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Titre : Décroissance rapide des biproduits croisés et théorie des
représentations de certains produits semidirects

Résumeé : On étude la propriété de décroissance rapide (propriété (RD))
et croissance polynomiale pour les duaux des groupes quantiques
compacts venant de la construction de biproduits croisés des paires
assorties des groupes classiques, et la théorie des représentations des
produits semidirects d'un groupe quantique compact avec un groupe fini.
On utilise ces théories pour donner des nouveaux exemples des groupes
guantiques discrets ayant la propriété (RD) sans la croissance
polynomiale.
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some semidirect products

Abstract : We study the rapid decay property (property (RD)) and
polynomial growth of the duals of bicrossed products of matched pairs of
classical groups, and the representation theory of semi-direct products of
a compact quantum group with a finite group. We use these theories to
obtain new examples of discrete quantum groups that has property (RD)
but not polynomial growth.
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Introduction and some background

The central theme of this thesis is the study of a certain approximation property,
namely the rapid decay property, a.k.a. property (RD), of the dual of bicrossed prod-
ucts of matched pair of classical groups.

To put the mathematical objects of this thesis into perspective, we now briefly
outline some background on property (RD). In the breakthrough paper (Haagerup,
1978/79), Haagerup showed that for the free group Fx with N generators, the norm
of the reduced C*-algebra C; (Fx) can be controlled by the more manageable Sobolev
¢*>-norm associated to the word length function on Fy. This striking phenomenon is
later shown to be quite ubiquitous, and is later recognized and systematically studied
as the rapid decay property (property (RD)) by Jolissaint (Jolissaint, 1990). Among
many of its applications nowadays, let us mention the remarkable connection with
K-theory. Property (RD) allowed Jolissaint (Jolissaint, 1989) to show that the K-
theory of C;(T') equals the K-theory of subalgebras of rapidly decreasing functions
of T' (Jolissaint did attribute this result to Connes). This work was later used by
V. Lafforgue in his approach to the Baum-Connes conjecture via Banach KK-theory
(Lafforgue, 2002; 2000).

We are now witnessing the rapid development of the theory of topological quan-
tum groups in the sense of Woronowicz in the compact case (Woronowicz, 1998;
1987) (and its dual which is the discrete case), and in the sense of Kustermans and
Vaes (Kustermans and Vaes, 2003; 2000) in the more general locally compact case. It
is natural to develop various approximation properties in this new quantum setting.
The bicrossed product construction, which was already present in the framework of
Kac algebras (see (Kac, 1968)), and later developed in full generality in the framework
of locally quantum groups in (Vaes and Vainerman, 2003), is a powerful process of
producing highly nontrivial (both non-commutative and non-cocommuative) quan-
tum groups starting from the so-called matched pair of (quantum) groups. In the
paper (Fima et al., 2017), various approximation property for (the dual of) compact
bicrossed products of classical matched pair are studied. However, due to the lack
of correct understanding the representation theory of these bicrossed products, the
study of property (RD) for the dual of these bicrossed products was out of reach, and
this is the starting point of the work in this thesis.

The main content of this thesis is divided into three chapters. Chapter I stud-
ies the permanence of property (RD), and the closely related property of polynomial
growth, under the above mentioned bicrossed product construction. This is achieved
by a careful study of the representation theory of these bicrossed products, and the
theory of matched pair of length functions designed to reflect this representation the-
ory. Chapter II studies the representation theory of semidirect products of a compact
quantum group with a finite group, and can be viewed as a quantum analogue of the
classical Mackey’s analysis, with the new results on the calculation of the fusion rules
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of these semidirect products. While the author is led to study the representation of
these semidirect products motivated by constructing concrete examples of bicrossed
products whose dual has property (RD), it is the author’s opinion that this theory is
of interest of its own, as it satisfactorily describes the representation theory of many
semidirect products, which might have wider applications. Chapter III constructs
concrete examples of bicrossed products whose dual has (RD) but not polynomial
growth, hence provides new examples of interesting quantum groups. Here the more
theoretical work of both Chapter I and Chapter II are used in an essential way. The
author hopes these examples provide more “flesh” to the abstract theory of the first
two chapters of this thesis.
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Chapter I

Rapid decay and polynomial growth
of bicrossed products

Introduction

This chapter of the thesis is a rewrite of the author’s collaborative work with P. Fima
(Fima and Wang, 2018). The central theme here is the study of the permanence of
property (RD) and the closely related property of polynomial growth of the dual of
bicrossed products. We refer the reader to the introduction to this thesis and to the
article (Fima and Wang, 2018) for some background on property (RD) and why they
are interesting objects.

We now compare the treatment here with that of (Fima and Wang, 2018). The
similarities are obvious: the central tools are always representation theory of the bi-
crossed product and the theory of matched pair of length functions. However, there
are more differences to justify this rewrite. Firstly, (Fima and Wang, 2018) is a re-
search article targeted towards experts in this field, it is written with brevity in mind
in order to convey our research efficiently; by contrast, this rewrite takes a more
pedagogically friendly approach and is more detailed. Secondly, in the treatment
of the representation theory of bicrossed product, a whole section, namely § 1.3, is
dedicated to motivate the classification of irreducible representations of bicrossed
products. Despite its logical independence, the author hopes the treatment there is
more natural and easier to understand, and satisfies people who wonders why the
classification of irreducible representations of the bicrossed product in (Fima and
Wang, 2018) looks like what they do, which could seem to be quite artificial and
miraculous without the considerations in § 1.3. The key idea in (Fima and Wang,
2018) in the study of irreducible representations of the bicrossed product is by twist-
ing the induced representations of some suitable isotropy subgroups. This idea of
course remains important in this thesis if one ignores the motivational § 1.3 (and log-
ically speaking, one can safely to do so). On the other hand, our notations in this
rewrite is quite different from the notations in (Fima and Wang, 2018). In the lat-
ter, the more succinct notation introduces one noteworthy obscurity—one relies on
the choices of some orbital sections, and many more closely related mappings that
depends on these choices, which makes the calculations there a little bit difficult to
track. Here in this thesis, these choices are eliminated wherever possible, and we
replace them with the more systematic (yet somewhat equivalent) notion of the so-
called O-representations. The latter treatment on matched pair of length functions
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also uses this approach. This makes our main results, namely the results presented
in § 1.7 and § 1.8, a little more precise and the proof of these results more transparent.
As an illustration of the advantage of this more systematic approach, we point out
the fusion rules for bicrossed products in (Fima and Wang, 2018) (Theorem 1.4.15,
statement (c)) is easily simplified (Theorem 1.4.19). We also point out that unlike the
paper (Fima et al., 2017) that (Fima and Wang, 2018) is based upon, the construction of
the bicrossed product here in this thesis is given by a purely algebraic approach as an
algebraic compact quantum group, which gives a more clear picture of what is going
on. This purely algebraic picture can be easily translated to the now more standard
operator-algebraic construction via the GNS construction with respect to the Haar
integral, and at the same time has the important advantage of being more suitable
of a systematic study of the representation theory of the underlying quantum group,
as is manifested in § I.3. Finally, we point out that more background information on
generalities of length functions, property (RD) and polynomial growth is given here
(§ L6) to make this thesis more self-contained.

I.1 Matched pair of groups

We begin with some rudimentary observations on locally compact groups. Let H
be a locally compact group. Suppose there exists a compact subgroup G of H, and
a discrete group I' of H, such that H = T'G (so H = GI' too) and T N G = {ey},
where ey is the identity of H. Then every element of H can be written uniquely as a
product of an element of G and an element of T, in either order. In particular, there
are mappings a: I' X G — G, f: I' x G — T such that

VgeGy el yg=ay(9)phy(y), (L1.1)
where a, = a(y, ) and f; = B(-, g). Based on this property, we have
Vr,s €T,9 € G, rsg=ars(9)fy(rs) = ras(9)fy(s) = ar(ts(9)) Bay () () By (),
Then the uniqueness of the corresponding decompositions forces that
Vr.se€l,g€G, ar(g) = (aroas)(g), Py(rs) = Pa, (g (r)fy(s).
Similarly,
Vy €T,g.h € G,  ay(gh)Bau(y) = ygh = ay(9)By(y)h = ay(9)ap, () (W Bu(By (1)),
Then this forces that
Vy €T,g.heG, ay(gh) = ay(9)ap,y)(h), Pen(y) = (Bno Pg)(y).
Obviously, we have
VyeT.geG, alg) =g Pfe(¥)=y. aye)=e fyle)=e
To recapitulate, we have
(a) a is a left action of the discrete group I' on G viewed as a compact space;

(b) pis aright action of the compact group G on the discrete space T';
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(c) the two actions satisfy the following compatibility conditions:

Vyel.gheG, ay(gh) =ay(g)ap,(h) and ay(eg) =ec,  (11.2)

and
YgeGr,sel, Py(rs) =Pu,q(r)Py(s) and Py(er) = er. (L1.3)
Lemma I.1.1. Botha,f: T X G — G are continuous.

Proof. Since T' is a discrete subgroup of H, it is in particular closed. As a continuous
bijection from a compact space onto a Hausdorff space, the mapping ¢: G — H/T,
g = gl is in fact a homeomorphism. By (I.1.1), we have ygI' = a,(g)T, thus
a(y,9) = ay(g9) = ¢ ' (ygl), i.e. a is the composite of the multiplication T X G — H,
the canonical projection H — H/T, and the inverse ¢~!: H/T — G of the homeo-
morphism ¢, all of which are continuous. Hence « itself is continuous. The continu-
ity of f§ follows from that of & and (I.1.1). O

Corollary I.1.2. Using the above notations, every f-orbit is finite.

Proof. For eachy € T, the -orbit y-G is the rang of G under the continuous mapping
B(y, -): G — T'. Hence y-G is compact in the discrete space I', thus must be finite. O

Conversely, one can easily check that given a pair of groups (T, G), where G is
compact and T' is discrete, suppose that there exists a continuous left action a of the
group I' on G, and a continuous right action  of the group G on I, such that the
compatibility conditions (1.1.2) and (I1.1.3) hold, then

(9.7)(h,s) = (gar (h), Bu(r)s) (L14)

defines a group law on G xT', which makes G XI" a locally compact topological group.
When one identifies G X T" with H via multiplication, one recovers the multiplication
on H from (L.1.4)(see (1.1.1)).

We formalize these observations in the following definition.

Definition I.1.3. A matched pair of groups consists of the following data:
« a pair (T, G) of topological groups, where T is discrete and G is compact,
« a continuous left action a: T’ ~ G,
» a continuous right action : I' G,

such that for all r,s € T, g,h € G, the following compatibility conditions (often
referred as the matched pair relations in the sequel) are satisfied:

ar(gh) = ar (g)aﬁg(r)(h)> ﬂg(rs) = ﬂas(g)(r)ﬂg(s)a

(L.1.5)
ay(eg) = eg, and Py(er) =er.

Such a matched pair of groups is often denoted simply as (T, G), suppressing the
actions «a and f when they are implicitly understood from context.
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Remark I.1.4. There is a more general notion of matched pair of locally compact
groups. A pair of locally compact groups (Gi, G2) is called matched if there exists
a locally compact group G, such that G;, G, are identified with closed topological
subgroup of G that intersect trivially and the complement of G;G, is a null set with
respect to the Haar measure of G. In our case, G; = I is discrete (hence closed) ,
G, = G is compact, so G;G; is closed, and its complement is open and hence is of
null Haar measure if and only if GiG, = G. Thus our notion of matched pair is the
particular case of matched pair of locally compact groups where the first group is
compact and the second group discrete.

Remark 1.1.5. There is an even more general notion of a matched pair of locally
compact quantum groups ((Majid, 1990b; 1991),(Takeuchi, 1981),(Vaes and Vainer-
man, 2003)). There are two important constructions associated to such a matched
pair, both yielding new locally compact quantum groups. One is called the double
crossed product, which is the quantum analogue of recovering the global group G
from the matched pair (Gy, G;) in the classical case of locally compact groups. We
will not treat this construction in this thesis and refer the reader to (Baaj and Vaes,
2005). The other one is called the bicrossed product construction, the most general
case in the setting of locally compact quantum groups is treated in (Vaes and Vain-
erman, 2003). We also refer the reader to the introduction of Chapter II of this thesis
for further references on these constructions. Among other important results, it is
shown in (Vaes, 2005, Proposition 2.17) that the bicrossed product of a pair of lo-
cally compact quantum groups (G4, G;) is compact if and only if G, is discrete and
G, is compact. The construction of bicrossed product in this generality is rather
technically involved and requires the theory of locally compact quantum groups as
developed in (Kustermans and Vaes, 2000) and (Kustermans and Vaes, 2003). Since
we only consider the classical bicrossed product where the matched pair is given
by Definition I.1.3, in this case a simpler construction (albeit still very nontrivial) of
bicrossed product is developed in (Fima et al., 2017). The construction of bicrossed
products in this thesis uses a purely algebraic one, which the author believes to be
pedagogically more suitable for treating the representation theory of such objects,
and is long known among experts working on Hopf algebras.

We finish our treatment of matched pair with some technical lemmas.

Lemma 1.1.6. If (T, G) is a matched pair of groups with left action a, then for every
y € I, the homeomorphism a,,: G — G preserves the Haar measure of G.

Proof. Let f: T x G — T be the corresponding right action of the matched pair
(T, G). By Lemma L.1.1, the f-orbit y - G of y is finite (compact in a discrete space T').
Suppose y -G = {s1,...,sn},and put Ax .= {g € G : B,(y) = s} fork=1,...,n. By
the continuity of § (Lemma 1.1.1), each Ay is clopen in G. Fix an arbitrary g € G, and
denote the Haar probability measure on G by p. Consider the measure v: = ayu, we
want to show that v = p. Since v(G) = p(ay(G)) = p(G) = 1, by the uniqueness of
the Haar probability measure, it suffices to show that for every Borel set X of G, one
has v(Xg) = v(X). Let X; = Ax N X, then each X} remains a Borel set and X is the
disjoint union of X1, . .., X,,. Moreover, by the right invariance of y, the definition of
Xk and (I.1.2), one has

V(Xkg) = p(ay (Xeg)) = p(oy (Xi) s, (9)) = prlay (Xi)) = v(Xk)-
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Summing up the above equality over k = 1,. .., nyields v(Xg) = v(X), which finishes
the proof. O

Notations I.1.7. In the following, the right action f§ is often simply denoted by a dot,
while the left action is always indicated explicitly by a.

Lemma 1.1.8. For everyy € T, let G, be the isotropy subgroup of G fixing y with
respect to the action 3, then G, is clopen, and a,, restricts to a topological isomorphism
from Gy, onto G-1.

Proof. That G, is clopen follows from the continuity of # and the discreteness of I.
For every g € G, we have

er = ﬂg(Y71Y) = ﬁay(g) (Yﬁl)ﬂg()’):

hence (y-9)™' =y -ay(g9),andg € G, < ay(g9) € Gy, which, together
with the matched pair relations (which imply that ay|g, is multiplicative), proves
the second assertion. O

Lemmal.1.9. Lety,r €T, then foreveryg € G,r = y-gifandonly ify ™ -a,(g) = r".
In particular, (y - G)™' = y™1 - G, and r + r~! is a bijection fromy - G ontoy™" - G.

Proof. By the matched pair relations, we have
er = By(y'Y) = Bay (9 (Y DB = (' - ay(9) (v - 9) u!
Lemma 1.1.10. If 0, O, are B-orbits, then the set
010, :={rs : re 0, se 0,} CT
is a disjoint union of p-orbits.

Proof. If y € 01 0,, then y = rs for some r € 0 and s € 0, and for every g € G, we
have

Y 9= Py(rs) = Pay9)(Nfy(s) = (r- as(9)) (s - g) € G10%. o

I.2 Bicrossed product as an algebraic compact quantum group

From now on in this chapter, we fix a matched pair (T, G) (see Definition 1.1.3) to-
gether with the associated actions a and f.

Let Pol(G) be the subalgebra of matrix coefficients of representations of G, then
Pol(G) is a dense *-subalgebra of the abelian C*-algebra C(G). Moreover, Pol(G) also
possesses a canonical algebraic compact quantum group structure with comultiplica-
tion inherited from G viewed as a commutative compact quantum group (C(G), A).
Since @,: G — G is a homeomorphism for every r € T, &, (Pol(G)) is a dense sub-
space of C(G), which is also stable under involution (conjugation). Let Ay be the

subalgebra of C(G) generated by Uyeray (Pol(G)) and {a;(vris) D 1S,y € I“}, where

vy is the character function of the clopen set
Grs={9€G : By(r)=s} CG.

The clopen set Gy, is in fact an open subgroup of G, which will often be denoted
be G,. We check immediately that for each f-orbit y - G, where y € T, the matrix
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(Ur,s)r,sey-G over C(G) is a magic unitary. Our first goal is to establish that Ay =
Pol(G) (Proposition 1.2.4).

With these notations introduced, we first establish some elementary properties
of Pol(G) associated with the matched-pair actions « and f.

Lemma 1.2.1. Suppose H is a topological group, (V, p) a continuous finite dimensional
representation of H. For any continuous mapping ¢: H — C, let ¢9: H — C be the
mapping h — ¢(h™), and (V*, p*) the contragredient representation of (V, p), then ¢
is a matrix coefficient of p if and only if ¢ is a matrix coefficient of p*.

Proof. This follows directly from the definition of the contragredient representation,
namely p*(h) is the transpose of p(h™!). m]

Lemma 1.2.2. Suppose H is a topological group, ¢: H — C is a continuous function
on H, then the following are equivalent:

(a) the subspace
L (@) = Vect{p(h-) : he H}

of C(H) is finite-dimensional;

(b) the subspace
(@) = Vect{p(-h) : he H}

of C(H) is finite-dimensional;

(c) the subspace
Tu(p) = Vect{p(h - k) : h,k € H}

of C(H) is finite dimensional;

(d) there is a continuous representation (V, p) of H on some finite dimensional com-
plex vector space V, such that ¢ is a matrix coefficient of p.

Proof. That (d) implies (c) follows from a routine verification, and obviously (c) im-
plies both (a) and (b). If (b) implies (d), then by Lemma 1.2.1, (a) also implies (d). Thus
to finish the proof, it suffices to show that (b) implies (d).

Suppose (b) holds. Put V = Zg (), then V is a finite dimensional subspace of
the function space C(G). Define p: H — GL(V), h +— R, where R,: H — H is the
multiplication on the right by h, and R; is the pull-back along Ry, i.e. R, : §/ > o Rp.
Then (V, p) is a finite dimensional representation of H. Note that ¢ € V, and the
evaluation at the identity element e, denoted by e, is a linear functional on V. Hence
the mapping

h— (e, p(h)g) = (e, ¢ o Rn) = [¢ o Rp](e) = p(h)

is a matrix coefficient of p. The proof will be complete once we show that the repre-
sentation (V, p) is continuous, which is equivalent to every matrix coefficients of p

is continuous. For all hy € H, let i’zz) € V* be the linear functional of evaluating at hy,
then obviously Np,crr ker E) =0, hence V" is the linear span of {IZ) : hy € H}. Thus

to prove that every matrix coefficient of p is continuous on H, it suffices to show that
mappings from H to C of the form

h <;TO, p(h)¢> = <f?0 Y 0Rh> = 1(hho)
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are always continuous for all hy € H, and ¢/ € V. But the above mapping is just
¥ o Ry,, whose continuity follows from the continuity of both ¢ and Ry, . O

Lemma 1.2.3. Let K be an open subgroup of the compact group G, then Pol(G)|x =
Pol(K), where
Pol(G)Ik = {¢lk : ¢ € Pol(G)}.

Proof. If ¢ € Pol(G) is a matrix coefficient of some (continuous) finite dimensional
representation (V, p), then ¢|k is a matrix coefficient of the restricted representation
plk. Thus Pol(G)|x € Pol(K). Since Pol(G) is dense in C(G), the subspace Pol(G) |k
is dense in C(K) (any function g in C(K) can be extended to a function f in C(G)
by the Tietze extension theorem, and if f is the uniform limit of a sequence (f;) in
Pol(G), which exists by the density of Pol(G) in C(G), then in particular, g is the
uniform limit of (g,), where g, = fu|x). Hence by the orthogonality relations, we
must have Pol(G)|x = Pol(K). O

Proposition 1.2.4. Using the above notations, the following hold:
(a) vys € Pol(G) forallr,s €T in the same f-orbit,

(b) foreveryy €T, and all ¢ € C(G) with supp ¢ C G, we have ¢ € Pol(G) if and
only if p|g, € Pol(Gy);

(c) Pol(G) is stable under the action of a, i.e. one has ayp = ¢ o a, € Pol(G), for
every ¢ € Pol(G) and everyy € T.

Proof. (a). Take any S-orbit y-G, where y is some element in I'. The right permutation
representation of G on the finite dimensional Hilbert space £*(y - G) (equipped with
the canonical Hilbert space structure on it), when written in the operator form, is
exactly 3, sey.G €rs ® Urs € B((y - G)) ® C(G), where {er,s i rsey- G} is the
matrix unit associated with the canonical Hilbert basis {5, : r € y - G}. Thus v,
where r,s € y - G, are all matrix coefficients of this representation.

(b). 1t is clear that ¢ € Pol(G) implies ¢|g, € Pol(Gy). Conversely, suppose
¢lc, € Pol(Gy). Then by Lemma 1.2.3, there exists some ¢’ € Pol(G) with ¢'|g, =
¢lg,. Since vy, € Pol(G) by (a), suppovy, = G, and suppp C Gy, we have ¢ =
vyy0" € Pol(G).

(c). We first treat the special case in which supp ¢ € G,-1. Denote ‘P|Gy—1 by . By
Lemma 1.2.3, there exists a finite dimensional unitary representation (p, .7) of Gy,
such that i/ is a matrix coefficient of p. Hence by Lemmal.1.8, a i) = yoay is a matrix
coefficient of the unitary representation (p o a;, 7°) of G,. Using Lemma 1.1.8 again,
we see that supp(ay¢) € Gy. Hence (ay9)lc, = ayy € Pol(Gy), and ay¢ € Pol(G)
by (b).

Take an arbitrary r € y - G, and suppose supp ¢ € Gy-1,-1. Take gy € G such that
r=y-go, thenby Lemma1.1.9, r ' = y™! - &, (go). Using Lemma 1.1.9 again, we also
have supp(a;¢) € Gy,r. Let Ry: G — G be the multiplication on the right by g € G.
Put ¢’ = ¢ © Ry (g, and g1 = (a;¢) o Ry,, then ¢’ € Pol(G) by Lemma 1.2.2, and
supp ¢’ € G,-1 so supp(ay¢’) C Gy as we've seen above, while supp ¢; € G;. Now
for every x € Gy, we have

1(x) = (ay0) (xg0) = ¢(ay(xg0)) = @ (ay(x)ay(go)) = ¢’ (ay (%)) = (aye") (x).

Thus ¢1 = ay¢’ € Pol(G) by the previous case, and consequently ay¢ € Pol(G) by
Lemma .2.2.
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The general case now follows easily. Indeed, by Lemma 1.1.9, r +— r~1is a bi-

jection from y - G onto y~! - G. Hence, ¢ = 2irey-G Vy-1,-1¢. Since the support of
each v)-1,-1¢ € Pol(G) (see ()) is in Gy-1 -1, we have ay (vy-1,-1¢9) € Pol(G) by our
previous argument. Hence

ayp= >, ay(o,1,19) € Pol(G). O
rey-G

Remark 1.2.5. If B is trivial, i.e. « is an action by continuous group automorphisms,
then (c) is almost self-evident. It is remarkable that Pol(G) remains stable under the
action of « even « fails to be an action by group automorphisms (f nontrivial).

With these preparations, we can now construct the bicrossed product of the
matched pair (T, G) as an algebraic compact quantum group. Consider

o = C(T,Pol(G))

1.2.1
= {dbz I' - Pol(G) : ®(y) = 0 except for a finite number of y € F}. (t2.1)

The goal is to construct a multiplication m : & ® &/ — & with a (unique) unit
7 :C — o, a comultiplication A : &/ — </ ® &/ with a (unique) counit € : &/ — C,
a (uniquely determined) antipode S : &/ — 7, an involution *: &/ — ./ and a
positive invariant integral (which will be normalized as the Haar state) 7 : &/ — C,
such that equipped with these structures, (<7, A) is an algebraic compact quantum
group.

Let & : T — Aut(C(G)) be the group morphism y — a;‘:_l, then (I, C(G),a) is a
C*-dynamical system. It is well-known that when defining the crossed product of T
and C(G) with respect to the action @, one starts with the convolution as multipli-
cation on the space C. (T, C(G)) of (automatically continuous) mappings from I' into
C(G) with compact (equivalently, finite) support, which makes C. (T, C(G)) an invo-
lutive algebra. For convenience of the reader, we recall briefly here this construction
in a slightly more general setting where we replace C(G) with an arbitrary unital
involutive algebra, and @ : T — Aut(A) is still a group morphism. The idea is that
one wants to incorporate the multiplication structures of both the algebra A and the
group I in a universal way. To achieve this, one considers the vector space C.(T', A)
of compactly supported (which is the same as finitely supported as the group T is
discrete), A-valued functions. Since A is a unital algebra, one has the analogue of A-
valued Dirac measure, i.e. for each y € T, one can associate a element u, € C.(T,A),
such that
0 ifu#y,

1 A if H=Y

where of course 14 is the multiplicative unit of the algebra A. In this way, one has a
copy of I as a set in C.(T', A) via the bijective correspondence y < u,. There is also
a distinct element in I', namely the multiplicative identity er, which gives us a copy
of Aiin C(T, A) via the embedding A < C.(T', A), a — uya, where the notation u,a
denotes the A-valued function

Vperl, uy(p) = {

0 ifpu#y,

Yuerl, =
K e {a ifpu=y.

Identifying A and I" with their respective copies in C.(T', A) as explained above, the
key idea to define the multiplicative and involutive structure on C,(T, A) is that one
wants
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(a) Ais a unital *-subalgebra of C,(T, A);
(b) T is a unitary subgroup of the multiplicative group of C.(T, A);

(c) the action &, behaves exactly as conjugation by u, for every y € T, i.e. for all

~ _ -1 _
a € A, we have ay(a) = Uyau,” = uyau,-1.

With these requirements in mind and using the above notations, and noting that
a generic element of C¢(I', A) is of the form of finite sum X, cr u,a,, where all but
finitely many a, € A are nonzero, the multiplication on C,(T, A) is defined by

(Z uyay) (Z u,lb,,) = Z Uyu@y-1(ay)by, = Zu,, Z as1(ay)bs, (1.2.2)

yer HEN y.uel yer r,s€l, rs=y
as by our requirements, we have

Vuel, acA, ayu, = uﬂuljlayuu = uy(wrayuy) = u,a,-1(a).
One checks easily that the multiplication as defined in (I.2.2) makes C.(T, A) a unital
associative algebra, with u,, 14 being the multiplicative unit. Similarly, the involution
on C.(T, A) is defined by

(Z uyay) = Z ayuy-1 = Z u1ay(ay) = Z Uy Oyt (a;,l), (L.2.3)
yer yer yer

yer

as one needs u* = u;! = U1, ie uy to be unitary, in our requirements. Again,

one checks easily that (I.2.6) defines an involution on the unital associative algebra
C.(T, A), making the latter a unital involutive algebra and completes this construc-
tion. We call the unital involutive algebra C (T, A) the (algebraic) crossed product
of T and A with respect to the action a, and also denote it by A =z I, or simply by
A = T when the action « is clear. Of course, we have the following useful universal
property, whose proof is merely a routine verification using the construction above.

Proposition 1.2.6. Using the above notations, the formula

VyeT,ae€A, p(uya) = pr(uy)pa(a) (L2.4)

determines a bijection between the class of non-degenerate representations p of the invo-
lutive algebra A=T on some Hilbert space H and the class of pairs (pr, pa), where pr is
a unitary representation of the group I on H and py4 is a non-degenerate representation
of the involutive algebra A on H, such that pr and p, are covariant in the sense that

VyeTacA  pa(@(a) = pr(u)pa(@pr(u-). (125)

Before we return to our discussion of the bicrossed products, we point out that per
our construction, C.(T, A) is a free A-module (both left and right) with {u), tye F}
as a base.

We now apply the above procedure to the bicrossed product construction. Since
Pol(G) is a unital *-subalgebra of C(G) that is invariant under the action @ (Proposi-
tion 1.2.4), we can canonically identifies &7 = C. (T, Pol(G)) as a unital *-subalgebra
of the *-algebra C.(T', C(G)). This gives us the multiplication m, the unit77 : C — o/
for the multiplication m, and the involution * on /. For ¢ € Pol(G), y € T, let
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u,¢: ' — Pol(G) denote the mapping sending r € T to §,,¢ € Pol(G). We write
U, @ simply as ¢, and uy 1 simply as u,,, where 1 is of course the constant function
on G with value 1, which is the common unit of Pol(G) and C(G). Thus u,, = 1g
is the multiplicative identity of 27, and is often denoted simply as 1. This allows us
to identify I’ with the subgroup {u, : y € G} of the multiplicative group </, and
identify Pol(G) with the unital =-subalgebra {uerq) t g€ Pol(G)} of o7. These iden-
tification will be freely used below without further explanation. As a vector space,
o/ is spanned by {uy¢ : y €T, ¢ € Pol(G)}. Thus the multiplication m on .« is
completely determined by the following relations (note that m is associative)

Vr,s €T, ¢,y € Pol(G), m(u, ® Us) = Uplls = Ups, m(p ® ¥) = oy,
and m(p ® uy) = puy = uy (a,-1(9)) = uy(ayp) = m(u, ® ay0);

where as the involution * on .7 is completely determined by

Vy €T, o, (uyp)* = go*u;i =Qu,1 = uy (a;,@) . (1.2.6)

This completes our description of the multiplicative and involutive structures of <.
To describe the comultiplication A requires further work. Define

pr:T - o @, Yy Zu,,vy,r@)ur.
rey-G

Lemma 1.2.7. The mapping pr is a unitary representation of the discrete group I, i.e.
pr(er) =1®1, pr(y) is unitary, and pr(yp) = pr(y)pr(p) forally,p € T.

Proof. That pr(er) = 1®1 follows from the definition of pr and the fact that er - G =
{er}. We now show that that pr is multiplicative. By definition,

pr(y)pr(p) = Z Uy Oy, rUyOpys ® Uplls = Z Uy (a;z’y,r) Vp,s ® Ups. 1.2.7)
rey-G, rey-G,
seu-G sepu-G

Note that (0{;0),,,) v, € Pol(G) (Proposition 1.2.4) is the characteristic function of
the clopen set X, s := a;l (Gy.r) N Gys. By the matched pair relations, we have

VgeG,  (yp)-9=PBy(yit) = Pa,9) (NBs(1) = (v - @u(9)) (1~ 9),

which implies that for every t € (ypu) - G, the clopen set Gy, is the disjoint union of
clopen sets of the form X, s wherer € y- G, s € y- G and rs = t. Hence

Oypt = Z (a;l)y,r)vy,s- (L.2.8)

rey G,
sep-G,
rs=t

Combining (I.2.7) and (1.2.8) yields
pr(Vpr(p) = D) oy @ ur = prlyp).
te(yu)-G

It remains to show that pr(y) is unitary, or equivalently (in view of the mul-
tiplicativity of pr and pr(er) = 1 ® 1), that pr(y™!) = [pr(y)]*. But this follows
immediately from Lemma 1.1.9, the definition of pr and formula (1.2.6). O
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The unital *-morphism A : Pol(G) — Pol(G) ® Pol(G) C &/ ® &/ can be seen as
a representation of the unital *-algebra Pol(G).

Lemma 1.2.8. The representations pr and A are covariant, i.e. forally € T and ¢ €
Pol(G), we have
AM@)pr(v) = pr(nA (a50) 129)

Proof. By definition, we have

Ap)pr(y) = D A@)(uyoy, ® ur)
rey-G

Z (uy ® uy) [(a;j ® af) (A(q)))] (0, ®1),

rey-G

prina (o) = 3wy ©u) ey © DA (a0
T

Thus it suffices to show that
(vy,r ® 1)A (a;(p) = [(0(; ® a;‘) (A((p))] (vy,r ®1). (L.2.10)

As continuous mappings from G X G into C, both sides of (I.2.10) are supported in
Gy,r X G. Moreover, for every (g, h) € G,,, X G, we have

@@ 0a(@0)| @h = [ (ge)| @h =0 le@h), @21
and

(e @) (a)] Grr o 0} (0.1

(I.2.12)
= (e ® ;) (A@)] (4.1 = 0 ( (@ ().
Since g € Gy, we have f,(y) = r, and the matched pair relations yield
ay(gh) = ay(g)ar(h). (12.13)

Combining (I.2.11), (L.2.12) and (I1.2.13) establishes (I.2.10), hence proves (1.2.9). O

By Lemma 1.2.7, Lemma 1.2.8 and Proposition 1.2.6, the linear mapping Ao >
o/ ® 2/ determined by uy,¢ +— pr(y)A(p) is a well-defined (recall that 27 is free
Pol(G)-module with {uy iy € F} as a base) unital *-morphism.

Lemma 1.2.9. The comultiplication A : o/ — o/ ® </ is coassociative.

Proof. Since the comultiplication A of the Hopf *-algebraic structure on Pol(G) is
coassociative and 7 is generated by I' and Pol(G) as an algebra, it suffices to show
that for every y € I', we have

(id ®A)A(uy) = (A ® id)A(uy). (1.2.14)
On the one hand, we have

(d@M)A(uy) = > woy, @A) = > uyby, ® Uy ® Us. (1.2.15)
rey-G r,;sey-G
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On the other hand, we have

(Z ® id)Z(uy) = Z Z(uyv},’s) ® us = Z pr(uy)A(vys) ® ug

sey-G sey-G

= D (uyvy, ® tr @ uy) (Avy,s) @ 1). (1.2.16)
rey-G,
sey-G

By comparing (I.2.15) and (1.2.16), it suffices to show that for all 7, s € y - G, we have
Oyr ® s = (v, ® 1)A(0y) (L.2.17)
in order to establish (1.2.14). As mappings from G X G into C, for all g, h € G, we have

[(vy.r ® 1)A(0y,5)1(g, h) = vy.r(g)oy.s(gh), (12.18)

whichis 1ify-g = r and y- (gh) = s, and is 0 otherwise. Hence (v,,, ® 1)A(v,,,) is the
characteristic function of the clopen subset G, , X G, 5 of G X G, i.e. (1.2.18) holds. O

Let € be the counit (evaluating at eg) of the Hopf *-algebra (Pol(G), A). Define
the linear mapping € : &/ — C to be the one uniquely determined by

€: 4 — C, Uy @ > Sy er€(@) = yer(eg). (1.2.19)
Lemma 1.2.10. The linear mapping € is a counit for the comultiplication A.

Proof. For every y € T, and every ¢ € Pol(G), note that er - G is the singleton
consisting of only er, we have

(id ®)A(uy ) = (id ®€)

Z (uyvy,r ® ur)A((p))

rey-G
= Z Or.er (uyoy,r) [(id®e)A(p)] = Z 5y,er (uyvy,r) [(id®e)A(p)]
rey-G rey-G

= 8y ertty [(1d ®)A(9)] = Sy, uy (9(ec)1) = €(uy)1.
On the other hand,

(€®id)A(uyp) = (€®id)

Z (uyvy,r ® ur)A((P))

rey-G

= 8 (€ ®id)

Z (uyvy,r ® ur)A((P))

rey-G

Z (tepvy,r ® u,)A(tp))

reer-G
= Oyer (€®id) [(uer ® ueF)A(q))]
=0y e (€ ®1d)A(9) = by e p(eG)1 = €(uyp)1.

This finishes the proof. O

=8y (E®id)

Now we’ve shown that (<7, Z) is a unital and counital *-bialgebra with € as its
counit, it remains to describe the antipode S : &/ — &/ and the Haar integral 7 :

o — C.
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Theorem 1.2.11. The pair G = (.7, A) is an algebraic compact quantum group of Kac
type. More precisely, the following hold.

(@) The linear mapping’
e: o — C, uyp — ¢(eg) = €(p) (L.2.20)

is a unital x-morphism of «-algebras, where ¢ € Pol(G), and ¢ is the counit for
Pol(G).

Moreover, € is the counit for A.
(b) The linear mapping

S:o —C, Uy > Z (Sp)o, (L.2.21)
rey-G

is a unital x-antihomomorphism of -algebras, where ¢ € Pol(G) and S is the
antipode for Pol(G).

Moreover, S is the antipode for the x-bialgebra (<7, A).
(c) The linear functional

T:9 — C, Uy > 8,6, 7(0) (I.2.22)

is the Haar state for the Hopf x-algebra (<7, A), where 7 : Pol(G) — C is the
Haar state on (Pol(G), A).

Moreover, T is tracial.
Proof. (a). Since for all y, 1 € T, ¢, ¢y, @ € Pol(G), we have

e(uy(Pyuu‘]Sy) = e(uyu(a;(Py)‘Pu) = (Py(au(eG))‘Pﬂ(eG)
= py(ec)pu(ec) = e(py)e(Py)

and
€(uy-1) = uy, (@) = e(e) = ¢(ec),

the linear mapping € is indeed a unital *-morphism.

Since I' and Pol(G) generates .o as an algebra, to show that € is the counit for Z
it suffices to check that the *-morphisms (id ®€)A and (¢ ®id)A both act as identity
onallu,, y € I"and ¢ € Pol(G). By definition, leol(c) = A and € = ¢, hence this
condition on ¢ € Pol(G) is automatic. As for u,, we calculate

(id®O)A(wy) = > e(u)uyvy, =u, >, vpr =1y

rey-G rey-G
= > Speur = ) Euyoy)uy = (E@id)A(wy).
rey-G rey-G

This finishes the proof of (a).

1By this, we mean the unique linear mapping sending uy @ to ¢ (eg). Note that o7 is the linear span of
{uy(p cyel,pe Pol(G)}, so this makes sense. The same applies to (b) and (c) below without further
remark.
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(b). Since §|P01(G) = S is a *-antihomomorphism, to establish that S is also a

#-antihomomorphism, it suffices, by the general theory, to show that Sisthe antipode
for the *-bialgebra (.27, A) and is also *-preserving. For all y € T', ¢ € Pol(G), using
the Sweedler notations and the Hopf *-algebra structure on Pol(G), we have that

m(id ®§)Z(uy<p) = m(id ®S) Z Z Uy 0y, rP(1) ® Ur((2)

rey-G

= Z Z“Y”)«W(l)5(@(2))05,rus—1
rsey-G
= Z UyUy.rUsr (Z‘P(l)SW(Z)))us*l
rsey-G

= 2 Seye(p)ogruyug

r,sey-G

= Z 6((P)Uy,ruyuy—1 =e(p)1 = €e(uyp)l
rey-G

and noticing S(vy,,) = vy, that

m(S® id)Z(uygo) = m(S ® id) Z Z Uy rP(1) ® Ur((2)

rey-G
= Z Zvr,YS((P(l))Us,yus—lur(p(z)
r,sey-G
= Z 5r,svr,y5((p(1))u571r(p(2)
rsey-G
- Z Zvr,ys((ﬂ(l))(P(z) = Z e(@)ory
rEy-G r€y~G

=€(p)1 = e(uyp)1.

Hence S is indeed the angpode for (7, Z) and is in particular a unital antihomomor-
phism of algebras. That S is s-preserving follows from the fact that S is *-preserving
on Pol(G), and that

[S:(uy)]* = { Z Ur,yurl} = Z Urlry = Z (a:—lvr,y)ur

rey-G rey-G rey-G

(&

= Up-t 1 Uy = Z Vg -1 Us-1 (see Lemma 1.1.9 for (a))
Y'E}/'G sey’l -G

= S(uy1) = S(uy).

(c). By definition, 7(1) = 7(1g) = 1. To show that 7 is a state, it suffices to
check that it is positive. Take an arbitrary element of .7, this element is a finite sum
2yer Uy@y, where all but finitely many ¢, € Pol(G) are nonzero. Recall that as a
set &f = C.(T,Pol(G)) and note that for a map F € C.(T,Pol(G)), by definition,
7(F) = 7(F(eg)). Motivating by these observations, we calculate

{(Z uy«)y)*(yzer uywy)} (ec) = { > qo—yuy-lyqoy} (ec) = 2 Pyoy 2 0.

yer YA yer

which implies 7 is positive since 7 is positive.
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We now show that 7 is an integral, i.e. it is invariant. Take any y € I, ¢ € Pol(G),
using the Sweedler’s notation for (Pol(G), A), we have

(d@DA(uyp) = >, DT (o) uy0,,00)
rey-G

= Z quY:rZ(SV,erT((P(Z))(p(l)

rey-G

=S D Uty 2 T(0(2) 0

rey-G

=Sper 2y T(@)0yr1= 8o t(9)1 = T(uyp)1,
rey-G

and

(:F® 1d)£(“y<ﬁ) = Z Z?(uyvy,r(p(l))ur(P(Z)
rey-G

= Sy,ec Z Z T(Uy,r(P(l))ur(P(Z)

rey-G
=0y Z T(Ver,er (1)) Uer @(2)
= 8ree D T(@01)02) = SecT(9)1 = T(uyp)1.

Therefore, 7 is indeed invariant.

Now that (.7, A) is an algebraic compact quantum group of Kac type (since S is
w-preserving, see (b)), the Haar state 7 is tracial by the general theory. Alternatively,
one can check directly that 7 is tracial by a routine calculation and Lemma [.1.6. O

Definition I.2.12. We call the algebraic compact quantum group G in Theorem1.2.11
the bicrossed product of the matched pair (T, G) of groups®.

Using the GNS construction with respect to the Haar state 7, we obtain immedi-
ately the C*-algebraic and von Neumann algebraic version of G.

Corollary 1.2.13. (Fima, Mukherjee & Patri (Fima et al., 2017)) Using the above nota-
tions, and recall that & : T ~ C(G) is the left action y — a;_l, the reduced (resp. full)

C*-version of G is given by the reduced (resp. full) crossed product T =z .q C(G) (resp.
I' <z C(G)) of C*-algebras, and the von Neumann algebraic version of G is given
by the von Neumann algebraic cross product T <z L(G), with the comultiplications in
each case being the unique extension on by continuity (weak continuity in the von
Neumann case, id. for the Haar state), and the Haar states in each case being the unique
extension of T by continuity. O

I.3 Decomposition of </ as a comodule

We begin by recalling some generalities about algebraic compact quantum groups,
their corepresentations and comodules. Let H = (J#, A) be an algebraic compact
quantum group with Haar state h. Then as a vector space, .77 is equipped with the
inner product (-, -);, induced by h, i.e. {(x, y), = h(x*y) for all x,y € JZ. A right
comodule over the coalgebra 77 is a vector space V equipped with a linear map
(called the structure map) § : V. — V ® S such that (§ ® id)§ = (id®A)J, and

20f course, G depends on the actions, see Definition 1.1.3 and the remark on our notations after it
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(id ®€)d = id, where € : # — C is the counit. If in addition V is also an inner-
product space, then the comodule (V, §) is called unitary when

VEneV, (65, 8(n) = nix (L3.1)

where the “inner product” on the left side of (I.3.1) is on the (algebraic) tensor prod-
uct V ® 7 with values in .77 defined by (a ® x, b ® y) = (a, b)x*y, and 1, is the
multiplicative identity of the algebra 7. Given a finite dimensional right module
(V,8) of S, there exists a unique representation U € B(V) ® S of H on V such
that U(£®1.¢) = 5(¢) forall £ € V. Conversely, if U € B(V)®.7 is arepresentation
of Hon V, then V is a right comodule of .5# whose structure map ¢ is defined by the
same formula. By the general theory of algebraic compact quantum groups, one has
J is a unitary right comodule over J# itself, where the structure map is the comul-
tiplication A, and .7 admits a unique decomposition ¢ = ®;¢;.7 as an orthogonal
algebraic direct sum of comodules, such that each component .7 corresponds to a
pure representation which is a direct sum of finitely many copies of some irreducible
unitary representation U; of H, and the unitary representations corresponding to dif-
ferent 7¢’s are pairwise orthogonal. Moreover, each /7 is spanned by the matrix
coefficients of U;, hence is in fact a sub-coalgebra of 7 and the multiplicity of U; in
the representation corresponding to .77 is exactly dim U;. If we fix a Hilbert basis for

U;, and write the matrix coefficients of U; as ul(,f;, then since A(ul(,l;) =, u[(,li ® uqu) ,

one has J4 = @p%(i), where each %(i) is spanned by elements of the form ul(,f()]

with p fixed and g arbitrary. All of the irreducible sub-comodules %’;,(i) are equiva-
lent, and corresponds to a copy of U;. It follows from the orthogonality relations that
every irreducible unitary representation of H is a copy of a unique U;.

With the above picture of representations (which are corepresentations of the
underlying Hopf algebras) and comodules of algebraic compact quantum groups in
mind, together with the construction described in 1.2, one can now describe all ir-
reducible unitary representations, up to equivalence, of the bicrossed product G =
(7, A)—one simply study the (irreducible) sub-comodules of <7 generated by a sin-
gle suitable element, since every irreducible unitary representation of G is equivalent
to the representation corresponding to a simple sub-comodule of &7, and all such
simple sub-comodules are generated by any of its nonzero element.

By the definition of A and 7, it is obvious that one has the following orthogonal
decomposition of ./ as comodules over .27

o =P = Pu, Pol(G), (L3.2)

yer yer

where %7, := u, Pol(G) is the sub-comodule {uygo e Pol(G)}. As we’ve pointed
out, all irreducible sub-comodules are generated by any of its nonzero elements, by
the co-semisimplicity of <7, one has only to describe the structure of sub-comodules
of each .7, that is generated by a single element, i.e., an element of the form u, ¢,
where ¢ € Pol(G).

Before we proceed, we recall the notion of rank of an algebraic tensor. Let V, W
be two vector spaces, recall the rank rank(¢) of a tensor t € V ® W is the smallest
integer n € N, such that there exists vy,...,0, € Vand wy, ..., w, € W satisfying

n
= Z 0; @ wj. (L3.3)
i=1



L3. DECOMPOSITION OF &/ AS A COMODULE 17

It is easy to see that if one has a decomposition (I.3.3), then rank(¢) = n if and only
if both (vy,...,0v,) and (wy,. .., wy) are linearly independent.

We also recall the notations in Lemma 1.2.2, namely for ¢ € Pol(G), the subspace
%6 (@) (resp. Zc(¢)) is the finite dimensional subspace generated by left (right)
translations of ¢.

Finally, we return to the general case discussed at the beginning of this section,
the right sub-comodule generated by an arbitrary element x € . is exactly ¢’ -x =
{Ad®)A(x) : I € 7'}, where 5" is the algebraic dual of JZ. In particular, if H
is some classical compact group H viewed as an algebraic compact quantum group,
i.e. € = Pol(H), then the right sub-comodule generated by ¢ € Pol(H) is exactly
Py (), since all linear functionals on Pol(H) are linear combinations of evaluations
on some point of G, and [A(¢)](x,y) = ¢(xy) for all x,y € H.

Lemma 1.3.1. Forally € T, and all nonzero ¢ € Pol(G), the sub-comodule C,(¢) of
<y, generated by u, ¢ is exactly

= Vect{u),vw,qo( -9) 1 geG, uey- G},

”Y( @ vyuZc ()

pey-G

where the direct sum decomposition is orthogonal.

Proof. By definition, we have
Z(uy@ = Z (uy ® u,u)[(vy,p ® DA(p)] = Z Z(uyvy,,uqol,i) ® (up(PZ,i), (13.4)
pey-G puey-G i=1
where n = rank(A(¢)), and
A(p) = D 91 ® 2 € Pol(G) ® Pol(G). (13.5)
i=1

Since ¢,;, i = 1,...,n are linearly independent, so are u,@;, p € y-G,i=1,...,n.
Thus the sub-comodule generated by u, ¢ is exactly the subspace spanned by ele-
ments of the form u v, ,¢1; with y € y-Gand i = 1,...,n. On the other hand, by
the discussion above the lemma, we also have

Vect{(pl,i i=1,. n} =Zc(p).

Hence the sub-comodule generated by uy ¢ is indeed spanned by u,, 3 ¢y .6 vy, % ().
The fact that this is an orthogonal direct sum decomposition follows by a direct cal-
culation using the definition of the faithful Haar state 7 on 7. O

Lemma 1.3.2. Lety € T, ¢ € Pol(G), and take any i € y - G and any g € Gy, the
following hold:

(a) the linear mapping Ry : ¢ > /(- g) is an isomorphism from v, ,Zc(¢p) onto
Uy,y%G((P);

(b) dimoy , % () = dimoy,, % (¢) = rank((v,,,®1)A(¢)) = rank((v,,®1)A(p));
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Proof. Since Z(¢) is right invariant, the linear mapping R, is well-defined (note
that g € Gy, implies that Ry(vy,) = v,,,). Similarly, since g~' € G, the linear
mapping Ryt : vy, Zc(p) — vy, (@) is well-defined, and it is obviously the
inverse of R, : vy, #c(¢) — vy,,%c(¢). This proves (a).

We now prove (b). By [A(¢)](x,y) = ¢(xy) forall x, y € G, it is clear that A(¢) €
R (9)®ZL5(p). Since Z5(¢) is left-invariant, the mapping L1 : Z5 (@) — Z5(¢),
¥ (g7!-) is a well-defined linear isomorphism. Hence by (a),

Ry ® Lyt : (0, %6 (9)) ® Lo (@) = (vy,,Zc(9)) ® Lo(p) (13.6)
is a well-defined linear isomorphism. On the other hand, for all g1, g, € G, we have
{(Ry ® Ly-1) [(v,,, ® DA(@)]} (91, 92) = [(0y., ® DA(9)] (919,97 g2)
= 0yu(919)9(9192) = vy (91)0(9192) = [(vy,y ® DA(9)](91.92).
Thus (Ry ® Ly1) [(vy,, ® DA(9)] = (v, ® 1)A(p), and
rank ((oy,, ® 1)A(p)) = rank((vy,, ® 1)A(p)),

as it is clear that the isomorphism (1.3.6) preserves the rank of all tensors. On the
other hand, it is clear from (a) that

dimo, ,Zc(p) = dimo, , Zc(¢).

Put d = dimoy, % (¢) and d’ = rank((v,,, ® 1)A(p)), it remains to show that
d = d'. Let 6,(¢) be the sub-comodule of . generated u,¢. Then by Lemma 1.3.1,
we have dim %} (¢) = d - |y - G|. On the other hand, for all r € y - G, there is a
decomposition

&
(0, ® DA(p) = Z @ri ® Yris
i=1

where ¢,; € v,,%Zc(¢) and ¥; € ZL5(¢), since rank((vy, ® 1)A(p)) = d’ and
A(p) € Zc(p) ® Z5(¢). Hence

—_—~ d/
Auyp) = Z (uy ® ur)[(vy,, ® DA(@)] = Z Z Uy @r,i ® Ui (13.7)
rey-G rey-G i=1

Since d’ = rank ((v),, ® 1)A(p)), the families (¢,; : i = 1,...,d") and (¢
i =1,...,d") are both linearly independent. Note that ¢, ; is supported in G, and
Gy,r, 7 € y - G are a partition of G, it follows that the families

(uygrs = rey-G i=1,....d)

and
(wipi :rey-G i=1,....d)

are also both linearly independent. Together with (I.3.7), this implies that
(uyzpm- crey-G, i= l,...,d')
is a basis for 6} (¢),and d’ - |y - G| = dim €} (¢) =d - |y - G|. Hence d’ = d. ]

Theorem 1.3.3. Lety € T, 0 # ¢ € Pol(G). Suppose € is the sub-comodule of o
generated by u, ¢, and put d = dimo, , Zs(¢p), then the following hold:
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(a) € is a finite dimensional Hilbert space as a subspace of the inner product space

o ;

(b) there is an orthonormal basis B (u),(p{,i) cpey-Gi=1,.. ) for the
Hilbert space €, such that forall1 < i < d, p € y - G, we have supp (pﬂ) C Gyus
(c) dimc % =d-|y-G|;

) if (Alrjs) is the matrix coefficients of € with respect to the basis B, i.e.

(uyq)s(’)) Z D (u},(pf’)) ® AL (13.8)

i=1 rey-G

for all1 < j<d,sey-G, then allA s € of are oftheform ura ,Sfora unique
a;% € vy.5 Pol(G). Moreover, define ur,s = Zf’j 1€ ® ash € B(C?%) ® Pol(G),
where (e; ;) is the matrix unit corresponding to the canonical basis of C%, and

r,s €y G, then
Uy sUr,s = Uy Uy ¢ = idca ®0p, (1.3.9)
and
(id ®A) (urs) = Z (tr.t) 1 (tts) 13- (1.3.10)
tey-G
Proof. (a) follows from Lemma 1.3.1 since Zg(¢) is finite dimensional. (c) follows

directly from (b), while (b) is a direct consequence of the orthogonal decomposition
in Lemma 1.3.1 and (b) of Lemma 1.3.2.
It remains only to show (d). By Lemma 1.3.2, we see that the subspace

@ Uy,,ut%G((p)

pey-G
of Pol(G) is right invariant, hence it is a sub-comodule of Pol(G) over Pol(G). It
is clear from (b) and Lemma 1.3.1 that B, ((P[(ll) ci=1,.. .,d) is an orthonor-

mal basis for v, , % (¢) and the disjoint union U,¢,.GB,, is a basis for the comodule

Ouey-6UyuZc (). Note that the comO((i})lle Ouey-cVyuZc () is stable under multipli-
13
"

(vy,r ® 1A ((pl(f)) = (vy,r ® 0p ) A (qal(,i))

cation by vy, forallr € y - G. Since ¢, € v, Zc(¢), we have

for all r € y - G. Hence there exists aijL € Ury Pol(G), j=1,...,d, such that

(v, ® 1)A ( (’)) Z o) ® al’h,. (13.11)
By (I.3.11), we have
A (u,,gos(])) = > (wyou) [(vy,r ® 1)A (qos(j))]
rey-G
= > (wou) Z o @ ay (13.12)
rey-G

3, 3 el uat)

rey-G i=1
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Hence A;Js = urars Since A,s, r,sey-G,i, j=1,...,d are matrix coefficients of ¢
with respect to the orthonormal basis B, forallr,s € y - G, i,j =1,...,d, we have

d
-
> D A (Al) =suea= 3 Z(Ak’) (13.13)
tey-G k=1 tey-G k=1

and

d
o o
Aa)= 3 Sakearl (13.14)

tey-G k=1

Using A,S = urar %, (1.3.13) becomes

3 Za Caht) = ousder= 3 D0 (aly) all. 13.15)

tey-G k=1 tey-G k=1

U

Since vy 05 = Or 51, ZtEYG- vy = 1land alr”js is supported in G, (i.e. a'r”js = vr,sai’fs),
(L3.15) is equivalent to

d

d *
Vr,sey-G, Vi, j=1,...,d, Z a’s (a,s) = 0;,jUrs = Z (a’,‘;) alfsj (L3.16)
=1 k=1

A simple calculation shows that (1.3.16) is equivalent to (1.3.9), thus the latter is es-
tablished.
On the other hand,

B (4) = wetd) = 33w @) [(one 0 08 (o).

tey-G

hence (1.3.14) is equivalent to

[(vm ® 1)A (a,s)] Z art ® atS (L3.17)

A simple calculation shows that (1.3.10) is equivalent to

(a,s) Z Zart ®ats. (I.3.18)

tey-G k=1

Since X.tey.g 0r,y = 1, summing (1.3.17) over t € y - G yields (1.3.18). This finishes the
proof of the theorem. m]

Remark 1.3.4. Let (6,5 : 7,5 € y - G) be the matrix units of B(£%(y - G)) that corre-
sponds to the canonical orthonormal basis (§, : r € y - G). Part (d) of Theorem 1.3.3
implies that the operator

> ers®ups € B(f2(y - G)) ® B(C?) ® Pol(G)
r,sey-G

is a unitary representation of G on the tensor product £*(y - G) ® C%. This leads
naturally to the notion of &-representations of G to be introduced in § 1.4 (Defi-
nition 1.4.1), which will play a central role in our description of the representation
theory of the quantum group G.
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Theorem 1.3.3, together with the correspondence between comodules over .27 as
a Hopf-algebra and representations of G, provides a useful clue of how to describe
the representation theory of G in terms of representation theories of some clopen
subgroups of G and the dynamics manifested by the actions « and . We pursue this
description in § 1.4.

I.4 Representation theory of the bicrossed product

This section aims to describe the representation theory of G using some more basic
data—representation theory of various isotropy (with respect to the action f) sub-
groups of G and the dynamics of the bicrossed product actions « and . We point
out here that even though § 1.3 is not logically necessary to the treatment here, it
does provide the motivation to study &-representations (see Definition 1.4.1 and Re-
mark 1.3.4) of G, which are crucial for our description of the representation theory of
the bicrossed product G. In fact, the proof of many results presented in this section
can be greatly simplified using Theorem 1.3.3, but we prefer to give an independent
treatment here, so that readers in a hurry could ignore the materials in § L.3 which
serves only as motivation.

First, we recall some notations. Let & be a ff-orbit. There is a preferred Hilbert
basis for the finite dimensional Hilbert space ¢£2(&’), namely the set {5), cyedo }
of Dirac measures on &. Let (e,s : r,s € ) be the matrix units of B(¢*(0)) with
respect to this basis, i.e. e, 5(d;) = 86, forallt € 0.

Definition 1.4.1. Let & be a f-orbit. An O-representation (of G) is a finite di-
mensional unitary representation U of the compact group G on the tensor product
t2(0) ® S, where S is a finite dimensional Hilbert space, such that if we write U
uniquely as®

U= > e ®urs € B(6(0)) ® B(H) ® Pol(G)

r,se0

then
% % .
Vr,s € O, Ur sUy s = Uy Uy s = id p @0y s.

Using the canonical identification of B(#°) ® C(G) with C(G, B()), we can
view each u, s as a mapping from G to B(s¢) whose support is exactly G, ;. Here
are some elementary properties of &-representations.

Proposition 1.4.2. Let O be a f-orbit, 7 a finite dimensional Hilbert space, and
U = Srseo ers ® urs an O-representation on £2(0) ® . The following hold:

(a) Forallr,s,t € O and g € G,5, h € Gg;, we have u,s(g)us(h) = uy(gh); or
equivalently,

(d@A) () = 3 (try) ,(uys) 5 € BOH) @ POl(G) @POl(G).  (14.1)
yeo

(b) Foreveryy € O, the restriction of u,,, onto G, is a unitary representation of G,

on .
(c) Forallr,s € 0 and g € Gy, we haveug,(g™1) = [urs(9)]".

Here, we use the canonical identification of B(¢?(0) ® /) with B(¢2(0) ® B(H)).
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d) Forallr,s € O, ifg € Gy, then.° : G, — G, x — gxg~' is an isomorphism
( g , 4 9xg P

and a homeomorphism, and the representation u,,,|g, is equivalent to (uS,S|GS) )

o> with ug,(g) as a unitary intertwiner from u.,|g, to (usslc,) © ¥g*°.

(e) Forallr € O, the representation U is equivalent to Indgr (urrlc,); or equiva-
lently,

=y ( qumy) € Pol(G), (14.2)
yeo
where yu (resp. xu,,| Gy ) is the character of the representation U (resp. uy,y|G, ),
and i, : C(G,) — C(G) is the extension by taking the value 0 outside G,.

Proof. (a). Canonically identifying B(.7#) ® C(G) ® C(G) with C(G x G, B(H)), we
have
[(id ®A) (ur.)](g. h) = ur.(gh) (14.3)
and
[(“r,y)lz(u)cf)w] (9:h) = ury (9)uy.¢ (h). (14.4)
Since the support of u,,, is exactly G, ,, the equivalence in (a) follows directly from
(L4.3) and (L.4.4). On the other hand, (I.4.1) holds because U is a representation of G.
(b). This follows directly from (a) by putting r = s = t = y and the condition that
(U is an O-representation)

Uy Uy = Uy Uy, = idy ®oy, .

(c). Since g € G,y & r-g=s,wehaves-g ! =randg! € Gs,. Thus by (a),
we have

ur,s(g)us,r(g_l) = “r,r(gg_l) =urr(ec) = idopr = uss(ec) = us,r(g_l)ur,s(g)-
Hence .

us,r(g_l) = [ur,s(g)] = [ur,s(g)] .

(d). It is clear that s - g”' = r, and np;;’l : G — G, is the inverse of y;*. Since
both lﬁ;’_rl and y;* are continuous group morphisms, ¥ is an isomorphism and a
homeomorphism. Moreover, by (a) and (c), we have

vx c Gr: [(us,sle) o ;,s] (X) = us,s(9x971)
= us’,(g)ur,r (x)ur,s (9_1)
= us’r(g)ur,r (x) [us,r(g)]

*

It follows that the unitary operator u; ,(g) is an isomorphism from the representation

ur,rlGr to us,sIGs © l//gr,s.
(e). It follows from the definition of U that

xu =D (Trge) ®id)(uy,) = D1y ()(uwk;y) ,

yeo yeo

This proves (1.4.2). By the general theory of induced representations and (d), the
character of the induced representation Indgr (urrlG,) is exactly

Z by (Xuy,yk}y) = XU-

Yeo

Hence U is equivalent to Indg (.|, )- m
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Part (e) of Proposition 1.4.2 says that &-representations are exactly copies of in-
duced representations of finite dimensional unitary representation of the isotropy
subgroup G, of any point y € & with respect to the action . Conversely, taking
any y € 0 and given a finite dimensional unitary representation u of G, one can
construct an O-representation U = 3, seg €rs ® Uy s from u with u = uy [, . This is
shown in the following proposition.

Proposition 1.4.3. Let & be a f-orbit,y € 0, andu : G, — B(I) a finite dimen-
sional unitary representation of G,. Take o, € Gy, for each u € O with o, = eg and
define

u (g): u(o.rgo.s_l)’ ifQEGr,s;
- 0, lfg ¢ Gr,s~

Then the operator U = Y, sc o er.s ® Urs is an O-representation on £2(0) @ H .
Proof. From our construction, one checks immediately that
Uy Urs = Up ity o = id ®v, 5 € B(H') ® Pol(G),

and the support of u, 5 is exactly G, s for all r, s € &. Using this, we have the following
calculations:

rse0

Uuu* = ( Z ers ® Urs

E ey ®uUy o | = g e ®
r.s'e0C r,r’' e’

*
E Up sl v
N2

= Z Srprlrr ® (Z ur,su;‘,’s) (since G,s NGrs#0 = r=r")

r.se0 r',s’eC s,s'€eC re0

r,r'ec seC
= Z err® Z ur sy | = Z err ® Z id s ®uv, ¢
re® se0 re0 se0
= > e ®idy ®1 = idp(p) ®idy ®1
re0
and
U'U = Z esr ® U ( Z e s ®u,r,s/) = Z ess ® Z u;"suns/)

Z Ossss ® (Z u;‘,sur,sr) (since G, s NGy #0 = s=5')

s,s’€EC rec

= Z ess ® Z uy g | = Z ess ® Z idy ®u, s
seO re0 se0 re®

= > s ®idy ®1 = idpe(g) ®idy ®1.
se0

Hence U is unitary.
By construction again, for all r,s,t € 0, g € G, 5 and h € Gs;, we have

-1 -1
0,90 ,05go; € Gy



24  CHAPTERI (RD) AND POLYNOMIAL GROWTH FOR BICROSSED PRODUCTS

and
Vg € G5, h € Gy,
ur+(gh) = u(o,gho;') = u((0,go; ") (oshoh)) (L4.5)

U(Grgﬁs_l)u(ﬁshfft_l) = ur,s(g)us,t(h)~

Using the proof of Proposition 1.4.2(a), (1.4.5) implies that (in fact, is equivalent to)

Vr,s € O, (1d ®A) (urs) = Z (“V,Y)lz(”)/’s)w'
yeo

Hence U is indeed a representation of G on £2(0) ® . O

Since (Pol(G),A) is a Hopf #-subalgebra of (<7, A), any representation U €
B(A) ® Pol(G) of G is automatically a representation of the bicrossed product G
via the natural embedding

B(H) @ Pol(G) — B(H) @ .

But by the general theory, we have Pol(G) = «/. In order to find enough repre-
sentations of G, we need to construct representations of the bicrossed product G
whose matrix coefficients contain u, € &/ for all y € I'. This can be achieved via the
following lemma.

Lemma 1.4.4. Let O be a f-orbit, 5 a finite dimensional Hilbert space. Suppose

U= Z ers ® Urs

r,seC

is an O-representation on t*(0) ® J, then the operator

Re(U) : = (Z eyy ®id sy ®uy) U
yeo (1.4.6)

= > ers ® [(idor ®uuys] € B(EH(0)) ® B(H) ® of
r,seC

is a unitary representation of the bicrossed product G on t>(0) ® 7, and the character
X ReU)) of R (U) is given by

X RoU) = 3 upty (x(uryls,)) - 147)

Yeo

Here for a fixedy € O, we let 1, : Pol(G,) — Pol(G) denote the unique extension
of functions by assigning 0 outside G,. Define

¢ € Pol(G,) is a matrix coefficient for
the representation uy |G, |’

G WU) = {ty(qo) : (L4.8)

and for anyr,s € 0, take any g € G, , and h € G, define

Crs(U) ={y(g - h) : y €C,(U)}. (1.4.9)
Then the following hold:
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(@) Crs(U) does not depend on the choice of g and h, and C,(U) = C,,,(U);
(b) Cs(U) does not depend on the choice of y;
(c) the space of matrix coefficients of R (U) is exactly
P wCrs(U) c #, (1.4.10)

rseo
where u,C, s = {urw VRS C,,s}.

Proof. Since both ¥, c¢s €,y ® id» ®u, and U are unitary operators, the operator
R (U) is unitary. We now check that R (U) is a representation of G. Since id ®A :
B(H)® o — B(H)Q® A ® < is a x-morphism of *-algebras, we have

(id @A) [(idyr ®ur) (urs)] = [(id @A) (idr ®ur)] [ (id @A)uy ]

lidor ®A(ur)] D (try)yy(tys) s
yeo

= {Z idr ®u,vrr ® ut} Z (“r,y)lz(“y,S)ls

te0 yeo

Zﬁ [(id%” ®ur0r,t)ur,y] 12 [(idéf ®ut)uy,s] 13
tye

Zﬁ [Gidoe ®urory ury |, [ (idoe ®uy)uys]
Ye

(since (1 ® vy p)ty,y = Spyliyy).

This implies that R (U) is indeed a unitary representation of G. The statement
about the character follows immediately.

We now prove the second half of the lemma. For all r,s € &, by definition, one
checks immediately that ¢ € C,(U) if and only if suppp C Gy, and ¢(g - h)lg,
is a matrix coefficient of u,,,|G,. This implies (a) by a simple computation and the
fact that u, ) |G, is a representation. (b) follows from (a) and Proposition .4.2. Finally,
combining (1.4.6), (L.4.8), (1.4.9) and Proposition 1.4.2 yields (c). O

Lemma 1.4.5. Let O be a B-orbit, 7, % finite dimensional Hilbert spaces, and sup-
poseU = Xy scoers@urs andV = 3, scp er.s ® 0,5 are O-representations on £(0) ®
S and t2(0) ® K respectively. If T € B(H, X'), then the following are equivalent:

(a) T € Morg, (uyylG,.vyylc,) for somey € O;
(b) T € Morg, (uy3y|Gy,vy,y|Gy) forally e 0.

In particular, uyy |G, = vyylc, for somey € O if and only ifuyylG, = vyylg, for all
yeo.

Proof. This is a direct consequence of the part (d) of Proposition 1.4.2. O

Definition 1.4.6. Let & be a f-orbit, an O-representation U = X, sep €rs ® Uy is
said to be O-irreducible if any* of the representations uyylG,, y € O is irreducible.

Two O-representations U and V are said to be &-equivalent, denoted by U ~4 V,
if there is a bijective (equivalently, unitary) T satisfying the equivalent conditions in
Lemma .4.5.

4Hence all by the point (d) of Proposition 1.4.2
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Notations I.4.7. It is clear that all O-representations that are O-equivalent to an
O -irreducible one remain O-irreducible. We denote the set of U'-equivalence classes of
O-irreducible O-representations by Irr ¢(G). By Proposition 1.4.2 and Proposition 1.4.3,
we see that for ally € O, there is a canonical bijection

D, : Irr(Gy) — Irrg (G)

E ers Q Urs

r,seC

L14.11
(] (L4.11)

>

where u,, r,s € O are defined as in Proposition 1.4.3. In particular, @, is a bijec-
tion from Irr(G) onto Irr (o} (G), which we will use later (§ L.6) to identify Irr(G) with

Irr{er ) (G).

Remark I.4.8. Intuitively speaking, the bijection @, can be seen as a parameteriza-
tion of Irr» (G) with the relatively more concrete data Irr(G, ).

We can finally state and prove the classification of irreducible representations of
G.

Theorem 1.4.9. Using the above notations, the following hold:

(a) Let O be a f-orbit, U an O-representation, then the representation R (U) of the
bicrossed product G is irreducible if and only if U is O-irreducible.

(b) We have the following decomposition of <7 as a vector space

o= P P wC. (). (1.4.12)
0€0rbg  r,s€0,
[U]EIrrﬁ(G)

(c) (Classification of irreducible representations of G) The mapping
R : ]_[ Irr 5 (G) — Irr(G)
0 €0rbg
[U] € Irr(G) = [Re(U)]

is a well-defined bijection.

Proof. (a). Recall that the functional 7 in Theorem 1.2.11 is the Haar state on G. By
the characteristic formula (1.4.2) in Proposition 1.4.2, fixing an arbitrary y € &, we
have

dimEndg (R (U)) = T(xv* xv)

= Z T (tr (Xur,r |Gr *Xur,r |Gr ))

rec
(only (yu™ xu)(e) matters)

= |ﬁ|f (ly (Xuy,y|Gy*Xuy,y|Gy))
(by Proposition 1.4.2, (d) and 7 is a Haar state)

o |
= (G- G_y] dimEndg, (”y,y|c;y) = dimEndg, (uy’y|Gy) )
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This proves (a).

(b). It is clear by Lemma 1.4.4 that the sum on the right side of (1.4.12) is a di-
rect sum. Moreover, by Lemma [.2.3, Lemma 1.4.5, the orthogonality relations for
representations, and Lemma 1.4.4 again, we have

@ Crs(U) = vy5 Pol(G). (L4.13)
[U]elrrg (G)

Since &7 = @, cr u, Pol(G), equation (1.4.13) implies the decomposition (I.4.12), hence
proves (b).
(c) follows from (a) and (b). O

Remark 1.4.10. One can even show that the direct sum decomposition (1.4.12) is
orthogonal with respect to the inner product on 2/ induced by the faithful Haar
state 7 with a bit more calculation, but this fact is not needed and we leave it to the
reader.

For the purpose of studying property (RD) of G, we also need to understand how
the conjugate representation of the irreducible representations of G is expressed us-
ing the above classification, as well as the fusion rules of G. The problem of identify-
ing the conjugate operation on Irr(G) using our classification result is almost trivial
(Theorem 1.4.13), while the fusion rules of G requires some further work (twisted
tensor products).

Since G is of Kac type (Theorem 1.2.11), the conjugate and the contragredient rep-
resentations of any unitary representation of G coincide. For all finite dimensional
Hilbert space 57, let j» : B(H) — B(H) be the x-antihomomorphism T — T+,
where T is the mapping X +— T*x. We often omit the subscript .7 and write j »
simply as j when there is no risk of confusion.

Lemma I.4.11. Let & be a f-orbit, 7€ a finite dimensional Hilbert space. Suppose

U= Z ers Q Urs

r,seC

is an O-representation on t*(0) ® H . Let e, denote the unitary operator t>(0) —
t2(0) sending 1] to e, sn. Then the conjugate representation Rs(U) of Re(U) is given
by

Ro(U) = D &, ® {(idsr ®u-1) ((Id®a,) [(j ® S)urs])} - (14.14)
r,seEC

Furthermore, posing
Wyt = (id®al,) [( ® S)urs| € B(H#) @ Pol(G), (1.4.15)
the unitary operator

W:= Z €51 -1 @ We-1 -1 = Z €51 -1 @ We-1 -1
rseC sTLrleo (1416)
€ B(t*(0™")) ® B(H#’) ® Pol(G)

is an O '-representation, and Ro(U) = Rpo-1(W).



28  CHAPTERI (RD) AND POLYNOMIAL GROWTH FOR BICROSSED PRODUCTS

Proof. Since G is of Kac type, we have

Re(U) = (j ®j®§) Z ers ® (1® uy)uy

r,se0

Z Z,r ® Z [(] ® S)ur,s] (ld# ®Ut,rut*1)

r,seC teo
Z esr ® Z G5, [(J ® S)urs] (idjf ®Ut,rut‘1)

r,se0 teo

(since the support of (j ® S)u,; is exactly Gr_; = Gs,, and supp v, = Gyr)
Z E® [(] ® S)ur,s] (ld}f ®us‘1)

r,se0

> Tr @ {(idor ®ue) (a2 [( ® Surs])}

r,se0

E €s,r @ We-1 p-1.

rsec

Since R (U) is a unitary representation of G, by the above calculation, and the
fact that (e5, : r,s € 0) is the matrix unit corresponding to the dual basis

(5712/66’)

of the canonical basis (6, : y € &) of £%(0), we deduce that the operator V is
unitary, and for all , s € &, we have

(id ®A)(Us‘1,r‘1) = Z (Ws—ljt—l)lz(wt—l’r—l)13. (L4.17)
teo

It is trivial to check that

* _ *
We—1 -1 Ws‘l,r‘l =w

§-1,p-1 We-1,-1 = ld% ®Z)S—1,r—1 s

which together with (1.4.17), implies that W is indeed an &'~!-representation.

Finally, the fact that R (U) =~ Rp-1(W) can be seen by directly comparing their
characters, both of which are given by

Z Uy (TI‘B(%) ®1id) (Wyfl’yfl).

yeo
Alternatively, one can see this equivalence more concretely by noting that the uni-
tary operator Y ® id; from £%(0) ® J onto £*(07') ® A is an isomorphism of
representations from R (U) to Rg-1(W), where Y : £2(0) — £2(0) is the unique
linear(unitary) operator determined by 5_)/ 6,1 forally € 0. ]

Definition 1.4.12. Using the notations in Lemma 1.4.11, the &'~'-representation W
is called the orbital conjugate of the O-representation U, and will be denoted by U™
in the following.

Using (1.4.15) and (1.4.16) (and the fact that the antipode S : Pol(G) — Pol(G)
is of order 2), it is easy to see that U'T = U, i.e. (-)7 is an involution on the class
of all O-representations, where ¢ runs through all S-orbits, and passes to a well-

defined involution, still denoted by ¥, on the set [ 1 gcorb, Irre(G) with [U]" := [UT].
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It is clear that } restricts to a bijection between Irrs(G) and Irrs-1(G), and when
O ={er}, so 0 = 07, it reduces to the conjugate operation on the class of finite di-
mensional unitary representations Rep(G) of G, modulo the obvious identifications
of course. Now the conjugate representation in terms of our classification (Theo-
rem 1.4.9) can be neatly summarized as the following theorem.

Theorem 1.4.13. The classification mapping

R: U Irr o (G) — Irr(G)
ﬁeOrbﬁ

preserves involution.
Proof. This is merely a restatement of Lemma 1.4.11 using Definition .4.12. O

The following proposition relates the orbital conjugation presented above to the
parallel treatment in (Fima and Wang, 2018, Theorem 3.1 (4)).

Proposition 1.4.14. Lety € T and 0 = y - G. Ifu : G, — B(J) is a finite
dimensional unitary representation of G, and U is the O'-representation determined by
u as in Proposition 1.4.3, then UT =~ Ind(u o ay-1 |Gy—1 ).

Proof. This follows from Lemma 1.1.8, Proposition [.4.2, and Lemma [.4.11. ]

We now turn our attention to the fusion rules of G. For i = 1,2,3, let O; be an
B-orbit, U; = 3, seo, €r,s ® ur(ls) an O;-representation on £%( ;) ® . To simplify the
notations of our discussion, we denote the representation Ry, (U;) of G by W;, and
its character by yw;. By Lemma 1.1.10, we know that &) 0 is the disjoint union of
p-orbits. For each y € 03, we define Ji/é,/l, to be the subspace of £2(0)) ® £2(05)

spanned by 7
Byﬁlﬁz ={8,, ®35y, : (yr.y2) € O1 x O» and y1y, = y}. (L.4.18)
If y ¢ 0,0, (which is equivalent to 05 N 0,0, = 0), then B;}lﬁz = and Kz};’lﬁz =0.
Theorem 1.4.15. Using the above notations, and posing
Fyﬁlﬁz ={(y1,y2) € O1 X 0y : y1y2 =y} (L4.19)

forally €T, then the following hold:

(a) The mapping

Ui xy Uz: Gy = B (K}, ) © BUIA) © B(A)

g Z (rs @ ers,) (I.4.20)

(rl,rz),(sl,sz)ef:zlﬁz

® uly, (ar,(9) ® uly, (9)

is a unitary representation of Gy.
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(b) The character of Uy X, Uy is
X (U %, Un)

= 3 e (6, o] [in (X(ufi)rzlcrz))]}lcy- (L4.21)

(Vl,rz)Ganlﬁz

Or equivalently, for all g € G,, we have

[X (U1 %, Uz)] (9
= 2] [Tr8<%i> (ugf,)n (ar, (9)))] [Trzs(yfz) (ur(f,)rz (9))] . (142

(rr)efy, o
(c) We have
dim Morg (Ws, W; X W)
= ﬁ >, dimMorg,, (”)(xi)ysbw Uy Xy, Uz) . (1.4.23)

Y3€03
In particular, if O3 N 010, = 0, then dim Morg(W;, W X W) = 0.

Proof. (a). It is clear that (U X, Us) (eg) = id%”y , ®id s ®idyy. Forall g, h € Gy,
1.¢2

we have

(U1 XY Uz) (g) (Ul Xy Uz) (h)

= z '1 erih ® €ry.ty

(Vl,rz),(sl,sz),(tl,tz)EFélﬁz
& [ull, (ar, (@)l (s, ()] @ [u2, (92, )

= Z i €t @ Eryty

(rira),(s1,52), (t12) €F, 4
r1-@r, (9)=s1, 51.05, (h)=t1,
r2-g=sz,s2-h=t;

@ |ullh (@ @)l (e () | @ [ul, (@ull),(h)|

(consider the support of the components ufll)sl us(ll,)tl, uﬁf )52 and us(zz)tz)

2
= Z ert ® €ry.t ® I:uill,)tl (arz (g)asz (h))] ® ufﬂz,)tz (gh)]
(Vl,rz),(sl,sz),(tl,fz)EFY@lﬁZ,

r1-Qry (9)=51, $1.0s, (R) =11,
ry-g=sy, 2 -h=t,

(Proposition 1.4.2)
= Z €rih ® €ryp, ® uill,)tl (0{,«2 (gh)) ®u.) (gh)

r2,l2
(Vl,rz),(l1,lz)€F§71,gz
(since ay, (gh) = ar,(9)ar,.4(h))
= (Ul Xy Uz) (gh)

Hence U; X, U, is indeed a representation of G,. The fact that this representation is
unitary follows from (I.4.20) and the conditions that

(uﬁll)sl)(u’(”llll) = (uigll,)sl) (u'(‘ll,)sl) = ldfi()l ®Ur1,31
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and that i .
(ui(‘ZZ)Sz) (uﬁzz,lz) = (uﬁzz,)sz) (uﬁi)sz) = ld% ®vrz,32'
(b). This follows directly from (I.4.20).
(c). Using the character formula (I.4.7), we have

dim Morg (W3, Wy X W) = ?(X‘*/VSXWJ(Wz)

) T( Z [’Y3 (X(u)(/i)}’sle))]*X(Ul Xs UZ))

Y3€ﬁ3

_ 1 dim M ® ’ .
- Z m m Oan “ys,ygle3, 1XY P

Y3€0;3
1 . (3)
= W Z dim Morg,, (un%lcm, U Xy Uz) .
31 yse0,

The case when 03 N 010, = ( is already covered in the above formula, as U; X, Us
is the zero representation of G,, in this case. O

Definition 1.4.16. Using the above notations, we call the unitary representation
Ui Xy Uz of G the y-twisted tensor product of Uy and Us.

Theorem 1.4.15 (which is a reformulation of Theorem 3.2 of (Fima and Wang,
2018)), together with Theorem 1.4.13, gives the fusion rules of G. In preparing this
thesis, the author finds that the formula (1.4.23) for calculating the fusion rules can
in fact be simplified (Theorem 1.4.19). We present this simplification in the rest of
this section.

For all y € 03, we define

Fyﬁl,ﬁz ={(r.r) € O1X 0y : nry =y} (L4.24)

Lemma 1.4.17. Using the above notations, supposey,y’ € 03, and g € G, y/, then

=4 Y
E Fﬁlﬁz — Fﬁlﬁz
(ri,r2) & (r1-ar(g).r2- g)

is a well-defined bijection, whose inverse is

P

— FY

Dy 01,0,

o
Vgt Fﬁlﬁz
(s1,82) — (51 " U, (9_1)’52 '9_1) :

Proof. For all (ry,r;) € Fyﬁ,1 oy by the matched pair relations (I.1.5), we have

Y =1 9= Py(rir2) = Ba,, (g (r1) By(r2).

Thus @, ; is well-defined. Similarly, Dy g1 is well-defined too.
We now show that Qg1 0Py is the identity on F)z/ﬁl, o, Indeed, for all (ry,r;) €

F%l 6, We have

(CI)J",!]’1 © (by,g) (rir2) = q)y’,g’1 (rl “ar,(9);r2 g) = (rl - O, (9)0!r2~g(g_1), ra - gg_l)
(by the matched pair relations again)
= (rl O, (gg—1)> rz) = (rl * O, (eG)5 rz) = (rla rZ)'

By symmetry, we have ®, ;, o @,/ 1 is the identity on Fyﬁb 6, O
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Lemma 1.4.18. Supposey,y’ € O3 and take any g € Gy,,». For all (ry,1r;) € Fyﬁlﬁz’
put
(s1,82) := Py g(r,r2) = (r1- ar,(9).r2 - g) € Fyﬁl,é’z'

Then for all x € G/, we have

Tr (u'}), (r, (29 ™)) T (), (997

(1.4.25)
=Tr (us(ll)s1 (asl(x))) Tr (us(zz)s2 (x)) .
In particular, we have
X (U1 %y Uz) = x (Uy Xy Up) 0 Ady G, » (1.4.26)
where Ady : G — G is the automorphism sending x to gxg™*, and
dim Morg, (u;?}my, Uy %, UZ) = dim Morg,, (u;3)),|cy Uy Xy Uz) o (1427)
Proof. First notice that by assertion (a) of Proposition 1.4.2, we have ur(’r) (yz)(yz) =

uS,lr)-y(y)ur(?)y,r.(yz

s1 =r1 - ar,(g) and s, = r; - g. We also notice that a,,(g7!) = [arz (g)]_l, because the
matched pair relations imply

)(z) forally,z € G and i = 1,2. By the definition of ®, 4, we have

eG = arz(gg_l) = arz(g)arz'g(g_l) = arz(g)asz (g_l)'

To prove (1.4.25), we distinguish the following different cases.
Casel. x ¢ G,
Since for all y € G, we have

YeG,, &= rn-g=s2=5-y=r-(gy) gyg’leGrz,

we have gxg~' ¢ G,,. As supp uﬁi),z = G,, and supp usgz )52 = Gs,, both sides of (1.4.26)
is 0.

Case Il x € G, and a,,(x) ¢ G,

The matched pair relations imply

Ay, (gyg_l) = Uy, (g)arz-g(yg_l) = ay,(9)as, (y)as, (g_l)

yeOs = { = &y, (9)as, (1) [, (9)] - (14.28)

Hence for all y € G, N Gs,, by (1.4.28), we have

ar,(9yg™) € G, &= r1-an,(9)as,(y) =r1 - ar,(g)
= s51-0a5,(y) =51 &= a,(y) € Gy,

Thus a;,(9xg™') ¢ G,, in this case. Consequently, the operators uﬁll)rl (ar,(9xg71))
and us(l2 )sl (as,(x)) are both zero, and both sides of (1.4.25) are 0.
Case Ill. x € G;, and a5, (x) € Gs,

Using (1.4.28) in the previous case, we have a;,(gxg™") € G,,, and

uf! @ (gg7) = {ullh, (e (@)l (e, ) | ! ([an (@] )} 429)
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(1)

By Proposition 1.4.2 again, the operator u,,, (c,(g)) is unitary and

ol ([an9)] ) = ullh (@) (1430

Combining (I.4.29) and (1.4.30) yields

Tr (uﬁll),1 (ar, (gxgil))) =Tr (us(ll)s1 (as, (x))) ) (1.4.31)

Similarly (which is even easier), we have

Tr (uﬁzz),2 (gngl)) =Tr (us(zz)s2 (x)) . (L4.32)

It is clear that (1.4.28) follows from (1.4.31) and (1.4.32).

Combining the cases above concludes the proof of (I.4.25).

Using the formula (1.4.22) in assertion (b) of Theorem 1.4.15, we see that (1.4.25)
implies (in fact is equivalent to) (1.4.26).

Finally, (1.4.27) follows from the above by a simple calculation of characters using
the invariance of the Haar state. |

Theorem 1.4.19 (Fusion rules of G—simplified version). Using the same notations as
in Theorem 1.4.15, the formula (1.4.23) is reduced to

dim Morg (W, Wy x W) = dim Morg, (ufy’ 6, Us %, Uz) , (14.33)
where y is an arbitrary element in 0.

Proof. This follows immediately from of Theorem 1.4.15 (c) and Lemma 1.4.18. o

I.5 Generalities on property (RD) and polynomial growth

We aim to present some generalities on property (RD) and the closely related prop-
erty of polynomial growth in this section. The results proved here will be vitally
important in the proofs of our characterization of these properties for the discrete
quantum group G. As G is of Kac-type, we present only the theory for unimodular
discrete quantum groups, which we view as the dual of the compact quantum groups
that are of Kac type. The treatment here are adapted using the more systematic study
in (Vergnioux, 2007), with some simplifications in the unimodular case of course, as
we don’t need multiplicative unitary for the compact-discrete duality of quantum
groups, which play a key technical role in Vergnioux’s general theory on the sub-
ject). For the non-unimodular case, we refer our readers to the article (Bhowmick et
al., 2015).

As a warm up, we prove a simple well-known result in polynomial algebra over
field of characteristic 0.

Lemma L.5.1. For all P(X) € R[X], there exists a unique Q(X) € R[X], such that

k
VKeN,  Q(k) = D P()). (L5.1)
j=0
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Proof. Put (2) = % ]_[;.":_01 (X —j) € R[X] for every m € N. Then we have deg (i) =

m, and (ﬁ) = (XH) - (X::). It is easy to see that ((ﬁ) tme N) is a basis for the real

m+1
vector space R[X]. Thus there exists ay, ...,a, € R, such that P(X) = ;.’:0 a; ()j)
Hence Q(X) = ;’zo aj (f:ll) satisfies (1.5.1). Uniqueness of Q is obvious as a non-zero
polynomial admits only finitely many roots and N is infinite. O

It is an important idea in geometric group theory to use length functions to con-
trol the growth of a discrete group. The same idea also applies to discrete quantum
groups, which we viewed as the dual of compact quantum groups. Let H be a com-
pact quantum group. Recall that Irr(H) denotes the set of equivalency classes of
irreducible unitary representation of H.

Definition I.5.2. A length function on the discrete quantum group Hisa mapping
I : Irr(H) — Ry, such that (i) I([eg]) = 0, where ¢y is the trivial representation of
H; (i) I(x) = I(x) for all x € Irr(H); (iii) /(z) < I(x) +1(y) for all x, y, z € Irr(H) such
thatz C x®y.

Proposition 1.5.3. Let H be a compact quantum group, | a length function on H. The
following are equivalent.

(a) There exists a polynomial P(X) € R[X], such that for all k € N, we have

(dimx)? < P(k).
xelrr(H) , k<l(x)<k+1

(b) There exists a polynomial Q(X) € R[X], such that for all k € N, we have

(dimx)? < Q(k).
xelrr(H), I(x)<k+1

Proof. Clearly (b) implies (a), while the reverse implication follows from Lemma I.5.1
and the fact that

k
{xelr(H) : I(x) <k+1}= U{x elrr(H) : j<I(x)<j+1}. O
j=0

Definition 1.5.4. The pair (]ﬁl, l) is said to have polynomial growth, it any of the

equivalent conditions in Proposition 1.5.3 is satisfied.
The discrete quantum group H is said to have polynomial growth, if there is a

length function [ on it, such that the pair (]?]I l ) has polynomial growth.

Our formulation of the rapid decay property (property (RD)) in the quantum set-
ting requires more work—we need to define the Fourier transform and the Sobolev-
0-norm.

There are several important algebras associated to H, which we introduce now.
For every class x € Irr(H), we choose and fix a unitary representation u* of H on
some finite dimensional Hilbert space /%, such that u* € x. With these choices
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fixed, £ (ﬁ), o (ﬁ) and cc(ﬁ) denote respectively the £*°-direct sum, co-direct sum,
and c.-direct sum of the “block algebras” B(7%;), i.e.

o
@)= P B,
x €lrr(H)

o= P BH), (15.2)

x€lrr(H)
alg

= P B(A).

x€lrr(H)

Of course, c. (H) is an involutive dense subalgebra® of the C*-algebra cg (H), , and
Co (H) is weakly dense in the von Neumann algebra £ (H) In particular, cC(H) is
a weakly dense ideal in £*°(H). To fix the notations, for all x € Irr(H), the symbol
px denotes the central projection in ¢, (H) whose component at y € Irr(H) is id S,
if y = x and is 0 otherwise. Hence for all a € ¢* (Iﬁl), the element ap, € cc(ﬁ[) is
supported at x € Irr(J%;), and we often abuse notation by letting ap, also denote its
x-component (so ap, € B(H%)).

Remark I.5.5. Although we don’t need this, we mention in passing here that the
comultiplication on H is a bit tricky if we adopt the ¢o or the algebraic ¢, picture
of H (one has to consider their multiplier algebras and use non-degenerate maps as
comultiplication). In the spirit of treating the bicrossed product G as an algebraic
compact quantum group, the algebraic dual of H viewed as an algebraic compact
quantum group is c.(H), and this duality can be nicely treated in the framework
of van Daele’s multiplier Hopf algebras, see Part I of (Timmermann, 2008), or the
original papers of van Daele (Van Daele, 1994; 1996; 1998).

We can now introduce the Fourier transform and Sobolev norms on these quan-
tum objects. As we’ve mentioned earlier, since the bicrossed product G is of Kac type
(Theorem 1.2.11), it is enough for us to treat the unimodular case, for which we only
need the Sobolev-0-norm instead of all possible Sobolev norms.

Definition 1.5.6. Suppose H is of Kac type, and a € c.(H).

« The Fourier transform of a, denoted by Fg(a) or simply ¥ (a), is the element
in Pol(H) defined by

Fu(a) = >, (dimx) [(Tryg ®id)(u*(apx ® 1))] . (15.3)
x€lrr(H)

+ The Sobolev-0-norm of a, denoted by ||a||yy, is determined by

lallfe = >, Tra((a*a)p). (L5.4)

x€lrr(H)

Here, dimx = dim J%;, which is independent of the choice of the representative
u* (hence 77;), and we’ve adopted the abuse of notation as explained right before
Remark 1.5.5.

Swhich is non-unital if the quantum group H is not finite.
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Remark 1.5.7. At first glance, it seems that the Fourier transform and the Sobolev-
0-norm both depend on our choice of a complete set of representatives of the set of
classes Irr(H). This dependence is in fact superfluous in the sense as we will now
explain. For each x € Irr(H), choose u*,v* € x, and denote the finite dimensional
Hilbert space on which u* (resp. v™) acts by %y (resp. #%). Since [u*] = x = [v¥],
there exists a unitary T,, € Morg (¢, v*), which is unique up to a multiple by a scalar
inT = {z € C : |z] = 1}. Hence there is a canonical isomorphism of C*-algebras
Oy : B(H;) — B(Hy), S — T,ST;. Here, when we say Oy is canonical, we mean
O, does not depend on the choice of T, which is true since T, is unique up to a
rescaling by a constant in T. Let % = {u, : x € r(H)}, ¥ = {vx : x € Ier(H)}.
To emphasize the dependence on the choice of the complete set of representatives
of Irr(H), we use ¢ (ﬁ) (resp. ¢ (]ﬁI)) to denote the copy of ¢, (ﬁ[) as defined above
with respect to the choice % (resp. 7), and we denote the resulting Fourier transform
by ﬂ{?/ (resp. ﬂ_};’/), and the Sobolev-0-norm by || - [|,4 (resp. || - Iz +)- It is clear
that we now have a canonical isomorphism © : c?/ (]ﬁl) - CZ/(H) that restricts to ©,
on each block B(.7%). Now for every x € Irr(H) and a, € B(J%,), we have

(Tr, ®id) [0, (u”) (Ox(ax) ® 1) ]
= (Tr, ®id) [(Te ® Du™(T; ® 1)((TeaTy) ® 1) ]
= (Try, ®id) [(Te ® Du(ax @ (T @ 1) |
= (Tr, ®id) [(u*(ax ® 1)) ((T;T) ® 1) |
= (Trpe ®@id)[u" (ax ® 1)],

which implies
Vaec?(H), 7 (0(a)=FZ (a). (L5.5)

Similarly,
Va, € B(%f): TI’,%/X ([Gx(ax)]* [G)x(ax)]) = TI'(}/X (Txa;axT;) = Tr%( (a;ax)a

hence
Vaec @), 104y = lallzos- (15.6)

By (1.5.5) and (I.5.6), we see that as far as the Fourier transform and the Sobolev-0-
norm are concerned, all possible choices of complete set of representatives of Irr(H)
behave coherently via the canonical ismorphisms of between their corresponding
copies of ¢, (H). We shall therefore write simply Fyg and || - ||, with the obvious
adaptations if different choices of complete sets of representatives of Irr(H) are cho-
sen, as indicated above.

The following useful result can be easily obtained using the methods presented in
(Vergnioux, 2007, Proposition 4.4, assertion 2) or (Bhowmick et al., 2015, Proposition

4.2, assertion b)). We include a detailed proof of it for our reader’s convenience.

Lemma 1.5.8. Using the above notations. Suppose F is a finite subset of Irr(H) and
put pr == Xxer Px € cc.(H). Then

Va € pre.(H) = ||Fa(a) < 2( /> (dimX)z) llallgo- (L5.7)
x€eF
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Proof. We first give a neat reformulation of the Fourier transform as in the article of
Vergnioux (Vergnioux, 2007). Let T be the unique linear form on c.(H), such that

Vx € Irr(H), YA, € B(%,), T(Ay) = (dimx) Trg(z,) (Ax).

It is clear that T is positive and tracial, and restricts to a positive form on every finite
dimensional #-subalgebra (which is automatically a C*-algebra) of c. (ﬁl) (Tis actually
the Haar weight of the unimodular discrete quantum group H, but we don’t need
this). For every a € c.(H), we denote the linear form 7(-a) on c.(H) by a - 7. Note
that if a € c.(H) is positive, so is a - T, since

(a-7)(b*b) = T(b*ba) = T(a'*b*ba'’?) > 0
for all b € c.(H). Using the commutativity of algebraic direct sum and tensor prod-
uct, we identify the tensor product ¢, (H) ® Pol(H) with

al
B 84 oPol(H)

x €lrr (H)
and we define

P
U= )sanm € P B(H4) @ Pol(H).
xelrr(H)

It is clear that U is unitary, and for every b in the finite dimensional C*-algebra
prec(H) = Yyer B( ), we have UD lies in the unital C*-algebra

P B8(4) ® C.(H), (15.8)

x€eF

where C, (H) is the C*-completion of Pol(H) using the C*-norm induced by the GNS
construction with respect to the Haar state on Pol(H).
With these notations fixed, formula (I.5.3) can be rewritten as

Fu(a) = [(a ‘T ® id](U), (L5.9)
while formula (1.5.4) becomes
lallf, = 7(a"a). (L5.10)

Suppose a € ppcc(ﬁ) from now on. We first treat the case where a is positive. In
this case, it is clear that the mapping (a - 7) ® id is positive, and using (1.5.9), we have

I7@l = [ D @id] )] = [(«- D ®id] (Up)] < lla- 7l = F(a). (15.1)

where Ur is the partial unitary prU, and 7r is the restriction of 7 onto the finite
dimensional C*-algebra prc.(H). Denote the unit >, cp id . of this last C*-algebra
by e, then by the Cauchy-Schwartz inequality and (1.5.10), we have

[ (a))* < Tler)T(a’a) = (Z (dimx)z) lall. (15.12)

x€F

Combining (I1.5.11) and (1.5.12) proves

Va e (pFCC(H)) , [Fa(a)| < ( /Z (dimx)z) llallzo- (1.5.13)
+ x€F
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Finally, suppose a is an arbitrary element in the C*-algebra ppcc(]f:]l). Decompos-
ing the real and imaginary parts of a onto the sum of their positive and negative

parts, we can find gy, € (ppcc(]ﬁ[)) ,k=1,23,4,such thata = 2171 i*ay. By (L5.10),
. =

we have
4
lallfzo = 2 llakllf.
k=1
Hence by (I.5.13) and the Cauchy-Schwartz inequality, we have
4 2 4
IFa(@* < [ Dol Fu(all] <4 > @)
k=1 k=1
2
<4 (Z (dimx)z) (leakllﬁ,o) =4 (Z (dimX)Z) llallfsr
x€F k=1 x€F

which proves (1.5.7). O

We now define property (RD) and polynomial growth of H in terms of the Fourier
transform and the Sobolev-0-norm, with the help of length functions.

Notations 1.5.9. Let [ be a length function on H, for alln € N, we pose the following
central projections

Gin = > px € £7(H),
xelrr(H), n<l(x)<n+1
n
Qun =D quj = > Px € £2(H).
Jj=0 xelrr(H), I(x)<n+1

To use the more succinct language of (Woronowicz, 1991), L := Xy errr(m) L(x)px defines

an unbounded element affiliated with the C*-algebra c, (]ﬁl), and qp,, (resp. Q1) is the
spectral projection of L associated with the interval [n,n + 1[ (resp. [0,n + 1[).

We have a similar result as Proposition 1.5.3 concerning the control of the norm of
the Fourier transform using the Sobolev-0-norm with the help of a length function.

Proposition 1.5.10. Let H be a compact quantum group, | : Irr(H) — Ry a length
function on H. The following are equivalent.

(a) There is a polynomial P(X) € R[X], such that for alln € N,
a € quce(f) = [I7a(@)] < P(n)llalls,.

(b) There is a polynomial Q(X) € R[X], such that for alln € N,
a € Quce(H) = [[Fa(a)ll < Q(n)lall,-

Proof. 1t is clear that (b) implies (a). Suppose (a) holds, and let’s prove (b). Take a €
Qincc(H). Put aj == pjafor j=0,...,n, then ag, ay, ..., a, are mutually orthogonal
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in ¢, (ﬁ) Hence by (a), we have

IFa(@)l < D Fe(a)] < X3P lajlls,
j=0 j=0

/2

n 1/2( n n !
- (S ror) (zna,-ug,o) - (Z [P(j)]Z) lallco.
0 =0 =0

This, together with Lemma 1.5.1 applied to the polynomial [P(X)]?, implies (b). O

Definition I.5.11. Suppose H is of Kac type, and [ : Irr(H) — Ry is a length
function on H. We say the pair (ﬁl, l) has the rapid decay property, or property

(RD) (or even simply (RD)), if any of the equivalent conditions in Proposition 1.5.10
is satisfied.

We say the discrete quantum group TE\I, where H is a compact quantum group of
Kac type, has property (RD) if there exists a length function [ on H such that the pair
(]ﬁL I) has property (RD).

If H is a classical discrete group, then the convolution algebra C.(H) of finitely
supported complex-valued functions on H is a Hopf *-algebra, with the comultipli-
cation Ay determined by Ay (8y) = 8, ® Sy for all x € H. In fact, H := (Cc(H), An)
an algebraic compact quantum group (so C.(H) = Pol(H)), with the Haar state being
the tracial state sending Jy to Iy, € C, where ey is the neutral element of H. It is
easy to see that Irr(H) is in canonical bijective correspondence with H. Indeed, ev-
ery x € H determines a one-dimensional unitary representation u* € 8(C) ® C.(H)
of H given by u* = idc ®Jy, and x — [u*] is this canonical bijection from H onto
Irr(H). Now apply the above discussion to the compact quantum group H, we get the

notions of length functions, polynomial growth, (RD) for H.But H is just H viewed
as a discrete quantum group, with c, (ﬁ ) = C.(H) if we identify H with Irr(H) as

we’ve just explained, thus Definitions 1.5.2, 1.5.4, 1.5.6 and I.5.11 give a corresponding
notion of length functions on H, Fourier transform on H and Sobolev-0-norm on H,
and polynomial growth and (RD) for H, which coincide with their classical counter-
parts in the group case (see (Jolissaint, 1990)). We record the precise form of these
notions for discrete groups in the following.

Definition 1.5.12. Let H be a (discrete) group. A length function on H is a map-
ping I : H — Ry such that (i) I(eg) = 0; (ii) I(x) = I(x7!) for all x € H;
(i) I(xy) < I(x) +I(y) for all x,y € H.

Suppose [ is length function on H.

« We say (H,[) has polynomial growth, if there is a polynomial P(X) € R[X],
such that for alln € N, we have [{x € H : I(x) € [n,n+ 1[}| < P(n).

« We say (H, ) has rapid decay (property (RD)), if there is a polynomial P(X) €
R[X], such that for all n € N, and all a € C.(H) such that I[(x) € [n,n+ 1]
whenever a(x) # 0, we have ||a||; < P(n)|all,, where ||a||; is the operator
norm of the convolution® a * (-) : £2(H) — £*(H), and ||a||, is the £2-norm’ of
a viewed as in £2(H).

SThis is exactly the norm of the Fourier transform of a.
"This is exactly ||a||§0.
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We remark that the interval [n, n + 1[ can also be replaced by the interval [0,n + 1[.
Finally, H is said to have polynomial growth (resp. (RD)) if there is a length
function [ on H such that the pair (H, [) has polynomial growth (resp. (RD)).

We refer the reader to the survey paper (Chatterji, 2017) and the references there
for many (non)examples, as well as a nice survey of our current knowledge and open
questions, concerning property (RD) for discrete groups. We mention in passing
some results here.

+ (Gromov (Gromov, 1981)) Finitely generated a group has polynomial growth
if and only if it is virtually nilpotent (i.e. containing a nilpotent subgroup of
finite index).

+ (Jolissaint (Jolissaint, 1990)) For all discrete group H, polynomial growth of H
implies that H has (RD), and the converse also holds if H is amenable.

« (Jolissaint (Jolissaint, 1990)) The group SL,(Z) has (RD) if and only if n < 2.
The free group F; has (RD) (none of these groups has polynomial growth).

In the quantum case, Vergnioux showed in (Vergnioux, 2007) the following re-
sults:

« As in the classical case, a discrete quantum group H has polynomial growth
implies that H has (RD) (which can also be proved directly by Lemma 1.5.8),
and the converse holds if H is coamenable (we won’t prove this result here, but
see Proposition 1.5.13 for the proof of a special case).

« If H is a real compact connected Lie group, then the dual H has polynomial
growth (hence (RD)).

We track here a quick proof of the result of Vergnioux in the special case of the
dual of classical compact groups.

Proposition I.5.13. Suppose H is a classical compact group, and l is a length function
on H. If(PAI, l) has (RD), then it has polynomial growth.

Proof. Let P(X) € R[X] satisfies
a € qucc(H) = |[Fu(a)ll < P(k)lallg

for all k € N. Let € : C(H) — C be the character of the C*-algebra C(H) given by
@ — @(eq). Since u(ey) = id for any representation u of H, we have

Vx € Irr(H), ax € B(H%),

e((Tre, ®id) [u* (ax ® 1)]) = (Tr, ®€) [u (ay ® 1)] = Troe(ay). (L5.14)

Put pr == Yxer Px € QiCe (ﬁ) Take an arbitrary k € N, and a finite subset F of
{x eIrr(H) : k <I(x) < k + 1}. Then by (1.5.14), we have

e(Fu(pr)) = D (dimx) Tr (px) = > (dimx)?,

x€F x€F

and

lIprlle = D (dimx) Troe (px) = > (dimx)®,

x€eF x€eF
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Thus
> (dimx)? = e(For (pr)) < 1Fe(pr)ll < P(O)Iprllpe = P(K) [ (dimx)%.
X€F x€F

Hence

Z (dimx)* < [P(k)]?.

x€F
As F is taken arbitrarily, this forces

(dimx)? < Q(k),
xelrr(H), k<I(x)<k+1

where Q(X) = [P(X)]* € R[X]. This proves that (ﬁ , l) indeed has polynomial
growth. O

Remark 1.5.14. The quantum case of Proposition 1.5.13 is proved in the same way
assuming the underlying compact quantum group is coamenable, thus the counit
is everywhere defined and hence is a character of the underlying C*-algebra, whose
norm is thus bounded by 1 (we always have (id ®e¢) (u) = id for any finite dimensional
unitary representation u of a compact quantum group). This approach is due to
Vergnioux (cf. (Vergnioux, 2007, Proposition 4.4)).

Corollary 1.5.15. Suppose H is a classical compact group, | is a length function on
H,, then (fl, l) has (RD) if and only if it has polynomial growth. In particular, H has
(RD) if and only if it has polynomial growth.

Proof. This is clear by Proposition 1.5.13 and Lemma 1.5.8. O

We terminate this section with a technical result for classical compact groups,
which will play a vital role in the proof our result on (RD) for G.

Lemma 1.5.16. Suppose H is a compact group and K is an open subgroup of H. Let
ex € C(H) be the characteristic function of K. For all a € c.(K), there exists a € c.(H),
such that (i) if ap, # 0 for somey € Irr(H), then ap, # 0 for some x € Irr(K) with

y C Indg(x); (ii) exFy(a) = Cx(Fx(a)), where €k : C(K) — C(H) is the unique
extension of functions by making the extension vanish outside K; (iii) ||all o < |lallx.-

Proof. For every x € Irr(K), y € Irr(H), define
dy,y == dim Morg (y, Indf (x)) = dim Morg (ResE (y), x) = dim Mor (x, Resk (1))).
By definition dy,, # 0 if and only if y C Indg (x). Put
suppy(x) := {y €elrr(H) : yC Indg(x)} = {y elrr(H) : x C Reslg(y)},
and

suppg (y) := {x elrr(K) : y C Ind?(x)} = {x elr(K) : x C Resg(y)}.
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Using the semisimplicity of the additive category Rep(H), for each x € Irr(K), one
can choose a family of pairwise orthogonal isometries s;’y € Morg (uY, Indg(ux ),
y € suppy(x),i=1,...,dyy such that

ey

> (saic,y)(sfc,y)* =idx,, (L5.15)

yesuppy (x) =1

where 7 is the finite dimensional Hilbert space on which Indg(ux ) acts. For all
x € Irr(K), since

dim Morg (x, Resg (Indg (x) )) = dimEndg (Indg (x)) #0,
by Schur’s lemma, we are able to choose and fix an isometry
ry € Morg (ux, Reslf([(lndg(ux))).

With these notations, let a be the unique element in ¢ (ﬁ ) such that

. d
~ dimx &/, \* ol
Vy € Irr(H), apy = E pe E (s;)y) rx(apx)rx(s;,y). (L5.16)
xesuppg (y) my ‘=

By definition,
Vx € Irr(K), y € Irr(H), x € suppg(y) & y € suppg(x), (1.5.17)

thus
apy # 0 = 3x € supp(a),y € suppg(x).
This shows that the set

{yenrH) : ap, 20} ¢ | ) suppy(x)
xesupp(a)

is finite, and we in fact have @ € c.(G). We now show that a has the desired Fourier
transform and Sobolev-0-norm.
By our choices of sff,y and rx, we have

Vx € Irr(K), y € suppy (x),i=1,...,dxy,

R S o\x (L5.18)
u? [(s;y) ® 1] = [(s,’cy) ® 1] Ind¥ (u”),
and note that C(H) is commutative, we also have
Vx € Irr(K), (id ®ex) IndII-(I(ux) = Indg(ux)(rx ®ek) = (re ® Du*.  (15.19)

Combining (I.5.18) and (1.5.19), we have

o e 000 0 ) enri ) 1))
s men s (L) oo o) 1))
= (Tr, ®id) ({(sh,) ® 1} {0 0 @ ex0)} {[(aprri (st )| @1}) 15200
« ey ([ ] ] o 010 () 1)

= (Troe, ®id) ({ux[(apx) ® 1]} {[r;(s)’cy) (sff,y)*rx] ® l}) .
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By definition of the Fourier transform, (I.5.15), (I1.5.16), (1.5.17) and (1.5.20), we
have

eaxcFu@=ec Y, (dimy) [(Try, ®id)(u(@y @ 1))]

yelrr(H)

dxy
=ex Z Z Z(dim x)

yelr(H) xesuppg (y) =1

{(Tr%ay ®id) (uy {[(si’y)*rx(apx)r; (s;y)] ® 1})}
Z %(dimx)

xesupp(a) yesuppy (x) i=1

{(1e, @1 ({] (1) ] 1] w52
(wl(ap) @ 1| (sk,)| @ 1}

dxy
Z (dim x) Z Z
xesupp(a) yesuppy (x) i=1

{(Tr%y ®id) ({ux[(apx) ® 1]} {[r;(s;y) (s;’y)*rx] ® 1})}
SV (dimx) {(Tro, ®id) ({w*[(apy) ® 1} {(rir0) @ 1})}

xesupp(a)

= D> (dimx) -Gk [(Tro ®id) (u*[(apy) ® 1])] = Ex(Fi(a)).

xesupp(a)

. . i . .
Finally, since S;E,L, ry are all isometries, we have

re (s,’;,y) (s;’y) ry < id e,
so by (1.5.16), and the mutual orthogonality of s,‘;y, i=1,..., d, we have

Tr%y (Zi*Epy)
3 Z % dim x |
B dimy

xesuppg (y) i=1

Tr oz, ((si’y)*rx(a*px)r; (s;’y)* (sfc,y)*rx(apx)r; (s;y)*)

b ( dim x| i \* i
2 2l T () o)

xesuppg (y) i=1 dlmy
dx. .
Y (d1mx 2

- 2 iy o lwwonf) ) )

xéesuppg (y) =1

(15.22)
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It follows from (1.5.17) and (1.5.22) that

1@l
Z (dimy) Tr g, (aapy)

yelrr(H)

S @imy) Y z(d““")

yelrr(H) xesuppg (y) i=1 dlmy

R a—
S (dimx) ] Z(dlmx)

dimy

IA

xesupp(a) yesuppy (x) i=1 (L5.23)
Tr e, ((a*apx)r;(si,y)(si)y) rx)
dx,y ) N
< Z (dim x) Z ZTrﬁoX ((a*apx)r;(s;’y) (s;,y) rx)
xesupp(a) yesuppy (x) =1
(since y € suppy(x) = x C ResK(y) = dimx < dimy)
= > (dimx)Try (a“apxrirs)
xesupp(a)
= Z (dimx) Tr e, (a*apx) = ||a||§<30.
x€supp(a)
The lemma is now established by (1.5.21) and (1.5.23). O

I.6 Macthed pair of length functions

We now study the length functions on G. Naturally, this is closely related to the
representation theory of G as presented in § L4. Recall that for any f-orbit &, the
notation Irrs(G) denotes the set of equivalency classes of &-representations of G,
and there is a dagger operation (-)' on [ eom » Irr(G) given by Definition 1.4.12.
We also recall our classification bijection (Theorem 1.4.9)

R : ]_[ Irr 5 (G) — Irr(G)
ﬁEOrbﬁ

[U] € Irre(G) = [Re(U)]

preserves involution (Theorem 1.4.13), where R4 (U) is given by the formula (1.4.6)
in Lemma [.4.4.

Suppose I : Irr(G) — Ry is a length function. For each & € Orbg, let Iy :
Irr(G) — Ryg be the composition of /, R and the inclusion

Irrs(G) — U Irr 5 (G).

ﬁEOrbﬂ

We also adopt Notations 1.4.7, so in particular, the bijection @y, } given there allows
us to identify Irr (..} (G) with Irr(G), and we denote [(,.} by I5 : Irr(G) — R using
this identification. On the other hand, for all & € Orbﬂ, let £ denote the trivial
O-representation of G, i.e. £g = 3, s €r,s ® Urs, S0 that [e5] = ) ( [gcy]) for every
y€ 0. Wedefinelr : T — Ry, y = L.c([gy.6])-
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Lemma 1.6.1. Using the above notations, the following hold:
(a) I is a length function on Gandlyisa PB-invariant length function on T';
(b) Liery([e]) = 0;
(c) forall 0’ € Orbg and [U] € Irr5(G), we have lo([U]) = I ([UT]);

(d) fori=1,2,3,let 0; € Orbg, and [U;] € Irr,(G), withU; = %, scq, er,s®u£2 be-
ing an O;-irreducible U;-representation of G (see Definition 1.4.6) on £*(0;) ® 7,
if dim Morg, (u)(,Sy) |Gy, Ui Xy Uz) # 0 for some (hence for all, by Lemma 1.4.18)
Y € O3, thenlg,([Us]) < 1o, ([Ur]) + g, ([U2]).

Proof. Since [ is a length function on G, (a) and (c) are easy consequences of the
definitions of I3, Ir, ls and the fact that the classification bijection R is involution
preserving. (b) is a corollary of (a) (Ir is a length function on T'). Assertion (d) is a
consequence of Theorem 1.4.19 and the fact that [ is a length function. O

The above discussion motivates the following definition.

Definition 1.6.2. A family of mappings (lg : Irrp(G) — Rzo)ﬁGOrbﬁ indexed by
Orby is called affording, if conditions (b), (c) and (d) in Lemma L.6.1 are satisfied.

Proposition 1.6.3. Let £ be the set of length functions on G, and N be the set of
affording family of mappings. Then

P:28->N

I'— (lg) peor,

is a well-defined bijection, wherelg = loRo14 with 15 being the inclusionIrr 5 (G) —
[ ecom, Irre(G).

Proof. That @ is well-defined follows directly from Lemma 1.6.1 and Definition 1.6.2.
Note that
U Image(R o 1p) = ]_[ Irr 5 (G),

ﬁ’eOrb/; ﬁEOrbﬁ

since

VO € Orby, Image(R o 1) = Irrp(G).

By the definition of /4, this implies that that ® is injective.

It remains to show that ® is surjective. By the definition of ®, this amounts to
prove that for every affording family (I¢) peor,; € U, the mapping [ : Irr(G) — R0
defined by [Rg(U)] — lg([U]) is a length function on G. With the representa-
tion theory (Theorem 1.4.9, Theorem 1.4.13 and Theorem 1.4.19) of G in mind, it is
clear that the conditions in Definition 1.5.2 correspond exactly to the conditions in

Definition 1.6.2, hence [ is indeed a length function on G. O

Corollary 1.6.4. If(lﬁ)ﬁeoﬂ,ﬁ is an affording family of mappings, thenlp : y —
l,.c([ey.G]) is a B-invariant (i.e. Ir (O) is a singleton for every & € Orbg) length func-
tion on G, and lg = leyy is a length-function on G.

Proof. This follows from Proposition 1.6.3 and assertion (a) of Lemma 1.6.1. O
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There is also a way of producing length functions on G from length functions on
I' that are S-invariant.

Lemma 1.6.5. Let Ir be a length function on I'. If I is f-invariant, then the mapping
I : Irr(G) — Ryo, [Re(U)] v Ir(y) wherey € O is a well-defined length function
on G.

Proof. That l; is well-defined follows from the f-invariance of I. The fact that [; is a
length function follows immediately from the representation theory (Theorem 1.4.9,
Theorem 1.4.13 and Theorem 1.4.19) of G. O

To facilitate our discussion, we introduce some terminologies in the following
definitions, which will be useful later in the proofs of our results on (RD) and poly-
nomial growth of G.

Definition 1.6.6. Let .7 = (Ig) pcon 5 be an affording family of mappings. Suppose

® is defined as in Proposition 1.6.3. The length function [ := ®!(.#) on G is called
the standard length function associated with .Z.

Definition 1.6.7. Let I be the f-invariant length function on I' as in Corollary 1.6.4,
and /; the length function on G as in Lemma 1.6.5. We say that [; is induced by Ir.

Definition 1.6.8. Let .# = (lg) peon , be an affording family of mappings and
(Ir, I3) is the matched pair of length functions afforded by .. Let [ be the stan-
dard length function associated with .# and [; be the length function induced by I..

The length function [ + [; on G is called the inflated length function associated with
F.

We want to study the permanence of (RD) and polynomial growth of the dual of
the bicrossed product G. For this purpose, the affording families of mappings contain
a little too much information, as we want to relate a length function on Gto only two
length functions—one on G and one on I'—instead of a family of mappings indexed
by Orbg (but the affording families of mappings are still very relevant as they are
equivalent to length functions on G via Proposition 1.6.3). To address this problem,
we introduce the notion of matched pair of length functions.

Definition 1.6.9. Let l@ be a length function on @ and I be a length function on T,
we say that the pair (Ir, I5) is matched, if there exists an affording family of mappings
(lg :Irrp(G) — Rzo)ﬁeorbﬁ such that

« forall [U] € Irr (¢} (G) = Irr(G), we have [5([U]) = liey ([U]) 5
« for all &' € Orbg, the image Ir (&) is the singleton 5 ([e¢]).

If this is the case, we say that the family {l@ : 0 € Orbﬁ} affords the matching of
(Ir. 15).

Definition 1.6.10. Let ® be as in Proposition 1.6.3. Suppose [ is a length function on
G, both the affording family ®(I) and the matched pair (Ir, l@) of length functions
afforded by ®(I) are said to be induced by l.
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Remark I.6.11. One sees immediately that every length function / on G is the stan-
dard length associated with the matched pair (of length functions) induced by I. On
the other hand, it is possible that a given matched pair of length functions can be
afforded by more than one affording family of mappings, i.e induced by different
length functions on G. Intuitively speaking, some information is lost when we pass
from affording family of mappings to matched pair of length functions.

We terminate our discussion of matched pairs of length functions with the follow-
ing technical result, which is important in our characterization of both polynomial
growth and (RD) for G.

Lemma 1.6.12. Let (Ir, I5) be a matched pair of length functions that is afforded by
some affording family (lﬁ)ﬁeorbﬂ. Letl; denote length function on G induced bylr (Def-
inition 1.6.7). Let I denote the inflated length function on G associated with (l6) oo,

(Definition 1.6.8). For every k € N, put qi := Yixcp, px € £~ (G) where Fy denotes the
set {x €Trr(G) = lg(x) <k+ 1}.

If(@, l@) has polynomial growth with Q(X) € R[X] such that

Vk € N, > (dimx)? < Q(k),
x€lrr(G),l(x)<k+1

then the following hold:
(a) forallk e Nanda € Ql,kcc(é\), we have

176 (@ < (VOK)) llallg (6.1
(b) forally € Irr(G), we have
dimy < Q(L1(y)]); (L6.2)

(c) forally € O € Orbg, let &, : Irr(G,) — Irrg(G) be the bijection given in
Notations14.7. Foreachk € N, putF, . == {w € Irr(G,) : lg(Py(w)) <k +1},
and define

For = @(Fy,k) ={z€lrrg(G) : lg(z) <k+1},
and
]F@k =R (F@k) = {y (S 9{_1 (II‘I‘@’(G)) : l(y) <k+ 1} Cc II’I‘(G),

we have

Z (dimy)? = Z (dim z)*

yeFo i z€Fp i
1.6.3
=101> >, (dimw)? < |01 Q(LIr(y)] +k+1) (163)
WEFY’k

Proof. For every k € N, put Fr = {x € Irr(G) : I(x) < k + 1}, then by Lemma 1.5.8,
we have

a € Qire(G) = IFs(a)l’ < (Z dimxz) lallgo = QR)llallgy. — (L6.4)

x€F
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This proves (a).

For all y € Irr(G), there is a unique &' € Orbg, and an J-irreducible representa-
tion O-representation U = 3, e €.s ® Uy s on £2(0)® 7, such thaty = [Re(U)] =
R([U]). Take ay € O, and denote the irreducible representation uyylg, of Gy by u,.
We know y~! € 07" € Orbg, hence er € 7' 0. By Proposition 1.4.2 assertion (e),
and Theorem 1.4.15, assertion (b), the characters of the &-representation U and the
twisted product e5-1 X, U (which is also a representation of G, = G) coincide,
hence U and e4-1 X, U are equivalent as representations of G. Recall that U is also
equivalent to Indgy (uy) (Proposition 1.4.2, assertion (e)), we have

U =1Ind(uy) = 51 X U. (L6.5)
By (1.6.5), we see that

Vx € Irr(G), dim Morg (x, [U]) = dim Morg, (Resgy (x), [uy])
(L.6.6)
= dim Morg, ([uy], Resgy(x)) < dimx.

Define
supp(U) = {x € Irr(G) : x C [U]} = {x € Irr(G) : dimMorg(x, [U]) # 0}.

Since the family (I6) geor, is affording, and it affords (Ir, I5), by (L6.5) again, we
have (recall the identification of Irr (..} (G) with Irr(G))

Vx €supp(U),  Ig(x) =licy(x) < lg1([e61]) +1o([U])

» ~ (L6.7)
=lr(y™) +1(y) =lr(y) +1(y) = I(y).
Combining (1.6.6) and (1.6.7), we have
dimy =dimU = Z (dimx) - (dim Morg(x, [U]))
xesupp(U)
< Z (dimx)? < Z (dim x)?
xesupp(U) xelrr(G).I5 (x) <I(y) (L6.8)
L(y)] _
< >, P0)=0(liw)).
j=0

This proves (b).

We now establish (c). Recall that for any two &-representations Uy, U,, the re-
lation U; ~g U, implies U; ~ U, as representations of G. Thus let Rep(G) denote
the set of equivalency classes of finite dimensional unitary representations of G, the

mapping
pe It (G) — Rep(G)
[U]l = [U]

is well-defined®. It is clear from the proof of (a) that for every w € Irr(G,), we have
(po o D)) (w) = Indgy(w). Thus

weF = @y (w) € Fpi

by (L6.7 (L6.9)
% Vx € supp(Indgy (w)), lg(x) <Ir(y) +k+1.

8However, in general p o is neither injective nor surjective
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But for all x € Irr(G), we have x C Indgy(w) if and only if w C Resgy (x), thus as

subsets of Irr (G, ), we have

Fyr C L supp(Resgy (x)).
xelrr(G),
l@ (x)<Ir (y)+k+1

Hence F, x is finite, and gy k := XweF,, pw is a central projection in cc(f};). A simple
calculation shows that

F6,(qye) = 2 (dimw)y(w). (1.6.10)

WEFY’k

By Lemma 1.5.16 and (.6.9), there exists a g, x € c.(G) with vyyF6(qyk) = 6, (qyk)s
”m”G,o < ”q”’k“Gy,o’ and I5(x) < Ir(y) + k + 1 whenever g, xpx # 0. Since
[x(w)](eg) = dimw, by (1.6.10) and (a), we have

2 2
[ > (dimW)Zl =[ >, (dimW){[x(W)](ec)}l

weF, i weFy
2

<

> (@imw)x(w)| =175, (0

weF) k

= H”%r%(m)nz (L6.11)
< |Fe@nll* < o(lr (1 +k+ 1llalz,

< (L (] +k+ 1) layils o

=Q(lr(n] +k+1) > (dimw).

WEFY’]C

Now (c) follows from (L6.11) by noting that dimR(®(w)) = dim®,(w) = |0] -
dim w. O

1.7 Polynomial growth of G

We begin by giving a necessary condition for a pair (@, l) to have polynomial
growth.

Proposition L.7.1. Suppose ! is a length function on G. Let (Ir, I5) be matched pair
of length functions induced by 1. If P(X) € R[X] and

VkeN,  acque(G) = |{yelr(G) : k<I(y) <k+1}| < P(k),
then for all k € N, we have
{yeT : k<Ir(y) <k+1} < P(k), (1.7.1)
and

(dimx)? < P(k). (1.7.2)
xelrr(G), k<lz(x)<k+1
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Proof. Let (16) georn 5 be the affording family induced by I. For every class x of

{er}-representation of G (i.e. x € Irr(}(G)), we have I} (x) = [(R(x)) as well as
dim x = dim R (x). We identify Irr (¢} (G) with Irr(G) using @, as in Notations 1.4.7.
Note that the classification bijection R preserves dimensions, we have

VneN, ‘R({x € 1rt(G) : I5(x) = L) (x) = [(R(x)) € [mn + 1[})
c {y elrr(G) : I(y) € [n,n+ 1[},

which clearly implies (I.7.2). Moreover, for all n € N, we have

'{y €T ¢ k(y) = ba(lepal) = 1(R([e.6)) € [nn+ 1[}'

- X s > 01

ver, 0 €O0rbg,
I (eyaIDelnnttl (g (o0 )))=lo (feo ) elnnsi]

< Z (dimy)? < P(n),
yelrr(G),
n<l(y)<n+1

where the first inequality follows from the fact that dimy > || > 1 if y lies in
R(Irr(G)), and the second inequality holds because of our choice of the polynomial
P(X). This establishes (1.7.1). O

The following result is a close converse’ to Proposition 1.7.1.
Proposition 1.7.2. Suppose (Ir, l@) is a matched pair of length functions. If
P(X),Q(X) € R[X]

satisfy
{yeT : Ir(y) <k+1} < P(k),

and (see Notations 1.5.9)

b€ Qi kce(G) = [1F6()Il < Q) 1blg,

forallk € N, then for allk € N, we have

D (dimy)? < [P(k)]?Q(2k + 2), (1.7.3)

yEIrr(G),T( y) <k+1

where [ is the inflated length function associated with any affording family that affords
(Ir, I5).

Proof. Let (1) gecorm 5 be an affording family that affords (I, I5) and Tis the associ-
ated inflated length function on G. Take any k € N. For all &' € Orbg, define

Roy = {z € Irrg(G) : l~(9{(z)) <k+ 1} C Irrs(G),

Note that we will use the inflated length function instead of the standard length function associated
with the corresponding affording family.
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and
Fr = {ﬁ € Orbg : Roji # 0}

Using the classification bijection R : [1geom, Irre(G) — Irr(G), we obtain

{y € Irr(G) : T(y) <k+ l} = ]_[ ‘R(R@k). (1.7.4)
ﬁEFk

IfRpk # 0,thenforally € O, z € Rp ., we have

Ir(y) <lo(z) +Ir(y) =1(R(2)) <k +1. (L7.5)
Hence
ze | | Rox = lo(z) <k+1, (1.7.6)
O€Fy
and
]_[ OC{yel : Ir(y) <k+1}.
ﬁEFk
Consequently,
Z |O| < P(k).
ﬁEFk

In particular, |F| < Q(k) and | 0| < P(k) whenever & € Fi. Hence, by Lemma1.6.12,
(L.7.5) and (1.7.6), we have

>, imy)?= > > (dimR(z)*= >, > (dimz)°

yelrr(G), O€F z€Rp i O€F z€Rp i
T(y)<k+1
< >, D) dimz)? < D) 101PQ(2k +2)
O€Fy zelrr ¢ (G), O€eFy
lo(z)<kn1
< D> [P(0)1°Q(2k +2) < [P(k)]°Q(2k +2).
06Fk
This proves (1.7.3). O

We have the following characterization of the polynomial growth of G.
Theorem 1.7.3 (Permanence of polynomial growth). The following are equivalent:
(a) G has polynomial growth;

(b) there exists a matched pair of length functions (I3, Ir), such that both (é l@)
and (T, Ir) have polynomial growth.

Proof. That (b) implies (a) follows from Proposition 1.7.1, and the reverse implication
follows from Proposition 1.7.2. O
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1.8 Rapid decay of G

Obviously the study of (RD) of G requires a more detailed study of the Fourier trans-
form and the Sobolev-0-norm as defined in § 1.5, as well as their interplay with the
bicrossed product construction. To facilitate our discussion, let’s fix some notations
and then prove some preparatory results. In the following, we will freely use the
results in § 1.4, § 1.5 and § 1.6 without further explanations.

We first fix a choice function 6 : Orbg — T such that 8(&) € & for all & € Orbg.
Then for all y € T, we write 6, := 0(y - G), then choose and fix a 0p(y) € Gy,
It is clear that whenever r,s € & € Orbg, the mapping g o9(r)glog(s)] ™ is a
well-defined homeomorphism from G, s onto Gg(g) = Gy, for every y € &, which

we denoted by t//fs. Thus

4 0
09(6).6(6) © Yrs = 00,0, © Yrs = Urs.
Now for every & € Orbg, choose and fix a complete set of representatives

(uz : Gooy — B())

z€elrr g (G)
of Irr(Gy(¢)), such that for all z € Irr5(G), the O-irreducible &-representation
U? := Z ers® Uy € B(£*(0)) ® B(H#;) @ Pol(G) (L.8.1)
rseC
lies in z, where uZ ; € B(J7;) ® Pol(G) € C(G, B(})) is the unique extension of

u; oYY+ Gy — B(I) by letting uZ (g) = 0 when g ¢ G,;. We denote such
extensions using i, s : C(G,s) — C(G), hence

trs(uz o Iﬁres) = uf,s'

Thus
LI {Re(U?) : zelirg(G)}
0 €eOrbg
is a complete set of representatives for Irr(H).

For convenience, we may and do suppose that {uzl 1 z1 € @’1} = {”22 1 29 € ﬁz}
if Go(s,) = Go(s,), Whenever 0, 0, € Orbg, as well as u[,,,| = ¢4 in the choices
above.

In the following, when we talk about the Fourier transform and the Sobolev-
0-norm on cC(G/g—(;)) for all &' € Orbg, we always mean the corresponding con-
structions with respect to the complete set of representatives {u, : z € Irrg(G)} of
Irr(Go(p)). We recall that G = Gg({,1). And of course, the Fourier transform and the

Sobolev-0-norm on cc(@) is taken with respect to the complete set of representatives

LI {Re(U?) : zelirg(G)}

ﬁeOrb/;
of Irr (G).
Using these notations, for all &' € Orb/g, we have

alg

c.(Goce)) = EB B(H), (1.8.2)
zelrrg

— [00

t*(Goe)) = P B(HA). (1.8.3)

z€elrrg
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Note that Irr(G) is parameterized by z € Irrp(G) +— [Rs(U?)] where & runs
through Orbg, we have

alg alg

@@= P B 8(t0) e8(4)

0 €0rbg z€lrr g (G)

- (18.4)
= B B(fF(0) & cc(Goor))
6€0mb(p)
—~ e e
£*(G) = P 8(¢*0) e B(4)
O €O0rbg z€lrr ¢ (G)
(18.5)

e
B B(*(0)) @ t°(Gyo)).
6<Om(p)

where we’ve freely used some canonical identifications.
Each a € ¢.(G) has a unique decomposition

a= Z Z Z ers ®ay, (1.8.6)
O €O0rbg zelr g (G) r,s€0

where each af; € B(J7;), and all but finitely many of them are 0. For each r,s €
0 e Orbﬁ, we put

ars= >, dig€ ce.o(G). (1.8.7)
z€lrr o (G)

Lemma 1.8.1. Using the above notations, for each a € c. (@), we have

Fol@ = 3 101 3 trtrs (T, (asr) o ¥Ls). (15.8)

0 €Orbg r,seEC
and
2
lallg, = > 101 > ||a,,s||68(m. (18.9)
0€Orbg r,seC ’
Proof. By definition, for all ,s € &' € Orbg and z € Irr(G), we have

Re(U?) Z ers®a;,®1= ( Z ers ® (d ®u,)uy 5

r.se0 r,se0

Dl ens®al ®1
r,se0
= Z ers ® Z(ld ®ur)ur,t(ais ®1),

r,s te0
and
(Troe, ®id) [uf (af, ® 1)]
= (Tror ®id) [1rs(uz 0 ) (a5, @ 1)
= 1rs (T ® 1) [ (w2 0 Y2 (@2, ® D]

= 1rs({(Trs ®10) (a2, ® 1]} 092,
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Hence
Fc(a)

>3 10ldim )

O€0rbg zelr s (G)

Re(U?) Z (ers®a;,®1)

rseC

{(Trﬂ(ﬁ) ®@Trm ® id)

>3 10ldim )

0€O0rbg zelr 5 (G)

|

ers ® Z(ld ®ur)uit(a§,s ®1)

Z (Trfz(@) ® Tr e, ®id)

r,se0 teo
= > D) 10I(dim ) D> (Try ®id)|(id®u,)uf,(df, @ 1)]
O €0rbg z€lrr ¢ (G) rteld

Z | O] Z u, Z (dim #2) {(Troe, ® id) [uf (aZ, ® 1)]}

0 €0rbg rs€C  z€Orbs (G)

2101 > u

0€O0rbg rseC

> (dim%ﬂz)tns({(Tmfz ®id)[u.(a?, ® 1)]} ° wfis)

z€0rbs (G)

> 1013

0€O0rbg rse0

({ )y (dim%)(T%@idnuz(a;r®1)]}owf,s)

z€0rb s (G)

Z |O)] Z Urlys (Tcg(ﬁ) (asy) 0 ‘//fjs) .

0 €O0rbg rse0

This proves (1.8.8).
We also have

2. 2, 10I(dimog)

O €0rbg z€elr 6 (G)

2
llallg,o

*

z
Z ers ® ay

r,seC

>3 10ldimag)

0 €O0rbg zelr 6 (G)

z
Z ers ® ar

r,se0

(Tr[Z(ﬁ) QTrp) (

(Trgz(g) ® Tr%f’z)

D ers® D) (ai,)*(af,s))

r,seC teo

SV S (dim ) Tr ((65,)7 ()

0€Orbg r,te0 zelr 6 (G)

> 101 2 el -

0 €Orbg ritel

which proves (1.8.9). O

Recall Notations 1.5.9, and we are ready to prove the following result.
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Proposition 1.8.2. Let (Ir, lé) be a matched pair of length functions. Suppose
P(X),Q(X) € R[X]

such that
Vk e N, &€ QrpiCe(l) = |I€ll; < P(K)llall, (1.8.10)
Vk €N, > (dimx)* < Q(k). (18.11)
x€lrr(G), I5 (x) <k+1
Then

Vk €N, a€Q;c(G) = [Fa(@l < R(K)lalls. (1.8.12)

where | is the inflated length function associated with any affording family that affords

(Ir, Iz), and
R(K) = P(k)\O () Ok + 1). (18.13)

Proof. Take any affording family (I15) scorm 5 that affords (Ir, I5) and let T(resp. ) be
the inflated (resp. standard) length function associated with (I¢) scom 5

Recall that 7 is the Haar state on .2/ = Pol(G). Let || - ||z, be the norm on &/
when 7 is viewed as an inner-product space with the inner product induced by 7.
By the GNS construction for compact quantum groups with respect to the Haar state,
(1.8.12) is equivalent to

Va e Qljkcc(@),b € = [Fa(a)bllzz < R(k)llallgollbllz,- (18.14)

Now fix arbitrarily a and b in (1.8.14). We pose
Vr.s€ 0 €Ortby, gy =0]- [l (ﬁ;g(m (as,) o x/fﬁs)] € v, Pol(G). (18.15)

Then by Lemma 1.8.1, we have

Fe(a) = Z Z ur@rs € Pol(G) = 7. (L.8.16)
O€Orbg rse0

On the other hand, using the direct sum decomposition (I.4.12) in Theorem 1.4.9, there
exists s € v, Pol(G) for all r,s € & € Orbg, such that

b= >, D wirs€ . (1.8.17)

O€O0rbg rseC

Using the decomposition (1.4.12) again, we can find a finite subset F C Orbg, such
that (1.8.16) and (1.8.17) can be rewritten respectively as

Fa(a) = Z Z Ur@Prs = Z Urr, (1.8.18)

red(F) ser-G red(F)
and
b= > D ulrs= > ury, (1.8.19)

red(F) ser-G red(F)
where

¢r = > ¢rs €Pol(G), (1.8.20)

ser-G
Wy = Z Urs € Pol(G). (L.8.21)

ser-G
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Hence by (1.8.18) and (1.8.19), we have

Fc(a)b = Z urs[a:((pr)]lﬁsz Z Uy Z a:(¢r)¢s- (1.8.22)

r,s€0(F) ted(F)?  rsel(F),rs=t
Recall 7 is the Haar state on (C(G),A), so we use || - ||, to denote the L%-norm on
G with respect to the Haar integral z. We also use || - ||, to denote the L* norm on

C(G). To simplify our calculation, we introduce

¢ = Z ”Q”r”ooar € C.(T) (1.8.23)
re0(F)

g= 27 el 8 € Ce(D). (1.8.24)
red(F)

For each fixed r € O(F), the clopen sets G, 5, s € r - G are disjoint. It follows that
the functions ¢ s € v,sPol(G), s € r - G are mutually orthogonal with respect to the
Haar integral 7. By definition,

Iz = > WelZ, = D> > sl = IBIE, (18.25)

red(F) ref(F) ser-G
As @i (¢r) = ¢r © as, we always have ||as*((pr)|| = |l¢+||. Using a € Q;kcc(@), we have

supp(a) := {y €lrr(G) : apy # 0}

= [[{o@] : k(000) + 1R )) =R ]) < k+1}, 520
O€F
which implies that
YO € F, Ir(0(0)) <k+1. (1.8.27)
Combining (1.8.25), (1.8.27) and (1.8.10), we have
¢ = ylly < el ¥l < Pl - 1Yl = P(R)lell, - [1b]l7,- (1.8.28)

Since %%, = u, Pol(G) are pairwise orthogonal as y runs through T, it follows
from (1.8.28), (1.8.22) and (1.8.10) that

2

176 (@bllZ, = >

tef(F)?

s{ =

te0(F)2 \r,s€O(F),rs=t

> > ||<pr||m||¢s||z}=||<o*¢||§

tel(F)? {r,seQ(F),rs:t
[P0l

Z ag (¢r) s

r,s€0(F), rs=t

7,2

IA

a;‘(<pr)||oolllﬂsllz} (18.29)

IN

We now estimate [|¢||,. Recall that for all &' € Orbg, and

(uZ : Go(p) — B(%))zelrrﬁ(G)
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is a complete set of representatives for Irr(Gy(s)). Using (1.8.26) and Lemma 1.5.16
again, we can find a a;, € cc(é) whenever r € 0(F) and s € r - G, such that

(1.8.30)

Ur,r7_~G(a;,:) = lr,r(?-Gr (as,r)): ||E;:HG0 < ||as,r

and for all x € Irr(G), if ag, px # 0, then there exists & € F and z € Irrg(G), such
that

a5t Plu] # O, and  x CIndg ([u]) = [U?] = [eg-1 Xeg U]

In particular, l(%(z)) <k+1sincea € Q~kcc(G) Hence the family (lﬁ)ﬁeoﬂ,ﬂbemg
affording implies that for all x € Irr(G), we have

asipx #0 = I5(x) < Ir([0(O)]7") +16(2)

_ (18.31)
=1r(0(0)) +1([R(2)]) = [(R(2)) < k+1.

Using the disjointness of G, 5, s € r- G for every fixed r € 8(F), as well as (1.8.31),
(1.8.30), (I.8.15) and Lemma 1.6.12 point (a), we have

Vr € 0(F), llorlleo

Z Pr,s

ser-G

%r(as,,) oYy
= |- Gl max|lor, 76 (as,)|| < |r - G| max||76 (as;)|| (1.8.32)

< Ir - GIYQ(k) (ggf%“al? G,,o)
<|r- GN@ (525‘.’&““5”“(;”0)

= max (g,

= |r - G| max
ser-G

= |r ! Gl sngra)C(?Hy:Gr (as,r)”

Now for each fixed r € O(F), either a;, = 0 for all s € r - G, in which case
maXge;. GHa”HG o0 = 0;or there is some s € r - G with a;, # 0, in which case
there exists z, € Irr,.g(G) with a5, # 0, hence

Ir(r)+1r.c(z) =l~(9i([UZ’])) <k+1,
and Lemma 1.6.12 point (b) implies that
Ir -Gl < Ir -Gl dimz, = dimR([U*]) < 0 ([I®(UD) ) < Ok + 1),

Thus by (1.8.32), we always have

Vr € O(F), g2, < Ir- G| Q(k)(maXHaerc o)
(1.8.33)

2
< Q(K)Q(k+1) (mG (1r-al- IIas,rIIG,,o)) :
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It follows from Lemma 1.8.1 and (1.8.33) that

lolE= 33 llorl < > Q(R)Q(k +1) (srggg(|r~c|~||as,,||§;,,0))

red(F) red(F)
< O(k k+1 7 r
Q(k)Q(k + )ﬁZeF| |r§ﬁlla sll6pr0 (18.34)

=0RQk+1) > 101 3 llarsllg, .. o
0€eOrbg rseo
= Q(K)Q(k +1)llall% .
Finally, it follows from (1.8.34), (1.8.25) and (1.8.29) that

Vbed,  |IFs(@bllz, < P)VOK)Q(k + Dllallg olIbllz-

This establishes (1.8.14) with R(k) given by (1.8.13), hence finishes the proof. O

We also have a necessary condition for G to have (RD).

Proposition 1.8.3. Let [ be a length function on G. Let (Ir, lé) the matched pair of
length functions induced by l. If P(X) € R[X] satisfies

VkeN, aeque(G) = |Fa(@l < P(b)allg, (18.35)
then
VkeN, beqprce(G) = [Fa(@ll < P(K)lallgy. (1.8.36)
and
VkeN, ¢eqpiCe(l) = lIEll; < PRI, (1.8.37)
where
Qi = Z 5, € £2(T).

yel, k<Ip(y)<k+1

Proof. Let (Ig) com 5 be the affording family induced by [, and let (Ir, I5) be the
matched pair of length functions induced by 1, so (Ir, I3 ) is afforded by (I¢) scorn 5
As usual, we identify Irr (..} (G) with Irr(G) using the bl_]eCthl’l &, in Notations 1.4.7.
Since I(R(x)) = lz(x) and dimR(x) = dimx for all x € Irr(G), it is clear (1.8.36)
follows directly from (I1.8.35).

It suffices now to show (1.8.37). Indeed, take any k € N, and any ¢ € gy 1 C.(T),
which amounts to say that & is supported in{y el : Ir(y) € [k k+1[}. We pose
§ to be the unique element in £ (G) with §py = 0 unless y = R([eg]) for some
O € Orbg, in which case

£y = Epnileo)) = 157 ﬁ, 2 Eeyy € B(£2(0)).

yeo
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Since ¢ is finitely supported, we have in fact f € cc(@r). We now have (recall that
Eo = Zr,seﬁ €r,s ® Ur,s)

= dim R
o= ¥, T 2{56])
ﬁEOrbﬁ
{(Trfz(ﬁ) ®id) Z er,s ® Urlps Z g(}’)ey,y ®1 } (1.8.38)
rseC yeo
= 2 fwmoy = D5 ENuoy,
O€0rbg yesupp (&)
and
=|I? dim R _
2}, - > Sy, (Z ﬂy)ﬂy)ew)
? O €0rbg |ﬁ| yeo (I : 39)
- % < O lEmP =1
yesupp(&) 1Y y€supp (&)

Moreover, we have
y € 0 €Orbg = [(R([eos])) = lo([es]) = Ir(y).

Thus Eis supported in {y € Irr(G) : I(y) € [k.k+ 1[}. It follows from (1.8.38),
(1.8.39), and our choice of P(X) that

Z E(y)uyoyy

y €supp (&)

= |7 ®| < pw)|E], = PRI (1.8.40)

Let C;(T) be the C*-algebra in B(¢*(T)) generated by A, : ¢*(I') — ¢*(T),
&y + &, where y runs through I'. Then Pol(T) = Vect{/ly iy € F} is a dense
x-subalgebra of C;(T'). One checks immediately that
Pol(G) = & — Pol(T)
uyp = g(ec)hy

is a morphism from the algebraic compact quantum group T to G, hence extends
uniquely to a unital *-morphism of C*-algebras

¥ Cr(G) =T & red C(G) - C;k(r)

In particular, ||¥]| < 1. Posing A(£) := Xy esupp(&) £(¥)Ay, we have

/1(§)=‘P( >, é’(y)uyey,y),

y €supp (&)

which, by (1.8.40), implies that

Il =1AON < | 25 EWuyeyy| < PRIIE,.

y€supp(&)

This proves (1.8.37) and finishes the proof. O
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We finally have the following characterization of property (RD) for G.

Theorem 1.8.4 (Permanence of rapid decay). The following are equivalent:
(@) G has (RD);

(b) there exists a matched pair of length functions (I, Ir), such that (5, l@) has
polynomial growth and (T, Ir) has (RD);

(c) there exists a matched pair of length functions (l@, Ir), such that both (6, lé)
and (T, It) has (RD).

Proof. By Corollary 1.5.15, (b) and (c) are equivalent. By Proposition 1.8.2, we have
(b) implies (a). By Proposition 1.8.3, we have (a) implies (c). O



Chapter II

Representation theory of semidirect
products of a compact quantum
group with a finite group

Introduction

It is often the case that one can retrieve significant information about representations
of a group G from representations of some subgroups of G. As a trivial example, the
study of representations of a direct product G X H of groups of G and H can be easily
reduced to the study of representations of G and H separately. However, when one
replaces direct products with the more ubiquitous semidirect products, the situation
quickly becomes complicated. To get a taste of this complication, the classic (Serre,
1977, §8.2) treats representations of a semidirect product G = H in the special case
where G, H are both finite and G is abelian.

In the setting of locally compact groups and their unitary representations, via the
theories of systems of imprimitivity, induced representations, projective representa-
tions (a.k.a. ray representations), etc., George Mackey developed a heavy machinery
of techniques, often referred as Mackey’s analysis, Mackey’s machine or the little
group method (which is also due to Wigner), to attack such kind of problems. Subse-
quent works based on Mackey’s analysis emerge rapidly, making it one of the most
powerful tools to study unitary representations of locally compact groups. For an
introduction of this development, we refer the reader to (Mackey, 1958; 1952; 1949;
Fell and Doran, 1988; Kaniuth and Taylor, 2013) among the large volumes of literature
on this subject.

The author’s own interest of this subject comes from the joint work (Fima and
Wang, 2018) with Pierre Fima. In (Fima and Wang, 2018), we systematically studied
the permanence of property (RD) and polynomial growth of the dual of a bicrossed
product of a matched pair consisting of a second countable compact group and a
countable discrete group. The natural subsequent question of constructing examples
of nontrivial bicrossed products with or without (RD) leads one to study closely the
representation theory of semidirect products G = A of a compact group G with a
finite group A. More precisely, as required by the study of length functions relevant
to these properties, we need a classification of all irreducible unitary representations
of G > A, the conjugate (which, when we adopt the point of view of topological
quantum groups as in this chapter, is also the contragredient since classic groups are

61
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of Kac type) of irreducible representations in terms of this classification, and most
importantly, the fusion rules of G > A, i.e. how the tensor product of two irreducible
representations decomposes into a direct sum of irreducible representations. While
the first two questions can be settled using Mackey’s machine as mentioned above,
the fusion rules, however, to the best of the author’s limited knowledge, are never
calculated in the literature.

This chapter treats these questions in the more general setting of semidirect prod-
ucts of the form G < A, where G is a compact quantum group and A a finite group.
However, instead of using systems of imprimitivity, we introduce the notion of rep-
resentation parameters (see Definition I1.9.8), which appears naturally when we try
to analyze the rigid C*-tensor category Rep(G > A). Roughly speaking, a represen-
tation parameter is a triple (u, V,v), where u is an irreducible representation of G on
some finite dimensional Hilbert space ¢, V is a unitary projective representation of
a certain subgroup A of A on the same space .7, and v is a unitary projective rep-
resentation of the same Ay on some other finite dimensional Hilbert space, such that
V is covariant with u in a certain sense, and V and v have opposing cocycles. Here,
the subgroup A, arises as an isotropy subgroup of a natural action A ~ Irr(G), and
the projective representation V is then determined by Schur’s lemma on irreducible
representations.

As the precise formulation of our main results are long and complicated, we give
here only a crude summary of these results in terms of representation parameters
(see Definition 11.9.8) mentioned above.

(A) Up to equivalence, irreducible unitary representations of G = A are classified
by (equivalence classes of) representation parameters (see Theorem 11.12.1 for
the precise formulation);

(B) The classification in (A) is compatible with the conjugate operation— the con-
jugate'of an irreducible representation of G < A parameterized by some repre-
sentation parameter (u, V, v) is itself parameterized by the conjugate of (u, V, v)
(see Theorem II.13.5 for the precise formulation);

(C) The fusion rules of G < A is calculated by summing a series of incidence num-
bers, where all of these numbers can be calculated using unitary projective
representations of some suitable subgroup of A through an explicit reduction
procedure (see Theorem I1.15.1 for the precise formulation), where the reduc-
tion procedure itself is determined by the representation theory of G and the
action of A acting on G, with respect to which we form the semidirect product.

While (A) and (B) may well be regarded as the quantum analogue of the corre-
sponding results of Mackey’s analysis in the classical case of groups, our result (C)
is new, even in the case where G is another finite group. We should mention that
our main idea of this chapter starts with reformulating Rep(G) as a semisimple rigid
C*-tensor category for an arbitrary compact quantum group G, which is the modern
point of view; however, Mackey’s ingenious ideas, such as studying the dynamics of
a naturally appeared group action on the representations of a normal subgroup, and
using projective representations of the isotropy subgroups of this action, still play
an essential part in the development of this theory.

I The conjugate should not be confused with the contragredient, with the contragredient not neces-
sarily unitary if the quantum group is not unimodular (of Kac-type).
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We now describe the organization of this chapter. The numerous sections of this
chapter are roughly divided into the following four parts. In the first part (§ II.1 and
§ I1.2), we lay out the basic properties and constructions of the objects to be studied in
this chapter—semidirect products of a compact quantum group by a finite group and
their unitary representations. In § I.2, the problem of describing unitary representa-
tions of these semidirect products is reduced to the study of the so-called covariant
pair of representations for each of the factors. The second part (§§ I1.3- I1.6) gives a
self-contained treatment of induced representation which will be used later in this
chapter. We are aware that there are already much more general theory for induced
representations in the quantum setting, e.g. (Kustermans, 2002) based on the classic
work (Rieffel, 1974). Moreover S. Vaes has generalizes a large part of Mackey’s the-
ory of imprimitivity to locally compact quantum groups in (Vaes, 2005). Besides the
obvious reason for fixing the notations, the treatment of the induced representation
here is specially tailored to the various calculations in the later half of this chapter.
The third part (§§ I1.7-11.11) is the technical core of this chapter. The treatment here is
largely inspired by Woronowicz’s Krein-Tannaka reconstruction (Woronowicz, 1988)
of a compact quantum group from its representation category. Here instead of di-
rectly attacking the representation category Rep G = A of the semidirect product, we
introduce and study a family of rigid C*-tensor categories (called the category of
covariant systems of representations and denoted by CSR,, with respect to some
suitable subgroup of A), each of which has a simpler structure. Combining the infor-
mation we have on these simpler C*-tensor categories allows us not only to classify
the irreducible unitary representations of G > A, but also to calculate the fusion rules
of G > A. The details of this classification and calculation are given in the fourth part
(§§ IL12-1L.15).

Before we proceed further, we feel that we should say a little more about § II.1
for the experts. We emphasize our construction of semidirect products as the ax-
iomatically more elaborate algebraic compact quantum groups, the theory of which
is developed by van Daele (Van Daele, 1998; 1996; 1994), instead of the more mod-
ern and standard formulation, due to Woronowicz (Woronowicz, 1998; 1988; 1987),
using C*-algebras. Of course, these two approaches are essentially equivalent—one
passes from Woronowicz’s approach to van Daele’s via the Peter-Weyl theory for
compact quantum groups, and from van Daele’s approach to Woronowicz’s via the
famous GNS construction with respect to the Haar integral. The reasons we prefer
van Daele’s algebraic theory here are two-fold: on the one hand, one has the ad-
vantage of having direct access to the Haar state and the antipode, as well as the
polynomial algebra, which are powerful tools for our purposes of studying the rep-
resentations of these objects (or corepresentations if one insists on viewing these
essentially analytic objects as Hopf algebras); on the other hand, when one tries to
restrict representations to certain (quantum) subgroups of these semidirect products,
as we will do later, one will need to use the counit, which is always everywhere de-
fined in the more elaborate algebraic approach of van Daele, but is merely densely
defined if the compact quantum group in the sense of Woronowicz is not universal.
We also point out here that the term semidirect product in the quantum setting has an
unfortunate ambiguity. Nowadays many use this term to refer to the crossed prod-
uct, as first defined and studied by S. Wang2 (Wang, 1995). In the case of classical
groups, it is long known that this crossed product construction yields the convolu-
tion algebra of the semidirect of groups. So if we believe classic compact groups are

2who has no direct relation to the author, as Wang is a very common Chinese surname.
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exactly compact quantum groups whose algebra is commutative, then this is not the
correct formulation for semidirect products, even though these are closely related
via the convolution operation (which is a manifestation of the quantum version of
Pontryagin’s duality as developed in (Kustermans and Vaes, 2000), preceded by many
important works along the lines of the Kac’s program, a history of which is described
in the introduction of the above article). To be more precise, this crossed product of S.
Wang is in fact a special case of the bicrossed product as described in (Vaes and Vain-
erman, 2003) where one of the actions for the matched pair is trivial; what we call
semidirect in this chapter is a special case of the double crossed product as described
in (Baaj and Vaes, 2005) where again one of the actions for the matched pair is trivial.
We don’t pursue the full generality of the bicrossed product construction and double
crossed product construction here, but merely point out that they are all based on the
notion of matched pair of (quantum) groups ((Majid, 1990b; 1991),(Takeuchi, 1981)).
We also mention in passing works such as (Baaj and Skandalis, 1993), (Majid, 1990a),
(Singer, 1972), (Yamanouchi, 2000), and (Vaes and Vainerman, 2003) in the direction
of bicrossed products, and works such as (Baaj and Skandalis, 1993), (Majid, 1990a)
and (Baaj and Vaes, 2005) in the direction of double crossed products. We hope these
backgrounds provide some justification of our choice of terminology for semidirect
products by its consistency with the classical group case. We also note that represen-
tation theory for compact bicrossed products (which includes the crossed product as
a special case) of a matched pair of classical groups are thoroughly investigated in
the author’s joint work with P. Fima (Fima and Wang, 2018), and as one can see by
comparing the results there and the results of this chapter, the representation theory
for semidirect products are significantly more delicate than crossed products, even
for classical finite groups.

We conclude this introduction by making some conventions. All representations
and projective representations in this chapter are finite dimensional. All of them are
unitary, except the contragredient of a unitary representation, which may not be uni-
tary when the compact quantum group is not of Kac-type. We also assume all (pro-
jective) representations are over a finite dimensional Hilbert space instead of a mere
complex vector space. Terminologies and notations concerning compact quantum
groups and C*-tensor categories are largely in consistent with those in (Neshveyev
and Tuset, 2013). We also use freely the Peter-Weyl theory for projective repre-
sentations of finite groups as presented in (Cheng, 2015). We also freely use the
Heyenmann-Sweedler notation in performing calculations on comultiplications. The
unitary group of unitary transformations from a Hilbert space 77 to itself is denoted
by U(S). From § I1.8 on, T denotes the circle group, i.e. the abelian compact group
{z € C : |z| = 1} viewed as a subgroup of C*. Since we often view a representation
of compact quantum groups as an operator, we denote the tensor product of repre-
sentations using X instead of ®, as the latter is reserved to denote tensor products
of spaces, algebras, linear operators, etc. Finally, throughout this chapter, we fix a
compact quantum group G = (A, A), a finite group A, and an antihomomorphism of
groups a*: A — Aut(C(G), A), where Aut(C(G), A) is the subgroup® of Aut(C(G))
consisting of automorphisms of the C*-algebra C(G) that intertwines the comulti-

3Note that the notation Aut(G) has a certain ambiguity which we try to avoid: one the one hand,
if we let G to be a classical compact group, then elements of Aut(G) are group automorphisms, and the
group law of Aut(@G) is given by composition of set-theoretic mappings; on the other hand, if we view G as
a Hopf-C*-algebra, say (C(G), A), then Aut(G) can also be mean the automorphism group of this Hopf-
C*-algebra, whose group law is given by composition of Hopf algebraic-morphisms. This is the reason we
prefer the more cumbersome notation Aut(C(G), A) instead of the ambiguous but more succinct Aut(G).
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plication A.

II.1 Semidirect product of a compact quantum group with a
finite group

Let G = (A, A) be a compact quantum group, A a finite group. An action of A on G
via quantum automorphisms is an antihomomorphism a*: A — Aut(C(G), A). One
can then form the semi-direct G >,+ A, or simply G > A if the action a* is clear from
the context, which is again a compact quantum group. The underlying C*-algebra
o of G = Ais A® C(A), and the comultiplication A on 7 is determined by

Aa®8,) = [(ida®a})A(@)],,(8 ® 851,) € AR C(A) ®A®C(A)  (IL11)
seA

for any a € A and r € A. As we've mentioned at the end of the introduction, from
now on, G, A and the action a* are fixed until the end of the chapter.

It is clear that A is a unital *-morphism. We now check that in the six-fold tensor
product A® C(A) @ A® C(A) ® A® C(A), we have

Va e AreA, (id®id®A)[Aa®6,)] = (A®id®id)[A(a®§,)], (L1.2)

i.e. our new comultiplication A is coassociative. Indeed, put A® := (id®A)A =
(A ®id)A, since a} € Aut(C(G),A) for all s € A, we have (a; ® @) o A= Ao aj,

(id®id®A)[A(a ® 8,)]

= (id®@id ®A) (Z [(id @) A(a)]5(5s ® 8s-1,) 4

SEA

(I.1.3)
-3 “(id ®a’ ® (a] o)) (id®A)A] (a)} (85 ® 8t ® Sp15-1,) pug
s,teEA 135
> {[(idm: ® a;,)A@)](a)} (85 ® 8, ® G151, ) psg.
s,teEA 135
On the other hand,
(A®id®id)[Ala® §,)]
= (A®ideid) | > [(id®a})A(a)] (5 ® 55_1,)24)
SEA
> “(id ®a; ® a?) (A ®id)A] (a)} (8 ® 8,15 ® 5511 pag (IL1.4)
s,teA 135
(s'=tt' =t = s=stt=5)
> {[(id o), ® ) )A? ] (a)} (8e ® 8y ® Sp-19-11) -
s,V eA 135

Now (I.1.2) follows from (I.1.3) and (I.1.4).

Since Pol(G) ® C(A) is dense in A ® C(A), in order to prove that G < A is indeed
a compact quantum group, it suffices to show that (Pol(G) ® C(A), A)is an algebraic
compact quantum group, i.e. a Hopf #-algebra with an invariant state (called the Haar
state or Haar integral).
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First of all, since a} € Aut(C(G),A) for all s € A, we have a} (Pol(G)) = Pol(G),
and A indeed restricts to a well-defined comultiplication on Pol(G) ® C(A).

Let ¢, S be the counit and the antipode respectively for the Hopf *-algebra Pol(G).
Denoting the neutral element of the group A by e, we define

e: Pol(G)®@C(A) —» C

Zxr ® 5}‘ — e(xe), (1115)
reA

and

S: Pol(G) ® C(A) — Pol(G) ® C(A)
S @8 - > al(S(x) ® 6,1 = > S(a () @5, 1O

reA reA reA

Since € is a *-morphism of algebras, so is €. Moreover, for any x € Pol(G) and r € A,
we have

(ERidA(x®4,) = (€®id) D> | > | x1) ® & ® &} (x(2)) ® S5-1,
SEA

= Z e(xy)ay(x(z)) ® 6 = Z €(x(1))x(2) ® 6 =x® 5,
= > xe(xe) ® & = > xme(ar(x@z)) ® 5,

= ([d®8) > D> x(1) ® 8 ® &} (x(2)) ® 51, = (id ®E)A(x ® §,).
seA

Hence € is the counit for A. Let m: Pol(G) ® Pol(G) — Pol(G) be the multiplication
map, and m the multiplication map on Pol(G) ® C(A), then

m(S®id)A(x®8,) =m(S®id) > > xa) ® & ® o (x(3)) ® 51,
SEA
= fﬁZ Z a:(S(x(l))) ® 55—1 ® a:(X(z)) ® 55‘1r
SEA
= Z [m(S ®@id)(a; ® a)A(x)] ® 551 - 51,
seA

= Ser 2, [m(S ®id) At (x))] ® 55

SEA

= 5e,r Z 6(0(:()6))114 ® 55‘1

SEA

= e,re(x) 1a® Z 851

seEA
= 0er€(x)1a ® 1oy = €(x ® 6,)14 ® 1¢(p)-

Similarly, since for any s € A,

* * % kQ %
a .y, Sag = a 008 = a,S,
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we have
m(id ®S)A(x ® §,) = m(id ®S) >, > x(1) ® & ® a} (x(2)) ® Js-1,
SEA
=m Z}\ Z X)) ® s ® (a:_lrSa:)(x(z)) ® O,-15
SE.
=m Z Zx(l) ® 85 ® () S) (x2) ® 5,15
SEA
= 5e,r Z[]\ Z X(1) [S(X(z))] ® ds = 5e,r Z[J\ e(x)14 ® &
NS NS

= 0er€(x)14 ® 1o(p) = €(x ® 6,)14 ® 1c(n)-

Therefore, S is the antipode for (Pol(G) ® C(A), A).
It remains to construct the Haar state on the Hopf *-algebra Pol(G) ® C(A).
Suppose h: A — C is the Haar state on G, define

h: Pol(G) ® C(A) — C
Zxr ® 5}* — |A|—l Z h(xr). (Hl7)

reA

It is obvious that % is a state. For any x € Pol(G), r € A,

(R id)A(x ®8,) = |AIT D" ST h(x(1)) e (x(z) ® Se1,
SEA

= |A|71 Z ()(:(Z h(x(1))x(z)) ® 5s’lr

SEA

= A7 D0 ag (h(x)14) ® 851,
seA

= A7 h(x) D14 ® 851,
SEA

=h(x ®6,)14 ® 1c(a).-

The uniqueness of the Haar state implies that h o &; = h for any s € A, hence

(id@)A(x®3,) = AT D) > xmh(e (x@)) ® 6
seA

= A7 D] D xh(x) ® &

SEA

= |AITh(x)14 ® D65
seA

= E(X@ 6)1la® le(ay-

Therefore, & is indeed the Haar state on (Pol(G) ® C(A), A). So far, we’ve established
that (Pol(G) ® C(A), A) is an algebraic compact quantum group (cf. (Timmermann,
2008, chapter 3)).

Now the density of Pol(G) ® C(A) in A ® C(A) implies that (A ® C(A), A) is
indeed a compact quantum group, with

Pol(G x A) = Pol(G) ® C(A), (IL1.8)
and Haar state (which we still denote by h)

h:A®C(A) »C
Z-xr ®5r — |A|—1 Zh(xr) (ng)

reA
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Furthermore, we’ve seen that the counit € and the antipode S of the Hopf =-algebra
Pol(G > A) are given by (I.1.5) and (I.1.6) respectively (cf. (Timmermann, 2008,
§5.4.2)).

Definition II.1.1. Using the above notations, it is well-known that the analytic com-
pact quantum group (7, A) and the algebraic compact quantum group (AQC(A), A)
are equivalent descriptions of the same object, which we call the semidirect prod-
uct of G and A with respect to the action a*, and is denoted by G >+ A, or simply
G > A if the underlying action «a” is clear from context.

Remark I1.1.2. There is a faster way of establishing G = A as a compact quantum
group, which we refer to as the analytic approach. Namely, one might use (II.1.1)
directly to define a comultiplication on the C*-algebra A ® C(A) and show that this
comultiplication satisfy the density condition in the definition of a compact quantum
group in the sense of Woronowicz (cf. (Woronowicz, 1998)). We prefer the more
algebraic approach presented above as it provides more insight for our purpose of
studying representations of G> A. As an illustration, from our treatment, one knows
immediately that Pol(G = A) = Pol(G) = A, a fact that is not clear from the faster
analytic approach.

Remark II.1.3. When G comes from a genuine compact group G, it is easy to check
via Gelfand theory that the antihomomorphism *: A — Aut(C(G), A) comes from
the pull-back of a group morphism a: A — Aut(C(G), A), and G = A is exactly the
compact group G =, A viewed as a compact quantum group, where the group law
on G X A is defined by

Vg, h € G, r,s € A, (g.r)(hs) = (gar(h),rs).q (I1.1.10)

In treating the dual objects of some rigid C*-tensor to be presented later, the
following result will be useful.

Proposition II.1.4. The compact quantum group G = A is of Kac type if and only if
G is of Kac type.

Proof. Of the many equivalent characterization for a compact quantum group to be
of Kac type*, we use the fact that such a quantum group is of Kac type if and only
if the antipode of its polynomial algebra preserves adjoints. The proposition now
becomes trivial in view of (IL.1.6). O

II.2 A first look at unitary representations of G < A

A unitary representation U of a classic compact semidirect product G > A is deter-
mined by the restrictions Ug and U, on the subgroups G X 14 ~ Gand 16 X A ~ A
respectively. It is easy to see that (cf. (IL.1.10))

VgeGred, Us(a(9)Ur(r)=Ul(ar(g).r)

(I1.2.1)
=U((1,7)(g,1)) = Up(r)Us(9g).

Conversely, suppose Ug, Uy are unitary representations on the same Hilbert space
of G and A respectively, if (I.2.1) is satisfied, then U(g,r) := Us(g)Ua(r) defines a

4see e.g. (Neshveyev and Tuset, 2013, §1.7)
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unitary representation of G < A. When G is replaced by a general compact quan-
tum group G, even though the “elements” of G are no longer available, one can still
establish a reasonable quantum analogue. We begin with a simple lemma.

LemmaIL.2.1. Lete be the counit forPol(G), ep the counit for C(A), then e ®idc(y) is
a Hopf +-algebra morphism from Pol(G) ® C(A) onto C(A), and idpe|(c) ®€n is a Hopf
s«-algebra morphism from Pol(G) ® C(A) onto Pol(G).

Proof. Since the antipodes are *-morphisms of involutive algebras, it suffices to check
that both morphisms preserve comultiplication.
Take any a € Pol(G), r € A, we have
[(e®id) ® (e ®1d)]Agna(a ® 5;)
= > D elam)e(a;(ap))ds ® 51,

seA

= > D elamy)e(ac)ds ® 81,
seA

= > e(a)8s ® 81, = A (e ®id) (a ® 5),
seEA

where Ay is the comultiplication for A viewed as a compact quantum group. Thus
€ ® id preserves comultiplication. On the other hand, note that ex(5,) = ,1,, we
have

[(id®ep) ® (id ®ep)|Agen(a ® 5y)
= Z 051205171, Z acy ® a;(acz))

seA

=81, 2, a(1) ® ()
= 5,1,Ma) = Al(id@ey) (@ @ 5))].

Thus id ®ep preserves comultiplication too. O

Let U € B(57) ® Pol(G) ® C(A) be a finite dimensional unitary representation
of G < A. Define the unitaries

Resg(U): = (idg() ® idpoi(c) ®en) (U) € B(H°) ® Pol(G),

and
Resa(U): = (idg() ®ez ® idea)) (U) € B(I) @ C(A).

Then by Lemma I1.2.1, we see that Resg(U) is a finite dimensional unitary repre-
sentation of G and Resy (U) a finite dimensional unitary representation of A. We
call Resg(U) (resp. Resp (U)) the restriction of U to G (resp. A). For reasons to be
explained presently, we also write Ug for Resg(U) and Uy for Resy (U).

Proposition I1.2.2. Using the above notations, we have
Vro € A, (Un(ro) ® 14)Ug = [(idg() ®a;,) (Us) | (Ua(ro) ® 14) (IL.2.2)
in B(H) ® Pol(G). Moreover,

U = (Us)1,(Un)1s € B(H) ® Pol(G) ® C(A). (I1.2.3)
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Conversely, suppose Ug and Uy are finite dimensional unitary representations of G
and A respectively on the same Hilbert space 7, if Ug and Uy satisfy (11.2.2), then (I1.2.3)
defines a finite dimensional unitary representation U of G < A on 5. Moreover,

Ug = (idg(%&) ®idPol(G) ®ep)(U) € B(H) @ Pol(G), (I.2.4a)
Up = (idg () ®eg ® idc(a))(U) € B(I) ® C(A). (I.2.4b)

Proof. Let d = dimJZ, and fix a Hilbert basis (ey,...,eq) for 2. Let (e;j,i,j =
1,...,d) be the corresponding matrix units (i.e. ¢;; € B(S) is characterized by
eij(ex) = 0;ke;). Then there is a unique U;; € Pol(G) ® C(A) for each pair of i, j,
such that
U= Z eij ® Uijs
Lj

with each Uj; decomposed further as U;; = X,cp Uijr ® &, where each Ujj, €
Pol(G). Since U is a finite dimensional unitary representation of G = A, for any
i,j€{1,...,d}, we have

d
Acer(Uij) = D Uik ® Ugj, (I1.2.5)
k=1

where in Pol(G) ® C(A) ® Pol(G) ® C(A), we have

Aoa(Uyj) = 2 [(1da®a))AUijr)] (14 ® 6 ® 14 ® &)

r,s,tEN,
r=st (11.2.6)

= Z [(ldA ®a:)A(Uij,st)]13(1A ® 55 ® 1A ® 51‘)

s,teA

and

d d
DUk ®Uij = > D Uiks ® 8 ® Ugjr ® 6. (I.2.7)
k=1 k=1 s,teA

Comparing (I1.2.5), (I.2.6) and (I1.2.7), we get
d
(ida ®a)A(Uijst) = D | Uiks ® Urjy € A® A (IL.2.8)
k=1
or equivalently (by applying (id4 ®a__,) on both sides)

d

A(Usjst) = D Uiks ® @y (Ukjir) (I1.2.9)
k=1

for every s,t € A. Since (id ®¢€)A = id = (e ® id)A, we have

d d

Uijst = Z €(Uiks) ot (Ugjr) = Z €(Uxjs)Uik,t (I1.2.10)
k=1 k=1

foranyi,j e {1,...,d},s,t € A.
We have €5 (6,) = 6,1,, thus by definition

d
Ug = Z eij ® Uij,lA S B(%) ® POI(G) (II.2.11)

i,j=1
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Similarly,
d
Ur= > > e(Uijr)eij @ 6, € B(H) ® C(A).
reA i, j=1
Thus
d
UA(V()) = Z e(Uij,rO)e,-j € B(f%p)
ij=1
Hence,
d
(Ua(ro) ® 14)Ug = Z 8 k€(Uijry)eir ® Uk,
ijkl=1
d d
= Z e ® Z €Uk ry )Uki1,
il=1 k=1

d d
=D ®a, D] E(Uik,rg)a:o—l (Uk1,1,)

il=1 k=1

d
= > e ®ay (Uiy,)

il=1

where the last equality follows from (I1.2.10); and

d
[(id ®a; ) Usl(Ua(ro) ® 14) = > 8;k€(Ukir)ei ® ay, (Uik1,)
i,jjel=1
d
= > e ® > e(Urn)ay, (Uik,)
iI=1 k=1
d
= Z ej] ® a;‘o Z E(Uik,r())Ukj,lA
il=1 k=1
= > €t ® 7, (Uitr,)
i1=1

where (I1.2.10) is used again in the last equality.
Combining (I1.2.14) and (I1.2.15) finishes the proof of (I.2.2).
By (I.2.11), (I.2.12) and (I1.2.10), one has

d
(Ue)2Un)is = D5 D 8ikeUsrr)en ® Uijr, ® 5,

i fol=1reA
d d
= > en® > | D) eUk)Uika, | © 6
i,l=1 reA \ k=1
d
= Zeil®ZUi1,r®5r:U
i,l=1 reA

in B(.77) ® Pol(G) ® C(A). This proves (11.2.3).

71

(I1.2.12)

(I1.2.13)

(I1.2.14)

(I1.2.15)

(I1.2.16)

Conversely, suppose Ug and U, are unitary representations on some finite di-
mensional Hilbert space 7. We still use (ey, .. ., e7) to denote a Hilbert basis for 77,
where d = dim J#, and (e;j,i, j = 1,...,d) the corresponding matrix unit of 8(.5¢).
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Then for each pair i, j, one has a unique u;; € Pol(G) and a unique f;; € C(A), such
that Ug = X; j e;j ® u;j, Uy = 2 €;j ® fij. By suitably choosing the basis (ey, .. ., eq),
we may and do assume e(u;;) = §; ;. Since these are representations, we have

d
Auij) = D uik ® ugj, (I1.2.17a)
k=1
d
AA(fi)) = D) fix ® fis- (I1.2.17b)
k=1
By definition,
d d
U= > Srea®u;® fiu= ) e ® Uy (IL.2.18)
i kl=1 ij=1
with
d d
Uij = D uix ® fiy = > > foj (Nuik ® 5. (I.2.19)
k=1 reA k=1

Since Ug and U, are unitary, so is U. Using e(u;;) = §; j, one has
d d d
(idg () ®e ®idc(p))(U) = Z €ij ® Z Oikfij = Z eij ® fij = Ua. (I1.2.20)
ij=1 k=1 ij

This proves (I1.2.4b). The proof of (II.2.4a) is more involved and must resort to con-
dition (I1.2.2), which using the above notations, translates to

Vr € A, Z eij ® Zﬁk(r)ukj = Z e ® kaj(r)af(u,-k), (I1.2.21)
i k ij &

or equivalently,

d d
YreAi jed{l,...,d}, Zfik(r)ukj = kaj(r)a:(u,-k). (I1.2.22)
k=1 k=1

Since Up (1p) = id s, one has f;;(15) = §; ;. Taking r = 1, in (I1.2.22) yields

d d
(idg () ®idpol(c) ®€n)(U) = Z eij ® > fij (1n)uik
A (I1.2.23)

d d d
=25 €® D Sy = D ey @ uiy = Us,
k=1

i,j=1 i,j=1

which proves (I1.2.4a). To finishes the proof of the proposition, it remains to check
that the unitary U is indeed a representation of G > A.
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Using (I1.2.17a), (I1.2.19) and (I1.2.22), one has

d
A (Uij) = 25> [(idPol(G) ®ag)A (Z fkj(r)“ik)l (85 ® 65-11) 54
k=1

reA seA 13

d
= >0 20 S (Nui ® 8 ® o (ui) ® 1,

r,seA k,I=1
d d
= Z Zuil®55® kaj(r)a:(ulk) ®5s’1r
r,seA I=1 k=1

d
=D D i ®8® [fij(st)aj (uy)| ® &

s,teN k,I=1
d [ 4
=D D ®8:® | D) fui (D) fin(s) ey (upe) | © & (IL.2.24)
steA k=1 | h=1
d [ d
= D un®8: @ | fij(t) D fin(s)at (u) | ® 8
sLEAhI=1 ] k=1
d [ d
= D uir ®8® | fuj (1) D fik(S)urn | © &
s.LEA =1 ] k=1
d
= D ui ® fix ® upn ® fi
hk,l=1
d {d d d
= 20| 25w ® fix | ® | 25w ® fis| = 2 Uin ® Unj.
h=1 \I=1 k=1 h=1
Thus U is indeed a (unitary) representation. O

Definition I1.2.3. Let Ug € B(5¢) ® Pol(G) be a finite dimensional unitary rep-
resentation of G, Uy € B(°) ® C(A) a finite dimensional unitary representation
of A on the same space 77, we say Ug and U, are covariant if they satisfy condi-
tion (I1.2.2).

We track here a simple criterion for two representations to be covariant using
matrix units and matrix coefficients.

Proposition I1.2.4. Let Us € B(57) ® Pol(G), Uy € B(I) @ C(A) be finite-
dimensional unitary representations of G and A respectively. Let (e1, . . ., eq) be a Hilbert
basis of A, e;j € B(I) the operator with e;j(ex) = djre;, and Ug = X;j eij ® uj,
Up = 2 jeij ® fij, then Ug and Uy are covariant if and only if

d d
VreAije{l,...,d}, Zfik(r)ukj = kaj(r)a;‘(uik). (I1.2.25)
k=1 k=1
Proof. This is just a restatement of condition (IL.2.2). O

By Proposition II.2.2, unitary representations of G = A, at least the finite dimen-
sional ones, correspond bijectively to pairs of covariant unitary representations of G
and A.
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II.3 Principal subgroups of G < A

Definition I1.3.1. Let H = (B,Ap), K = (C, Ac) be compact quantum groups, we
say K is isomorphic to a closed quantum subgroup of H, or simply K is a closed
subgroup of H, if there exists a surjective mapping ¢ : Pol(H) — Pol(K) such that ¢
is a morphism of Hopf *-algebras.

When H is universal, then Definition II.3.1 can be reformulated as the existence
of a surjective unital C*-algebra morphism ¢ : B — C such that (¢ ® ¢)Ag = Ace.

In the context of compact quantum groups, we will use the terms “quantum closed
subgroup” and “closed subgroup”, sometimes even “subgroup”, interchangeably with-
out further explanation.

Remark I1.3.2. If H and K are commutative, i.e. they come from genuine compact
groups, then K being isomorphic to a closed subgroup, says exactly that there exists
a continuous injective map ¢, from Spec(C), the underlying space of the compact
group K, into Spec(B), the underlying space of the compact group H, such that ¢.
preserves multiplication. Thus the above definition for closed (quantum) subgroups
is consistent with the classical case of compact groups.

Recall that G = (A, A), C(G=A) = A® C(A), and Pol(G = A) = C(G) x C(A).
Proposition I1.3.3. Let A¢ be a subgroup of A, then the mapping
p: AQC(A) > A®C(Ay)

Za,@é,l—) Za,@é,

reA rely

is a unital surjective morphism® of C*-algebras that also intertwines the comultiplica-
tions on G = Ag and G < A. In particular, G =< A is a closed subgroup of G < A.

Proof. Obviously ¢ is a unital surjective morphism of C*-algebras. We need to show
that ¢ intertwines the comultiplication A on G > A and the comultiplication A, on
G > Ay. For this, by density, it suffices to prove that the restriction

@: Pol(G) ® C(A) — Pol(G) ® C(Ay)
>aes >, a0 (IL3.1)

reA relAy

intertwines the comultiplications. Indeed, given an arbitrary a, € Pol(G) for any
r € A, note that for any a € Pol(G) and A € A, p(a ® §;) = 0 whenever A ¢ A, we
have

(9 ® @)A (Z a, ® 5,

reA

=(p®9) Z Z Z (ar) (1) ® 65 ® a:((ar)(z)) ® -1,

relA seA

= > > 2 () ® 8 ®aj((ar) ) ® 8y (IL3.2)

relg selo

(Since s,s'r € Ay implies r = s(s”'r) € Ag)

ZZO(Z ar®5r)=zo(p(2ar®5r

rely reA

SNote that §, has different meanings when viewed as functions in C(A) and in C(Ag)
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This shows that ¢ indeed intertwines comultiplications and finishes the proof. O

Definition I1.3.4. A closed subgroup of G < A of the form G > A, where A is a
subgroup A, is called a principal subgroup of G < A.

Remark I1.3.5. If we let py = X,cp, 6y € C(A), then py is a projection in C(A),
thus 1 ® py is a central projection in A ® C(A). The morphism ¢ is in fact given
by the “compression” map (1 ® py)(-)(1 ® po). Essentially, these data says that the
principal subgroup G > A is in fact an open subgroup of G > A. As we don’t really
need the general theory of open subgroups of topological quantum groups in this
chapter, we won’t recall the relevant notions here and refer the interested reader
to the articles (Daws et al., 2012; Kalantar et al., 2016) for a treatment in the more
general setting of locally compact quantum groups.

Corollary I1.3.6. Using the notations in Proposition I11.3.3, if U € B(7) @ A® C(A)
is a (unitary) representation of G < A, then (id ®¢)(U) is a (unitary) representation of
G > Ao.

Proof. This follows directly from the fact that the restriction of the mapping ¢ as
specified in (I.3.1) is a morphism of Hopf *-algebras. O

Definition II.3.7. Using the above notations, the representation (id ®) (U) is called
the restriction of U to G = Ay, and is denoted by U|gxa,-

Remark I1.3.8. Again, when G is an classical compact group G, we recover the
classical notion of restriction of a representation of G > A to the subgroup G > A,.

There is a natural “conjugate” relation between principal subgroups of the form
G > Ao where A is a subgroup of A, which will be used to simplify some calculations
in our later treatment of representations. This relation is described in the following
proposition.

Proposition I1.3.9. Let Ay be a subgroup of A,r € A, Ad,: Ay — rAor~! the isomor-
phism s > rsr™1. Then o ® Ad; is an isomorphism of compact quantum groups from
G > Ag to G > rAgr!.

Proof. By density, it suffices to prove that the unital #-isomorphism
o ® Ad;: Pol(G) ® C(rAgr™") — Pol(G) ® C(A)

of involutive algebras preserves comultiplication. To fix the notations, let A (resp.
A,) be the comultiplication on Pol(G) ® C(A) (resp. Pol(G) ® C(rAgr!)). For any
x € Pol(G), A € Ay, we have

(o) ® Ady ®a; @ Ad))A,(x @ 8,3,-1)
= Z [ 0( ® ((Xr r,ur’l))A(x)] 13((Adﬁ 5r,ur’1) ® (Adj 5rp’1)lr’1))24

HENo

= > (@ ® ;) A(®)] ,((Ad; 8,p1) @ (A} 6y101)),,
HEN

= > [(([dea)[(a; ® a)A])] (8 ® 8,-12),,

HEN

= > [((d®a)A@ ()] (8, ® 8,1,

Heho
= Ao (x) ® 8) = [Ao(af ® Ady)](x ® S,pp1).

(I13.3)
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Thus o ® Ad; indeed preserves comultiplication. ]

II.4 Induced representations of principal subgroups

We begin by describing an outline of our approach to induced representations of
principal subgroups of G=A. Let A be a subgroup of A, U € B(5)®Pol(G)®C(Ay)
a finite dimensional unitary representation of G = A,. We want to construct the
induced representation Indg:ﬁo (U) of the larger quantum group G > A. The idea of
the construction goes as follows: by the results in § I1.2, we know U is determined
by its restrictions Ug = Resg(U) and Uy, = Resp,(U). While one may not be able
to directly extend the representation Uy, of A to a representation of A on the same
space #, we do have the right-regular representation W, of Aon £2(A) ® S using
the group structure of A. On the other hand, the direct sum Wy of various copies of
Us placed suitably in £2(A) ® 2 will give a representation of G on £2(A) ® 7. It
is then easy to check that Wi and W, are covariant, thus determine a representation
W of G > A on £2(A) ® . To retrieve the information of Up,, which is implicitly
encoded in the J# factor of £2(A) ® 7, we consider the subspace .#  of £2(A) ® #
consisting of vectors which behave in a covariant way with the representation Uy,
on 7. More precisely, %" is defined by

H = {Z (Sr ® é"r : Vro (S A(), Vr e A, gror = UAO(ro)gr}. (H41)

reA

One checks that % is an invariant subspace for both WA and Wg, hence % is a
subrepresentation W of W, and we define W to be the induced representation Ind(U).
We now proceed to carry out this idea precisely.

Definition II.4.1. Let U, J7, A retain their meanings as above, and let (e, s; 1, s €
A) be the matrix unit of B(£2(A)) associated with the standard Hilbert basis (6,; r €
A) for £2(A), i.e. e,56; = 85,6, for all s, t € A. The right regular representation W
of A on £? ® J# is an operator in B(£?(A)) ® B(#) ® C(A) defined by

Wa= D) e, ®idy ®5. (I1.4.2)

r,seA

It is easy to see that if we regard £%(A)®.5¢ as £2(A, ), then forany s € A, W (s)
is the operator in B(£2(A, 7)) sending each F: A — J# to FoR,, where Rs: A — A
is the right multiplication by s. Hence W, is indeed a unitary representation of A on
£2(A)®.. By definition, for any s € A, the unitary operator Wy (s) € U (£2(A) @)
is characterized by

Wa(s): €2(A) ® H — 2(N) @ H

(IL4.3)
5 ®EP 51 @,

or equivalently
Wa(s): £2(A) ® A — 2(A) @ H

D6 ®E D 61 ®E =6 ®&s. (IL4.4)

reA reA reA
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Proposition I1.4.2. Using the above notations, the unitary operator

Wo = > ess ® [(id®a)) (Ug)] € B(£1(A)) ® B(H) ® Pol(G) (IL4.5)
SEA

is a unitary representation of G on t2(A) ® A . Furthermore, for everys € A, 8s® A is
invariant under Wg, and the subrepresentation 5, ® 7€ ofWG is unitarily equivalent to
the unitary representation (id ®«a;) (Ug) of G. In particular, Wg =~ @sep(id @) (Ug).

Proof. For each s € A, since a; € Aut(C(G), A), the unitary operator (id ®a;)(Us)
is indeed a representation of G on JZ. It is easy to see that

ess(£2(N) ® S =CS ® H = 5, @ H,

hence e ® id s is the orthogonal projection in B(£*(A) ® ) onto the subspace
8 ® A of £2(A) ® # (Here and below, we abuse the notation &; ® 57 to denote the
subspace {§; ® £ : & € A} of 2(A) ® ). We also have the intertwining relation

(ess ® idypr ®14) W = 55 ® [(id®@a))(Ug)] = Wa(ess ® idp ®14).  (114.6)
Now the theorem follows from (I.4.6), the direct sum decomposition

E(N) A = e (P (N)©H =P o, (I1.4.7)

SEA SEA

and the obvious fact that the unitary operator ; ® 7 — 5, §; ® £ +— ¢ intertwines
the representation (id ®s)(Ug) and the subrepresentation of W determined by the
subspace §; ® 7 of £2(A) ® 7. m|
Proposition I1.4.3. The representations Wz and Wy, are covariant.

Proof. For any s € A, by definition,

Wa(s) = S ey, ®idy € B(EE(A) 8 B(H) = BEE(A) @ A).  (11438)
reA

Thus
(WA(s) ® 1) Ws

= (Z erst, ®idsp ®1A) > e ® [(id®a;) (Ug)]

reA teA
Z Orrers1, ® [(1d ®a))(Ug)] Z ers1, ® [(1d®a;) (Ug)]
r,teA reA (1149)
= ([d®id®a}) D g1, ® [(id®a’ ) (Ug)]
reA

= (id®id®«a;)

teA reA

(Z ers ® [(idr ®a;)(Ug)]

Z €51y ® id» ®1A)

= [(id®id ®a}) (Wa)] (Wa(s) ® 1).

This proves that VT/G and VT/A are indeed covariant. ]
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Corollary I1.4.4. The unitary operator

W= (Wa)is(Wa)ips = ) erverst, ® [([d®a))(Us)] ® 8
r,s,tEN
= D> e, ® [(Id®a) ) (Us)] ® 5 (IL.4.10)
r,seA

€ B(£2(A)) ® B(A#) ® Pol(G) ® C(A)

is a representation of G = A on t2(A) ® .
Proof. This follows from Proposition II.2.2 and Proposition I1.4.3. ]

We now proceed to prove the invariance of the subspace %" defined in (IL.4.1)
under Wg and W,.

Lemma I1.4.5. Using the above notations, the following hold:

(a) the orthogonal projection 1 € B(£?(A) ® ) with range H  is given by’ the

following formula:
7 (A @ H — t2(A) @ H
5 AL S s oU (IL4.11)
r®§'_>| 0| Z ror ® Ao(rO)g-
ro€Ay
In other words,
T = |A0|_1 Z Z €rys,s ® UAO(TO); (H412)
ro€Ag seEA

(b) £ is invariant under both W and Wy, ie.
(1@ DWg =Wg(r®1) = (1@ NWa(r® 1), (IL4.13a)
(TR Wy =Wa(r®1) = (1@ 1)Wpr(7® 1). (IL.4.13b)
In particular, we have

(TRIIDW=Wr®191) =701 )W(r®11). (I1.4.14)

Proof. Tt is easy to see that 7 (£2(A) ® ) is precisely # and 7 = id_» . To finish
the proof of (a), it suffices to check that 7 is self-adjoint (or even stronger, positive).
Since

(ﬂ(5r ® gr)» 5r ® gr) = |A0|_1 Z (5ror ® UAo(rO)fa 5r ® g)
ro€Ag (11415)
= Aol IENI* = 0,

7 is indeed positive.

%Recall that we’ve identified B(£2(A) ® J#) with B(£2(A)) ® B(H)
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We now prove (b). The invariance of .2 under Wi (equation (I1.4.13b)) follows
from (IL4.1) and (IL.4.4). We now prove the invariance of 2" under W5 (equation
(IL.4.13a)). By the definitions of 7 and Wy, we have

Aol (x ® 1) We
= D7 D (erss ® Uny(r0) ® 1) (e, ® [(id ®ct}) (Us)])
ro€Ag r,seA
= > ([deid®a) | D) > ersserr ® [(Un,(ro) ® l)UG]) (I14.16)
reA ro€Ng seA
= > ([deidea)) | D] enrr ® [(Un,(r0) ® 1)Us] |
reA ro€Ao
and
| Aol Wa (7 ® 1)
> (e ® [(id ®a:)(UG)])(eros,s ® U, (ro) ® 1)
ro€Ng r,seA
= > > (id®id®a;) (errerss ® [Us(Ua,(ro) ® 1)])
ro€Ng r,seA
= > D\(ideid®a;,) (erss ® [Us(Ua,(r0) ® 1)])
ro€Ag seEA

(I14.17)

> (ideid®a)) |(id®id ®aj,)
seA

Z €rps,s ® [UG(UAo(rO) ® 1)])
ro€Ag

seEA ro€Ag

D(d@id®a)) | D) erss ® ([(id@a;*o)(UG)](UAO(rO) ® 1)))

Z(id@id ®a;) Z erys,s @ [ (Un, (r0) ®1)(Ug)]

seA ro€Ng

H

where the last equality used the covariance of Ug and Up. Combining (I1.4.16) and
(I1.4.17) proves _ _
(r® NWg =Wg(r®1), (I1.4.18)

from which (IL.4.13a) follows by noting that x is a projection. Now (IL.4.14) follows
from (II.4.13a), (I.4.13b) and (I1.4.10). This proves (b). o

Proposition I1.4.6. Using the above notations, let c;: B(t?(A) ® ) — B(X) be
the compression by the projection & (i.e. the graph of ¢, (A) is the intersection of the
graph of tAx with # X ), then the following holds:

(a) the unitary operator
W = (cx ® idpoy(c) ®ide(n)) (WG) € B(H) ® Pol(G) ® C(A)
is a unitary representation of G = A on JZ;
(b) The subrepresentation X of W (resp. W) is given by W = (¢, ® id) (Wg)
(resp. Wp = (¢, ® id) (VT/A)) and

Ws = Resg(W), W, =Resp(W). (I1.4.19)
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Proof. This follows from Proposition II.2.2, Corollary II.4.4, Lemma I1.4.5 and the
definition of subrepresentations. O

Definition I1.4.7. Using the above notations, we call W the induced representation
of U, and denote it by Indg:ﬁo (U), or simply Ind(U) when the underlying compact
quantum groups G > Ay and G > A are clear from context.

II.5 Some character formulae

Let Ao be a subgroup of A, U a finite dimensional unitary representation of G > Ay,
Indg:ﬁﬂ (U) the induced representation of the global compact quantum group G =
A. In this section, we aim to calculate the character of the induced representation
Indg:ﬁo(U). The approach adopted here emphasizes the underlying group action
of A on the characters of the conjugacy class of the principal subgroup G > A as
described in Proposition I1.3.9.

For any subgroup A; and any f € C(A;), we use Ex, (fy) to denote the function
in C(A) with [Ea, (f5)](r) = 0if r ¢ Ay and [Ex, (fo)](r) = fo(r) if r € A;. Then
Ep, : C(A1) — C(A) is amorphism of C*-algebras, which is not unital unless A; = A,
in which case Ea, = idc(a). By Proposition I1.3.9, we have an action

Ar~v{(C1‘&><1err_1 : reA}

IL.5.1
s {G s rAgr~! > G > srAO(sr)_l} ( )

of A on the set of subgroups of G > A conjugate to G > A, via elements in A (the term
conjugate is justified by considering the case when G is a genuine compact group).
Our main result in this section is the following proposition.

Proposition IL5.1. Let A be a subgroup of A, U € B(5€) ® Pol(G) ® C(Ay) a finite
dimensional unitary representation of GxAg, W the induced representation Indg:ﬁo U).

Suppose y is the character of the unitary representation U of G = A, and for each r,
define

r-U:=(idyoa_, ® Ad,_,)(U) € B() ® Pol(G) ® C(rier™). (IL.5.2)

Thenr-U is a unitary representation of GxrAor~! with1-U = U, and (rs)-U = r-(s-U)
for allr,s € A. Denote the character of r - U by y» (so y1, = x), then

xw = Aol ™" D (ida ®E, 1) (I1.5.3)
reA

where yw is the character of W.

Proof. Thatr-U is a finite dimensional unitary representation of G > rAqr~! follows
from the fact (Proposition I1.3.9) that

ar@Ad: AR r I Agr — A® Ay

is an isomorphism of compact quantum groups for any r € A. The identities 15 - U =
Uandr-(s-U) = (rs) - U follows directly from definitions. We proceed to prove the
character formula (I.5.3).

For any r € A, let (r - U)g be the restriction of 7 - U to G, and (r - U),,,1 the
restriction of r - U to rAgr~!. We denote the character of (r - U) (resp. (r - U)ragrt)
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by Xrc (resp. Xy ra,—1)- One easily checks that y,c = o’ (x1,6) and y, a1 =
Adj,1 (X1a,4,)- Fix a Hilbert basis (e, .. ., eq) for 5, andlet (e;;,i,j = 1,...,d) be the
corresponding matrix unit for 8(7#°). Using this matrix unit, we can write

d
Ug = Z € j ® Ujj, Ujj € POI(G), (115421)
ij=1
Upy = 2 Uny(ro) ® &y, (IL.5.4b)
ro€Ng

Let ey, 7, A, W@, WA, Wg and Wy have the same meaning as in § IL.4, then the
construction in § 11.4 tells us that

xw = (Tree(a) ® Ty ®ida ®idea)) |12 - (W) 103« M1z - (Wa) 14 - 12| . (IL5.5)

In the following calculations, we often omit the subscripts of the trace functions Tr
on £2(A) or on 7, and also the subscripts for the multiplicative neutral element 1 of
various algebras, whenever it is a trivial task to decipher to which trace and multi-
plicative neutral element we are referring. The same goes with id without subscripts.

Note that for any r,s € A, Ad}(8;) = 6,-1,,. With these preparations, we now
have

Xr = (0{:_1 ®Adi—1)(X)

d
Tr(e~,-UA (ro))u~- ® 9
,2‘10;\0 M e (IL5.6)

d
= Z Z Tr(eiajUAo(rO))a;k—l(uij) ® 5rr0r*‘-

i,j=1rpeAg

= (a:—l ®Adi—1)

By (I.4.4), (I1.4.10) and (I1.4.12), we deduce from (IL5.5) that

d
|A0|3XW = Z Z Z Z Tr(eaoa,aer,rebob,best’l,secoc,C)

ag,bo,co€Ng a,b,ceA T,s,tENT,j=1 (1157)

Tr(UAo(aO)ei,jUAg (bO)UAo(CO))a:(uij) ® 6.

On the right side of the above sum, the first trace doesn’t vanish if and only if it is 1,
which happens exactly when

a=r=byb, b=st"t, s=coc, apa=c
(I1.5.8)
— b=bla c=aa r=a, s=coapa t =b's=atbycpasa

=bya, c=apa, r=a, s=coa, t= = 0C0Q0a.
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Using this condition in (I1.5.7), we get

1Aol® xw
d
> T (Uny (a0)ei Uy (bo) U, (€0) ) 2 (1) © 8,y

ag,bo,co €Ay a€A 1,j=1

d

= Z Z Tr(ei,jUAo(bo)UAo(Co)UAo(ao))aZ(uij) ® Sa-1bycoara
ag,bg,co€ENg a€A1,j=1
d (I.5.9)

Z Z Tr(ei,jUAo (bOCOaO))a:(uU) ® 5a‘1boCoaoa

ao,bo,co €Ay acA i,j=1

d
Aol DY DY D] Tr(ei,jUAo(rO))aZ(uij) ® 84-1r4a

acAroel i,j=1

= |A0|2 Z(ld ®Er’1Aor)()(r)s

reA

where the last line uses (I.5.6) and the change of variable r = a~!. Dividing |Ao|*> on
both sides of (IL.5.9) proves (IL.5.3). O

Corollary I1.5.2. Using the notations in Proposition I1.5.1, U andr-U induce equivalent
unitary representations of G > A forallr - U.

Proof. By Proposition I1.5.1, we see that Ind(U) and Ind(r - U) have the same char-
acter. a

It is worth pointing out that there are in fact many repetitions in the terms of the
right side of formula (I1.5.3), as is shown by the following lemma.

Lemma I1.5.3. Using the notations of Proposition IL5.1, the following holds:
(a) foranyr € A, we have
(id ®E,z,-1) xr = (o, ® Ad™,) [(id ®E,) (¥)] ; (IL5.10)
inPol(G) ® C(A);
(b) foranyr,s € A, ifr~ls € Ay, i.e. ¥Ag = sAg and rAgr™' = sA¢s™L, then
(Jd ®E,p,r1) xr = (Id ®Esp 5-1) Xs (IL5.11)
in Pol(G) ® C(A). In particular,
Xr = Xo (IL5.12)

or equivalently, r - U and s - U are unitarily equivalent unitary representations
of the same compact quantum group G > rAor~1.

Proof. Using the same notations as in the proof of Proposition II.5.1, it is clear that

d
(r . U)G = Z €ij ® 0(:,1 (ul—j), (11.5.133)
i,j=1
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(r-U)pagrt = D Uny(ro) ® Sy (I1.5.13D)

ro€Ay

Calculating in Pol(G) ® C(A), we have

d
(d®E ) xr = > > TrleijUn,(r0)) ® s (uif) ® 8ppppt

i,j=1roely

d 11.5.14
= (a:,l ®Adi,1) Z Z Tr(e,-,jUAo(ro)) ®u,-j ®5r0 ( )

L,j=1rg€lNg
= (' ® Ad,1) [(i[d®Ep ) x] -

This proves (a).
By (a), to establish (b), it suffices to show that

Vso € Ao, (id®En) x = (a5, ® Ady ) [(ld®Ep,) x] - (I1.5.15)
Calculating the right side gives

(a* ® Ad; ) [(id ®E4,) x|

= Z Z Tr eUUAO(rO)) ®a30(u,j) ® d 11050

i,j=1roeAy

d B . (IL5.16)
= Z Z Tr(e; jUp, (Sor0sy 1)) ® ag (uij) ® 5y,

i,j=1roelAy

d
=3 Tr(U(rO)UAO(sgl)e,.,,-U(so)) ® a’, (1) ® 5.

i,j=1roely

Since Uy, and Ug are covariant, we have

Z U(so)ei; ® ujj = Z eijU(s0) ® ag, (u;f). (I1.5.17)
i,j=1

Combining (I1.5.16) and (I.5.17), we have

(a ® Ady) [(id ®En,) x|

Tr U(ro)Up, (sy )e,jU(so)) ® ag, (uij) ® &y,
i,j= lroer
d

(
= Z Z Tr(U(ro)UAO(sgl)U(so)eiJ) ® u;j ® 5y,
l]d e (I1.5.18)

(

(

= Z Z Tr U(ro)e,J) ® Ujj ® Op,

ij= erEAO

Z Tr e,jU(ro)) ® Ujj ® Oy,

This establishes (I1.5.15) and proves (b). O
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RemarkI1.5.4. By Lemma I1.5.3 (b) and Proposition I1.5.1, one can in fact choose any
complete set L C A of representatives of the left coset space A/A, and the character
formula (I1.5.3) can then be written more concisely as

xw = > (ida ®E,p 1) xr- (I1.5.19)

reL

In the classical case where G is a genuine compact group, one can easily check that
the usual character formula for the representation induced by a representation of an
open subgroup takes the form (I1.5.19). The reason we prefer (I.5.3) is that it does
not involve a seemingly arbitrary choice of a complete set of representatives L for
A/, and thus, in the author’s opinion, is more aesthetically pleasing. One might
also use this choice of left coset representatives to fabric the induced representation.
However, in our more symmetric approach (cf. § I.4), everything seems more natural,
and the underlying group action of A on the various characters y,,r € A becomes
more transparent in (IL.5.3), and we hope this hidden symmetry will keep the reader
from losing himself/herself in the details of the tedious calculations to be presented
later.

II.6 Dimension of the intertwiner space of induced
representations

Let ©, E be subgroups of A, U € B() @ Pol(G) ® C(O) a finite dimensional unitary
representation of G < 0, W € B(.%) ® Pol(G) ® C(E) a finite dimensional unitary
representation of G < Z. For the sake of brevity, we denote the induced represen-
tation Indg:/g(U) simply by Ind(U), and Ind(W) has the similar obvious meaning.
Equipped with the character formula established in § II.5, one naturally wonders how
can we calculate dim Morg. (Ind(U), Ind(W)) in terms of some simpler data. This
section focuses on this calculation, and the result here will play an important role
in proving the irreducibility of some induced representations (as it turns out, these
are all irreducible representations of G = A up to equivalence) as well as our later
calculation of the fusion rules.

For any representation p, we use y(p) to denote the character of the represen-
tation. We denote the Haar state on G by h, and the Haar state on G = A, by h
whenever A is a subgroup of A.

By the general representation theory of compact quantum groups, we have

dim Mor g (Ind(U), Ind(W)) = h* ([x(Ind(U)]* [x(Ind(W))]).  (IL6.1)

By Proposition IL.5.1, for each r € A, we have a representation r - U (resp. r - W) of
G > r@r~! (resp. G = rEr~ 1), and combined with (I.6.1), we have
dim Morg (Ind(U), Ind(W))
1

= o Tg 2 M ([d@E o) x(r- DI [(d ®Eszs-) x(s - W)I)
=l rseA

(IL6.2)

Notations I1.6.1. To simplify our notations, let A(r,s) = r@r~! N sZs7! for any
r,s € A.

Lemma I1.6.2. Using the above notations, for anyr,s € A, we have

h* ([(id ®E,ep-1) x(r - U)]" [(id ®Ezs1) x (s - W)])

1

= m dim MoerA(r,s) ((r : U)|G><A(r,s)a (3 . W)lGXA(r,s)) .

(IL.6.3)
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Proof. For any subgroup Ay of A, whenever f € Pol(G), ry € Ay, by (I1.1.7) in § IL.1,
we have

A - L — 1 Ao
h(f ® 6y,) = |A|h(f) e Ao]h (f ®dry)- (IL.6.4)
Hence, .
A . _ Ao
h* o (Id®E,,) = [A: Aol hto, (IL.6.5)

By definition and a straightforward calculation, we have

(d®E,0,-)x(r-U) = > (Tr®id) ((r- U)g((r- U)yo,1 () ®1)) ® 8, (IL6.62)

ter@r-!

(d@Eze)x(s- W)= > (Tr@id) ((s- W)g((s - W)sze1 (H) ® 1)) ® ;. (IL6.6b)

tesEs!

It follows from (IL.6.6a) and (I1.6.6b) that

[(ld ®Er9r’1))((r : U)]*[(ld ®EsEs’1))((s : W)]
= 3 {lreid) (- Vs (- Uyer s @ 1))

teA(r,s)

(IL.6.7)
[(Tr®id) (G5 We((s- W)z (D @ 1)] | @8
= (ld ®EA(r,s)) ([)( ((r : U)|G><A(r,s))]* [X ((3 . W)lGxA(r,s))]) ’

Taking Ay = A(r, s) in (I1.6.5) and combining with (I1.6.7) proves (IL6.3). O
Proposition I1.6.3. Using the above notations, we have

dim Morgs (Ind(U), Ind(W))

5 1
ERERD) (1L.6:8)
dim MoerA(r,s) ((r : U)|G><A(r,s)a (S ' W)|G><A(r,s)) .

Proof. This follows directly from the formula (I1.6.2) and Lemma IL.6.2. O

Corollary 11.6.4. Let A be a subgroup of A, U a unitary representation of G = Ay,
then the following are equivalent:

(a) the unitary representation Ind(U) of G = A is irreducible;

(b) foranyr,s € A, posing A(r,s) = rAor~t N sAgs™!, we have
dim Morgxa(r,s) ((r : U)|G><A(r,s): (s- U)'GxA(r,s)) = SrAg,shos (IL6.9)

(c) U is irreducible, and

VroseA, rilsg Ay
. (I1.6.10)
St dlmMoerA(r,s) ((r . U)|G><A(r,s)a (S ' U)|G><A(r,s)) =0.

In particular, if any of the above conditions holds, then U itself is irreducible.
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Proof. If r™'s € Ag, then rAgr™! = sA¢s™!, so A(r,s) = rAgr™ = sAys™!. By Proposi-
tion I.3.9, we see that

dim Morg.p,-1 (r - U, r - U) = dim Morgs, (U, U). (IL.6.11)
By Proposition 11.6.3, Lemma I1.5.3, and the above, we have
dim Morg (Ind(U), Ind(U))

1 1
=T 2 ——— dimMorgup, -1 (r - U,s- U
|A0|2 r,sZeA, [A errfl] 1M IVIOL Ger Ay r 1(7' S )
rlselg
+ 1 Z 1 dim M (( U)| (s-U)| )
2 ———— dim Morg, r- g (s - .
|Aol® 52k, [A:A(rs)] GA(rs) CHA(r.s) GeA(r.s)
rlsgAg
1 .
- S dmMor (U0
0 r,SEA,
rlsel
+ 1 Z 1 dim M (( U)| (s-U)| )
_— ——— dim Morgx r- g (s 5
INol? 5oh [A: A(rs)] GrA(rs) GoA(r,5) GA(r.s)
r~ls¢Ao
S e dimean, (ULU)
= Th a7 AINGxA s
|A0|2 r,seA, [A: Ao] ’
rlseA,
+ 1 Z 1 dim M (( U)| (s-U)| )
I —— dim Morg,, r. g (s~ .
INof? 5oh [A:A(r,s)] G (rs) G=A(r,s) GeA(r,s)
rls¢Ag
Al - |A
= % dlm MoerAO(U, U)
ol HVAY)
1 1
+— — = dimMorg, ('Ux (s U)o )
TE ZeA [A: A(rs)] |V OTERA(s) (- Dlosars)s (s Ulesacrs)
rls¢Ag

Since |A| - |Ao| = |Ao]?* - [A: Ag] and

dim Morg.,p,-1 (r - U,s - U) = dimMorguyp,,-1 (r - U, r - U)

. , (1L6.12)
= dim Morgxa, (U, U) = dim Endgsw.a, (U)

1

whenever r~'s € Ay by Lemma I1.5.3 and Proposition II.3.9, the above calculation

yields
dim Endg.p (Ind(U)) = dim Endgsp, (U) + % > & (IL.6.13)
|Aol® /52h, [A:A(r,s)]
rlsgAg
where
d(r,s) = dim Morg.a(rs) ((r U Gma(rsy. (5 U)|GxA(,,s)). (IL6.14)

The corollary follows from (I1.6.12) (I.6.13), (I1.6.14) and the fact that a representation
is irreducible if and only if the dimension of the space of its self-intertwinersis 1. O

Remark I1.6.5. Corollary 11.6.4 is the quantum analogue for Mackey’s criterion for
irreducibility.
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I1.7 The C*-tensor category CSR,

We begin by recalling the notations in Proposition II.5.1: for any unitary represen-
tation Ug € B(5¢) ® Pol(G) of G on some finite dimensional Hilbert space .77, and
any r € A, let r-Ug be the unitary representation (id » ®a’_,)(Ug) of G on the same
space 7. It is easy to see that this defines a left group action of A on the proper class
of all unitary representations of G, and by passing to quotients, this representation
induces an action of A on Irr(G). From now on, whenever we talk about A acting
on a unitary representation Ug of G, or on some class x € Irr(G), we always mean
these actions.

Definition I1.7.1. A subgroup A, of A is called a general isotropy subgroup if there
is some n € N, such that Ay is an isotropy subgroup (subgroup of stabilizer for some
point) for the n-fold product [Irr(G)]" as a A-set; in other words, if there exists an
n-tuple (xy,. .., x,) with all x; € Irr(G), such that

Ao={reA :Vi=1...,n r-x=x}=0NAy.

The finite (recall that A is finite) family of all general isotropy subgroups of A is
denoted by Giso (A).

The following proposition is an immediate consequence of properties of A-sets
and Definition I1.7.1.

Proposition I1.7.2. The family Giso(A) is stable under intersection and conjugation
by elements of A. O

Definition II.7.3. Let A, be a general isotropy subgroup of A. A covariant system
of representations (or CSR for short) subordinate to A is a triple (47, u, w), where

« 77 is a finite dimensional Hilbert space;
« u is a unitary representation of G on .7
+ w is a unitary representation of Ay on JZ,

such that u and w are covariant. In this chapter, CSRs are often denoted by bold faced
uppercase letters like A, B, C, . . .(mostly S) with possible subscripts.

By Proposition II.2.2, the covariant systems of representations subordinate to a
general isotropy subgroup A, correspond bijectively to the class of unitary represen-
tations of G < Ay, via

(A, u,w) = uppwis

in one direction, and
Use = (€, Uy g, Usp,n,)

in the other, where 7 is the underlying space of the representation U, of G > Ay,
and Uy g, U a, are the restrictions of Uy to G and Ay respectively. Using this
bijection, we can transport the rigid C*-tensor category structure on Rep(G = Aq)-
the category of all finite dimensional unitary representations of G > A, to the class
of covariant systems of representations subordinate to A, thereby getting a rigid
C*-tensor category CSR, whose objects are CSRs subordinate to A,.

To make this transport of categorical structures less tautological, we make a con-
venient characterization of the morphisms in CSRp,,.
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Proposition I1.7.4. Fix a general isotropy subgroup Ay of A. Fori = 1,2, let S; =
(4, ui, wi) be a CSR subordinate to Ao, U; = (u;)15(w;i)q3 the corresponding unitary
representation of G = Ao, S € B(H, 7). Then S € Morgn, (Uy, Uz) if and only if

S € Morg (uy, uz) N Morp, (wy, wy). (IL7.1)

Proof. The condition is easily seen to be sufficient. Indeed, if condition (II.7.1) holds,
then

Thus

($®1e 1)U =(S®1®1)(u1)13(Wi)13 = (42)12(S®1® 1)(w1)y3

= (u2)15(w2)13(S®1®1) =U5(S®1®1). (I.7.3)

This means exactly S € Morg (Uy, Uy).

To show the necessity of this condition, let eg: Pol(G) — C be the counit of
the Hopf-#-algebra, €5, : C(Ag) — C the counit for the Hopf *-algebra C(Ay). Since
U; € B(74) ® Pol(G) ® C(Ag) fori = 1,2 and S € Morgswa, (U1, Uz), we have

($®101)U;=U(S®1®1). (IL.7.4)

Applying id ® id ®e,, on both sides of (I.7.4) yields
S®Du; =u(S®1), (1.7.5)
which means S € Morg (11, uz). Applying id ®€g ® id on both sides of (I1.7.4) yields
(S®Dw =wi(S®1), (IL.7.6)
which means S € Mory, (wy, wy). O

We now define a pair of functors,
Hpy: CSRA, — Rep(G > Ay) and Fro: Rep(G = Ag) = CSRy,

between CSRy, and Rep(G > Ay) that reflects the transport of categorical structures
discussed above. On the object level, for any (J,u,w) € CSRy,. let Zp,(u, w)
be the representation ujzwq3 of G < Ay on #Z; for any unitary representation U €
Rep(G>Ay) on s, let #),(U) be the CSR (2, Ug, Up,) where Ug (resp. Uy, ) is the
restriction of U onto G (resp. Ag). On the morphism level, both %), and ., act as
identity. By Proposition II.7.4 and Proposition 11.2.2, Z,, and .%, are indeed well-
defined functors inverses to each other, and they are fiber functors (exact unitary
tensor functors (Neshveyev and Tuset, 2013, §§2.1, 2.2)) simply because the rigid C*-
tensor category structure on CSR,, is transported from that of Rep(G = Ag) via
P

Proposition I1.7.5. Fori = 1,2, let S; = (J6, u;, w;) € CSRa,, Ui = %, (Si) €
Rep(G =< Ay), then

on(Ul X Uz) = (% ® %, Uy X Uz, wg X Wz) =5®8S;. (H77)
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Proof. By definition of the tensor product of representations, U; X U, is the represen-
tation of G = A defined by

Uy X Uy = (U1)134(Uz) 234 € B(I4) ® B(H3) ® Pol(G) ® C(Ay), (IL.7.8)

where we identified B(7#4]) ® B(73) with B(4 ® 3) canonically.
The restriction of U; X U, onto G is

(id®id ® id ®ep, ) (U; X Uy)
= (ld®id®id ®ep,) ((U1)134) (1d ® id ® id ®€n, ) ((U2) 34) (I1.7.9)
= (u1)13(Uz) 53 = U1 X up € B(I4) ® B(H3) ® Pol(G).

Similarly, the restriction of U; X U, onto Ay is

(id®id ®eg ® id) (U x Uy)
= (id®id ®eg ® id) ((U})134) (id ® id ®€g ® id) ((Uz)934) (I.7.10)
= (wW1)13(W(2))p3 = W1 X Wz € B(I) ® B(H2) ® C(Ao).

Now (I1.7.7) follows from (I.7.9), (I.7.10) and the definition of the tensor product in
CSRp,- O

Proposition IL.7.6. Fori = 1,2, let S; = (I, ui, wi) € CSRa,, Ui = %a,(Si) €
Rep(G > Ay), then

yAO(Ul ® Uz) = (% ® %,ul @D ux, w; @ Wz) = 51 (&) Sz. (H711)

Proof. The proof use the same restriction technique as in the proofs of Proposi-
tion I.7.4 and Proposition I1.7.5, which is even simpler in this case. m]

Until now, we’ve shown that the morphisms, tensor products, and direct sums
all behave as expected in CSRp,. The description of the dual of a CSR when G is of
non-Kac type requires a bit further work on the so-called modular operator, as we
presently discuss.

Recall that the contragredient representation U¢ of a unitary representation U
of G = Ay on some finite dimensional Hilbert space J¢ is defined as U¢ = (j ®
idpol(@)ec(ng)) (U™), where j: B(J) — B(H) is defined as T > T*, with being
the conjugate Hilbert space of .##, and T* meaning T* viewed as a linear mapping
from # to A . Note that j : B(H) — B(H), T > T* is linear, antimultiplicative
and positive (in particular, it preserves adjoints). If G is of non-Kac type, so is G <A
by Proposition I1.1.4, in which case U¢ might not be unitary, which is exactly why the
“modular” operator py is necessary to express the dual object of 73, (U) in CSRx,
as presented in Proposition I11.7.7.

Proposition IL.7.7. LetS = (I, u,w) € CSRp,, U = %A, (S) € Rep(GxAy), UC the
contragredient representation of U on the conjugate space 7 of 7. If py is the unique

invertible positive operator in Morgs.a, (U, U®) (which we call modular operator) such
that Tr(- py) = Tr(- p;') on Endg.a, (U), so that

U = {[j(pv)]""* & Iroi(c) ® Leag FUS{[i(pu)] ™% ® Tpaic) ® lo(ay )  (IL7.12)
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is the conjugate representation of U, then the dual of S is given by S = (€, u’, '),
where

u = (j(pu)* @ Vuc(jlpu) @ 1),

17.13
w' = (j(pu)"* ® Dw(j(py) "/ @ 1). ( )

Note that w® = w as A is a finite (compact) group. In particular, if G is of Kac-type,
thenu® =4, py =1, and$S = (A, u,w).

Proof. By definition, S= Pho (E), thus

u’ = (idg() ®idpoi(c) ®€n,) (U)
= (id®id®er,) [(j(pr) * @ 1 DU (j(pv) " @ 10 1)]
_ (id®id ®6A0)((j(pU)1/2 ®1®1)

[ ® idraiio) @ ideag) U] () 2 @ 1@ 1))

= (j(p)? @ 1)[(j ® id ®en,) (UH)] (j(pu)  © 1)
= (j(po)? @ )| (j ® id ®en,) (V)] ((pr) @ 1)
= (ilpn) ? @ D[ ®id) (W] (i(pv) 2 & 1)

= (ilpn)* @ D[ ® id) (") ]| (i(pv) 2 ® 1)

= (j(pn)"* ® Du(j(pr) " @ 1).

The expression for w’ is proved analogously by applying idg () ®€poi(c) ® idc(ay)
on (I.7.12). Finally, if G is of Kac-type, then py =id» = 1. O

Remark I1.7.8. The “modular” operator py of the representation U is derived from
the representation theory of G = A, instead of the representation theory of G and
(projective) representation theory of Ag. This makes the description of S in Propo-
sition I.7.7 quite unsatisfactory in the non-unimodular case. This being said, we
point out that as far as the fusion rules of G < Ay are concerned, the duals of a
sufficiently large family of CSRs admit a much more satisfactory description (see
Proposition I1.13.3).

Of course, the description of the dual in CSR,, is much easier if G is of Kac-type,
as is clearly seen from the last part of Proposition I1.7.7.

II.8 Group actions and projective representations

Fix a Ay € Giso(A). Via the functors %4, and Z,,, we see that the problem classi-
fying of irreducible representations of G > A, are essentially the same as classifying
simple CSRs in CSR,,. Thus for the moment, it might be too much to hope there
exists a satisfactory description of all simple CSRs in CSR,,. However, as we will
see in § I1.9, if we restrict our attention to the so-called stably pure simple CSRs in
CSRA,, then such a description is indeed achievable via the theory of unitary projec-
tive representations of Ag. This section studies how such projective representations
arise naturally from the action of A on irreducible representations of G, as well as
establishes some basic properties of these projective representations. The results
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here will be used in § II.9 to describe the structure of stably pure CSRs in CSRa,
(Proposition I1.9.5 and Proposition I1.9.6).

We begin with a simple observation which is a trivial quantum analogue of one of
the most basic ingredients of the Mackey analysis. Let Ug be a unitary representation
of G on some finite dimensional Hilbert space 7#. Since ¢*: A — Aut(C (G), A) isan
antihomomorphism of groups, we know that (idg () ®a, )(Ug) is again a unitary
representation of G on the same space .77, and we denote this new representation by
r-Ug as we did in Proposition I1.5.1. One checks that (rs) - Ug = r- (s- Ug). Thus this
defines a left action of the group A on the (proper) class of all unitary representation
of G, which is easily seen to preserve irreducibility and pass to a well-defined action
of A on the set Irr(G) by letting r - [u] = [r - u], where r € A, u is an irreducible
unitary representation of G and [u] is the equivalence class of u in Irr(G). Take
another unitary representation Wi of G on some other finite dimensional Hilbert
space % . For any r,s € Aand any T € B(5, %), we have

T € Morg(r - Ug, Wg)
= We(Tel) =(Tel)(idea,)(Us)

= [(doa ) W)l(T o1 = (Tenided, JUz)

<= T € Morg(sr - Ug,s - Wg).

Now take any irreducible unitary representation u of G on some finite dimen-
sional Hilbert space 7. Let x = [u] € Irr(G), and

Ar={reA : r-x=x}

i.e. Ay is the isotropy subgroup of A fixing x. Then for any ry € Ay, u and ry - u are
equivalent by definition, hence there exists a unitary V(ry) € U(S€) intertwining
ro - u and u, in other words,

(V(ro) ® 1)(id ®(x;‘0,1)(u) =u(V(n) ®1), (I1.8.2)
which is clearly equivalent to
Vro € Ay, (V(ro) ® 1)u = [(id®a;, ) ()] (V(ro) ® 1). (I1.8.3)

It is remarkable that (I.8.3) takes exactly the same form as the covariance condi-
tion (I1.2.2) when we define covariant representations in § I1.2. Now if we choose
a

V(ry) € Morg(ro - u,u) NU(F) (I1.8.4)

for each ry € Ay, then for any sy € A,, by (IL8.1), we have
V(ry) € Morg(soro-u,so-u), V(so) € Morg(so-u,u), V(soro) € Morg(soro - u, 1),
thus

Vro,s0 € Ax,  V(soro) [V (ro)]* [V (so)]" € Morg(u,u) NU () =T -id 5 . (11.8.5)

This means that V: A, — U(I?) is a unitary projective representation (Def-
inition I1.8.1) of A, on %, which satisfies the covariant condition (IL.8.3) for each
ro € Ay.
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To facilitate our discussion, we digress now to give a brief summary of some ba-
sic terminologies of the theory of group cohomology which we will use (cf. (Brown,
1994)). We regard T as a trivial module over any finite group when considering uni-
tary projective representations of finite groups. For any finite group I, an n-cochain
on I' with coefficients in T, or simply an n-cochain (onI'), as we won’t consider coef-
ficient module other that the trivial module T, is a mapping from the n-fold product
["=Tx---xTtoT. Let C"(T, T) be the abelian group of n-cochains on T', Z?(T, T)
the subgroup of 2-cocycles on I', i.e. mappings w: I' X I' — T satisfying the cocycle
condition

Vr,s,t €T, w(r,st)w(s,t) =w(r,s)w(rs,t). (I1.8.6)

The mapping
§: CY(I, T) - Z*(I,T)

b+ {(r, s) eTxT b(r)b(s)} (I.8.7)

b(rs)

is easily checked to be a well-defined group morphism. We use B(T', T) to denote the
image of §, and the 2-cocycles in B?(T, T) are called 2-coboundaries of T'. The quotient
group Z%(T, T)/B?(T, T) is called the second cohomology group of ' with coefficients
in the trivial T-module T, and is denoted by H?(T, T). Elements in H?(T, T) are called
cohomology class. Note that ker(5) is exactly the group of characters on T, i.e. group
morphisms from I' to T.

Definition IL.8.1. Let I be a group, .77 a finite dimensional Hilbert space, a projec-
tive representation of ' on .77 is a mapping V : I' — U (F¢) such that V (er) = id ¢,
and there exists a 2-cochain w € C?(T, T), such that

Vr,s €T, w(r,s)V(r,s) =V (r)V(s). (11.8.8)

It is easy to check that such w is uniquely determined by V, and it is in fact a 2-cocylce,
with the additional property (which follows from our assumption V(er) = id s») that

Vy eT, w(er,y) =w(y,er) =1€T. (11.8.9)

We call w the cocylce (or Schur multiplier after Schur who introduced them in his
work on projective representations (Schur, 1904)) of the projective representation V.

We will freely use the character theory and the Peter Weyl theory of projective
representations of finite groups, and we refer the reader to (Cheng, 2015) for the
proofs.

We track here the following easy results for convenience of the reader.

Lemma I1.8.2. Let T be a finite group, V: T — U(IZ) a finite dimensional unitary
projective representation of T' with cocycle . Ifw’ € [w] € H*(T, T), then there exists a
mappingb: T — T, such thatbV: T — U (), y — b(y)V(y) is a unitary projective
representation with cocycle w’.

Proof. Since o’ € [w], there is a mapping b: I' — T such that v’ = (5b)w, and
obviously, bV is a unitary projective representation with (6b)w = w’ as its cocycle.
O
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Lemma I1.8.3. Let ' be a finite group, V: T — U(I) a finite dimensional uni-
tary projective representation of I' with cocycle w, and let b: ' — T be an arbitrary
mapping. The following hold:

(@ bV:T — U(H), y — b(y)V(y) is a projective representation with cocycle
(8b)w;

(b) bV andV have the same cocycle if and only if b € ker(6), i.e. b is a character of
T;

(c) bV isirreducible if and only if V is irreducible.

Proof. 1t is clear that (a) and (b) are direct consequences of the relevant definitions.
We now prove (c). If we denote the character of V by yy, then the character of bV is
byy. Hence

. 1 IR
dim Morr (bV, bV) = ] > b xv (b xv(y)
T
. re (IL8.10)
=T > xv(y)xv(y) = dimMorr (V, V),
yer
and bV is irreducible if and only if V is. O

Remark I1.8.4. If b is a character of T, and V: T — U(J#) an irreducible unitary
projective representation, then bV is also an irreducible unitary projective represen-
tation with the same cocycle as that of V. Note that |b(y)| = 1 for all y € T, we
have

1

dim Morr (bV,V) = T

S bMxv W xv(y)
ret (I1.8.11)

1 — N .
< = > xw(xv(y) = dimMorr(V,V) = 1.
Tl 72

with equality holds if and only if b(y) = 1 whenever yy(y) # 0. If equality doesn’t
hold in (I1.8.11), then dim Morr (bV, V) must be 0 since it is a natural number. There-
fore, whenever T is not trivial, it is possible that bV and V are irreducible unitary
projective representations with the same cocycle but not equivalent. Thus one must
be careful not to confuse our definition of projective representation with the more
naive definition where one simply replaces GL(.7#°) by PGL(J¢) as the target model
group. For us, how we lift from PGL(57) to GL(J#) does matter, even if we keep
the cocycle in the process.

After this digression, we now resume our discussion. Using terminologies in the
theory of group cohomology, and regarding T as the trivial A,-module, we see that
the 2-cocycle w, € C?(Ay,T) of the unitary projective representation V of A, is
determined up to a 2-boundary in B%(A,, T), because each unitary operator V (ry),
ro € Ay is uniquely determined up to a scalar multiple in T (Schur’s lemma plus the
unitarity of V(ry)). In other words, [wy] € H?(Ay, T) is a well-defined cohomology
class of A, with coefficients in T.

Conversely, let u be an irreducible unitary representation of G on some finite
dimensional Hilbert space S, and x = [u] € Irr(G). If Ay is a subgroup of A,
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V: Ay = U(I) a unitary projection representation of A such that u and V satisfy
the covariance condition (I1.8.3), then

Vro € Ao,  V(rg) € Morg(ro - u, u).

In particular, Ay fixes x = [u] under the action A ~ Irr(G). Repeat the above
reasoning shows that (I1.8.5) still holds.

We summarize the above discussion in the following proposition, which proves
slightly more.

Proposition I1.8.5. Let u be an irreducible unitary representation of G on some finite
dimensional Hilbert space 7€, x = [u] € Irr(G), A the isotropy group fixing x (under
the action A ~ Irr(G)). For any rg € Ay, choose a unitary V (ry) according to (11.8.4).
Then

(@) Vi Ay = U(S), ry — V(ro) is a unitary projective representation satisfying
the covariance condition (11.8.3);

(b) let @ € C*(Ao, T) be the 2-cocycle of V, then the cohomology class c: = [w] €
H?(Ax, T) depends only on x, i.e. it does not depend on any particular choice of
u € x.

Conversely, if Vo : Ag = U(IF) is a unitary projective representation of some subgroup
Ao of A that satisfies the covariance condition (11.8.3), then

(c) foreveryry € Ay, the condition (I1.8.4) holds;

(d) Ao € Ay

(e) there is a choice of V: Ay — U(IE) satisfying (11.8.3) such that V|a, = Vo,
)

(f) let wy € C2(Ag, T) be the 2-cocycle of Vy, then [w,] is the image of cx under the
morphism of groups

H*(Ao = Ax): H (A, T) = H*(Ao, T).

Proof. The above discussion already establishes (a), (c) and (d). Assertion (e) fol-
lows from (a) and (c), while (f) follows from (e). Moreover, we’ve seen that [w] €
H?(Ay, T) does not depend on the choice of V. For any w € x, there exists a unitary
intertwiner U € Morg(u, w). It is trivial to check that V,,(ry) = UV (rq)U* defines a
unitary projective representation of A, such that

Viw(ro) € Morg(rg - w, w).

Since V,, and V are unitarily equivalent projective representations of Ay, the 2-
cocycle of V,, coincides with w—the 2-cocycle of V. This proves that ¢, = [w] €
H?(A,, T) indeed depends only on x and not on any particular choice of u € x. This
proves (b) and finishes the proof of the proposition. ]

Definition I1.8.6. Using the notations in Proposition I1.8.5, we call the cohomology
class [w] € H?(Ay, T) the cohomology class associated with x = [u] € Irr(G),
and we denote [w] by cy. If Ay is a subgroup of Ay, the cohomology class [wo] €
H?%(Ao, T) is called the restriction of the cohomology class ¢y on Ay, and is denoted
by Cx,Ag-
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Obviously, ¢y a, depends on Aq and x, and ¢y, = cx if Ag = A,. To apply the
character theory of projective representations, we need to suitably rescale the projec-
tive representations in question so that they share the same cocycle (and not merely
the same cohomology class for their cocycles). In the case where the representation
u € B(S) @Pol(G) of G is irreducible, and V: Ay — U(S7) is a unitary projective
representation satisfying the covariance condition (II.8.3), such a rescaling is implicit
in the choice of V(ry) € Morg(ry - u,u) for each ry € Ay. However, Remark I1.8.4
tells us we should take extra care if we want to talk about equivalence class of these
projective representations once we do the rescaling.

We finish this section with an easy result.

Proposition IL1.8.7. Let x € Irr(G), u € x, Ag a subgroup of Ay, ¢y € H%(Ao, T) is
the image of the cohomology class cx € H*(Ay, T) associated with x under H*(Ag <
Ay, T). Then for any 2-cocycle wq € co, there exists a unitary projective representation
V of the isotropy subgroup Ay with cocycle wy, such thatV and u are covariant, and
such V is unique up to rescaling by a character of A,.

Proof. This is clear from Proposition I1.8.5, Lemma I1.8.2 and Lemma I1.8.3. O

I.9 Pure, stable, distinguished CSRs and representation
parameters

Recall that for any finite dimensional representation u of G, the support of u, denoted
by supp(u), is the set

{x € Irr(G) : dimg Morg(x, [u]) # 0}

where [u] is the class of unitary representations of G equivalent to u. We call u pure
if supp(u) is a singleton.

Definition I1.9.1. Fix a A € Giso(A), S = (J€,u, w) € CSRp,, we call §
« pure, if u is pure;
. stable,if r - [u](= [r-u]) = [u] forall r € Ay;
« stably pure, if it is both pure and stable;

- maximally stable, if

Ap={reA : r-[u]l =[ul};

- simple, if S is a simple object in CSRy,;
« distinguished, if it is maximally stable, pure and simple.

As remarked earlier, while it is not reasonable for the moment to hope for a
satisfactory description of all simple CSRs in CSR,,, it is possible to describe simple
CSRs that are stably pure using unitary projective representations of Ajy. Somewhat
surprisingly, one can even describe all stably pure CSRs, even the non-simple ones,
in this way. To achieve the latter, we introduce the following definitions, which are
closely related to the materials in § I1.8.
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Definition I1.9.2. Let Ay € Giso(A). Suppose u is a unitary representation of G
on some finite dimensional Hilbert space J¢, and V: Ay — U(J€) is a unitary
projective representation of Ay. We say u and V are covariant if they satisfy the
covariance condition (I1.8.3), or equivalently V(rg) € Morg(ry - u, u) for all ry € A,.

Definition I1.9.3. Let x € Irr(G), Ag € Giso(A) With Ag C Ay, u € X, Wg € Cyxp, (seC
Definition I1.8.6), then a unitary projective representation V of A, that is covariant
with u is said to be a covariant projective Ay-representation of u (with cocycle wy).

Remark I1.9.4. In the setting of Definition 11.9.3, fix any covariant projective Ay-
representation V of u with cocycle wy, the set of covariant projective Ay-representations
of u with multiplier wy is in bijective correspondence with the group of characters
of Ay, via b — bV (see Lemma I1.8.2 and Lemma I1.8.3).

Proposition I1.9.5 (Structure of stably pure CSR). Fix a Ay € Giso(A), let S =
(S, u, w) be a stably pure CSR in CSRy, x € Irr(G) is the support point of u, uy € x
a representation on some finite dimensional Hilbert space ¢, n is the multiplicity of ug
inu, Vy a covariant projective Ag-representation of u, then there exists a unique unitary
projective representation vg: Ag — U(C") of Ay on C", such that the following hold:

(a) Vo and vy have opposing cocycles;

(b) So = (C" @ 4, €, X ug,v9 X Vy) is a CSR in CSRp,, where €, is the trivial
representation of G on C";

(¢) So andS are isomorphic in CSRa, .

Proof. Uniqueness is almost clear once we finish the proof of existence, which we
do now. Let U be a unitary intertwiner from u to €, ® uy. Noting that u is pure and
replacing S with USU* if necessary, we may assume J¢ = C" ® .7 and u = €, X ug =
(o) 43- For any ro € Ay, we claim that there exists a unique vy(r9) € 8(C") such that
w(rg) = vg(ry) ® Vo(rp). Admitting the claim for the moment, the unitarity of vy (rg)
follows from the unitarity of w(ry) and V;(ry), and w being a representation and Vj
being a projective representation force vy to be a unitary projective representation
with a cocycle opposing to the cocycle of Vj. Thus the proposition follows from the
claim, which we now prove. Since B(C" ® J4) = B(C") ® B(4) by the usual
identification, there existsan m € N, Ay,..., Ay, € B(C") and By, ..., By, € B(H4),
such that

m
W(ro) = ZA, ® Bi. (H91)
i=1
Furthermore, we can and do choose these operators so that Ay, ..., A, are linearly

independent in B(C"). Since u and w are covariant, we have
(w(ro) ® 1)u = [(idr ®a;,)u] (w(ro) ® 1). (I1.9.2)
Substituting u = (up) 3 and (11.9.1) in (I1.9.2) yields

A; ® [(B; ® 1)ug]
(11.9.3)

NERINGE

4;0 ([(d.r, 823, )uo] (Bi © 1)) € BC") ® B(45) @ Pol(G).

1
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Since Ay, ..., A, are linearly independent, there exists linear functionals Iy, ..., [,
on B(C") such that [;(A;) = 6; j. Applying I; ® id s ® idpoi(c) on (IL9.3) shows that
foreachi=1,...,m,

(Bi ® l)uo = [(ld ®afﬂ)u0] (B, ® 1), (1194)

or equivalently
B; € Morg(ry - ug, ug) = CVy(r). (I.9.5)
Now the claim follows from (I1.9.1) and (IL.9.5). O

Conversely, we have

Proposition I1.9.6. Fix a Ay € Giso(A), x € Irr(G) with Ay € Ax. Take au €
x acting on some finite dimensional Hilbert space .7, and a covariant projective Ag-
representation V of u, then for any unitary projective representation v: Ag — U(K)
of Ay with cocycle opposing the cocycle of V, the unitary representation v X V of Ag
is covariant with the unitary representation id » ®u = € X u of G, where € is the
trivial representation of G on ¢, i.e. (X ® €, e X u,v X V) is a stably pure CSR in
CSRAa,-

Proof. Since V and u are covariant, for any ry € Ao, we have
(V(r)) ® 1)u = [(id®a; )u] (V(r) ® 1). (I1.9.6)
The proposition follows by tensoring v(ry) on the left in (IL.9.6). O

By Proposition I1.9.5 and Proposition I1.9.6, we now have a satisfactory descrip-
tion of stably pure CSRs in CSR),—from any irreducible representation u of G on
¢ such that A - [u] = [u], one choose a covariant projective A¢-representation V
of u with some cocycle w, then any unitary projective representation v of Ay with
cocycle ™! = @ gives rise to a stably pure CSR in CSR,,, namely S(u,V,0) =
(JH @ I, e Xxu,vxV);and all stably pure CSRs in CSR,, arise in this way up to
isomorphism.

Remark I1.9.7. Using the above notations, while it is true that V is determined by
u to a great extent due to the restriction of Schur’s lemma, it is still not completely
determined (see Proposition 11.8.7), and a choice of this V is vitally relevant as is
demonstrated by Remark I1.8.4 applied to v. This is why V can not be suppressed in
our notation S(u, V,v).

Definition I1.9.8. Let Ay € Giso(A). A triple (u,V,v) is called a representation
parameter for G > A associated with Ay, if it the following hold:

« u is an irreducible unitary representation of G on some finite dimensional
Hilbert space .77;

« V is a covariant projective Ay-representation of u;

+ v is a unitary projective representation of A, (possibly on Hilbert spaces other
than .7Z), such that v and V have opposing cocycles.

If (u, V,v) is a representation parameter, the stably pure CSR S(u, V,v) in CSR,,
is called the CSR parametrized by the representation parameter (u, V,v). If further-
more the unitary projective representation v is irreducible, we say the representation
parameter (u, V,v) is irreducible.
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Thus Proposition II.9.5 immediately implies the following corollary.

Corollary I1.9.9. Fix a Ay € Giso(A), then every stably pure CSR associated with A,
is parameterised by some representation parameter associated with A,. ]

Definition I1.9.10. Fix a Ag € Giso(A). Let u be an irreducible unitary represen-
tation of G such that Ag - [u] = [u], V] and V, are two covariant projective Ag-
representations of u, the unique mapping b: Ag — T such that V, = bV; is called
the u-transitional mapping from V; to V;, (note that we do not require V; and V; to
have the same cocycle here).

Proposition I1.9.11. Fixa Ay € Giso(A). Fori = 1,2, let (u;, Vi, v;) be a representation
parameter associated with Ay, U; denote the unitary representation %a, (S(ui, Vi, vl-))
of G < Ay, then the following holds:

(@) if [u1] # [uz] inIrr(G), then dim Morgsw.a, (Ur, Uz) = 0;
(b) ifus = upy =u, andb: Ay — T the u-transitional map from V; to Va, then

dim Morgwa, (U1, Uz) = dim Mora, (v1, buy) . (11.9.7)

Proof. Let h be the Haar state of G, by (I.1.7), the Haar state hy, of G>A, is the linear
functional on A® C(A,) defined by a®3d,, = |Ag| 'h(a), where a € A, ry € Aq (recall
that A = C(G)).

Suppose [u;] # [uz]. For any i = 1,2, by choosing a Hilbert space basis for the

representation of u;, one can write u; as a square matrix (u;,?) over Pol(G) C A, and

V; as a matrix (Vj(kl)) over C(Ay) of the same size of (uj(,lc)) Then the character y; of
U; is given by

nj

xi= >, Z Tr(v;) (Z} vljf (ro)u](.]?) ® 8, € Pol(G) ® C(Ay). (I1.9.8)

ro€hg j=1 k=

The orthogonality relation for the nonequivalent irreducible representations u; and
uy implies that

: : W @) _
Y ji1, k1, J2, ka, h((uhkl) ”jzkz)—0~ (I1.9.9)

Hence, by (I1.9.8) and (I1.9.9),

dim Morgswa, (Ur, Uz) = hp, (EXZ)
m n,

= Ao ™ Z Z Z Tr(01(ro)) Tr(02(ro))

r0€Mo ji.k1=1 jo,k2=1 (IL.9.10)

5 @) W \* (@)
Vewis 10V, (r)h ((“jlkl) ujzkz)

This proves (a).
Under the hypothesis of (b), using the same notations as in the previous para-
graph, we have n; = n; = dim U. We may assume that e](.l) = e](.z)

uj(]lc) = uj(lzc) for all possible j, k. Note that V; = bV, and S(u, V2,v,) = S(u, Vi, boy)

= ej, hence uj; :=
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because bV} X vy = Vi X bu,, we may assume that V, = V; = V and b = 1, with
Vik = Vj(kl) = Vj(kz) € C(Ay) for all possible j, k. Let p be the unique invertible posi-
tive operator in Morg (u, u®) such that Tr(- p) = Tr(- p~!) on Endg(u). With these
assumptions, by (I.9.10), the orthogonality relation takes the form

5j,l(P_1)ki

11.9.11
dimg U ( )

h(u;;uk) =

where dimy U = Tr(p) = Tr(p™!) is the quantum dimension of U (see (Neshveyev
and Tuset, 2013, §1.4)). Since p is positive, we might choose the basis ey, ..., e, to
diagonize p, so that pi; = (p7'),, = 0 whenever k # i. Using this basis, (IL9.11) and
(I1.9.10), we have

dim Morgxa, (Us, U)

n n

= Ao ™ Z Z Z Tr(v1(ro)) Tr(v2(ro))

ro€Mo ji1,k1=1 jo, k=1
Vo (ro) Vi j, (ro) b (k) "4,
n n — —
=0T D5 DL D) Tr(oi(ro)) Tr(vz(r0)) Viyjy (ro) Vi, (ro)
ro€Mo ji,k1=1 jo, k=1

851,720k, ks (p_l)j:zh

dim, U (I19.12)
-1 < L — (p_l)jj
= |Ao| 7' Tr(v1(r0)) Tr(v2(ro)) D D4 > Vij(ro)Vj(ro) §F
ro€ho j=1 | k=1 img U
(Note that V(rp) is unitary)
- P (p_l) .
= [Ao|™! FOZE/]\O Tr(01(ro)) Tr(v2(ro)) W
= |A0|_l Z Tr(vl(ro)) Tr(vz(ro)) = dim Mory, (v1, v2).
ro€Ng
This proves (b). o

The following corollary is now clear.

Corollary I1.9.12. Fix a Ay € Giso(A). Let (u,V,0v) be a representation parameter
associated with A, then the representation %, (S(u, v, v)) of G = Ay is irreducible if

and only if the representation parameter (u, V,v) is irreducible. O

II.10 Distinguished representation parameters and
distinguished representations

Fix a Ag € Giso(A). For any unitary projective representation V: Ay — U(F) of
Ag,and any r € A, define r-V to be the unitary projective representation of rAgr~! on
J sending sy = rror~! € rAgr ! to (Vo Ad,-1)(sp) = V(rg). Then (rs) -V =r-(s-V)
for all r,s € A with 14 - V =V, in other words, this defines an action of the group A
on the class of all unitary projective representations of general isotropy subgroups

of A.
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It is easy to see from Proposition II.3.9 that whenever S = (J,u, w) € CSR,,,
the triple r - S = (JZ,r - u,r - w) is a CSRin CSR,p 1. f U = %4, (S) is the unitary
representation of G > Ao, then it is easy to see by restriction that %, -1 (r - S) is
the unitary representation r - U = (id ®ar_; ® Ad_)(U) of G rAor~1, as described
in Proposition I1.5.1. Thus by Corollary II.4.4, we see that Ind(U) and Ind(r - U) are
equivalent representations of G = A.

Similarly, for any representation parameter (u, V,v) associated with A and any
r € A, the triple (r-u,r-V,r-v) is a representation parameter associated with rA, r 1
which we denoted by r- (u, V,v). This clearly defines an A-action on the proper class
of all representation parameters associated with any group in some conjugacy class
of a general isotropy subgroup of A. A simple calculation shows that (recall S(u, V, v)
is the CSR parameterized by (u, V,))

VreA r-SuV,0)=8(r (uV,0)). (I.10.1)

Definition I1.10.1. Let (u, V,v) be a representation parameter associated with some
Ao € Giso(A), the induced representation Ind (%’AO (S (u,V, v))) of G > A is called the

representation of G < A parameterized by (u, V, ).

Proposition I1.10.2. Let (u, V,v) be a representation parameter associated with some
Ao € Giso(A). Then for any r € A, the representation parameters (u,V,v) and r -
(u, V,v) parameterize equivalent representations of G = A.

Proof. Since Zn, (S(u,V,v)) and %, 5,1 (r-S(u, V, v)) induces equivalent represen-
tations of G < A, the proposition now follows from equation (I.10.1) and Defini-
tion I1.10.1. m|

Proposition I1.10.3. Fixa A € Giso(A). Let (u, V,v) be an irreducible representation
parameter associated with Ao, U denote the representation %y, (S(u, v, v)). If Ay =
Ay, then the the induced representation Ind(U) of G = A is irreducible.

Proof. By Corollary I1.6.4, the proposition amounts to show that

Vr,s € A,

1 . (I1.10.2)
rs¢ Ay = dim MoerA(r,s) ((V ' U)lGxA(r,s)s (s- U)|G><A(r,s)) =0,

where A(r,s) = rAgr™ N sAgs™!. Since Ay = Ary), by the definition of Af,], we
have [r - u] # [s - u] whenever r!s ¢ Ag. Now condition (I.10.2) holds by Proposi-
tion I1.9.11. |

Definition I1.10.4. Fix a A¢ € Giso(A), an irreducible representation parameter
(u, V,v) associated with A is called distinguished if Aq = Ap,;. When this is the
case, the irreducible unitary representation Ind(U) of G > A is called distinguished,

where U is the unitary representation %, (S (u,V, v)) of G >~ Ay.

Remark I1.10.5. The associated group of a distinguished representation parameter
must be an isotropy subgroup of A for the action A ~ Irr(G). More precisely, a
representation parameter (u, V,v) is distinguished if and only if its associated group
is exactly the isotropy subgroup of [u] € Irr(G) under the action A ~ Irr(G). As
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we will see presently, in the formulation of our results on the classification of irre-
ducible representations of G < A and the conjugation on Irr(G), only distinguished
representation parameters are needed. This makes one wonder why we pose the
family of general isotropy subgroup Giso () instead of only isotropy subgroups. The
main reason we need general isotropy subgroups of A is that in proving these re-
sults, as well as the formulation and the proof of the fusion rules, we need to express
the dimensions of various intertwiner spaces. The calculation of the dimensions of
these intertwiner spaces will rely on Proposition I1.6.3, which clearly requires us to
consider the intersections of isotropy subgroups, i.e. general isotropy subgroups.

Definition I1.10.6. Let A be an isotropy subgroup of A for the action A ~ Irr(G).
Suppose (u1, V1,v1) and (ug, V3, v2) are two distinguished representation parameters
associated with Ay. If the CSRs S(uy, V1, v1) and S (u, V3, v2) are isomorphicin CSRy,,
we say (uq, V1, 01) and (ug, V2, v3) are equivalent.

The following proposition serves to characterize equivalence of distinguished
representation parameters in some more concrete ways.

Proposition I1.10.7. Let Ay be an isotropy subgroup of A for the action A ~ Irr(G),
(u1, Vi,v1) and (ug, Va,v2) two distinguished representation parameters associated with
Ao. The following are equivalent:

(@) (w1, V1,01) and (ug, V2, v2) are equivalent;
(b) (u1, V1,v1) and (uy, Vo, v2) parameterize equivalent representations of G > Ay;

(c) there exists a mapping b: Ag — T such that bV; and V, share the same cocycle,
and both Morg (uy, uz) N Mora, (bVy, V2) and Mory, (v, bug) are nonzero;

(d) there exists a mapping b: Ag — T such that bV and V, share the same cocy-
cle, and both Morg (uy, uz) N Mory, (bVy, V3) and Mory, (vy, bvg) contain unitary
operators.

Proof. The equivalence of (a) and (b) follows directly from the definitions. It is also
clear that (d) implies (c). If (c) holds, and

0 # S € Morg (uy, uz) N Mory, (bVy, V3),

11.10.3
and 0 # T € Mory, (01, boy) = MorAO(b_lol,vz), ( )

then both S and T are invertible by Schur’s lemma as u;, uy, b~'v;, 0, are all irre-
ducible. Since uy, u, bVy, Vs, v1, bu; are all unitary, we have

0 # Ys € Morg(uy, uz) N Mora,(bVy,V2), and 0 # Yr € Mora, (vg, bug), (I110.4)

where S = Yg|S| is the polar decomposition of S, and T = Yr|T| the polar decompo-
sition of T. As S, T are invertible, Ys and Y7 are unitary. This proves that (c) implies
(d).

Let #; be the representation space of v; for i = 1, 2. By definition, S(u;, V;,v;) =
(id s ®u,v; X V;), and b~'o; X bV; = v; X V; for any mapping b: Ay — T. If (c) holds,
let S, T be operators as in (I.10.3), then

T ® S € Morg(id % ®uy,id Quz) N Mora, (v1 X Vi, 0z X V3). (I.10.5)
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Now (a) follows from (I1.10.5), Proposition II.7.4 and the fact that both S and T are
invertible. Thus (c) implies (a).

We conclude the proof by showing (a) implies (d). By Schur’s lemma, and the
irreducibility of u; and uy, it is easy to see that

Morg (id 7, ®uy, id , Qug) = B( 4, H#3) ® Morg (uy, uz). (IL.10.6)

Suppose (a) holds. Then the intertwiner space given by the intersection in (I1.10.5) is
nonzero, and
Morg (u1, up) = CW, (I.10.7)

for some unitary operator W,. By (I1.10.6) and (a), there exists a unitary W; € B(.#1, #3)
such that

Wi ® W, € Mory, (v1 X V3,05 X V3) = Mora, ((b™'01) X (bV3),02 X V2).  (I1.10.8)

By (I1.10.7), both W,.V;W;" and V; are covariant projective Ag-representations of us.
Thus we can take a u,-transitional mapping b from W, V; W) to V; (see Definition I1.9.10),
i.e. a mapping b: Ag — T such that

W, (bYW, = b(W,Vi W) = Vs, (IL10.9)
which forces the cocycles of bV; and V; coincide, and
W, € Morp, (bV3, V2) N Morg (u1, uz). (I1.10.10)
Now (I1.10.8) and (I.10.10) forces
W € Mory, (b0, 05) = Mory, (03, bv). (I.10.11)

Thus (d) holds by (11.10.10) and (I1.10.11). O

II.11 Density of matrix coefficients of distinguished
representations

The aim of this section is to show that the linear span of matrix coefficients of dis-
tinguished representations of G = A is exactly Pol(G) ® C(A), hence is dense in
C(G = A) = A®C(A) in particular. As a consequence, any irreducible unitary rep-
resentation of G > A is equivalent to a distinguished one.

The following lemma essentially establishes the density of the linear span of ma-
trix coeflicients of distinguished representations of G < A in C(G < A) = A ® C(A).

Lemma I1.11.1. Let u be an irreducible unitary representation of G on some finite
dimensional Hilbert space 7, x = [u] € Irr(G), V the covariant projective Ay-
representation of u with cocycle w. Let M(u) denote the linear subspace of Pol(G)®C(A)
spanned by matrix coefficients of distinguished representations of G > A parameterized
by distinguished representation parameters of the form (u,V,v), where v runs through
all irreducible unitary projective representations of A, with cocycle ™ = @. For any
r € A, suppose M (r - u) is the linear subspace of Pol(G) spanned by matrix coefficients
of r - u, then

M(u) = > Mc(r-u) ® C(A) = ® C(A). (IL11.1)

reA

ZMC(r~u)

reA
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Proof. Take any irreducible unitary projective representation v of A, on some fi-
nite dimensional Hilbert space % with cocycle o, then (u,V,v) is a distinguished
representation parameter. The distinguished CSR S(u, V,v) subordinate to A, pa-
rameterized by (u, V,v) is given by

S(u,V,0) = (HF ®,id x Qu,o X V) (I1.11.2)

by definition. Let U = %y, (S(u, v, 0)), then the distinguished representation W =
Ind(U) of G > A parameterized by (u, V,v) is obtained as follows by the construction
of induced representations presented in § IL.4. First we define a unitary representa-
tion
W= e, ®idy 8[(idr ®al 1) ()] ® 5
r,seEA (Hl 1.3)
€ B(fA(A) ® B(H') ® B() ® Pol(G) ® C(A)

of G = A on t?(A) ® # ® . The subspace

Aoy = {Z 5oy . €A O ad Ly = () 8 V(0 } i)

< forall ro € Ag,r € A

of 2(A) ® ¥ ® S is invariant under W and W is the subrepresentation J%{,, v )
of W. Recall (Lemma I1.4.5) that the projection 7 € B(£*(A) ® # ® ) with range
H,,v .0 1s given by

1

T =
|Ax]

D D enss ®0(rg) ® V(ro). (IL11.5)

ro€Ay SEA
Since vectors of the form §, ® @ n,r € A, £ € ', € H span 2(A) ® H ® H,
the matrix coefficients of W is spanned by elements of Pol(G) ® C(A) of the form
c(v;r,s, &1, &2, M1, 112)
= (@r (5,08 0m),7(8,058n,) © 1dpoi(c) ® idc(a)) (W)
= (05,05 0ms.06en, ®1dRIA)(T®1 W (T® 18 1))
= (05, 08,0m.6:050n, ®1d®Id)(W(r®1 1)),

(IL.11.6)

where the last equality follows from Lemma I1.4.5, and wy.  is the linear form (- x, y).
By (I1.11.3) and (I1.11.5), we see that

Aol - [W(z@10 )]G, 08 0m®1®1)

= Z [er,sﬂ,,/e,o,,t ®ov(rg) ® (((s'r'_l) ~u)(V(ro) ® 1)) ® 53/]

r',s' teA,
ro€Ax

(Only terms with t = r, and ' = rot = ror can be nonzero)
=3 3 e @ AT [ (5775 - w) (Vo © 1) | ® 6.
s’eArgeAy
Note thatrors’™' =s & s’ =s"'ror & s'r’'r;’ =s7!, by (IL11.6) and (IL.11.7),
we have
c(oir,s, ELEnnim) = D) wag (0(r0) @V, ®id) (s 1) | @851y, (IL11.8)

ro€Ax
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For any ry € Ay, we have
g, &, (v(r)) € C  and [((")V(ro)fh,?]z ®id) (s u)] € Mc(s7' - ). (I.11.9)
By (I.11.8) and (I1.11.9), we have
c(v;r,s, &1, E,m1,m2) € Mo(s™! - u) ® C(A), (I1.11.10)
which proves that

M(u) C Z M.(r" - u) ® C(A) =

r'eA

Z M.(r" - u)

r'eA

® C(A). (IL11.11)

It remains to establish the reverse inclusion, which is easily seen to be equivalent to
show that for any ry,r, € A, we have

M(u) 2 My(r1 - u) ® 6y, (IL.11.12)

By the general theory of projective representations, there exists irreducible uni-
tary projective representations vy, . .., v, on J, . . ., %y, respectively, all with cocy-
cle w, and §fl), é’) € %, such that

m

> (a) ® o ® id) (v)) = 6, € C(A,). (IL11.13)
i=1 b

By (I1.11.8) and (I1.11.13), we see that for any r,s € A, and any 51,1, € 9, M(u)
contains

n

S e(uisr,s£, €0 o)

i=1

= 2 Se(ro)[(0v i @)™ w)]| ® 8-iy,, (IL11.14)

roEAx
(Only terms with ry = e can be nonzero, and V(e) = id )
= [(a)m,,]2 ®id)(s7! u)] ® 81,

Taking s = rl_1 and r = sry = r{'r, in (IL11.14) proves (I1.11.12) and finishes the proof
of the lemma. O

Proposition I1.11.2. The linear span of matrix coefficients of distinguished represen-
tations of G = A inPol(G) ® C(A) isPol(G) ® C(A) itself. In particular, every unitary
irreducible representation of G < A is unitarily equivalent to a distinguished one.

Proof. The first assertion follows from Lemma II.11.1, and the second assertion fol-
lows from the first and the orthogonality relations of irreducible representations of
G~ A. O

II.12 Classification of irreducible representations of G < A

For each isotropy subgroup A of A, let Dp,denotes the collection of equivalence
classes of distinguished representation parameters associated with Aq. By Proposi-
tion I1.10.7, the mapping

Wa,: Dy, — Irr(G > A)

[(w,V,0)] = Zp, (S(w,V,0)) (I.12.1)
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is well-defined and injective. In particular, Dy, is a set (instead of a proper class). Let
D be the collection of equivalence classes of distinguished representation parameters
associated with any isotropy subgroup of A. By definition, D is the disjoint union of
Dy, as Ag runs through all isotropy subgroups of A, hence D is also a set. For any
[((u,V,0)] € Dp,andanyr € A, r- [(u,V,0)] = [r - (u,V,0)] is a well-defined class
in ®, 5 1. This defines an action of A on D. We are now ready to state and prove
the classification of irreducible representations of G = A.

Theorem I1.12.1 (Classification of irreducible representations of G > A). The map-
ping
¥: D - Ir(G=A)

[(,,0)] € Da, 1= ¥a, ([ V,0)]) = Ind(%n, (S, V,0) | (IL.12.2)

is surjective, and the fibers of ¥ are exactly the A-orbits in D.

Proof. By Proposition 11.11.2, ¥ is surjective. By Corollary II.5.2 and (I1.10.1), each
A-orbits in D maps to the same point under ¥. It remains to show that if (u;, V;, v;)
is a distinguished representation parameter with associated subgroup A; for i = 1, 2,
and

P ([(ur, Vi,01)]) = ¥([(uz, V2, 02)]), (IL12.3)

then there exists an ry € A, such that
ro - [(u1, Vi,v1)] = [(uz, Va,02)] € Da,. (I.12.4)

Let S; = S(ui, Vi, 0i), Ui = %, (S;) for i = 1,2. If [uz] ¢ A - [u], then by Proposi-
tion I1.9.11, we have

Vr,s € A, dimMorg.rs) ((r UG (rs). (5 U2)|G,,A(,,s)) -0, (IL12.5)

where A(r,s) = rAir™ N sAps™!. This is because (r - Up)|gwa(rs) is parameterized
by the representation parameter (u1, Vi|a(rs), 1/a(r,s)) associated with A(r,s), and a
similar assertion holds for (s - Uz)|Gwa(r,s). Thus

dim Morgs (Ind(Uy), Ind(Uz)) = 0 (I.12.6)

by Proposition IL.6.3, which contradicts (I.12.3).

Thus [uz] € A - [w], by replacing [(ug, V1, 01)] with ry - [(ug, V1, 01)] for some
ro € A if necessary, we may assume without loss of generality that [u1] = [uy] €
Irr(G), and A; = A,, which we now denote by Ay. It remains to prove that under
this assumption, we have

[(u1, Vi,01)] = [(uz, V2,02)] € Dy, (I1.12.7)
Since when r~!s ¢ Aq if and only if 7 - [u1] # s - [uz], we have

Vr,s €A, rls¢ Ay = dimMorgan(rs) (7 - UDlasars)s (7 - Uz)lgea(rs)) = 0.
(IL12.8)
Note that when r~'s € Aj, we have A(r,s) = rAgr~! = sAgs™!, and [A: A(r,s)] =
[A: Ao]. By (I.12.3), (I.12.8) and Proposition I1.6.3, we have

1
1= ——— dim Morg a1 (r - Un,'s - Up). (I.12.9)
[Ao[A: Ao] r,sze;\, e

rlseAg
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Since r - Uy, s - U, are both irreducible, we have
rilseN, = dim Morgyp, 1 (r-Uys-Uz) =0or 1. (I1.12.10)

Note that there are |A¢|*[A: Ag] = |A] - |Ao| terms on the right side of (I.12.9),
(I1.12.10) forces

r's € Ay = dimMorg.,p,1(r- Uns-Us) = 1. (IL12.11)

In particular, taking r = s = 1, in (I1.12.11) shows that U; and U, are equivalent, hence
(I.12.7) holds by Proposition I1.10.7. This finishes the proof of the theorem. O

II.13 The conjugate representation of distinguished
representations

We now study the conjugation of irreducible representations of G < A in terms of
the classification presented in Theorem I1.12.1. There is a small complication here
in the non-Kac type case, where the contragredient of a unitary representation need
not be unitary. Resolving this kind of question involves the modular operator, just
as in Proposition I1.7.7.

We begin with a simple lemma on linear operators.

Lemma I1.13.1. Let 5% be a Hilbert space, U, P € B(F) such that U is unitary, P is
invertible and positive, ifPUP‘1 is unitary, then PUP™! = U, ie. P commutes with U.

Proof. Let V = PUP™!. We have
pU*Pl=puTlP =Vl =v* =P lUP. (IL.13.1)

Thus U* commutes with the positive operator P?2. Hence U* commutes with (Pz)l/2 =

P,ie. U*P = PU". Taking adjoints of this proves PU = UP.

Proposition I1.13.2. Letu be an irreducible unitary representation of G, Ay a subgroup
of the isotropy subgroup A, V a covariant projective Ao-representation of u. Then any
operator p € Morg (u, u®) commutes with V (i.e. pV(ro) = V(ro)p for allry € Ay).

Proof. Since u is irreducible, Morg (u, u°°) is a one dimensional space spanned by an
invertible positive operator ((Neshveyev and Tuset, 2013, Lemma 1.3.12)). By defi-
nition (see (Neshveyev and Tuset, 2013, Proposition 1.4.4 and Definition 1.4.5)), the
conjugation u of u is given by

7= (jlpu)* @ 1)uc(j(pa) * ®1), (IL13.2)

where p, is the unique positive operator in Morg (u, u*®) with Tr(p,) = Tr(p;').
Since Morg (u, u°“) = Cpy, it suffices to show that p,, commutes with V.
Since u, V are covariant, we have

Vro € Ao, (V(ro) ® 1)(ro - u) =u(V(ry) ® 1). (IL.13.3)
Taking the adjoint of both sides of (I.13.3) then applying j ® id, we get

Vro € Ao, (VE(ro) ® 1)(rg - uf) = u(VE(ro) ® 1), (I1.13.4)
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where

Ve=(®id)(V) = (j®id)(V*) (I1.13.5)
is the contragredient of V, and
u = (j®id)(u™) = (j ®id)(u*) (I1.13.6)
the contragredient of u. We pose
V= (j(p) " @ )VE(j(pu) " @ 1), (IL13.7)
then by (I.13.4) and (I.13.2), we have
Vro € Ao, (V(ro) ® 1) (ro - u) = w(V(ry) ® 1). (IL.13.8)
Thus for any ry € Ay, V(ro) € Morg(ro - u,u), which is a one dimensional space

spanned by a unitary operator since both r( - u and u are irreducible unitary repre-
sentations of G. Note that V¢(ry) = j(V(ro)*) is unitary, by (I.13.7), we have

det(V(re)) = det (j(pu) V(o) j(pu)~"?) = det(VC(ro)) € T. (IL.13.9)

This forces V(ry) to be unitary since it is a scalar multiple of a unitary operator.
Applying Lemma I1.13.1 to (I1.13.7) (evaluated on each ry € Ay), we see that

Ve=V=(i(p)"? @ 1)V (j(p) * ®1). (I.13.10)

Applying j ® id to the inverse of both sides of (I1.13.10) and note that V¢ = V, we
see that

V=ve=(ple Ve (p, P o1) = (p? & 1)V (p, "/ 1), (IL13.11)
ie. p,l/ 2 (hence p,) commutes with V. o

Proposition I1.13.3. Let (u, V,v) be a representation parameter associated with some
Ao € Giso(A), U is the unitary representation of G> Ay parameterized by (u, V,v), then
the following hold:

(a) (u, V<, 0 isalso a representation parameter;

(b) pu =id e, ®py, Where py (resp. py) is the modular operator for the representation
U (resp. u);

(c) U is parameterized by (u, V¢, v°).

Proof. As we’ve seen in Proposition 11.13.2 and its proof, we have V(ro) € Morg(ro -
u,u) for all ry € Ay, thus V¢ =V is covariant with u. Since

Vro € Ao, (05 x V) (ro) = j([o(r)] 7 ® [V(r)] ™)
= j({[(exW1(r0)}7")
v° X V¢ is the contragredient of the unitary representation v X V of A, hence is a

unitary representation itself. Thus v¢ and V¢ are unitary projective representations
with opposing cocycles. This proves (a).

(I1.13.12)
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To prove (b), by the characterizing property of py, it suffices to show that the
invertible positive operator id ®p,, satisfies

id®p, € Morg(U,U*) (I1.13.13)

and (by Proposition II.7.4 and Schur’s lemma applied to the irreducible representation
u)

Tr((-)(id ®pu)) = Tr(() (id®p; 1))

_ , (IL.13.14)
€ Endgsw, (U) = Endg(id ®u) N Endy, (v X V) € B(7)  Cid.

Since Tr(p,) = Tr(p,"), (11.13.14) holds. We now prove (I1.13.13). As is seen in the
proof of Proposition 11.13.2, condition (I.13.3) holds, and a similar calculation by
applying j ® id to the inverse of both sides of (II.13.3) yields (note that V¢ = V),

Yro € Ao, (V(ro) ® 1)(ro - u®) = u(V(ry) ® 1). (I1.13.15)
By definition, we have

U = (id ®u)1p3(0 X V) 1z4 = (id ®u ® 1)v14V24

11.13.16
€ B(H,) @ B(44,) @ Pol(G) ® C(Ay). ( )
Thus
Ul=(®j®ide®id)(U") = (idou’ ® 1)0f,Vy,, (I1.13.17)
and
U = (id®u ® 1o Vyy = (1d ®u ® 1)v14Vas. (IL.13.18)
By (I.13.16), (I.13.18) and Proposition 11.13.2, we have
(d®p, ®10 1)U = (ld®p, ®1® 1)(idQu ® 1)v14V24
= (Idou ® 1) [(Id®p, ® 1 ® 1)V
( )14 ( Pu zn| (I.13.19)

= (Id®u’ @ 1)v14 Vo (id®p, ® 1 ® 1)
=U“(d®p, ®11).

This proves (I1.13.13) and finishes the proof of (b).
By Proposition I1.7.7 and (b), U corresponds to the CSR (47, u’, w’) in CSRy,,
where 7, is the underlying finite dimensional Hilbert space of u,

v = (id®j(p)? ® 1)(ideu’) (id®j(p) ? © 1) = id &1, (I.13.20)
and

w = (id®j(p)? ® 1) (05, Vi) (id®j(p) /2 ® 1)
=05, [(1[d®j(p)* ® V5 (d®j(p)/* ® 1)] (IL.13.21)

— € c _ _,C C
=0i3Vy3 = 0" X V°.

Thus the CSR (%, u’,w’), and consequently U,isindeed parameterized by (u, 0¢, V°),
which proves (c). O

Proposition I1.13.2 motivates the following definition.
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Definition II.13.4. Let (u, V,v) be arepresentation parameter associated with some
Ao € Giso(A), the representation parameter (u, V¢,0°) is called the conjugate of
(u,V,v).

By Proposition 11.10.7 and Corollary 11.9.12, it is clear that the conjugation of
an irreducible representation parameter is irreducible, and [(u, V,0)] = [(©, V¢, 09)]
gives a well-defined mapping ():D — D The following theorem describes how
the conjugate representation of irreducible (unitary) representation of G = A looks
like in terms of the classification given in Theorem I.12.1.

Theorem I1.13.5. Let [(u,V,v)] € D, x = ¥([(u, V,v)]) € Irr(G = A), then
x=Y([(w,V,0)]) =¥([(u, V- )]). (I1.13.22)

Proof. This follows immediately from Proposition II.13.3 and the character formula
(IL.5.3) for representations induced from representations of principal subgroups of
G > A. O

I1.14 The incidence numbers

We now turn our attention to the fusion rules of G A. We define and study incidence
numbers in this section, and use these numbers to express the fusion rules in § II.15.

Definition II.14.1. For i = 1,2,3, let A; € Giso(A). Suppose U; is a unitary repre-
sentation of G < A;, and r; € A, then the incidence number of (7, ry, r3) relative to
(U1, Uy, Us), denoted by my, u,.u, (1, 2, r3), is defined by

mu,,u,,Us (rl’ ra, }”3)

. (IL.14.1)
= dim Morgn, ((r1 - Up)lGsengs (72 - U2)|Gsene X (73 - Us)|Gxa, ) »

where A = ﬂ?zlriAirl._l.

We now aim to express the incidence numbers in terms of characters. Let ©, =
be two subgroups of A with ® C =. Recall that C(G) = A. Suppose F = Y, c= a, ® 5y,
ar € Ais an element of C(G) ® C(E) = A ® C(E). We use F|g.e to denote the
element X,co ar ® 6, in G = O, and call it the restriction of F to G x ©. A simple
calculation shows that this restriction operation gives a surjective unital morphism
of C*-algebras from C(G = E) = A® C(E) to C(G = ©) = A ® C(O) that also pre-
serves comultiplication, thus allows us to view G > © as a closed subgroup of G > =
in the sense of Definition II.3.1. Recall that we also have the extension morphism
Ep,: C(Ag) = C(A), 6y, > Oy, for every subgroup Ag of A, which simply sends each
function in C(Ay) to its unique extension in C(A) that vanishes outside A,. Finally,
we use h™* to denote the Haar state on G=A,. Fori = 1,2,3,let A; € Giso(A). Suppose
Ui is a unitary representation of G>A;, y; is the character of U;. Let Ay = ﬁ?:l rilir; L
Then we have the following formula to calculate the incidence numbers in terms of
characters.

Vri, 12,13 € A, mu,,u,,Us (1, 12, 13)
Y —— (I.14.2)
= h"™ ((h “XD|Gxno (12 X2)|Gmn, (13 'X3)|G><A0) -
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Proposition I1.14.2. Using the above notations, the incidence number my, u, v, (51, S2, 53)
depends only on the classes [U1], [Uz], [Us] of equivalent unitary representations and
the left cosets riA1, raAg, r3is.

Proof. Note that for any i = 1,2,3, s;A;s;" = riA;r;! whenever r;'s; € A;. The
proposition follows from (II.14.2) and Lemma I1.5.3 (b). O

By Proposition I1.14.2, we see immediately that the following definition is well-
defined.

Definition II.14.3. Fori =1,2,3,let A; € Giso(A). Suppose x; is a class of equivalent
unitary representations of G A;, and z; € A/A; is aleft coset of A; in A, then the in-
cidence number of (zy, z,, z3) relative to (xy, xz, x3), denoted by my, , x, (21, 22, 23),
is defined by

Moy xy 05 (215 22, 23) = My, U, U, (715 T2, 73) (I1.14.3)

where U; € xj,r; € z; fori=1,2,3.

The rest of this section is devoted to the calculation of the incidence number
(I.14.3) in terms of more basic ingredients when x; = ®,, (p;) for some p; € Dy, (see
§ I1.12), as this will be the case we need in the calculation of fusion rules for G < A in
§ I1.15. We begin with a result on the structure of unitary projective representations
of some Ay € Giso(A) that are covariant with some unitary representation of G.

Lemma II.14.4. Fix a Ay € Giso(A). Let ug be an irreducible unitary representation
of G, [up] € Irr(G) the class of ug, such that Ay S Apy,). Suppose u is a unitary
representation of G, V: Ay — U(S%,) is a unitary projective representation covariant
with u, p is the minimal central projection in Endg(u) corresponding to the maximal
pure subrepresentation of u supported by [uy] € Irr(G). Let q = 1 — p, then V is
diagonalizable along p in the sense that

pe)V=V(pel), @®HV=V(gel),

(IL.14.4)
and (p®1)V(@®1)=@NV(p®1) =0.
Proof. Since V and u are covariant, we have
Yro € Ao, (V(ro) ® 1)(ro - u) = u(V(ry) ® 1). (IL.14.5)

Note that p € Endg(u) = Endg(ry - u) (see (I.8.1)), then for every ry € Ay, it follows
that

([pV(ro)gl ® 1)[(g® D)(ro-w)] = (p® 1)(V(ro) ® 1)(g ® 1)(ro - u)
=(p®1)(V(rg) ®1)(rg-u)(g®1) = (p® Du(V(rg) ®1)(q®1) (IL.14.6)
=[(pe®Dul(p®1)(V(r) ®1)(g® 1) = [(p ® Dul([pV(r)q] ® 1).

Let u, (resp. ug) be the subrepresentation of u corresponding to p (resp. g), then
r(;l - U, is equivalent to u, for all ry € Ag since Ay C Ap,], and
Morg(rg - ug, up) = Morg (ug, ryt up) = Morg (ug, up) = 0. (I.14.7)

By (I.14.6), the operator pV (ry)q, when viewed as an operator from p(.5%,) to q(74,),
intertwines rg - u4 and u,. Thus by (I1.14.7),

VYro € Ay, pV(rO)q =0. (11148)
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Similarly,
Vry € Ay, qV(ro)p =0. (11149)
Hence
pV(ro) =pV(ro)(p+q) = pV(ro)p = (p+qQV(ro)p = V(ro)p, (IL.14.10)
and similarly,
qV(ro) = qV(ro)(p+q) =qV(ro)g = (p+q)V(ro)qg = V(ro)g. (IL.14.11)

Now (II.14.4) follows from equations (I.14.8), (I1.14.9), (I.14.10), and (11.14.11). O

We also need to generalize the notion of representation parameter a little, as the
natural candidate of the “tensor product” of two representation parameters need not
be a representation parameter, but it still possesses the same covariant property.

Definition I1.14.5. Let Ay € Giso(A), we call a triple (u, V,v) a generalized repre-
sentation parameter ((GRP) for short) associated with Ay, if the following hold:

(a) V is a unitary projective representation of A on .77, such that

Vro € Ay, V(rg) € Morg(rg - u,u); (IL.14.12)

(b) visaunitary projective representation (on some other finite dimensional Hilbert
space J%,) of Ay, such that the cocycles of v and V are opposite to each other.

Proposition I1.14.6. If (u,V,v) is a GRP associated with some Ay € Giso(A), then
(6, ® H;,,1d®u,0 X V) € CSRy,.

Proof. The proof of Proposition I1.9.6 applies almost verbatim here. O

Definition I1.14.7. If (u, V,v) is a GRP associated with Ag € Giso (A), then the CSR
S = (J ® J,id®u,v X V) associated with Ay and the unitary representation
X, (8) of G = Ay are said to be parameterized by (u,V,0).

We now describe a reduction process for generalized representation parameters,
which leads to our desired calculation of the incidence numbers using more basic
ingredients—the dimension of a certain intertwiner space of two projective repre-
sentations of some generalized isotropy subgroup of A.

Proposition I1.14.8. Fix a Ay € Giso(A). Let (u,V,v) be a GRP associated with Ay,
x € Irr(G) such that Ay € Ay, and uy € x. Suppose p is the minimal central projection

of Endg (u) corresponding to the maximal pure subrepresentation of u supported by x.
The following holds:

(@) (up,V),v) is a GRP, where u,, (resp. V) is the subrepresentation of u (resp. V) on
p();

(b) letn € N be the multiplicity of x inu, Vy a covariant projective Ag-representation
of ug, then up to unitary equivalence, there exists a unique unitary projective
representation Vi of Ag on C", such that V), is unitarily equivalent to Vi X Vy;
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(c) (uo, Vo, X V1) is representation parameter, and the CSR (7, ® p(H,), id ®up,, v X
V) parameterized by (uy, V), v) is isomorphic to the CSR S (ug, Vo, v X V1) param-
eterized by (uo, Vo, vX V1) in the category CSRa,. In particular, the representation
parameter (ug, Vo, v X V1) and the GRP (up, Vj,,v X V,,) parameterize equivalent
unitary representations of G = Ay.

Proof. By Lemma I1.14.4, u,, and V}, are covariant. Since V}, is a subrepresentation of
V, it has the same cocycle as V, hence V,, and v have opposing cocycles. This proves

(a).

The proof of (b) parallels that of Proposition I1.9.5. Since u,, is equivalent to a di-
rect sum of n copies of uy, thus there exists a unitary operator U € Morg (idc» ®uy, up).
Replace (up, Vj,, v) with (U*u,U, U*V, U, v) if necessary, we may assume u, = C"®uy.
Repeat the proof of Proposition 11.9.5 with the small modification of replacing the
unitary representation w there with the unitary projective representation V,,, we see
that there exists a unique unitary projective representation V;: Ay — U(C"), such
that V,, = V; X V,. This proves (b).

By (b) and its proof, we may suppose u, = idc» ®uy. Note that the CSR param-
eterized by (up, V), 0) is exactly (id s, ® idcn ®ug, v X V), which coincides exactly
with the CSR parameterized by (idcn ., ®ug, Vo, 0 X V1) since v X V, = 0 X V} X V.
This proves (c). O

Definition I1.14.9. Using the notation of Proposition I1.14.8, the representation pa-
rameter (ug, Vo, v X V1) is called a reduction of the GRP (u, V,v) along (ug, Vp).

Remark I1.14.10. Since V; is determined up to unitary equivalence, so is the reduc-
tion (uo, V(), o X Vl)

The following result describes the incidence numbers my, | [1;,],[v5] (21, 22, 23) in
terms of the dimension of the intertwiner space of some projective representations
of A().

Proposition I1.14.11. Suppose we are given the following data for eachi = 1,2, 3:

e al; € Giso(A), aleft coset z; in A/A; and ar; € z;;

e a representation parameter (u;, Vi, v;) associated with A;;

e the unitary representation U; of G < A; parameterized by (u;, Vi, v;).
Let Ag = ﬂ?zlriAl—rl._l = n?zlziA,-zi_l. Suppose

(rl ~ug, (11 - Vi) ags (12 - 02) A, X (13- 03)[a, X V)
is the reduction of the GRP
((r2 - u2) X (r3 - u3), (rz - Va)la, X (r3 - Va)lag, (2 - 02)|a, X (73 - 03)|a,)
along (r1 ~uy, (ry - V1)|A0). Then the unitary projective representations (r1 - v1)|a, and
(r2 - 02)|ag X (13- 03)[a, XV

of Ay have the same cocycle, and

miu,),[u,1,10s1 (21, 22, 23)

. (IL.14.13)
= dim Morn, ((r1 - 91)|ags (r2 - 02)|a, X (3 - 03)|a, X V).
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Proof. It is easy to check that ((rz - uz) X (r3-u3), (r2 - Va)|a, X (13 V3) |a,» (72 - 02) A, X
(r3-v3)|a,) is indeed a generalized representation parameter. Take the minimal cen-
tral projection p of Endg((r2 - uz) X (rs3 - u3)) corresponding to the maximal pure
subrepresentation u, of (r; - uz) X (r3 - u3) that is supported by [r; - u;] € Irr(G).
Suppose g = 1—p. By Lemma I1.14.4, q also corresponds to a subrepresentation u, of
(ry - up) X (r3 - u3) on q(J4,, ® S4,,). Similarly, let V, (resp. V;) be the subrepresenta-
tion of the unitary projective representation (rz - v2)|a, X (r3-v3)|a, o0 p(H, ® 56,,)
(resp. q(J7;, ® 74)). Let U, (resp. Uy) be the representation of G = A, parameterized
by the GRP (up, Vp, (r2 - v2)|a, X (13 - v3)|a,) (resp. (ug, Vg, (r2 - 02)[a, X (73 - 03)|a,))-
By construction, the unitary representation U of G = A, parameterized by ((rz - uz) X
(r3-u3), (r2 - Va)lag X (13- V3)|a,, (r2 - 02)|a, X (13 - 03)|a, ) is the direct sum of U, and
Uy. By definition,

RN (21,29, 23) = dim MoerAo(Uly U) (IL14.14)
= dim Morgun, (U, Up) + dim Morga, (Ur, Ug).

From our construction, the matrix coefficients of u;, and u, are orthogonal with re-
spect to the Haar state h of G. Thus the proof of Proposition I1.9.11 (a) applies almost
verbatim, and shows that

dim Morgxa, (Uz, Ug) = 0. (I.14.15)

On the other hand, the cocycles of both (r; - v1)|a, and (r2-v2)|a, X (73 -03)|a, X V are
both opposite to that of (r1 - V1)|a, by the reduction process described above, hence
these cocycles coincide. By Proposition I1.9.11 (b) and Proposition I1.14.8 (c), we have

dim Morgxa, (U1, Up) = dim Mory, ((r1 “01) | Ag> (r2702) | Ao X (73-03) | A, ><V). (I.14.16)

Now (II.14.13) follows from (I.14.15) and (I1.14.16). O

II.15 Fusion rules

We now calculate the fusion rules of G = A. From the classification theorem (The-
orem I1.12.1), up to unitary equivalence, all unitary irreducible representations of
G = A are distinguished. Thus the task falls to the calculation of

dim Morg (Ind(Uy), Ind(Uz) X Ind(Us)), (I1.15.1)

where, for i = 1,2,3, U; is the irreducible unitary representation of G = A; parame-
terized (see Definition I1.10.1 and Definition 11.10.4) by some distinguished represen-
tation parameter (u;, V;, v;) associated with A; (recall that A; = Ay, since (u;, V;, v;)
is distinguished). Let h be the Haar state on C(G) = A. For any subgroup Ag of A, we
use h to denote the Haar state on C(GxAg) = A® C(Ay), and Ey, : C(Ag) — C(A)
denotes the linear embedding such that 5, € C(A¢) — &,, € C(A)(the extension of
functions in C(A) to functions in C(A) that vanishes outside A). In particular, A"
is the Haar state on C(G < A) = A® C(A). Fori = 1,2,3, let y; = (Trid)(U;) €
A @ C(A;) be the character of Uj, and r - y; is defined to be the character of the
representation r - U; of G > rArL

Using these notations, by Proposition I1.5.1, we have the following formula for
the character of Ind(U;),

Vi=1,23, x(Ind(Uy)) =A™ D ((d®E, 1) (ri - xi). (IL15.2)

ri€eA
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Thus
dim Morg. (Ind(Uy), Ind(Us) X Ind(Us))
= h*(x(Ind(T1)) [y (Ind(U2))] [y (Ind(U3))]) (IL153)
hA (X(Vls r2, ’"3))
o 1A [ Agl - |As]
where
)((rb r2, 7’3)
(IL15.4)

= (@, 5, ) (11 2D [ ®E,, 0,0 ) (72 - 1) [ BE, 0,0 (75 13)].

If ©, Z are subgroups of A with ® C Z, and Y, ¢z a, ® §, is an arbitrary element of
A®C(E) with all a, € A, we call the element ., cg a, ® §, of A® C(0®) the restriction
of 3yez ar ® 8, and denote it by (X, ez ar ® §;)|g=e- Recall that

R = [A: Ag] - h* 0 (id ®En,) (IL15.5)
for any subgroup A of A, posing

3
A(ry,ra,r3) = m rifir; (I1.15.6)
i=1

we have

R (x(rira,rs)) = B (0 (ri 12, 73) [Gea(rormrs) )

hA(rl’rZ’rS) ((rl : Xl)lGxA(rl,rz,m) (rZ : X2)|G><A(r1,rz,r3) (r3 : X3)|G><A(r1,r2,r3))
[A: Ary,r2,73)]

= [A: A(ry, 12, 13)] ' mu v, 0, (11, 72, 73),

(IL.15.7)

where my, v, u, (1, 72, 13) is the incidence number of (ry, ry, r3) relative to (Ui, Uz, Us).
By (I.15.3) and (I1.15.7), we have

dim Morg. (Ind(U;), Ind(Uz) X Ind(Us))
_ my, U, Us (71, 12, 73) (I.15.8)
B rl,rz,Zr;eA |A1] - Azl - [As] - [A: Ary,ra,13)]
As we’ve seen in Definition I1.14.3 and the discussion before it, we have

(Vl =1,23,r €z EA/Al)

(I1.15.9)
= mu,L[v, .10 (21, 22, 23) = My, v, U, (71, 72, 73),
where A(zy,z0,23) == ﬁ?:lrl-A,-rl._1 does not depend on the choices for r; € z;, i =
1, 2, 3. Thus (I1.15.8) can be written more succinctly as
dim Morgs (Ind(Uy), Ind(Us) X Ind(Us))
DYDY mu, 1[0, 1,[Us] (21, 22, 23) (I1.15.10)
[A: Az, 22, 23) ] '

Z1 €A/A1 Zy EA/AZ zZ3 EA/A3

We formalize the above calculation as the following theorem, which describes the
fusion rules of G = A in terms of the more basic ingredients of incidence numbers,
which in turn is completely determined by the representation theory of G, the ac-
tion of A on Irr(G), and various unitary projective representations of some naturally
appeared subgroups in Giso(A).
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Theorem I1.15.1. The fusion rules for G < A is given as the following. Fori = 1,2,3,
let W; be an irreducible representation of G > A. Suppose U; is the distinguished rep-
resentation parameterized by some distinguished representation parameter (u;, V;, v;)
associated with some isotropy subgroup A; of A, such that W; is equivalent to Ind(Uj),
then

dim Morg..a (Wi, Wy X Ws)

YYD miu,1,[u,),[us] (21, 22, 23) (IL15.11)

21€A/A1 22€A/As 23€N/As [A: A(z1, 22, 23) ]

Here the incidence numbers

MU, 1[0, 1.[Us ] (21> 22, 23) = My, u,,05 (T1, T2, 73)

‘ (IL15.12)
= dlmMorA(Zl,Zz,Z:;) ((rl : Ul)|A0, (rz : UZ)lAg X (r3 : 03)|A0 X V)’

where r; € z; fori = 1,2,3, and the unitary projective representation V of A(z1, z2, 23)
is taken from the reduction

(r1 - ug, (r1 - Vi) A, (r2 - 02)|ag X (r3 - 03)[a, X V)
of the generalized representation parameter
((rz - ug) X (r3 - us), (ra - Va)la, X (75 - V3)|ag (r2 - 02)]a, X (73 - 03)|a, )

along (ry - uy, (r1 - V1)|a,)-

Proof. The above calculation proves (I1.15.11), and (I1.15.12) follows from Proposi-
tion 11.14.11. m]






Chapter III

Some examples of bicrossed product
with property (RD)

Introduction

This chapter focuses on producing explicit examples of bicrossed products whose
dual has property (RD). Of course, the more interesting ones are those without
polynomial growth. The main idea is to first twist semidirect products by a finite
subgroup to obtain nontrivial bicrossed products, then utilise the theories of Chap-
ter [ and Chapter II to treat the technical issues that appear in this process. Of course,
the most central results are Theorem 1.7.3 and Theorem 1.8.4, whose application has
one major difficulty, namely, how does one show the length functions on the discrete
group and the dual of the compact group are actually matched in the sense of Defi-
nition 1.6.9. This is essentially addressed by a careful analysis of the representation
theory of a classical compact group, which is in fact the classical case of the more
general theory presented in Chapter II. However, due the twisting process, some
technical hypothesis on the invariance of certain length functions arises. This tech-
nical issue is only partially resolved, which is not totally satisfactory in the author’s
opinion. On the one hand, under a seemingly mild condition, we have a completely
satisfactory characterization result which gives us a powerful process of producing
interesting bicrossed products (see Theorem IIL.5.1), which is explained in § IIL.5. On
the other hand, there does exist many interesting examples that violates this seem-
ingly mild condition, which is described in § IIL.6. In any case, many interesting
concrete examples of bicrossed products are constructed here, and it is the hope of
the author that the dichotomy mentioned above will pique the reader’s interests and
perhaps stimulate further investigation.

III.1 Nontrivial bicrossed product from semidirect product
Let G be a compact group, I' a discrete group acting on G via topological automor-
phisms given by a group morphism 7 : I' — Aut(G). Using these data, one can form

the semidirect product G >, I, which is a locally compact group whose underlying
topological space is the topological product G x I, and whose group law is given by

(91. Y1) (92, v2) = (9173, (92). 1172) - (IIL.1.1)

117
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It is easy to see that the insertion ir : I' —» G =, T, y — (eg,y) is a group
morphism. In particular, the mapping

0:T — Aut (G =, T)

(IL.1.2)
y = (Adowr)(y) = Ad(eg,y)
is a group morphism. For all (g,r) € G >, T and y € T, we have
(ec. 1) (g.1) (e )™ = (y(9).y7) (ec.v™") = (7 (@) yry™) - (IIL1.3)
Thus as a map from the set G X I' to itself, we have
0, :=0(y) =7,xAd, : GXI' > GxT. (I.1.4)

Now consider any finite subgroup A of I'. The group morphism 6 defined in
(IIL.1.2) restricts to the subgroup A to give an action A ~ G >, I' by topological
automorphisms. This allows us to form yet another semidirect product (G>,I') =g A,
whose underlying topological space is G X I' X A. It is clear that the group law on
(G =, T) =g A is given by

(91, )’1,7’1)(92, Y2, ry) = ((gb}’l)erl (92,}’2),"17’2)
= (9110 (s, (g0, iy ) ) (IL.1.5)
= (917r, (92)s yirayery s i)
By (II1.1.5), both the mapping
113:G>x; A —> (G T)>g A
b3 ( )0 (IIL1.6)
(g.1) = (g.e.1),
and
Ih: I > (G T)>xg A
: ( )0 (IIL.1.7)
y = (ec.ve)

are injective group morphisms, such that for ally € T, (g,7) € G =, A, we have

VgeG, yrel, i3(g, r)tz(r_lyr) =(g,e,r)(eg, r_lyr, e)=1(g,y,r), (IL1.8)

which implies that
113(G > A)12(T) = (G >, T) 29 A. (I1.1.9)

It is clear that
113(G > A) N 1(T) = {(eg, e, €)}. (I1.1.10)

Moreover,

VgeG, yrel, n(y)us(gr)=(esy.e)(ger)
= (5(9).v.7) = (ry(9). e7) (e, 7 yr,€) (IL1.11)
= 113(g. )2 (r tyr).

The following result already appeared as special case in (Fima et al., 2017, §7.1.1).
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Proposition IIL.1.1. LetT be a discrete group, G a compact group, andt : T — Aut(G)
a left action of ' on G by topological automorphisms. If A is a finite subgroup of T', then
(T, G =, A) is a matched pair of groups with left action

a® T x (G A) = G A

TL1.12
(v:(9.1) = (5y(9).7), (I-1.12)

and right action

BA:Tx (G A) > T

(1, (9.7)) — rlyr. (IIL.1.13)

Moreover, the following hold.
(@) The action a® is trivial if and only if T is trivial;
(b) The action B is trivial if and only if A € Z(T'), where Z(T') is the centre of T

Proof. That (T', G »; A) is a matched pair with the actions & and * follows from
(II1.1.9), (I11.1.10) and (II1.1.11). (a) and (b) are direct consequences of the definition of
a® and pA. O

III.2 Some notations

For the convenience of our discussion, we now introduce and fix some notations
related to the bicrossed product of the matched pair (', G =, A) with the actions o
and pA.

The bicrossed product of the matched pair (I', G =, A) is denoted by T'pa >aga
(G =; A). When there is no risk of confusion, we often omit the actions and simply
write G < A and I' >« (G = A). Moreover, Aut(G) denotes the group of topological
automorphism of G.

The isotropy subgroup of G A fixing y € T with respect to the action f is easily
seen to be G < A, where

Ay={reA : yr=ry}. (Im.2.1)

For x € Irr(G), y € T, we denote the isotropy subgroup of A, fixing x with
respect to the action Ay ~ Irr(G), (r, [u]) = [uo 7] by Ay, ie.

Ayx = {r EAy i r-x= x}. (II.2.2)

We also need to fix some notations concerning from the representation theory of
I >« (G = A). We assume familiarity with § .4 and § I1.10-§ IL.12.

Let y € T'. Suppose Ay is an isotropy subgroup of A, with respect to the action
Ay ~ Irr(G). Let D, 5, denotes the set of equivalent distinguished representation
parameters (see § I1.10, Definition I1.10.4) associated with A, and

Yy no : Dya, = Ir(G < Ay) (Im.2.3)

is the injection used to classify irreducible unitary representations of G = A, as in
§ IL.12. Let D, be the set of equivalency classes of all distinguished representation
parameters for the semidirect product G = A, we then have an action of A, on the
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class of all distinguished representation parameters for G > A,, which passes to the
quotient and yields an action A, ~ D, as presented in § 11.12. We thus have the
classification surjection

¥, : D, = Irr(G =< A))

[(u,V,0)] € DY’AO = Yy, ([(u, V,0)] )’ (II1.2.4)

whose fibers are exactly the orbits for the action A, ~ D,.

When y = er, we then have A, = A and we write ¥, simply as ¥.

We use OrbﬁA to denote the set of ﬂA-orbits. For each 0 € OrbﬂA, let Ry be the
mapping from the class of -representations of G > A to the class of finite dimen-
sional unitary representations of the bicrossed product I' > (G = A) as in (1.4.6) of
Lemmal.4.4, and let Irr 5 (G=A) denote the set of equivalency classes of &-irreducible
O-representations. We thus have the classification bijection

R: U Irr (G = A) — Irr(T > (G < A))
@ €O0rbpn (II1.2.5)
[U]l errg(G < A) > [Rs(U)].

II1.3 A sufficient condition

We first establish the following technical result.

Lemma IIL3.1. Suppose l5 : Irr(G) — Ry is a [-invariant length function on G, ie.
lz([u*ory]) = I5(x) whenevery € T, u* € x € Irr(G), and Iy is a BA-invariant length
function onT. Then

lezz i Irr(G = A) = Ry
Y([(u,V,0)]) = I5([u])

is a well-defined length function on G > A such that the pair (I, lz=7) is matched.

Proof. The fact that [z is well-defined (does not depend on the choice of the dis-
tinguished representation parameter (u, V,v)) follows from Theorem I1.12.1 and the
A-invariance of l@. We now show that (lr , lbeA) is matched.

For all & € Orbga, define Iy : It (G % A) — Ry via the following procedure.
Take any y € 0, and let @, : Irr(G>A,) — Irrg(G = A) be the canonical bijection as
in Notations [.4.7. To avoid over-complication of our notations, we often implicitly
identify Irr(G = A, ) with Irr 5 (G > A) via the bijection @, when doing so won’t cause
arisk of confusion. For all distinguished representation parameter (u, V,v) of G Ay,
let

lo (¥ ([(w, V,0)])) = I5([u]) + (). (I11.3.1)

By Theorem I1.12.1 again, we see that (II1.3.1) yields a well-defined mapping ls :
Irro(G x A) — Rxo. It is clear that I, = [5 via the identification of Irr (.} (G = A)
with Irr(G < A) by @,,.. Moreover, it is clear that [eg] = ¥, ([eG, €, €A, ]), so that

Ie(y) =lg([ec]) +Ir(y) = lo([eo]).

Therefore, to finish the proof, it remains to show that (lﬁ)ﬁeorbﬂ . is an affording
family in the sense of Definition 1.6.2. By definition, it is clear that

Liery([eg=al) = I5([ec]) +Ir(er) = 0.
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The condition l5([U]) = l5-1([U]) can also be easily checked. Indeed, if [U]
is given by ¥, ([(u,V,0v)]), then [U'] is given by ¥ -1 ([(% V*,0)]) (see Proposi-
tion I1.13.3). By (IIL.3.1), we now have

Lo ([U]) = 5 ([u]) + I (y) = L ([]) + e (y ™) = L= ([U7]). (IIL.3.2)

By Definition 1.6.2, it remains only to establish the following claim.
Claim.Fori=1,2,3,let 0; € OrbﬁA, and [U;] € Irrp, (G < A), with

U; = Z ers ® uﬁ’s)

r,s€0;

being an &;-irreducible &;-representation of G = A on ¢2(0;) ® J,. If
dim Morgxa, (u)(/?)”GxAy, Ur X, Uz) #0 (I1.3.3)

for some (hence for all, by Lemma 1.4.18) y € 03, then

lo,([Us]) < 1o, ([UL]) + 16, ([Uz]). (IIL.3.4)

Before proving the claim, we remark that until now, only the A-invariance of [z
is needed. The hypothesis that Iz is I'-invariant will play an important role in the
proof of the claim as we will presently see.

We now prove the claim. Suppose [U;] is given by some ¥y, ([ (u;, Vi, 0;)]) and let
A = Ay, [y, for each i = 1,2,3. Define - u := u o 7, to be the left action of ' on
the class of finite dimensional unitary representation of G, and let M(u) denote the
vector space of matrix coefficients of u. Using the character formulae for U; x, U,
and for ¥, ([(ug, Vs, 03)]), as well as the construction of ¥,,, we see that as elements
in Pol(G) ® C(A,), we have

P (ufﬂcx,\y) € Vect [ M(r-us) | ® C(A,) CPOl(G) @ C(A,),  (IL3.5)
reA
and
x (Ui %, Uz) € Vect([r “M(uy)| [T M(uz)]) ® C(Ay), (IIL.3.6)
where

Vi=12 T M) =M@ w)
riel’

and [F : M(ul)] [F . M(uz)] denotes product of form ¢;¢, € Pol(G) where ¢; €
I - M(u;) for i = 1,2. By (IIL3.5), (IIL.3.6) and a simple calculation using the Haar
state on C(G) ® C(Ay) = C(G = Ay), it is clear that (III.3.3) implies the existence of
r € A, r,ry € T, such that M(r-us3) and M(ry - uy) - M(r; - uz) are not orthogonal with
respect to the Haar measure on G. Since the representation r - us of G is irreducible,
this forces that

dim Morg (r - us, (ry - ug) X (r2 - uz)) # 0.

Hence
refus] € (- [w]) ® (r2 - [uz]). (1I1.3.7)

Since 5 is a I'-invariant length function, by (I11.3.7), we have

lg([us]) = Ig(r - [us]) < lg(ri - [m]) +15(rz - [uz]) = Ig([w]) + I5([u2]). (I13.8)
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On the other hand, (II1.3.3) also implies that y; € 3 C 0,05, so there is s; € 0,
i = 1,2, such that s;5, = ys. Using the fact that Ir is a ﬁA—invariant length function,
we have

Ir(ys) = Ir(s152) < Ir(s1) +1Ir(s2) = Ir(y1) + Ir (y2)- (IL.3.9)
By (II1.3.8), (II1.3.9) and (II.3.1) again, we have

lo,([Us]) = I5([us]) +Ir (y3)
< Is([wa]) + I5([uz]) + Ir(y1) + I (y2)
=lg, ([U1]) +1g,([U2]).
This finishes the proof of the claim, and hence the lemma. m]

We can now give the following sufficient condition for T m A) to have prop-
erty (RD) (resp. polynomial growth).

Theorem IIL3.2. In the above settings. If there is a I'-invariant length function l5

on 5, and a ﬁA—invariant length function Ir on T, such that both (5, l@) and (T, Ip)
have polynomial growth (resp. (RD)), then the dual of the bicrossed product, namely
' >« (G < A) also has polynomial growth (resp. (RD)).

Proof. This follows from Lemma II.3.1, Theorem 1.7.3 and Theorem 1.8.4. O

Remark II1.3.3. It is however, unknown to the author that whether the polynomial

growth (resp. (RD)) of the dual I' »< (G > A) implies the existence of a I'-invariant
length function [z on G witnessing the polynomlal growth (resp. (RD)) of G. Later

we will show that if the composition T 5 Aut(G) — Out(G) has finite image, then
the converse of Theorem I11.3.2 also holds (see Theorem IIL5.1).

III.4 Invariance of length functions

In this section, we partially treat the difficulty of the technical assumption on the
[-invariance of the length function /5 on T that witnesses the polynomial growth or
(RD) of G, as presented in Theorem II1.3.2. The results here will be used in § IIL.5 in
which we give some concrete examples of bicrossed products whose dual has (RD)
but does not have polynomial growth. We also point out here that the examples given
in § IIL.6 do not fit into this framework, thus we only have a partial understanding of
the situation.

We begin by considering a technical lemma on the Fourier transform and the
Sobolev-0-norm compact quantum groups of Kac type.

Lemma II1.4.1. Let H be a compact quantum group of Kac type. Suppose 6 : C(H) —
C(H) is an automorphism of C*-algebras that intertwines the comultiplication A of H
(i.e. 0 is an automorphism of the quantum group H). Then there exists an automorphism

§ofthe involutive algebra c, (H), such that

Vaeco(®), 75 (0(@)=0(Fu(@) and Hé\(a)HH’O=||a||H,O. (IIL.4.1)
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Proof. Choose a complete set of representatives {u* : x € Irr(H)} for Irr(H), and
denote the finite dimensional Hilbert space underlying the unitary representation

u* by %, so that
alg

()= B B(A4)

x €lrr (H)
For each finite dimensional unitary representation u € 8(.) ® Pol(H) of H on 77,
since 6 is an automorphism of H, the unitary operator

0.(u) = (id ®0) (1) € B(H#) ® Pol(H) (IIL4.2)

remains a unitary representation of H on the same space J#. It is clear that 0, also
passes to a bijection of the set Irr(H) to itself, which we still denote by 6, by abuse of
notation, via 0, ([u]) = [6.(u)]. In particular, for each x € Irr(H), we have [ue*(x)] =
0.(x) = [0.(u¥)], thus there exists a unitary

T, € Morg (ug*("), 9*(ux)) C B (Hp.(x), H4) s

which is uniquely determined up to a multiple of a scalar in T.
Take any

a = (ax)yemr(m = Z ay € c.(H), (I1.4.3)
x €lrr (H)

where the sum is finite (meaning all but finitely many a, € B(.%%) is 0). For each
x € Irr(H), we pose
bo.(x) = TyaxTx € B (Hp, (x)) - (IL.4.4)

Then
dim(0.(x)) = dimx. (I11.4.5)

By the choice of Ty, we have
(Trmm ® id) (ue*(x) (bo. (x) ® 1))

= (Tr, ®id) (T @ D[[0. 0] (ar @ D] (T © 1)

(I1L.4.6)
= (Tr, @id) (100 (ar @ 1))
= 0|(Tron ®1d) ([w"(@x ® 1)
and
(Trﬁfe*(x) ® id) (85, () bo.(x))
= (Trot4. ) ®1d) (TyaaTy) (IIL4.7)
= (Tr‘;%*(x) ®id) (ayay).
We now define R
0(a) = D) bo.x) (I1.4.8)

x €lrr (H)

Since 0, : Irr(H) — Irr(H) is a bijection, it is clear that (II1.4.8) defines an automor-
phism 6 of the involutive algebra c.(H). Finally, (II1.4.1) follows from (II.4.6) and
(IL.4.7). o
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Remark III.4.2. Lemma III.4.1 also applies to non-Kac type H with almost the same
proof, with the caveats that the Fourier transform and the Sobolev norm needs to be
adjusted using quantum dimensions of representations, which is not needed hence
not introduced here (see (Vergnioux, 2007) or (Bhowmick et al., 2015) the discussion
of non-Kac type Fourier transforms and Sobolev norms).

Recall the notations in Notations 1.5.9, we have the following result.

Proposition II1.4.3. Let H = (C(H),A) be a compact quantum group of Kac type.
Suppose © is a finite subgroup of Aut(C(H), A). The following are equivalent.

(a) There exists a length function | on H and P(X) € R[X], such that

VkeN, ae Q) = [[Fa(@ll < P(k)llally,. (IIL.4.9)

(b) There exists a ®-invariant length function lg on H and Q(X) € R[X], such that

Vk €N, ae Qpice(f) = ||Fu(a)ll < Q(k)llalls,. (TIL.4.10)

Proof. Obviously (b) implies (a).

Now suppose (a) holds and let’s prove (b). Let n = |©| and suppose 0y,...,0,
form an enumeration of all elements of ©. Let [; denote the length function [ o (6;),
onH (see the discussion after (I11.4.2) in the proof of Lemma III.4.1). Put

1 n
lo == — >l (IL.4.11)
ol =

then it is clear that lg is a ©-invariant length function on . For each k € N, define
For :={xelrr(H) : lo(x) < k+1}, (I11.4.12)
andfori=1,...,n, put
Fip ={xelr(H) : Li(x) <k+1} (I11.4.13)

By (II.4.9), (IIL.4.13) and (III.4.11), we have

n
Fox | Fix. (I11.4.14)

i=1
Define

E:For —{1,...,n}

111.4.15
xr—>inf{i : xEF,-’k}. ( )

Note that (Il.4.14) guarantees that ¢ is well-defined.
We now prove (II1.4.10) holds for some suitable polynomial Q(X) € R[X], which
will finish the proof. Since a € Qy c.(H), there exists a finite subset F of Fg x, such

that
n
a= Z ay = Z a;, (IIL.4.16)
1

x€eF i=
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where for each i,
ai= >, ax€Qu (II1.4.17)
xeFNE1 (i)

By Lemma I11.4.1 and (a), we have

Vi=1,...,n, |[Fu(a)l < P(K)llaillgp (I11.4.18)
hence
n 2 n
|7 (a)* < (leﬁﬁ(ai)ll) <n (leﬁﬂ(ai)llz)
' ' (I11.4.19)
n[P(k)] (Z”al“HO) |O1[P(k)1*llallf,-
Thus posing Q(X) = \/@P(X) € R[X], we have (II1.4.10). O

Corollary II1.4.4. The following are equivalent:
(@) T has polynomial growth (resp. (RD));

(b) there exists a f*-invariant length function It on T, such that (T, I+) has polyno-
mial growth (resp. (RD)).

Proof. This follows from Proposition II1.4.3 by posing © = {Ad, € Aut(I') : r € A}
and H=T. O

III.5 Examples of bicrossed products with rapid decay but not
polynomial growth—part I

We begin by observing more closely the action T’ ~ Irr(G). It is clear that this action
is actually given by Aut(G) acting on G, and the group morphism 7 : ' — Aut(G)
with respect to which we form the semidirect product (see the beginning of § IIL.1).
More precisely, there is a natural action Aut(G) ~ Irr(G) by letting (6, [u]) +—
[6.(u)], and the action T’ ~ Irr(G) is given by (y,x) — 7(y) - x. By definition, one
has

Inn(G) ¢ () [Aut(G)],, (IIL.5.1)

x€lrr(G)
where
[Aut(G)], = {0 € Aut(G) : 0-x =x}.

Thus passing to the quotient, it is in fact Out(G) = Aut(G)/Inn(G) that acts on
Irr(G). Thus to talk about the T invariance of a given length function [ on G, it
suffices to consider the invariance of / under the image of the composition of group
morphisms 7: I' — Aut(G) and the canonical projection Aut(G) — Out(G).

With the above considerations in mind, we can now establish the following the-
oretical result.

Theorem IIL.5.1. Let7 : I — Out(G) be the composition of r : I — Aut(G) with
the canonical projection Aut(G) — Out(G). If Image(7) is finite, then the following
are equivalent:

(@ T m A) has polynomial growth (resp. (RD));
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(b) bothT and G have polynomial growth (resp. (RD)).

Proof. This follows from Theorem IIL.3.2, the proof of Proposition III.4.3 (posing H =
G and © = Image(7), and noting that inner automorphisms of G acts trivially on
Irr(G) and hence on length functions) and Corollary III.4.4. O

We will also frequently use Jolissaint’s theorem on rapid decay of amalgamated
product of groups, which we record here for convenience of the reader.

Theorem II1.5.2 (Jolissaint). Suppose Iy, T, are two discrete groups with property
(RD), A is a finite group, j; : A < I is an injective group morphism fori = 1, 2, then
the amalgamated product Iy x4 T, with respect to ji, jo also has property (RD).

Proof. This is part of (Jolissaint, 1990, Theorem 2.2.2). O
We will refer Theorem II1.5.2 as Jolissaint’s theorem hereafter.

Example II1.5.3. Take I' = PSL,(Z) =~ (Z/2Z) = (Z/3Z), with the isomorphism
determined by identifying Z/2Z with the cyclic group generated by s € I', and Z/3Z
with the cyclic group generated by ¢ € T', where

0 1 0 -1
s=(_1 0) and t=(1 1).

(see e.g. (Brown and Ozawa, 2008, Example E.10 on page 476) for a discussion of this
amalgamated product decomposition of SL;(Z)). Let G be any compact connected
real Lie group that admits an element x € G of order 2, and an element y of order
3, such that {x,y} ¢ Z(G) (e.g. G = SO(3,R), x is any rotation by 7, y any rotation
by 27/3), where Z(G) is the center of G. Now the mapping s — Ady, t — Ad,
determines a unique group morphism

7: T — Inn(G) C Aut(G)

so 7 : I — Out(G) is trivial (hence of finite image). Put A < T tobe < s > or < ¢ >.
Since A ¢ Z(I), it follows from the choice of x and y that the resulted bicrossed
product G := [y »agr (G >, A) is nontrivial (Proposition II1.1.1).

By Jolissaint’s theorem, PSL,(Z) has (RD), but PSL,(Z) does not have poly-
nomial growth since it is not virtually nilpotent (Gromov’s theorem, see (Gromov,
1981)), and (Vergnioux, 2007) showed that G has polynomial growth, thus Theo-
rem I11.5.1 applies and we see that G has (RD) but not polynomial growth.

Example II1.5.4. Let G be any compact group with G having polynomial growth
(e.g. all connected compact real Lie group), and A a finite subgroup of Aut(G). Take
I to be a nontrivial semidirect product of the free group F, on two generators (here
[F; can be replaced by any discrete group with (RD) but without polynomial growth)
with A (in particular, A is nontrivial). Then the obvious action of A on G and the
canonical projection F; < A — A together yield a nontrivial left action 7 of I' on G
by topological automorphisms. The same reasoning as in the above Example shows
thatT' >« (G > A) is also a bicrossed product whose dual has (RD) but not polynomial
growth.

Many more examples can be constructed in the same spirit as in the above exam-
ples, showing that Theorem III.5.1 is an applicable procedure to produce bicrossed
products whose dual has (RD) but not polynomial growth.
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III.6 Examples of bicrossed products with rapid decay but not
polynomial growth-part II

Despite of the fact that Theorem IIL.5.1 yields many interesting concrete examples
of bicrossed products with property (RD) as shown in § IIL5, it is worth pointing
out that the restriction the finiteness of the image Image(7) is too strong to include
many interesting examples, which we will now show in this section. To make the
contrast even more dramatic, we show how to construct examples of nontrivial bi-
crossed product of the form I' >« (G > A) whose dual has (RD) but not polynomial
growth, while Image(7) as in Theorem IIL5.1 is infinite (hence Theorem IIL5.1 no
longer applies).
We begin with a simple result in finite group theory.

Lemma II1.6.1. If A is a finite abelian group, then there exists infinitely many finite
abelian group B, such that A is isomorphic to a subgroup of Aut(B).

Proof. Since A is a direct sum of finite cyclic groups, without loss of generality, we
may assume A is cyclic of order n, with a as a generator. Pose B to be the n-fold
direct sum of any nontrivial finite abelian group C, and define o(a) € Aut(B) to be
the permutation

(Cla- . -,Cn) = (CZ" «sCn, cl)'

Then it is clear that

o : A — Aut(B)

a” e [a(a)]™
is a well-defined injective group morphism. O

As we will see later, Theorem IIL.5.1 no longer applies for the examples con-
structed in this section due to the violation of the hypothesis of the finiteness of
Image(7). This we will have to resort to Theorem II1.3.2 to prove the rapid decay of
the dual of the bicrossed product I' >« (G > A). Here, the f"-invariance of the length
function on T poses no problem thanks to Corollary I11.4.4. But the T'-invariance of
the length function on G requires a little more work.

Lemma IIL.6.2. Suppose =1, E,, ... is a sequence of finite discrete (hence compact)
groups. The product group [1;2, Aut(E;) naturally acts pointwise on the direct sum
®;2,5;, hence we have a canonical inclusion [1;2, Aut(E;) C Aut(®;2 E;). With these
settings, there exists a [1;2, Aut(E;)-invariant length function | on the discrete group
@2, E;, such that the pair (&2, Z;, 1) has polynomial growth.

Proof. Let N; = |5, for all i € N and pose M, = I—[f:1 N; for all k € N (we make
the convention that M, = 1). Let ¢; be the identity of the group =;, and denote the
characteristic function of Z; \ {e;} by y;. Define

l: @?Zlgi g RZO

(&) - D xilE)M;.
i=1
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Then it is clear that [ is a [];2, Aut(G;)-invariant length function on ®;°,=;. More-
over, for all n € N, there exists a unique k > 1, such that My_; < n < M. Then,
by the definition of [, we have

{e=(&) e B« 1(§) <n} c{(&) e ®2 5 : Vixk & =e}.
Thus ;
{e= (&) e @25 - (&) <n}| <[ [Ni=Miy <.

i=1

In particular, (&{°,Z;, [) has polynomial growth. O

We are now prepared to give the construction of new examples of bicrossed prod-
uct of the form I' »< (G = A) that don’t fit into the framework of Theorem IIL5.1.

Example I11.6.3. Let A be any nontrivial finite abelian group. By Lemma I11.6.1, one
can take a sequence of finite abelian groups (G;);2;, such that A is isomorphic to a
subgroup of Aut(G;) for each i = 1,2, ... via an injective group morphism j; : A —
Aut(G;). Equip each G; with the discrete topology, and G := [1;2; G; the product
topology. Then G is a compact abelian group. In particular, the character group y(G)
of G is a complete set of representatives of Irr(G). By Pontryagin’s duality, we have
X(G) = &2, x(G;), and it is clear that length functions on G become exactly length
functions on the discrete group y(G) of continuous characters of G. But as finite
abelian groups, each G; is isomorphic to y(G;) (albeit the isomorphism is not natural
in the categorical sense). Thus Lemma IIL.6.2 shows that there exists a [T;2; Aut(G;)-

invariant length function Iz on 5 such that (G, Ig) has polynomial growth, where
we’ve used the canonical inclusion [T2; Aut(G;) € Aut(G).

The construction of ' takes some more work which we now explain. First we take
A’ to be any nontrivial finite group and pose I} to be the free product A=A’. It follows
from Jolissaint’s theorem and Gromov’s theorem that I has (RD) but not polynomial
growth. Define j : A — [, Aut(G;) to be the mapping A > (ji(4), j2(4),---).
Take any infinite discrete subgroup Iy of ®;°, Aut(G;) < 152, Aut(G;) such that j(A)
is contained in the normalizer of T; in [];, Aut(G;). Obviously j(A) and I} intersect
trivially, thus the subgroup of T2, Aut(G;) generated by j(A) and T} is the (internal)
semidirect product of I} with j(A), which we denote by I}. Since ®;2; Aut(G;) has
polynomial growth by Lemma II1.6.2, it follows that I], hence I'; (note that [I} :
;] = |A] is finite) has polynomial growth. In particular, T; has (RD), and j : A —

21 Aut(G;) restricts an injective group morphism, which we still denote by j, from
A into T,. To facilitate our discussion, we identify A with its copy in I7 = A * A’
and in T via j. This allows us to form the amalgamated product of I} and I, over
A, which we denote by I'. Jolissaint’s theorem applies again and proves that I" has
(RD). Moreover, I does not have polynomial growth since its subgroup I does not.
We also make the obvious identification of A with j(A) in I'. By Corollary 1I.4.4,
there exists a A-invariant length function Ir on I', meaning Ir = Ir o Ad, forall r € A,
such that (T, Ir) has (RD).

Finally, let’s explain how the action, which is a group morphism 7 : ' — Aut(G),
is defined. The trivial group morphism A’ — Aut(G), together with j : A —
[172, Aut(G;) < Aut(G) and the universal property of free products, yields a group
morphism 7; : I} — Aut(G). Let 75 be the simple inclusion I; — [T, Aut(G;) C
Aut(G). It is clear that 7; and 7, agree on A, thus the universal property of I #5 I;
applies and determines a unique group morphism 7 : I' — Aut(G). We can finally
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construct the bicrossed product T' >« (G = A), and we conclude by Theorem I11.3.2
that the dual of T >« (G > A) has (RD) (it does not have polynomial growth because
of Theorem 1.7.3 and the fact that I' does not have polynomial growth).

It is clear by our construction that Image(7r) = I, € Aut(G) = Out(G) is infinite,
thus Theorem IIL.5.1 does not apply.
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