ0 of Λ, posing

Λ(𝑟1, 𝑟2, 𝑟3) =
3⋂
𝑖=1

𝑟𝑖Λ𝑖𝑟
−1
𝑖 , (II.15.6)

we have
ℎΛ

(
𝜒 (𝑟1, 𝑟2, 𝑟3)

)
= ℎΛ

(
𝜒 (𝑟1, 𝑟2, 𝑟3) |GoΛ(𝑟1,𝑟2,𝑟3)

)
=

ℎΛ(𝑟1,𝑟2,𝑟3)
(
(𝑟1 · 𝜒1) |GoΛ(𝑟1,𝑟2,𝑟3) (𝑟2 · 𝜒2) |GoΛ(𝑟1,𝑟2,𝑟3) (𝑟3 · 𝜒3) |GoΛ(𝑟1,𝑟2,𝑟3)

)
[Λ : Λ(𝑟1, 𝑟2, 𝑟3)]

= [Λ : Λ(𝑟1, 𝑟2, 𝑟3)]−1𝑚𝑈1,𝑈2,𝑈3 (𝑟1, 𝑟2, 𝑟3),

(II.15.7)

where𝑚𝑈1,𝑈2,𝑈3 (𝑟1, 𝑟2, 𝑟3) is the incidence number of (𝑟1, 𝑟2, 𝑟3) relative to (𝑈1,𝑈2,𝑈3).
By (II.15.3) and (II.15.7), we have

dimMorGoΛ
(
Ind(𝑈1), Ind(𝑈2) × Ind(𝑈3)

)
=

∑︁
𝑟1,𝑟2,𝑟3∈Λ

𝑚𝑈1,𝑈2,𝑈3 (𝑟1, 𝑟2, 𝑟3)
|Λ1 | · |Λ2 | · |Λ3 | · [Λ : Λ(𝑟1, 𝑟2, 𝑟3)]

.
(II.15.8)

As we’ve seen in De�nition II.14.3 and the discussion before it, we have

(∀𝑖 = 1, 2, 3, 𝑟𝑖 ∈ 𝑧𝑖 ∈ Λ/Λ𝑖 )
=⇒ 𝑚 [𝑈1 ], [𝑈2 ], [𝑈3 ] (𝑧1, 𝑧2, 𝑧3) =𝑚𝑈1,𝑈2,𝑈3 (𝑟1, 𝑟2, 𝑟3),

(II.15.9)

where Λ(𝑧1, 𝑧2, 𝑧3) := ∩3
𝑖=1𝑟𝑖Λ𝑖𝑟

−1
𝑖 does not depend on the choices for 𝑟𝑖 ∈ 𝑧𝑖 , 𝑖 =

1, 2, 3. Thus (II.15.8) can be written more succinctly as

dimMorGoΛ
(
Ind(𝑈1), Ind(𝑈2) × Ind(𝑈3)

)
=

∑︁
𝑧1∈Λ/Λ1

∑︁
𝑧2∈Λ/Λ2

∑︁
𝑧3∈Λ/Λ3

𝑚 [𝑈1 ], [𝑈2 ], [𝑈3 ] (𝑧1, 𝑧2, 𝑧3)
[Λ : Λ(𝑧1, 𝑧2, 𝑧3)]

.
(II.15.10)

We formalize the above calculation as the following theorem, which describes the
fusion rules of G o Λ in terms of the more basic ingredients of incidence numbers,
which in turn is completely determined by the representation theory of G, the ac-
tion of Λ on Irr(G), and various unitary projective representations of some naturally
appeared subgroups in Giso (Λ).
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Theorem II.15.1. The fusion rules for G o Λ is given as the following. For 𝑖 = 1, 2, 3,
let𝑊𝑖 be an irreducible representation of G o Λ. Suppose 𝑈𝑖 is the distinguished rep-
resentation parameterized by some distinguished representation parameter (𝑢𝑖 ,𝑉𝑖 , 𝑣𝑖 )
associated with some isotropy subgroup Λ𝑖 of Λ, such that𝑊𝑖 is equivalent to Ind(𝑈𝑖 ),
then

dimMorGoΛ (𝑊1,𝑊2 ×𝑊3)

=
∑︁

𝑧1∈Λ/Λ1

∑︁
𝑧2∈Λ/Λ2

∑︁
𝑧3∈Λ/Λ3

𝑚 [𝑈1 ], [𝑈2 ], [𝑈3 ] (𝑧1, 𝑧2, 𝑧3)
[Λ : Λ(𝑧1, 𝑧2, 𝑧3)]

.
(II.15.11)

Here the incidence numbers

𝑚 [𝑈1 ], [𝑈2 ], [𝑈3 ] (𝑧1, 𝑧2, 𝑧3) =𝑚𝑈1,𝑈2,𝑈3 (𝑟1, 𝑟2, 𝑟3)
= dimMorΛ(𝑧1,𝑧2,𝑧3)

(
(𝑟1 · 𝑣1) |Λ0 , (𝑟2 · 𝑣2) |Λ0 × (𝑟3 · 𝑣3) |Λ0 ×𝑉

)
,

(II.15.12)

where 𝑟𝑖 ∈ 𝑧𝑖 for 𝑖 = 1, 2, 3, and the unitary projective representation 𝑉 of Λ(𝑧1, 𝑧2, 𝑧3)
is taken from the reduction(

𝑟1 · 𝑢1, (𝑟1 ·𝑉1) |Λ0 , (𝑟2 · 𝑣2) |Λ0 × (𝑟3 · 𝑣3) |Λ0 ×𝑉
)

of the generalized representation parameter(
(𝑟2 · 𝑢2) × (𝑟3 · 𝑢3), (𝑟2 ·𝑉2) |Λ0 × (𝑟3 ·𝑉3) |Λ0 , (𝑟2 · 𝑣2) |Λ0 × (𝑟3 · 𝑣3) |Λ0

)
along

(
𝑟1 · 𝑢1, (𝑟1 ·𝑉1) |Λ0

)
.

Proof. The above calculation proves (II.15.11), and (II.15.12) follows from Proposi-
tion II.14.11. �





Chapter III

Some examples of bicrossed product
with property (𝑅𝐷)

Introduction

This chapter focuses on producing explicit examples of bicrossed products whose
dual has property (𝑅𝐷). Of course, the more interesting ones are those without
polynomial growth. The main idea is to �rst twist semidirect products by a �nite
subgroup to obtain nontrivial bicrossed products, then utilise the theories of Chap-
ter I and Chapter II to treat the technical issues that appear in this process. Of course,
the most central results are Theorem I.7.3 and Theorem I.8.4, whose application has
one major di�culty, namely, how does one show the length functions on the discrete
group and the dual of the compact group are actually matched in the sense of De�-
nition I.6.9. This is essentially addressed by a careful analysis of the representation
theory of a classical compact group, which is in fact the classical case of the more
general theory presented in Chapter II. However, due the twisting process, some
technical hypothesis on the invariance of certain length functions arises. This tech-
nical issue is only partially resolved, which is not totally satisfactory in the author’s
opinion. On the one hand, under a seemingly mild condition, we have a completely
satisfactory characterization result which gives us a powerful process of producing
interesting bicrossed products (see Theorem III.5.1), which is explained in § III.5. On
the other hand, there does exist many interesting examples that violates this seem-
ingly mild condition, which is described in § III.6. In any case, many interesting
concrete examples of bicrossed products are constructed here, and it is the hope of
the author that the dichotomy mentioned above will pique the reader’s interests and
perhaps stimulate further investigation.

III.1 Nontrivial bicrossed product from semidirect product

Let 𝐺 be a compact group, Γ a discrete group acting on 𝐺 via topological automor-
phisms given by a group morphism 𝜏 : Γ → Aut(𝐺). Using these data, one can form
the semidirect product 𝐺 o𝜏 Γ, which is a locally compact group whose underlying
topological space is the topological product𝐺 × Γ, and whose group law is given by

(𝑔1, 𝛾1) (𝑔2, 𝛾2) =
(
𝑔1𝜏𝛾1 (𝑔2), 𝛾1𝛾2

)
. (III.1.1)

117
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It is easy to see that the insertion 𝜄Γ : Γ → 𝐺 o𝜏 Γ, 𝛾 ↦→ (𝑒𝐺 , 𝛾) is a group
morphism. In particular, the mapping

𝜃 : Γ → Aut (𝐺 o𝜏 Γ)
𝛾 ↦→ (Ad ◦𝜄Γ) (𝛾) = Ad(𝑒𝐺 ,𝛾 )

(III.1.2)

is a group morphism. For all (𝑔, 𝑟 ) ∈ 𝐺 o𝜏 Γ and 𝛾 ∈ Γ, we have

(𝑒𝐺 , 𝛾) (𝑔, 𝑟 ) (𝑒𝐺 , 𝛾)−1 =
(
𝜏𝛾 (𝑔), 𝛾𝑟

) (
𝑒𝐺 , 𝛾

−1) = (
𝜏𝛾 (𝑔), 𝛾𝑟𝛾−1

)
. (III.1.3)

Thus as a map from the set 𝐺 × Γ to itself, we have

𝜃𝛾 := 𝜃 (𝛾) = 𝜏𝛾 × Ad𝛾 : 𝐺 × Γ → 𝐺 × Γ. (III.1.4)

Now consider any �nite subgroup Λ of Γ. The group morphism 𝜃 de�ned in
(III.1.2) restricts to the subgroup Λ to give an action Λ y 𝐺 o𝜏 Γ by topological
automorphisms. This allows us to form yet another semidirect product (𝐺o𝑎 Γ)o𝜃 Λ,
whose underlying topological space is 𝐺 × Γ × Λ. It is clear that the group law on
(𝐺 o𝜏 Γ) o𝜃 Λ is given by

(𝑔1, 𝛾1, 𝑟1) (𝑔2, 𝛾2, 𝑟2) =
(
(𝑔1, 𝛾1)𝜃𝑟1 (𝑔2, 𝛾2), 𝑟1𝑟2

)
=

(
(𝑔1, 𝛾1)

(
𝜏𝑟1 (𝑔2), 𝑟1𝛾2𝑟−11

)
, 𝑟1𝑟2

)
=

(
𝑔1𝜏𝛾1𝑟1 (𝑔2), 𝛾1𝑟1𝛾2𝑟−11 , 𝑟1𝑟2

)
.

(III.1.5)

By (III.1.5), both the mapping

𝜄1,3 : 𝐺 o𝜏 Λ → (𝐺 o𝜏 Γ) o𝜃 Λ
(𝑔, 𝑟 ) ↦→ (𝑔, 𝑒, 𝑟 ),

(III.1.6)

and

𝜄2 : Γ → (𝐺 o𝜏 Γ) o𝜃 Λ
𝛾 ↦→ (𝑒𝐺 , 𝛾, 𝑒)

(III.1.7)

are injective group morphisms, such that for all 𝛾 ∈ Γ, (𝑔, 𝑟 ) ∈ 𝐺 o𝜏 Λ, we have

∀𝑔 ∈ 𝐺, 𝛾, 𝑟 ∈ Γ, 𝜄1,3 (𝑔, 𝑟 )𝜄2 (𝑟−1𝛾𝑟 ) = (𝑔, 𝑒, 𝑟 ) (𝑒𝐺 , 𝑟−1𝛾𝑟, 𝑒) = (𝑔,𝛾, 𝑟 ), (III.1.8)

which implies that
𝜄1,3 (𝐺 o𝜏 Λ)𝜄2 (Γ) = (𝐺 o𝜏 Γ) o𝜃 Λ. (III.1.9)

It is clear that
𝜄1,3 (𝐺 o𝜏 Λ) ∩ 𝜄2 (Γ) = {(𝑒𝐺 , 𝑒, 𝑒)}. (III.1.10)

Moreover,

∀𝑔 ∈ 𝐺, 𝛾, 𝑟 ∈ Γ, 𝜄2 (𝛾)𝜄1,3 (𝑔, 𝑟 ) = (𝑒𝐺 , 𝛾, 𝑒) (𝑔, 𝑒, 𝑟 )
=

(
𝜏𝛾 (𝑔), 𝛾, 𝑟

)
=

(
𝜏𝛾 (𝑔), 𝑒, 𝑟

)
(𝑒𝐺 , 𝑟−1𝛾𝑟, 𝑒)

= 𝜄1,3 (𝑔, 𝑟 )𝜄2 (𝑟−1𝛾𝑟 ).
(III.1.11)

The following result already appeared as special case in (Fima et al., 2017, §7.1.1).
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Proposition III.1.1. Let Γ be a discrete group,𝐺 a compact group, and𝜏 : Γ → Aut(𝐺)
a left action of Γ on𝐺 by topological automorphisms. If Λ is a �nite subgroup of Γ, then
(Γ , 𝐺 o𝜏 Λ) is a matched pair of groups with left action

𝛼Λ : Γ × (𝐺 o𝜏 Λ) → 𝐺 o𝜏 Λ(
𝛾, (𝑔, 𝑟 )

)
↦→

(
𝜏𝛾 (𝑔), 𝑟

)
,

(III.1.12)

and right action

𝛽Λ : Γ × (𝐺 o𝜏 Λ) → Γ(
𝛾, (𝑔, 𝑟 )

)
↦→ 𝑟−1𝛾𝑟 .

(III.1.13)

Moreover, the following hold.

(a) The action 𝛼Λ is trivial if and only if 𝜏 is trivial;

(b) The action 𝛽Λ is trivial if and only if Λ ⊆ 𝑍 (Γ), where 𝑍 (Γ) is the centre of Γ.

Proof. That (Γ , 𝐺 o𝜏 Λ) is a matched pair with the actions 𝛼Λ and 𝛽Λ follows from
(III.1.9), (III.1.10) and (III.1.11). (a) and (b) are direct consequences of the de�nition of
𝛼Λ and 𝛽Λ. �

III.2 Some notations

For the convenience of our discussion, we now introduce and �x some notations
related to the bicrossed product of the matched pair (Γ , 𝐺 o𝜏 Λ) with the actions 𝛼Λ
and 𝛽Λ.

The bicrossed product of the matched pair (Γ , 𝐺 o𝜏 Λ) is denoted by Γ𝛼Λ ⊲⊳𝛽Λ

(𝐺 o𝜏 Λ). When there is no risk of confusion, we often omit the actions and simply
write 𝐺 o Λ and Γ ⊲⊳ (𝐺 o Λ). Moreover, Aut(𝐺) denotes the group of topological
automorphism of 𝐺 .

The isotropy subgroup of𝐺oΛ �xing𝛾 ∈ Γ with respect to the action 𝛽Λ is easily
seen to be 𝐺 o Λ𝛾 , where

Λ𝛾 := {𝑟 ∈ Λ : 𝛾𝑟 = 𝑟𝛾}. (III.2.1)

For 𝑥 ∈ Irr(𝐺), 𝛾 ∈ Γ, we denote the isotropy subgroup of Λ𝛾 �xing 𝑥 with
respect to the action Λ𝛾 y Irr(𝐺), (𝑟, [𝑢]) ↦→ [𝑢 ◦ 𝜏𝑟 ] by Λ𝛾,𝑥 , i.e.

Λ𝛾,𝑥 :=
{
𝑟 ∈ Λ𝛾 : 𝑟 · 𝑥 = 𝑥

}
. (III.2.2)

We also need to �x some notations concerning from the representation theory of
Γ ⊲⊳ (𝐺 o Λ). We assume familiarity with § I.4 and § II.10–§ II.12.

Let 𝛾 ∈ Γ. Suppose Λ0 is an isotropy subgroup of Λ𝛾 with respect to the action
Λ𝛾 y Irr(𝐺). Let 𝔇𝛾,Λ0 denotes the set of equivalent distinguished representation
parameters (see § II.10, De�nition II.10.4) associated with Λ0, and

Ψ𝛾,Λ0 : 𝔇𝛾,Λ0 → Irr(𝐺 o Λ𝛾 ) (III.2.3)

is the injection used to classify irreducible unitary representations of 𝐺 o Λ𝛾 as in
§ II.12. Let 𝔇𝛾 be the set of equivalency classes of all distinguished representation
parameters for the semidirect product 𝐺 o Λ𝛾 , we then have an action of Λ𝛾 on the
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class of all distinguished representation parameters for 𝐺 o Λ𝛾 , which passes to the
quotient and yields an action Λ𝛾 y 𝔇𝛾 as presented in § II.12. We thus have the
classi�cation surjection

Ψ𝛾 : 𝔇𝛾 → Irr(𝐺 o Λ𝛾 )
[(𝑢,𝑉 , 𝑣)] ∈ 𝔇𝛾,Λ0 ↦→ Ψ𝛾,Λ0

(
[(𝑢,𝑉 , 𝑣)]

)
,

(III.2.4)

whose �bers are exactly the orbits for the action Λ𝛾 y 𝔇𝛾 .
When 𝛾 = 𝑒Γ , we then have Λ𝛾 = Λ and we write Ψ𝑒Γ simply as Ψ.
We use Orb𝛽Λ to denote the set of 𝛽Λ-orbits. For each O ∈ Orb𝛽Λ , let ℜO be the

mapping from the class of O-representations of 𝐺 o Λ to the class of �nite dimen-
sional unitary representations of the bicrossed product Γ ⊲⊳ (𝐺 o Λ) as in (I.4.6) of
Lemma I.4.4, and let IrrO (𝐺oΛ) denote the set of equivalency classes ofO-irreducible
O-representations. We thus have the classi�cation bijection

ℜ :
∐

O∈Orb
𝛽Λ

IrrO (𝐺 o Λ) → Irr
(
Γ ⊲⊳ (𝐺 o Λ)

)
[𝑈 ] ∈ IrrO (𝐺 o Λ) ↦→ [ℜO (𝑈 )] .

(III.2.5)

III.3 A su�cient condition

We �rst establish the following technical result.

Lemma III.3.1. Suppose 𝑙
𝐺
: Irr(𝐺) → R≥0 is a Γ-invariant length function on𝐺 , i.e.

𝑙
𝐺
( [𝑢𝑥 ◦𝜏𝛾 ]) = 𝑙𝐺 (𝑥) whenever 𝛾 ∈ Γ, 𝑢𝑥 ∈ 𝑥 ∈ Irr(𝐺), and 𝑙Γ is a 𝛽Λ-invariant length

function on Γ. Then

𝑙�𝐺oΛ : Irr(𝐺 o Λ) → R≥0

Ψ( [(𝑢,𝑉 , 𝑣)]) ↦→ 𝑙
𝐺
( [𝑢])

is a well-de�ned length function on �𝐺 o Λ such that the pair
(
𝑙Γ , 𝑙�𝐺oΛ) is matched.

Proof. The fact that 𝑙�𝐺oΛ is well-de�ned (does not depend on the choice of the dis-
tinguished representation parameter (𝑢,𝑉 , 𝑣)) follows from Theorem II.12.1 and the
Λ-invariance of 𝑙

𝐺
. We now show that

(
𝑙Γ , 𝑙�𝐺oΛ) is matched.

For all O ∈ Orb𝛽Λ , de�ne 𝑙O : IrrO (𝐺 o Λ) → R≥0 via the following procedure.
Take any 𝛾 ∈ O , and let𝛷𝛾 : Irr(𝐺 oΛ𝛾 ) → IrrO (𝐺 oΛ) be the canonical bijection as
in Notations I.4.7. To avoid over-complication of our notations, we often implicitly
identify Irr(𝐺oΛ𝛾 ) with IrrO (𝐺oΛ) via the bijection𝛷𝛾 , when doing so won’t cause
a risk of confusion. For all distinguished representation parameter (𝑢,𝑉 , 𝑣) of𝐺oΛ𝛾 ,
let

𝑙O
(
Ψ𝛾

(
[(𝑢,𝑉 , 𝑣)]

) )
:= 𝑙

𝐺
( [𝑢]) + 𝑙Γ (𝛾). (III.3.1)

By Theorem II.12.1 again, we see that (III.3.1) yields a well-de�ned mapping 𝑙O :
IrrO (𝐺 o Λ) → R≥0. It is clear that 𝑙 {𝑒Γ } = 𝑙𝐺 via the identi�cation of Irr{𝑒Γ } (𝐺 o Λ)
with Irr(𝐺 o Λ) by𝛷𝑒Γ . Moreover, it is clear that [𝜀O] = Ψ𝛾 ( [𝜀𝐺 , 𝜀Λ𝛾 , 𝜀Λ𝛾 ]), so that

𝑙Γ (𝛾) = 𝑙𝐺 ( [𝜀𝐺 ]) + 𝑙Γ (𝛾) = 𝑙O ( [𝜀O]).

Therefore, to �nish the proof, it remains to show that (𝑙O)O∈Orb
𝛽Λ

is an a�ording
family in the sense of De�nition I.6.2. By de�nition, it is clear that

𝑙 {𝑒Γ } ( [𝜀𝐺oΛ]) = 𝑙𝐺 ( [𝜀𝐺 ]) + 𝑙Γ (𝑒Γ) = 0.
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The condition 𝑙O ( [𝑈 ]) = 𝑙O−1 ( [𝑈 †]) can also be easily checked. Indeed, if [𝑈 ]
is given by Ψ𝛾

(
[(𝑢,𝑉 , 𝑣)]

)
, then [𝑈 †] is given by Ψ𝛾−1

(
[(𝑢,𝑉 𝑐 , 𝑣𝑐 )]

)
(see Proposi-

tion II.13.3). By (III.3.1), we now have

𝑙O ( [𝑈 ]) = 𝑙
𝐺
( [𝑢]) + 𝑙Γ (𝛾) = 𝑙𝐺 ( [𝑢]) + 𝑙Γ (𝛾

−1) = 𝑙O−1 ( [𝑈 †]). (III.3.2)

By De�nition I.6.2, it remains only to establish the following claim.
Claim. For 𝑖 = 1, 2, 3, let O𝑖 ∈ Orb𝛽Λ , and [𝑈𝑖 ] ∈ IrrO𝑖 (𝐺 o Λ), with

𝑈𝑖 =
∑︁
𝑟,𝑠∈O𝑖

𝑒𝑟,𝑠 ⊗ 𝑢 (𝑖)
𝑟,𝑠

being an O𝑖 -irreducible O𝑖 -representation of 𝐺 o Λ on ℓ2 (O𝑖 ) ⊗ H𝑖 . If

dimMor𝐺oΛ𝛾
(
𝑢
(3)
𝛾,𝛾 |𝐺oΛ𝛾 ,𝑈1 ×𝛾 𝑈2

)
≠ 0 (III.3.3)

for some (hence for all, by Lemma I.4.18) 𝛾 ∈ O3, then

𝑙O3 ( [𝑈3]) ≤ 𝑙O1 ( [𝑈1]) + 𝑙O2 ( [𝑈2]). (III.3.4)

Before proving the claim, we remark that until now, only the Λ-invariance of 𝑙
𝐺

is needed. The hypothesis that 𝑙
𝐺
is Γ-invariant will play an important role in the

proof of the claim as we will presently see.
We now prove the claim. Suppose [𝑈𝑖 ] is given by some Ψ𝛾𝑖

(
[(𝑢𝑖 ,𝑉𝑖 , 𝑣𝑖 )]

)
and let

Λ𝑖 := Λ𝛾𝑖 , [𝑢𝑖 ] for each 𝑖 = 1, 2, 3. De�ne 𝜇 · 𝑢 := 𝑢 ◦ 𝜏𝜇 to be the left action of Γ on
the class of �nite dimensional unitary representation of 𝐺 , and let 𝑀 (𝑢) denote the
vector space of matrix coe�cients of 𝑢. Using the character formulae for 𝑈1 ×𝛾 𝑈2
and for Ψ𝛾3

(
[(𝑢3,𝑉3, 𝑣3)]

)
, as well as the construction of Ψ𝛾3 , we see that as elements

in Pol(𝐺) ⊗ 𝐶 (Λ𝛾 ), we have

𝜒

(
𝑢
(3)
𝛾,𝛾 |𝐺oΛ𝛾

)
∈ Vect

(⋃
𝑟 ∈Λ

𝑀 (𝑟 · 𝑢3)
)
⊗ 𝐶 (Λ𝛾 ) ⊆ Pol(𝐺) ⊗ 𝐶 (Λ𝛾 ), (III.3.5)

and
𝜒

(
𝑈1 ×𝛾 𝑈2

)
∈ Vect

( [
Γ ·𝑀 (𝑢1)

] [
Γ ·𝑀 (𝑢2)

] )
⊗ 𝐶 (Λ𝛾 ), (III.3.6)

where
∀𝑖 = 1, 2, Γ ·𝑀 (𝑢𝑖 ) :=

⋃
𝑟𝑖 ∈Γ

𝑀 (𝑟𝑖 · 𝑢𝑖 )

and
[
Γ · 𝑀 (𝑢1)

] [
Γ · 𝑀 (𝑢2)

]
denotes product of form 𝜑1𝜑2 ∈ Pol(𝐺) where 𝜑𝑖 ∈

Γ · 𝑀 (𝑢𝑖 ) for 𝑖 = 1, 2. By (III.3.5), (III.3.6) and a simple calculation using the Haar
state on 𝐶 (𝐺) ⊗ 𝐶 (Λ𝛾 ) = 𝐶 (𝐺 o Λ𝛾 ), it is clear that (III.3.3) implies the existence of
𝑟 ∈ Λ, 𝑟1, 𝑟2 ∈ Γ, such that𝑀 (𝑟 ·𝑢3) and𝑀 (𝑟1 ·𝑢1) ·𝑀 (𝑟2 ·𝑢2) are not orthogonal with
respect to the Haar measure on𝐺 . Since the representation 𝑟 · 𝑢3 of𝐺 is irreducible,
this forces that

dimMor𝐺
(
𝑟 · 𝑢3, (𝑟1 · 𝑢1) × (𝑟2 · 𝑢2)

)
≠ 0.

Hence
𝑟 · [𝑢3] ⊆ (𝑟1 · [𝑢1]) ⊗ (𝑟2 · [𝑢2]). (III.3.7)

Since 𝑙
𝐺
is a Γ-invariant length function, by (III.3.7), we have

𝑙
𝐺
( [𝑢3]) = 𝑙𝐺 (𝑟 · [𝑢3]) ≤ 𝑙𝐺 (𝑟1 · [𝑢1]) + 𝑙𝐺 (𝑟2 · [𝑢2]) = 𝑙𝐺 ( [𝑢1]) + 𝑙𝐺 ( [𝑢2]). (III.3.8)
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On the other hand, (III.3.3) also implies that 𝛾3 ∈ O3 ⊆ O1O2, so there is 𝑠𝑖 ∈ O𝑖 ,
𝑖 = 1, 2, such that 𝑠1𝑠2 = 𝛾3. Using the fact that 𝑙Γ is a 𝛽Λ-invariant length function,
we have

𝑙Γ (𝛾3) = 𝑙Γ (𝑠1𝑠2) ≤ 𝑙Γ (𝑠1) + 𝑙Γ (𝑠2) = 𝑙Γ (𝛾1) + 𝑙Γ (𝛾2). (III.3.9)

By (III.3.8), (III.3.9) and (III.3.1) again, we have

𝑙O3 ( [𝑈3]) = 𝑙𝐺 ( [𝑢3]) + 𝑙Γ (𝛾3)
≤ 𝑙

𝐺
( [𝑢1]) + 𝑙𝐺 ( [𝑢2]) + 𝑙Γ (𝛾1) + 𝑙Γ (𝛾2)

= 𝑙O1 ( [𝑈1]) + 𝑙O2 ( [𝑈2]) .

This �nishes the proof of the claim, and hence the lemma. �

We can now give the following su�cient condition for �Γ ⊲⊳ (𝐺 o Λ) to have prop-
erty (𝑅𝐷) (resp. polynomial growth).

Theorem III.3.2. In the above settings. If there is a Γ-invariant length function 𝑙
𝐺

on 𝐺 , and a 𝛽Λ-invariant length function 𝑙Γ on Γ, such that both
(
𝐺 , 𝑙

𝐺

)
and (Γ , 𝑙Γ)

have polynomial growth (resp. (𝑅𝐷)), then the dual of the bicrossed product, namely�Γ ⊲⊳ (𝐺 o Λ) also has polynomial growth (resp. (𝑅𝐷)).

Proof. This follows from Lemma III.3.1, Theorem I.7.3 and Theorem I.8.4. �

Remark III.3.3. It is however, unknown to the author that whether the polynomial
growth (resp. (𝑅𝐷)) of the dual �Γ ⊲⊳ (𝐺 o Λ) implies the existence of a Γ-invariant
length function 𝑙

𝐺
on 𝐺 witnessing the polynomial growth (resp. (𝑅𝐷)) of 𝐺 . Later

we will show that if the composition Γ
𝜏−→ Aut(𝐺) → Out(𝐺) has �nite image, then

the converse of Theorem III.3.2 also holds (see Theorem III.5.1).

III.4 Invariance of length functions

In this section, we partially treat the di�culty of the technical assumption on the
Γ-invariance of the length function 𝑙

𝐺
on Γ̂ that witnesses the polynomial growth or

(𝑅𝐷) of 𝐺 , as presented in Theorem III.3.2. The results here will be used in § III.5 in
which we give some concrete examples of bicrossed products whose dual has (𝑅𝐷)
but does not have polynomial growth. We also point out here that the examples given
in § III.6 do not �t into this framework, thus we only have a partial understanding of
the situation.

We begin by considering a technical lemma on the Fourier transform and the
Sobolev-0-norm compact quantum groups of Kac type.

Lemma III.4.1. Let H be a compact quantum group of Kac type. Suppose 𝜃 : 𝐶 (H) →
𝐶 (H) is an automorphism of 𝐶∗-algebras that intertwines the comultiplication Δ of H
(i.e. 𝜃 is an automorphism of the quantum groupH). Then there exists an automorphism
𝜃 of the involutive algebra 𝑐𝑐 (Ĥ), such that

∀𝑎 ∈ 𝑐𝑐 (Ĥ), FH
(
𝜃 (𝑎)

)
= 𝜃

(
FH (𝑎)

)
and




𝜃 (𝑎)



H,0

= ‖𝑎‖H,0. (III.4.1)
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Proof. Choose a complete set of representatives {𝑢𝑥 : 𝑥 ∈ Irr(H)} for Irr(H), and
denote the �nite dimensional Hilbert space underlying the unitary representation
𝑢𝑥 by H𝑥 , so that

𝑐𝑐
(
Ĥ
)
=

alg⊕
𝑥 ∈Irr(H)

B
(
H𝑥

)
.

For each �nite dimensional unitary representation 𝑢 ∈ B(H ) ⊗ Pol(H) of H on H ,
since 𝜃 is an automorphism of H, the unitary operator

𝜃∗ (𝑢) := (id ⊗𝜃 ) (𝑢) ∈ B(H ) ⊗ Pol(H) (III.4.2)

remains a unitary representation of H on the same space H . It is clear that 𝜃∗ also
passes to a bijection of the set Irr(H) to itself, which we still denote by 𝜃∗ by abuse of
notation, via 𝜃∗ ( [𝑢]) = [𝜃∗ (𝑢)]. In particular, for each 𝑥 ∈ Irr(H), we have

[
𝑢𝜃∗ (𝑥)

]
=

𝜃∗ (𝑥) = [𝜃∗ (𝑢𝑥 )], thus there exists a unitary

𝑇𝑥 ∈ MorH
(
𝑢𝜃∗ (𝑥) , 𝜃∗ (𝑢𝑥 )

)
⊆ B

(
H𝜃∗ (𝑥) ,H𝑥

)
,

which is uniquely determined up to a multiple of a scalar in T.
Take any

𝑎 = (𝑎𝑥 )𝑥 ∈Irr(H) =
∑︁

𝑥 ∈Irr(H)
𝑎𝑥 ∈ 𝑐𝑐 (Ĥ), (III.4.3)

where the sum is �nite (meaning all but �nitely many 𝑎𝑥 ∈ B(H𝑥 ) is 0). For each
𝑥 ∈ Irr(H), we pose

𝑏𝜃∗ (𝑥) := 𝑇
∗
𝑥 𝑎𝑥𝑇𝑥 ∈ B

(
H𝜃∗ (𝑥)

)
. (III.4.4)

Then
dim

(
𝜃∗ (𝑥)

)
= dim𝑥 . (III.4.5)

By the choice of 𝑇𝑥 , we have(
TrH𝜃∗ (𝑥 ) ⊗ id

) (
𝑢𝜃∗ (𝑥) (𝑏𝜃∗ (𝑥) ⊗ 1)

)
=

(
TrH𝜃∗ (𝑥 ) ⊗ id

) (
(𝑇 ∗
𝑥 ⊗ 1)

[
[𝜃∗ (𝑢𝑥 )] (𝑎𝑥 ⊗ 1)

]
(𝑇𝑥 ⊗ 1)

)
=

(
TrH𝑥

⊗ id
) (

[𝜃∗ (𝑢𝑥 )] (𝑎𝑥 ⊗ 1)
)

= 𝜃

[ (
TrH𝑥

⊗ id
) (

[𝑢𝑥 (𝑎𝑥 ⊗ 1)
)]
,

(III.4.6)

and (
TrH𝜃∗ (𝑥 ) ⊗ id

) (
𝑏∗
𝜃∗ (𝑥)𝑏𝜃∗ (𝑥)

)
=

(
TrH𝜃∗ (𝑥 ) ⊗ id

) (
𝑇 ∗
𝑥 𝑎

∗
𝑥𝑎𝑥𝑇𝑥

)
=

(
TrH𝜃∗ (𝑥 ) ⊗ id

)
(𝑎∗𝑥𝑎𝑥 ).

(III.4.7)

We now de�ne
𝜃 (𝑎) :=

∑︁
𝑥 ∈Irr(H)

𝑏𝜃∗ (𝑥) (III.4.8)

Since 𝜃∗ : Irr(H) → Irr(H) is a bijection, it is clear that (III.4.8) de�nes an automor-
phism 𝜃 of the involutive algebra 𝑐𝑐 (Ĥ). Finally, (III.4.1) follows from (III.4.6) and
(III.4.7). �
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Remark III.4.2. Lemma III.4.1 also applies to non-Kac type Hwith almost the same
proof, with the caveats that the Fourier transform and the Sobolev norm needs to be
adjusted using quantum dimensions of representations, which is not needed hence
not introduced here (see (Vergnioux, 2007) or (Bhowmick et al., 2015) the discussion
of non-Kac type Fourier transforms and Sobolev norms).

Recall the notations in Notations I.5.9, we have the following result.

Proposition III.4.3. Let H =
(
𝐶 (H),Δ

)
be a compact quantum group of Kac type.

Suppose Θ is a �nite subgroup of Aut
(
𝐶 (H),Δ

)
. The following are equivalent.

(a) There exists a length function 𝑙 on Ĥ and 𝑃 (𝑋 ) ∈ R[𝑋 ], such that

∀𝑘 ∈ N, 𝑎 ∈ 𝑄𝑙,𝑘𝑐𝑐 (Ĥ) =⇒ ‖FH (𝑎)‖ ≤ 𝑃 (𝑘)‖𝑎‖H,0 . (III.4.9)

(b) There exists a Θ-invariant length function 𝑙Θ on Ĥ and 𝑄 (𝑋 ) ∈ R[𝑋 ], such that

∀𝑘 ∈ N, 𝑎 ∈ 𝑄𝑙Θ,𝑘𝑐𝑐 (Ĥ) =⇒ ‖FH (𝑎)‖ ≤ 𝑄 (𝑘)‖𝑎‖H,0. (III.4.10)

Proof. Obviously (b) implies (a).
Now suppose (a) holds and let’s prove (b). Let 𝑛 = |Θ| and suppose 𝜃1, . . . , 𝜃𝑛

form an enumeration of all elements of Θ. Let 𝑙𝑖 denote the length function 𝑙 ◦ (𝜃𝑖 )∗
on Ĥ (see the discussion after (III.4.2) in the proof of Lemma III.4.1). Put

𝑙Θ :=
1
|Θ|

𝑛∑︁
𝑖=1

𝑙𝑖 , (III.4.11)

then it is clear that 𝑙Θ is a Θ-invariant length function on Ĥ. For each 𝑘 ∈ N, de�ne

𝐹Θ,𝑘 := {𝑥 ∈ Irr(H) : 𝑙Θ (𝑥) < 𝑘 + 1}, (III.4.12)

and for 𝑖 = 1, . . . , 𝑛, put

𝐹𝑖,𝑘 := {𝑥 ∈ Irr(H) : 𝑙𝑖 (𝑥) < 𝑘 + 1}, (III.4.13)

By (III.4.9), (III.4.13) and (III.4.11), we have

𝐹Θ,𝑘 ⊆
𝑛⋃
𝑖=1

𝐹𝑖,𝑘 . (III.4.14)

De�ne

𝜉 : 𝐹Θ,𝑘 → {1, . . . , 𝑛}
𝑥 ↦→ inf

{
𝑖 : 𝑥 ∈ 𝐹𝑖,𝑘

}
.

(III.4.15)

Note that (III.4.14) guarantees that 𝜉 is well-de�ned.
We now prove (III.4.10) holds for some suitable polynomial𝑄 (𝑋 ) ∈ R[𝑋 ], which

will �nish the proof. Since 𝑎 ∈ 𝑄𝑙Θ,𝑘𝑐𝑐 (Ĥ), there exists a �nite subset 𝐹 of 𝐹Θ,𝑘 , such
that

𝑎 =
∑︁
𝑥 ∈𝐹

𝑎𝑥 =
𝑛∑︁
𝑖=1

𝑎𝑖 , (III.4.16)
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where for each 𝑖 ,
𝑎𝑖 :=

∑︁
𝑥 ∈𝐹∩𝜉−1 (𝑖)

𝑎𝑥 ∈ 𝑄𝑙𝑖 ,𝑘 . (III.4.17)

By Lemma III.4.1 and (a), we have

∀𝑖 = 1, . . . , 𝑛, ‖FH (𝑎𝑖 )‖ ≤ 𝑃 (𝑘)‖𝑎𝑖 ‖H,0, (III.4.18)

hence

‖FH (𝑎)‖2 ≤
(
𝑛∑︁
𝑖=1

‖FH (𝑎𝑖 )‖
)2

≤ 𝑛
(
𝑛∑︁
𝑖=1

‖FH (𝑎𝑖 )‖2
)

≤ 𝑛[𝑃 (𝑘)]2
(
𝑛∑︁
𝑖=1

‖𝑎𝑖 ‖2H,0
)
= |Θ| [𝑃 (𝑘)]2‖𝑎‖2H,0 .

(III.4.19)

Thus posing 𝑄 (𝑋 ) =
√︁
|Θ|𝑃 (𝑋 ) ∈ R[𝑋 ], we have (III.4.10). �

Corollary III.4.4. The following are equivalent:

(a) Γ has polynomial growth (resp. (𝑅𝐷));

(b) there exists a 𝛽Λ-invariant length function 𝑙Γ on Γ, such that (Γ , 𝑙Γ) has polyno-
mial growth (resp. (𝑅𝐷)).

Proof. This follows from Proposition III.4.3 by posing Θ = {Ad𝑟 ∈ Aut(Γ) : 𝑟 ∈ Λ}
and H = Γ̂. �

III.5 Examples of bicrossed products with rapid decay but not
polynomial growth–part I

We begin by observing more closely the action Γy Irr(𝐺). It is clear that this action
is actually given by Aut(𝐺) acting on 𝐺 , and the group morphism 𝜏 : Γ → Aut(𝐺)
with respect to which we form the semidirect product (see the beginning of § III.1).
More precisely, there is a natural action Aut(𝐺) y Irr(𝐺) by letting (𝜃, [𝑢]) ↦→
[𝜃∗ (𝑢)], and the action Γ y Irr(𝐺) is given by (𝛾, 𝑥) ↦→ 𝜏 (𝛾) · 𝑥 . By de�nition, one
has

Inn(𝐺) ⊆
⋂

𝑥 ∈Irr(𝐺)
[Aut(𝐺)]𝑥 , (III.5.1)

where
[Aut(𝐺)]𝑥 := {𝜃 ∈ Aut(𝐺) : 𝜃 · 𝑥 = 𝑥}.

Thus passing to the quotient, it is in fact Out(𝐺) = Aut(𝐺)/Inn(𝐺) that acts on
Irr(𝐺). Thus to talk about the Γ invariance of a given length function 𝑙 on 𝐺 , it
su�ces to consider the invariance of 𝑙 under the image of the composition of group
morphisms 𝜏 : Γ → Aut(𝐺) and the canonical projection Aut(𝐺) → Out(𝐺).

With the above considerations in mind, we can now establish the following the-
oretical result.

Theorem III.5.1. Let 𝜏 : Γ → Out(𝐺) be the composition of 𝜏 : Γ → Aut(𝐺) with
the canonical projection Aut(𝐺) → Out(𝐺). If Image(𝜏) is �nite, then the following
are equivalent:

(a) �Γ ⊲⊳ (𝐺 o Λ) has polynomial growth (resp. (𝑅𝐷));
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(b) both Γ and 𝐺 have polynomial growth (resp. (𝑅𝐷)).

Proof. This follows from Theorem III.3.2, the proof of Proposition III.4.3 (posing H =

𝐺 and Θ = Image(𝜏), and noting that inner automorphisms of 𝐺 acts trivially on
Irr(𝐺) and hence on length functions) and Corollary III.4.4. �

We will also frequently use Jolissaint’s theorem on rapid decay of amalgamated
product of groups, which we record here for convenience of the reader.

Theorem III.5.2 (Jolissaint). Suppose Γ1, Γ2 are two discrete groups with property
(𝑅𝐷), 𝐴 is a �nite group, 𝑗𝑖 : 𝐴 ↩→ Γ𝑖 is an injective group morphism for 𝑖 = 1, 2, then
the amalgamated product Γ1 ∗𝐴 Γ2 with respect to 𝑗1, 𝑗2 also has property (𝑅𝐷).

Proof. This is part of (Jolissaint, 1990, Theorem 2.2.2). �

We will refer Theorem III.5.2 as Jolissaint’s theorem hereafter.

Example III.5.3. Take Γ = PSL2 (Z) ' (Z/2Z) ∗ (Z/3Z), with the isomorphism
determined by identifying Z/2Z with the cyclic group generated by 𝑠 ∈ Γ, and Z/3Z
with the cyclic group generated by 𝑡 ∈ Γ, where

𝑠 =

(
0 1
−1 0

)
and 𝑡 =

(
0 −1
1 1

)
.

(see e.g. (Brown and Ozawa, 2008, Example E.10 on page 476) for a discussion of this
amalgamated product decomposition of SL2 (Z)). Let 𝐺 be any compact connected
real Lie group that admits an element 𝑥 ∈ 𝐺 of order 2, and an element 𝑦 of order
3, such that {𝑥,𝑦} * 𝑍 (𝐺) (e.g. 𝐺 = SO(3,R), 𝑥 is any rotation by 𝜋 , 𝑦 any rotation
by 2𝜋/3), where 𝑍 (𝐺) is the center of 𝐺 . Now the mapping 𝑠 ↦→ Ad𝑥 , 𝑡 ↦→ Ad𝑦
determines a unique group morphism

𝜏 : Γ → Inn(𝐺) ⊆ Aut(𝐺)

so 𝜏 : Γ → Out(𝐺) is trivial (hence of �nite image). Put Λ < Γ to be < 𝑠 > or < 𝑡 >.
Since Λ * 𝑍 (Γ), it follows from the choice of 𝑥 and 𝑦 that the resulted bicrossed
product G := Γ𝛼Λ ⊲⊳𝛽Λ (𝐺 o𝜏 Λ) is nontrivial (Proposition III.1.1).

By Jolissaint’s theorem, PSL2 (𝑍 ) has (𝑅𝐷), but PSL2 (Z) does not have poly-
nomial growth since it is not virtually nilpotent (Gromov’s theorem, see (Gromov,
1981)), and (Vergnioux, 2007) showed that 𝐺 has polynomial growth, thus Theo-
rem III.5.1 applies and we see that Ĝ has (𝑅𝐷) but not polynomial growth.

Example III.5.4. Let 𝐺 be any compact group with 𝐺 having polynomial growth
(e.g. all connected compact real Lie group), and Λ a �nite subgroup of Aut(𝐺). Take
Γ to be a nontrivial semidirect product of the free group F2 on two generators (here
F2 can be replaced by any discrete group with (𝑅𝐷) but without polynomial growth)
with Λ (in particular, Λ is nontrivial). Then the obvious action of Λ on 𝐺 and the
canonical projection F2 o Λ → Λ together yield a nontrivial left action 𝜏 of Γ on 𝐺
by topological automorphisms. The same reasoning as in the above Example shows
that Γ ⊲⊳ (𝐺 oΛ) is also a bicrossed product whose dual has (𝑅𝐷) but not polynomial
growth.

Many more examples can be constructed in the same spirit as in the above exam-
ples, showing that Theorem III.5.1 is an applicable procedure to produce bicrossed
products whose dual has (𝑅𝐷) but not polynomial growth.
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III.6 Examples of bicrossed products with rapid decay but not
polynomial growth–part II

Despite of the fact that Theorem III.5.1 yields many interesting concrete examples
of bicrossed products with property (𝑅𝐷) as shown in § III.5, it is worth pointing
out that the restriction the �niteness of the image Image(𝜏) is too strong to include
many interesting examples, which we will now show in this section. To make the
contrast even more dramatic, we show how to construct examples of nontrivial bi-
crossed product of the form Γ ⊲⊳ (𝐺 o Λ) whose dual has (𝑅𝐷) but not polynomial
growth, while Image(𝜏) as in Theorem III.5.1 is in�nite (hence Theorem III.5.1 no
longer applies).

We begin with a simple result in �nite group theory.

Lemma III.6.1. If 𝐴 is a �nite abelian group, then there exists in�nitely many �nite
abelian group 𝐵, such that 𝐴 is isomorphic to a subgroup of Aut(𝐵).

Proof. Since 𝐴 is a direct sum of �nite cyclic groups, without loss of generality, we
may assume 𝐴 is cyclic of order 𝑛, with 𝑎 as a generator. Pose 𝐵 to be the 𝑛-fold
direct sum of any nontrivial �nite abelian group 𝐶 , and de�ne 𝜎 (𝑎) ∈ Aut(𝐵) to be
the permutation

(𝑐1, . . . , 𝑐𝑛) ↦→ (𝑐2, . . . , 𝑐𝑛, 𝑐1).

Then it is clear that

𝜎 : 𝐴 → Aut(𝐵)
𝑎𝑚 ↦→ [𝜎 (𝑎)]𝑚

is a well-de�ned injective group morphism. �

As we will see later, Theorem III.5.1 no longer applies for the examples con-
structed in this section due to the violation of the hypothesis of the �niteness of
Image(𝜏). This we will have to resort to Theorem III.3.2 to prove the rapid decay of
the dual of the bicrossed product Γ ⊲⊳ (𝐺 oΛ). Here, the 𝛽Λ-invariance of the length
function on Γ poses no problem thanks to Corollary III.4.4. But the Γ-invariance of
the length function on 𝐺 requires a little more work.

Lemma III.6.2. Suppose Ξ1,Ξ2, . . . is a sequence of �nite discrete (hence compact)
groups. The product group

∏∞
𝑖=1 Aut(Ξ𝑖 ) naturally acts pointwise on the direct sum

⊕∞
𝑖=1Ξ𝑖 , hence we have a canonical inclusion

∏∞
𝑖=1 Aut(Ξ𝑖 ) ⊆ Aut(⊕∞

𝑖=1Ξ𝑖 ). With these
settings, there exists a

∏∞
𝑖=1 Aut(Ξ𝑖 )-invariant length function 𝑙 on the discrete group

⊕∞
𝑖=1Ξ𝑖 , such that the pair

(
⊕∞
𝑖=1Ξ𝑖 , 𝑙

)
has polynomial growth.

Proof. Let 𝑁𝑖 = |Ξ𝑖 | for all 𝑖 ∈ N>0 and pose 𝑀𝑘 =
∏𝑘
𝑖=1 𝑁𝑖 for all 𝑘 ∈ N (we make

the convention that 𝑀0 = 1). Let 𝑒𝑖 be the identity of the group Ξ𝑖 , and denote the
characteristic function of Ξ𝑖 \ {𝑒𝑖 } by 𝜒𝑖 . De�ne

𝑙 : ⊕∞
𝑖=1Ξ𝑖 → R≥0

(𝜉𝑖 ) ↦→
∞∑︁
𝑖=1

𝜒𝑖 (𝜉𝑖 )𝑀𝑖 .
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Then it is clear that 𝑙 is a ∏∞
𝑖=1 Aut(𝐺𝑖 )-invariant length function on ⊕∞

𝑖=1Ξ𝑖 . More-
over, for all 𝑛 ∈ N>0, there exists a unique 𝑘 ≥ 1, such that 𝑀𝑘−1 ≤ 𝑛 < 𝑀𝑘 . Then,
by the de�nition of 𝑙 , we have{

𝜉 = (𝜉𝑖 ) ∈ ⊕∞
𝑖=1Ξ𝑖 : 𝑙 (𝜉) < 𝑛

}
⊆

{
(𝜉𝑖 ) ∈ ⊕∞

𝑖=1Ξ𝑖 : ∀𝑖 ≥ 𝑘, 𝜉𝑖 = 𝑒𝑖
}
.

Thus ��{𝜉 = (𝜉𝑖 ) ∈ ⊕∞
𝑖=1Ξ𝑖 : 𝑙 (𝜉) < 𝑛

}�� ≤ 𝑘−1∏
𝑖=1

𝑁𝑖 = 𝑀𝑘−1 ≤ 𝑛.

In particular,
(
⊕∞
𝑖=1Ξ𝑖 , 𝑙

)
has polynomial growth. �

We are now prepared to give the construction of new examples of bicrossed prod-
uct of the form Γ ⊲⊳ (𝐺 o Λ) that don’t �t into the framework of Theorem III.5.1.

Example III.6.3. Let Λ be any nontrivial �nite abelian group. By Lemma III.6.1, one
can take a sequence of �nite abelian groups (𝐺𝑖 )∞𝑖=1, such that Λ is isomorphic to a
subgroup of Aut(𝐺𝑖 ) for each 𝑖 = 1, 2, . . . via an injective group morphism 𝑗𝑖 : Λ ↩→
Aut(𝐺𝑖 ). Equip each 𝐺𝑖 with the discrete topology, and 𝐺 := ∏∞

𝑖=1𝐺𝑖 the product
topology. Then𝐺 is a compact abelian group. In particular, the character group 𝜒 (𝐺)
of𝐺 is a complete set of representatives of Irr(𝐺). By Pontryagin’s duality, we have
𝜒 (𝐺) ' ⊕∞

𝑖=1𝜒 (𝐺𝑖 ), and it is clear that length functions on 𝐺 become exactly length
functions on the discrete group 𝜒 (𝐺) of continuous characters of 𝐺 . But as �nite
abelian groups, each𝐺𝑖 is isomorphic to 𝜒 (𝐺𝑖 ) (albeit the isomorphism is not natural
in the categorical sense). Thus Lemma III.6.2 shows that there exists a∏∞

𝑖=1 Aut(𝐺𝑖 )-
invariant length function 𝑙𝐺 on 𝐺 , such that (𝐺 , 𝑙𝐺 ) has polynomial growth, where
we’ve used the canonical inclusion ∏∞

𝑖=1 Aut(𝐺𝑖 ) ⊆ Aut(𝐺).
The construction of Γ takes somemoreworkwhichwe now explain. First we take

Λ′ to be any nontrivial �nite group and pose Γ1 to be the free productΛ∗Λ′. It follows
from Jolissaint’s theorem andGromov’s theorem that Γ1 has (𝑅𝐷) but not polynomial
growth. De�ne 𝑗 : Λ ↩→ ∏∞

𝑖=1 Aut(𝐺𝑖 ) to be the mapping 𝜆 ↦→
(
𝑗1 (𝜆), 𝑗2 (𝜆), · · ·

)
.

Take any in�nite discrete subgroup Γ′2 of ⊕∞
𝑖=1 Aut(𝐺𝑖 ) ⊆

∏∞
𝑖=1 Aut(𝐺𝑖 ) such that 𝑗 (Λ)

is contained in the normalizer of Γ′2 in
∏∞
𝑖=1 Aut(𝐺𝑖 ). Obviously 𝑗 (Λ) and Γ′2 intersect

trivially, thus the subgroup of∏∞
𝑖=1 Aut(𝐺𝑖 ) generated by 𝑗 (Λ) and Γ′2 is the (internal)

semidirect product of Γ′2 with 𝑗 (Λ), which we denote by Γ2. Since ⊕∞
𝑖=1 Aut(𝐺𝑖 ) has

polynomial growth by Lemma III.6.2, it follows that Γ′2 , hence Γ2 (note that [Γ2 :
Γ′2 ] = |Λ| is �nite) has polynomial growth. In particular, Γ2 has (𝑅𝐷), and 𝑗 : Λ ↩→∏∞
𝑖=1 Aut(𝐺𝑖 ) restricts an injective group morphism, which we still denote by 𝑗 , from

Λ into Γ2. To facilitate our discussion, we identify Λ with its copy in Γ1 = Λ ∗ Λ′

and in Γ via 𝑗 . This allows us to form the amalgamated product of Γ1 and Γ2 over
𝐴, which we denote by Γ. Jolissaint’s theorem applies again and proves that Γ has
(𝑅𝐷). Moreover, Γ does not have polynomial growth since its subgroup Γ1 does not.
We also make the obvious identi�cation of Λ with 𝑗 (Λ) in Γ. By Corollary III.4.4,
there exists a Λ-invariant length function 𝑙Γ on Γ, meaning 𝑙Γ = 𝑙Γ ◦Ad𝑟 for all 𝑟 ∈ Λ,
such that (Γ , 𝑙Γ) has (𝑅𝐷).

Finally, let’s explain how the action, which is a group morphism 𝜏 : Γ → Aut(𝐺),
is de�ned. The trivial group morphism Λ′ → Aut(𝐺), together with 𝑗 : Λ →∏∞
𝑖=1 Aut(𝐺𝑖 ) ⊆ Aut(𝐺) and the universal property of free products, yields a group

morphism 𝜏1 : Γ1 → Aut(𝐺). Let 𝜏2 be the simple inclusion Γ2 ↩→ ∏∞
𝑖=1 Aut(𝐺𝑖 ) ⊆

Aut(𝐺). It is clear that 𝜏1 and 𝜏2 agree on Λ, thus the universal property of Γ1 ∗Λ Γ2
applies and determines a unique group morphism 𝜏 : Γ → Aut(𝐺). We can �nally
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construct the bicrossed product Γ ⊲⊳ (𝐺 o Λ), and we conclude by Theorem III.3.2
that the dual of Γ ⊲⊳ (𝐺 o Λ) has (𝑅𝐷) (it does not have polynomial growth because
of Theorem I.7.3 and the fact that Γ does not have polynomial growth).

It is clear by our construction that Image(𝜏) = Γ2 ⊆ Aut(𝐺) = Out(𝐺) is in�nite,
thus Theorem III.5.1 does not apply.
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