Coalescing and branching simple exclusion and Fredrickson-Andersen models1

Ivailo Hartarsky
CEREMADE, Université Paris Dauphine, PSL University
joint with Fabio Martinelli and Cristina Toninelli

2 June 2020

Analysis-Probability seminar CEREMADE, Paris

1Supported by ERC Starting Grant 680275 MALIG
Coalescing Random Walks with Neighbour Births

\[G = (V, E) \] is a connected graph.
Coalescing Random Walks with Neighbour Births

\(G = (V, E) \) is a connected graph.

CRWNB representation

Random walk jumping along each edge at rate 1.
Coalescing Random Walks with Neighbour Births

\(G = (V, E) \) is a connected graph.

CRWNB representation

Independent random walks jumping along each edge at rate 1.
Coalescing Random Walks with Neighbour Births

$G = (V, E)$ is a connected graph.

<table>
<thead>
<tr>
<th>CRWNB representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coalescing independent random walks jumping along each edge at rate 1.</td>
</tr>
</tbody>
</table>
Coalescing Random Walks with Neighbour Births

\[G = (V, E) \] is a connected graph.

CRWNB representation

Coalescing independent random walks jumping along each edge at rate 1 and giving birth to a particle at each neighbour independently at rate \(\beta \).
History
History

- Biased voter model
History

- Biased voter model
- Williams-Bjerknes tumour growth model [WB’72]
History

- Biased voter model
- Williams-Bjerknes tumour growth model [WB’72]
- CRWNB was introduced as the dual of biased voter [Schwartz’77; Harris’76]
History

- Biased voter model
- Williams-Bjerknes tumour growth model [WB’72]
- CRWNB was introduced as the dual of biased voter [Schwartz’77; Harris’76]
- $\beta = 0$ is CRW – dual of voter
History

- Biased voter model
- Williams-Bjerkenes tumour growth model [WB’72]
- CRWNB was introduced as the dual of biased voter [Schwartz’77; Harris’76]
- $\beta = 0$ is CRW – dual of voter
- On \mathbb{Z}^d for $\beta > 0$ CRWNB converges weakly to its unique invariant measure starting with at least one particle.
History

- Biased voter model
- Williams-Bjerknes tumour growth model [WB’72]
- CRWNB was introduced as the dual of biased voter [Schwartz’77; Harris’76]
- $\beta = 0$ is CRW – dual of voter
- On \mathbb{Z}^d for $\beta > 0$ CRWNB converges weakly to its unique invariant measure starting with at least one particle.
- On \mathbb{Z}^d for $\beta > 0$ – limit shape, cutoff [Bramson,Griffeath’80,81; Durrett,Griffeath’82]
History

- Biased voter model
- Williams-Bjercknes tumour growth model [WB’72]
- CRWNB was introduced as the dual of biased voter [Schwartz’77; Harris’76]
- $\beta = 0$ is CRW – dual of voter
- On \mathbb{Z}^d for $\beta > 0$ CRWNB converges weakly to its unique invariant measure starting with at least one particle.
- On \mathbb{Z}^d for $\beta > 0$ – limit shape, cutoff [Bramson,Griffeath’80,81; Durrett,Griffeath’82]
- On \mathbb{Z} for $\beta \to 0$ Brownian net [Sun,Swart’08]
Coalescing and Branching
Simple Exclusion Process

$G = (V, E), \Omega = \{0, 1\}^V, 0 < p < 1, \pi = \text{Ber}(p)^\otimes V$
Coalescing and Branching
Simple Exclusion Process

\[G = (V, E), \Omega = \{0, 1\}^V, 0 < p < 1, \pi = \text{Ber}(p) \otimes^V \]

\text{CBSEP representation}

Each edge \(e \) containing a particle resamples at rate 1 from \(\pi_e \) conditioned to still contain a particle.
Coalescing and Branching
Simple Exclusion Process

\[G = (V, E), \Omega = \{0, 1\}^V, 0 < p < 1, \pi = \text{Ber}(p)^\otimes V \]

CBSEP representation

Each edge \(e \) containing a particle resamples at rate 1 from \(\pi_e \)
conditioned to still contain a particle. In other words along \(e \):

- (SEP) a particle swaps with a hole with rate \((1 - p)/(2 - p) \);
Coalescing and Branching
Simple Exclusion Process

\[G = (V, E), \Omega = \{0, 1\}^V, 0 < p < 1, \pi = Ber(p) \otimes V \]

CBSEP representation

Each edge \(e \) containing a particle resamples at rate 1 from \(\pi_e \) conditioned to still contain a particle. In other words along \(e \):

- (SEP) a particle swaps with a hole with rate \((1 - p)/(2 - p) \);
- (B) a particle fills the adjacent hole with rate \(p/(2 - p) \);
Coalescing and Branching
Simple Exclusion Process

\[G = (V, E), \Omega = \{0, 1\}^V, 0 < p < 1, \pi = Ber(p)^\otimes V \]

CBSEP representation

Each edge \(e \) containing a particle resamples at rate 1 from \(\pi_e \) conditioned to still contain a particle. In other words along \(e \):

- (SEP) a particle swaps with a hole with rate \((1 - p)/(2 - p) \);
- (B) a particle fills the adjacent hole with rate \(p/(2 - p) \);
- (C) two particles coalesce at uniformly chosen of the two positions at rate \(2(1 - p)/(2 - p) \).
What is so nice about CBSEP?

\[\mu := \pi \left(\cdot | \Omega^+ \right) \]

is reversible, where \(\Omega^+ = \{ \text{at least one particle} \} \).

CBSEP is the same as CRWNB with \(\beta = \frac{p}{1-p} \) slowed down by a factor \(\frac{1-p}{2-p} \).

Nice dual model (in two distinct ways).

Lots of embedded random walks (even more than those in the CRWNB representation).
What is so nice about CBSEP?

- CBSEP is attractive. It’s even additive!
What is so nice about CBSEP?

- CBSEP is attractive. It’s even additive!
- \(\mu := \pi(\cdot|\Omega_+) \) is reversible, where \(\Omega_+ = \{\text{at least one particle}\} \).
What is so nice about CBSEP?

- CBSEP is attractive. It’s even additive!
- $\mu := \pi(\cdot | \Omega_+) \text{ is reversible, where } \Omega_+ = \{\text{at least one particle}\}$.
- CBSEP is the same as CRWNB with $\beta = p/(1 - p)$ slowed down by a factor $(1 - p)/(2 - p)$.
What is so nice about CBSEP?

- CBSEP is attractive. It’s even additive!
- \(\mu := \pi(\cdot|\Omega_+) \) is reversible, where \(\Omega_+ = \{ \text{at least one particle} \} \).
- CBSEP is the same as CRWNB with \(\beta = p/(1 - p) \) slowed down by a factor \((1 - p)/(2 - p) \).
- Nice dual model (in two distinct ways).
What is so nice about CBSEP?

- CBSEP is attractive. It’s even additive!
- $\mu := \pi(\cdot|\Omega_+) \text{ is reversible, where } \Omega_+ = \{\text{at least one particle}\}$.
- CBSEP is the same as CRWNB with $\beta = p/(1 - p)$ slowed down by a factor $(1 - p)/(2 - p)$.
- Nice dual model (in two distinct ways).
- Lots of embedded random walks (even more than those in the CRWNB representation).
Mixing times

Let $h^t_\omega(\cdot) = P^t_\omega(\cdot)/\mu(\cdot)$ be the density of the law of CBSEP started at ω w.r.t. the reversible measure μ.
Mixing times

\[h^t_\omega(\cdot) = p^t_\omega(\cdot)/\mu(\cdot) \]

Let \[\|f\|_q = \left(\int f^q \, d\mu \right)^{1/q} = (\mu(f^q))^{1/q} \]
for \(q \in [1, \infty] \).
Mixing times

\[h^t_\omega(\cdot) = P^t_\omega(\cdot)/\mu(\cdot) \]
\[\|f\|_q = (\mu(f^q))^{1/q} \]
\[\|h^t_\omega - 1\|_1 = 2d_{TV}(P^t_\omega, \mu) \]
Mixing times

\[h_t^\omega(\cdot) = \frac{P_t^\omega(\cdot)}{\mu(\cdot)} \]
\[\| f \|_q = (\mu(f^q))^{1/q} \]
\[\| h_t^\omega - 1 \|_1 = 2d_{TV}(P_t^\omega, \mu) \]
\[T_q = \inf \{ t > 0, \max_\omega \| h_t^\omega - 1 \|_q \leq 1/e \} \]
Mixing times

\[h^t_\omega(\cdot) = \frac{P^t_\omega(\cdot)}{\mu(\cdot)} \]
\[\|f\|_q = (\mu(f^q))^{1/q} \]
\[\|h^t_\omega - 1\|_1 = 2d_{TV}(P^t_\omega, \mu) \]
\[T_q = \inf \{ t > 0, \max_\omega \|h^t_\omega - 1\|_q \leq 1/e \} \]
\[T_1 = T_{mix}\left(\frac{1}{2e}\right) \]
Mixing times

\[h^t_\omega(\cdot) = P^t_\omega(\cdot)/\mu(\cdot) \]
\[\|f\|_q = (\mu(f^q))^{1/q} \]
\[\|h^t_\omega - 1\|_1 = 2d_{TV}(P^t_\omega, \mu) \]
\[T_q = \inf\{ t > 0, \max_\omega \|h^t_\omega - 1\|_q \leq 1/e \} \]
\[T_1 = T_{mix}\left(\frac{1}{2e}\right) \]

\[\forall q \in [1, \infty], \quad T_q \leq O\left(\log \log \frac{1}{\mu_*}\right) T_{Sob}, \]

\[\mu_* = \min_\omega \mu(\omega); \quad T_{Sob} \text{ is ‘the inverse rate of decay of entropy’} \]
Commuting and meeting

- The commute time $T_{\text{com}}^{x,y}$ of a RW between $x, y \in V$ is $\mathbb{E}_x[\tau_y] + \mathbb{E}_y[\tau_x]$.
Commuting and meeting

- The commute time $T_{\text{com}}^{x,y}$ of a RW between $x, y \in V$ is $\mathbb{E}_x[\tau_y] + \mathbb{E}_y[\tau_x]$.
- It’s also $2|V|R_{x,y}$, where $R_{x,y}$ is the resistance between x, y.
Commuting and meeting

- The commute time $T_{\text{com}}^{x,y}$ of a RW between $x, y \in V$ is $\mathbb{E}_x[\tau_y] + \mathbb{E}_y[\tau_x]$.
- It's also $2|V|R_{x,y}$, where $R_{x,y}$ is the resistance between x, y.
- $T_{\text{meet}}^{x,y}$ is the expected meeting time of x and y.
Commuting and meeting

- The commute time $T_{\text{com}}^{x,y}$ of a RW between $x, y \in V$ is $E_x[\tau_y] + E_y[\tau_x]$.
- It's also $2|V|R_{x,y}$, where $R_{x,y}$ is the resistance between x, y.
- $T_{\text{meet}}^{x,y}$ is the expected meeting time of x and y.
- In all examples we will encounter (and many others) we have

$$T_{\text{meet}} := \frac{1}{|V|^2} \sum_{x,y} T_{\text{meet}}^{x,y} \preceq \frac{1}{|V|^2} \sum_{x,y} T_{\text{com}}^{x,y} \preceq \max_{x,y} T_{\text{meet}}^{x,y} \preceq \max_{x,y} T_{\text{com}}^{x,y} =: T_{\text{com}}$$

and these are known up to a constant factor (or better).
Setting

Slightly supercritical: $p_n \to 0$.
Setting

Slightly supercritical: $p_n \to 0$. For the purposes of the talk we look at the $p_n = \Theta(1/n)$, where $n = |V|$.
Setting

Slightly supercritical: $p_n \to 0$. For the purposes of the talk we look at the $p_n = \Theta(1/n)$, where $n = |V|$. We have in mind G is ‘fairly sparse’ and ‘roughly regular’, like:
Setting

Slightly supercritical: $p_n \to 0$. For the purposes of the talk we look at the $p_n = \Theta(1/n)$, where $n = |V|$. We have in mind G is ‘fairly sparse’ and ‘roughly regular’, like:

- torus of side $L = n^{1/d}$ and dimension d.
Setting

Slightly supercritical: \(p_n \to 0 \). For the purposes of the talk we look at the \(p_n = \Theta(1/n) \), where \(n = |V| \).

We have in mind \(G \) is ‘fairly sparse’ and ‘roughly regular’, like:

- torus of side \(L = n^{1/d} \) and dimension \(d \).

\[
T_{\text{com}} \approx n \times \begin{cases}
n & d = 1 \\
\log n & d = 2 \\
1 & d \geq 3
\end{cases}
\]
Setting

Slightly supercritical: $p_n \to 0$. For the purposes of the talk we look at the $p_n = \Theta(1/n)$, where $n = |V|$.

We have in mind G is ‘fairly sparse’ and ‘roughly regular’, like:

- torus of side $L = n^{1/d}$ and dimension d.

\[T_{\text{com}} \simeq n \times \begin{cases} n & d = 1 \\ \log n & d = 2 \\ 1 & d \geq 3 \end{cases} \]

- uniform random regular graph $G(n, d)$.
Setting

Slightly supercritical: $p_n \to 0$. For the purposes of the talk we look at the $p_n = \Theta(1/n)$, where $n = |V|$.

We have in mind G is ‘fairly sparse’ and ‘roughly regular’, like:

- torus of side $L = n^{1/d}$ and dimension d.

\[
T_{\text{com}} \asymp n \times \begin{cases}
 n & d = 1 \\
 \log n & d = 2 \\
 1 & d \geq 3
\end{cases}
\]

- uniform random regular graph $G(n, d)$. $T_{\text{com}} \asymp n$
Setting

Slightly supercritical: $p_n \to 0$. For the purposes of the talk we look at the $p_n = \Theta(1/n)$, where $n = |V|$.

We have in mind G is ‘fairly sparse’ and ‘roughly regular’, like:

- torus of side $L = n^{1/d}$ and dimension d.

$$T_{\text{com}} \approx n \times \begin{cases} n & d = 1 \\ \log n & d = 2 \\ 1 & d \geq 3 \end{cases}$$

- uniform random regular graph $G(n, d)$. $T_{\text{com}} \approx n$

- complete binary tree.
Setting

Slightly supercritical: \(p_n \rightarrow 0 \). For the purposes of the talk we look at the \(p_n = \Theta(1/n) \), where \(n = |V| \).

We have in mind \(G \) is ‘fairly sparse’ and ‘roughly regular’, like:

- torus of side \(L = n^{1/d} \) and dimension \(d \).

\[
T_{\text{com}} \asymp n \times \begin{cases}
 n & d = 1 \\
 \log n & d = 2 \\
 1 & d \geq 3
\end{cases}
\]

- uniform random regular graph \(G(n, d) \). \(T_{\text{com}} \asymp n \)

- complete binary tree. \(T_{\text{com}} \asymp n \log n \)
Setting

Slightly supercritical: \(p_n \to 0 \). For the purposes of the talk we look at the \(p_n = \Theta(1/n) \), where \(n = |V| \).

We have in mind \(G \) is ‘fairly sparse’ and ‘roughly regular’, like:

- torus of side \(L = n^{1/d} \) and dimension \(d \).

\[
T_{\text{com}} \propto n \times \begin{cases}
 n & d = 1 \\
 \log n & d = 2 \\
 1 & d \geq 3
\end{cases}
\]

- uniform random regular graph \(G(n, d) \). \(T_{\text{com}} \propto n \)
- complete binary tree. \(T_{\text{com}} \propto n \log n \)
- hypercube of dimension \(\log_2 n \).
Setting

Slightly supercritical: $p_n \to 0$. For the purposes of the talk we look at the $p_n = \Theta(1/n)$, where $n = |V|$.

We have in mind G is ‘fairly sparse’ and ‘roughly regular’, like:

- torus of side $L = n^{1/d}$ and dimension d.

$$T_{com} \asymp n \times \begin{cases} n & d = 1 \\ \log n & d = 2 \\ 1 & d \geq 3 \end{cases}$$

- uniform random regular graph $G(n, d)$. $T_{com} \asymp n$
- complete binary tree. $T_{com} \asymp n \log n$
- hypercube of dimension $\log_2 n$. $T_{com} \asymp n / \log n$
Theorem (Martinelli, Toninelli, H.’20)

Let $p_n = \Theta(1/n)$ and $G_n = (V_n, E_n)$ be a sequence of ‘nice’ graphs with $|V_n| = n$. Then

$$\Omega(T_{\text{meet}}) \leq T_{\text{CBSEP}} \leq O(T_{\text{com}} \log n).$$

\(^a\)E.g. with bounded degree or rapidly mixing with degree at most $n^{1/5}$. This is only needed for the upper bound.
Theorem (Martinelli, Toninelli, H.’20)

Let \(p_n = \Theta(1/n) \) and \(G_n = (V_n, E_n) \) be a sequence of ‘nice’ graphs with \(|V_n| = n \). Then

\[
\Omega(T_{\text{meet}}) \leq T_{\text{Sob}}^{\text{CBSEP}} \leq O(T_{\text{com log } n}).
\]

E.g. with bounded degree or rapidly mixing with degree at most \(n^{1/5} \). This is only needed for the upper bound.

Corollary

If \(G_n \) is the \(d \)-dimensional torus, then

\[
\Omega(n^2) \leq T_{\text{Sob}}^{\text{CBSEP}} \leq O(n^2 \log n) \quad d = 1
\]

\[
\Omega(n \log n) \leq T_{\text{Sob}}^{\text{CBSEP}} \leq O(n \log^2 n) \quad d = 2
\]

\[
\Omega(n) \leq T_{\text{Sob}}^{\text{CBSEP}} \leq O(n \log n) \quad d \geq 3
\]
FA1f

\[G = (V, E), \Omega = \{0, 1\}^V, \quad 0 < p < 1, \quad \pi = Ber(p)^\otimes V \]
Definition (FA1f)

Each vertex $v \in V$ such that there is a neighbouring particle (i.e. $\{u, v\} \in E$ with $\omega_u = 1$) resamples at rate 1 from π_v.

$G = (V, E), \Omega = \{0, 1\}^V, 0 < p < 1, \pi = \text{Ber}(p) \otimes V$
FA1f

\[G = (V, E), \Omega = \{0, 1\}^V, 0 < p < 1, \pi = \text{Ber}(p)^\otimes V \]

Definition (FA1f)

Each vertex \(v \in V \) such that there is a neighbouring particle (i.e. \(\{u, v\} \in E \) with \(\omega_u = 1 \)) resamples at rate 1 from \(\pi_v \).

\[\mu = \pi(.|\Omega_+) \text{ is reversible.} \]
FA1f

$G = (V, E), \Omega = \{0, 1\}^V, 0 < p < 1, \pi = Ber(p) \otimes V$

Definition (FA1f)

Each vertex $v \in V$ such that there is a neighbouring particle (i.e. $\{u, v\} \in E$ with $\omega_u = 1$) resamples at rate 1 from π_v.

$\mu = \pi(\cdot|\Omega_+) \text{ is reversible.}$

$-$ Not attractive (and does not have a dual).
FA1f

\[G = (V, E), \Omega = \{0, 1\}^V, 0 < p < 1, \pi = Ber(p)\otimes V \]

Definition (FA1f)

Each vertex \(v \in V \) such that there is a neighbouring particle (i.e. \(\{u, v\} \in E \) with \(\omega_u = 1 \)) resamples at rate 1 from \(\pi_v \).

- \(\mu = \pi(\cdot|\Omega_+) \) is reversible.
- Not attractive (and does not have a dual).
- No other (known) nice representations.
FA1f

\[G = (V, E), \Omega = \{0, 1\}^V, \quad 0 < p < 1, \quad \pi = \text{Ber}(p) \otimes V \]

Definition (FA1f)

Each vertex \(v \in V \) such that there is a neighbouring particle (i.e. \(\{u, v\} \in E \) with \(\omega_u = 1 \)) resamples at rate 1 from \(\pi_v \).

- \(\mu = \pi(\cdot|\Omega_+) \) is reversible.
- Not attractive (and does not have a dual).
- No other (known) nice representations.
- No (known) embedded random walks.
FA1f

\[G = (V, E), \quad \Omega = \{0, 1\}^V, \quad 0 < p < 1, \quad \pi = \text{Ber}(p)^{\otimes V} \]

Definition (FA1f)

Each vertex \(v \in V \) such that there is a neighbouring particle (i.e. \(\{u, v\} \in E \) with \(\omega_u = 1 \)) resamples at rate 1 from \(\pi_v \).

+ \(\mu = \pi(\cdot | \Omega_+) \) is reversible.

- Not attractive (and does not have a dual).
- No other (known) nice representations.
- No (known) embedded random walks.
- Not well understood even for \(p = 1/10 \) on \(\mathbb{Z} \).
Observation

A particle can perform a SEP move by creating a second one which kills the initial one.
Observation

A particle can perform a SEP move by creating a second one which kills the initial one. In terms of Dirichlet forms this reads

\[D_{\text{CBSEP}} \leq O(d_{\text{max}}/p)D_{\text{FA1f}}. \]
Observation

A particle can perform a SEP move by creating a second one which kills the initial one. In terms of Dirichlet forms this reads

\[\mathcal{D}^{\text{CBSEP}} \leq O(d_{\text{max}}/p) \mathcal{D}^{\text{FA1f}}. \]

Definition \((T_{\text{Sob}})\)

\(T_{\text{Sob}}\) is the smallest constant such that

\[\text{Ent}_\mu(f^2) := \mu(f^2 \log(f^2/\mu(f^2))) \leq T_{\text{Sob}} \mathcal{D}(f). \]
Observation

A particle can perform a SEP move by creating a second one which kills the initial one. In terms of Dirichlet forms this reads

\[D_{CBSEP} \leq O(d_{max}/p)D_{FA1f}. \]

Definition \((T_{Sob}) \)

\(T_{Sob} \) is the smallest constant such that

\[\text{Ent}_\mu(f^2) := \mu(f^2 \log(f^2/\mu(f^2))) \leq T_{Sob}D(f). \]

Corollary

\[T_{Sob}^{FA1f} \leq O(d_{max}/p)T_{Sob}^{CBSEP} \]
Corollary

With $p = \Theta(1/n)$ on the torus of dimension d, for all $q \geq 1$

$$T^*_q \leq O(\log n) T^*_{\text{Sob}} \leq O(n \log n) T^*_{\text{CBSEP}} \leq \begin{cases} O(n^3 \log^2 n) & d = 1 \\ O(n^2 \log^3 n) & d = 2 \\ O(n^2 \log^2 n) & d \geq 3 \end{cases}$$
Corollary

With $p = \Theta(1/n)$ on the torus of dimension d, for all $q \geq 1$

\[
T_q^{FA} \leq O(\log n) T_{Sob}^{FA} \leq O(n \log n) T_{Sob}^{CBSEP} \leq \begin{cases}
O(n^3 \log^2 n) & d = 1 \\
O(n^2 \log^3 n) & d = 2 \\
O(n^2 \log^2 n) & d \geq 3
\end{cases}
\]

Theorem (Pillai,Smith’17; Pillai,Smith’19)

\[
\Omega(n^2) \leq T_{mix}^{FA} \leq \begin{cases}
O(n^2 \log^{14} n) & d = 2 \\
O(n^2 \log n) & d \geq 3
\end{cases}
\]
Corollary

With \(p = \Theta(1/n) \) on the torus of dimension \(d \), for all \(q \geq 1 \)

\[
T^\text{FA}_q \leq O(\log n) T^\text{FA}_{\text{Sob}} \leq O(n \log n) T^\text{CBSEP}_{\text{Sob}} \leq \begin{cases}
O(n^3 \log^2 n) & d = 1 \\
O(n^2 \log^3 n) & d = 2 \\
O(n^2 \log^2 n) & d \geq 3
\end{cases}
\]

Theorem (Pillai, Smith’17; Pillai, Smith’19)

\[
\Omega(n^2) \leq T^\text{FA}_{\text{mix}} \leq \begin{cases}
O(n^2 \log^{14} n) & d = 2 \\
O(n^2 \log n) & d \geq 3
\end{cases}
\]

- Simpler proof.
Corollary

With $p = \Theta(1/n)$ on the torus of dimension d, for all $q \geq 1$

$$T^\text{FA}_q \leq O(\log n) T^\text{FA}_\text{Sob} \leq O(n \log n) T^\text{CBSEP}_\text{Sob} \leq \begin{cases} O(n^3 \log^2 n) & d = 1 \\ O(n^2 \log^3 n) & d = 2 \\ O(n^2 \log^2 n) & d \geq 3 \end{cases}$$

Theorem (Pillai, Smith’17; Pillai, Smith’19)

$$\Omega(n^2) \leq T^\text{FA}_\text{mix} \leq \begin{cases} O(n^2 \log^{14} n) & d = 2 \\ O(n^2 \log n) & d \geq 3 \end{cases}$$

- Simpler proof.
- Stronger mixing notion.
Corollary

With \(p = \Theta(1/n) \) on the torus of dimension \(d \), for all \(q \geq 1 \)

\[
T_{q}^{FA} \leq O(\log n) T_{Sob}^{FA} \leq O(n \log n) T_{Sob}^{CBSEP} \leq \begin{cases}
O(n^3 \log^2 n) & d = 1 \\
O(n^2 \log^3 n) & d = 2 \\
O(n^2 \log^2 n) & d \geq 3
\end{cases}
\]

Theorem (Pillai,Smith’17; Pillai,Smith’19)

\[
\Omega(n^2) \leq T_{mix}^{FA} \leq \begin{cases}
O(n^2 \log^{14} n) & d = 2 \\
O(n^2 \log n) & d \geq 3
\end{cases}
\]

- Simpler proof.
- Stronger mixing notion.
- General graphs and choices of \(p \).
Definition

\(G = (V, E), \Omega = S^V, S = S_1 \sqcup S_0 \) is finite, \(\rho \) is a product probability measure on \(\Omega \).

We say there is a particle at \(v \in V \) if \(\omega_v \in S_1 \).
Definition

\[G = (V, E), \Omega = S^V, S = S_1 \sqcup S_0 \text{ is finite}, \rho \text{ is a product probability measure on } \Omega. \]

We say there is a particle at \(v \in V \) if \(\omega_v \in S_1 \).

Definition (g-CBSEP)

Each edge \(e \) containing a particle resamples at rate 1 from \(\rho_e \) conditioned to still contain a particle.
Definition

\[G = (V, E), \quad \Omega = S^V, \quad S = S_1 \sqcup S_0 \text{ is finite}, \quad \rho \text{ is a product probability measure on } \Omega. \]
We say there is a particle at \(v \in V \) if \(\omega_v \in S_1 \).

Definition (g-CBSEP)

Each edge \(e \) containing a particle resamples at rate 1 from \(\rho_e \) conditioned to still contain a particle.

Remark

The projection on \(\{0, 1\}^V \) of g-CBSEP is CBSEP with \(p = \rho(S_1) \).
Theorem (Martinelli, Toninelli, H.’20)

\[T_{\text{mix}}^{\text{CBSEP}} \leq T_{\text{mix}}^{g-CBSEP} \leq O(T_{\text{mix}}^{\text{CBSEP}} + T_{\text{cov}}^{rw}). \]
Theorem (Martinelli, Toninelli, H.'20)

\[T_{\text{mix}}^{\text{CBSEP}} \leq T_{\text{mix}}^{g-\text{CBSEP}} \leq O(T_{\text{mix}}^{\text{CBSEP}} + T_{\text{cov}}^{\text{rw}}). \]

Proof idea.
Once CBSEP couples, wait for one of the random walks to cover \(G \).
Theorem (Martinelli, Toninelli, H.’20)

\[
T_{\text{mix}}^{\text{CBSEP}} \leq T_{\text{mix}}^{g-\text{CBSEP}} \leq O(T_{\text{mix}}^{\text{CBSEP}} + T_{\text{cov}}^{\text{rw}}).
\]

Proof idea.

Once CBSEP couples, wait for one of the random walks to cover \(G \).

Remark

Not true for \(T_{\text{mix}}^{g-\text{CBSEP}} \).
Theorem (Martinelli, Toninelli, H.’20)

\[
T_{\text{mix}}^{\text{CBSEP}} \leq T_{\text{mix}}^{g-\text{CBSEP}} \leq O(T_{\text{mix}}^{\text{CBSEP}} + T_{\text{cov}}^{\text{rw}}).
\]

Remark

It is known that \(T_{\text{com}} \leq T_{\text{cov}}^{\text{rw}} \leq O(T_{\text{com}} \log |V|) \), so on ‘nice’ graphs with \(p_n = \Theta(1/n) \) we get

\[
\Omega(T_{\text{meet}}) \leq T_{\text{mix}}^{g-\text{CBSEP}} \leq O(T_{\text{com}} \log^2 |V|).
\]
Theorem (Martinelli, Toninelli, H.’20)

\[T_{\text{mix}}^{\text{CBSEP}} \leq T_{\text{mix}}^{g-\text{CBSEP}} \leq O(T_{\text{mix}}^{\text{CBSEP}} + T_{\text{cov}}^{\text{rw}}). \]

Remark

It is known that \(T_{\text{com}} \leq T_{\text{cov}}^{\text{rw}} \leq O(T_{\text{com}} \log |V|) \), so on ‘nice’ graphs with \(p_n = \Theta(1/n) \) we get

\[\Omega(T_{\text{meet}}) \leq T_{\text{mix}}^{g-\text{CBSEP}} \leq O(T_{\text{com}} \log^2 |V|). \]

Corollary

On \(\{1, \ldots, L\}^d, d \geq 2 \) with \(p = \Theta(1/L^d) \) we have

\[T_{\text{mix}}^{g-\text{CBSEP}} = L^d (\log L)^{O(1)}. \]
\[d \geq j \geq 2, \quad \Omega = \{0, 1\}^{\mathbb{Z}^d}, \quad 0 < p < 1, \quad \pi = \text{Ber}(p) \otimes \mathbb{Z}^d \]
\(\text{FA}_{jf} \)

\[d \geq j \geq 2, \; \Omega = \{0, 1\}^\mathbb{Z}^d, \; 0 < p < 1, \; \pi = \text{Ber}(p) \otimes \mathbb{Z}^d \]

Definition (FA\(jf \))

Each vertex \(v \in \mathbb{Z}^d \) such that there are at least \(j \) neighbouring particles resamples at rate 1 from \(\pi_v \).
\[d \geq j \geq 2, \quad \Omega = \{0, 1\}^{\mathbb{Z}_d}, \quad 0 < p < 1, \quad \pi = \text{Ber}(p)^{\otimes \mathbb{Z}_d} \]

Definition (FA}_j^n f \)

Each vertex \(v \in \mathbb{Z}_d \) such that there are at least \(j \) neighbouring particles resamples at rate 1 from \(\pi_v \).

Definition (j-neighbour bootstrap percolation)

Each vertex \(v \in \mathbb{Z}_d \) such that there are at least \(j \) neighbouring particles becomes filled at rate 1.
Bootstrap percolation

Theorem (Gravner, Holroyd’08 + Morris, H.’19; first term: Holroyd’03)

For $d = j = 2$ w.h.p. the origin becomes filled at time

$$\exp \left(\frac{\pi^2}{18p} - \frac{\Theta(1)}{\sqrt{p}} \right).$$
Bootstrap percolation

Theorem (Gravner,Holroyd’08+Morris,H.’19; first term: Holroyd’03)

For $d = j = 2$ w.h.p. the origin becomes filled at time

$$
\exp \left(\frac{\pi^2}{18p} - \frac{\Theta(1)}{\sqrt{p}} \right).
$$

Morally: a particle reaches the origin starting from a small anomalously occupied region called droplet, which occurs with probability

$$
q = \exp \left(-\frac{\pi^2}{9p} + \frac{\Theta(1)}{\sqrt{p}} \right)
$$

and invades space at linear speed.
Bootstrap percolation

Theorem (Gravner, Holroyd’08+Morris, H.’19; first term: Holroyd’03)

For \(d = j = 2 \) w.h.p. the origin becomes filled at time

\[
\exp \left(\frac{\pi^2}{18p} - \frac{\Theta(1)}{\sqrt{p}} \right).
\]

Theorem (Balogh, Bollobás, Duminil-Copin, Morris’12+Uzzell’19)

For \(d \geq j \geq 2 \) there exists an explicit constant\(^a\) \(\lambda(d, j) > 0 \) such that w.h.p. the filling time \(\tau \) of the origin satisfies

\[
\exp^{j-1} \left(\frac{\lambda(d, j) - o(1)}{p^{1/(d-j+1)}} \right) \leq \tau \leq \exp^{j-1} \left(\frac{\lambda(d, j)}{p^{1/(d-j+1)}} - \frac{\Omega(1)}{p^{1/(2(d-j+1))}} \right).
\]

\(^a\)This notation is not the standard one in bootstrap percolation.
FA2f in 2d

Conjecture (Toninelli’03)

\[T_{\text{rel}} = \exp \left(\frac{\pi^2 + o(1)}{9p} \right) \]
FA2f in 2d

Conjecture (Toninelli’03)

\[T_{\text{rel}} = \exp \left(\frac{\pi^2 + o(1)}{9p} \right) \]

Theorem (Cancrini, Martinelli, Roberto, Toninelli’08)

\[\exp \left(\frac{\pi^2 - o(1)}{18p} \right) \leq T_{\text{rel}} \leq \exp \left(\frac{O(1)}{p^5} \right). \]
FA2f in 2d

Conjecture (Toninelli’03)

\[T_{\text{rel}} = \exp \left(\frac{\pi^2 + o(1)}{9p} \right) \]

Theorem (Cancrini, Martinelli, Roberto, Toninelli’08+Martinelli, Toninelli’19)

\[\exp \left(\frac{\pi^2 - o(1)}{18p} \right) \leq T_{\text{rel}} \leq \exp \left(\frac{(\log(1/p))^{O(1)}}{p} \right). \]
FA2f in 2d

Conjecture (Toninelli’03)

\[T_{\text{rel}} = \exp \left(\frac{\pi^2 + o(1)}{9p} \right) \]

Theorem (Cancrini, Martinelli, Roberto, Toninelli’08+Martinelli, Toninelli’19)

\[\exp \left(\frac{\pi^2 - o(1)}{18p} \right) \leq T_{\text{rel}} \leq \exp \left(\frac{(\log(1/p))^{O(1)}}{p} \right). \]

Theorem (Martinelli, Toninelli, H.’20+)

\[T_{\text{rel}} = \exp \left(\frac{\pi^2}{9p} + \frac{O(\log(1/q))}{\sqrt{p}} \right). \]
FAjf, $d \geq j \geq 3$

Theorem (Cancrini, Martinelli, Roberto, Toninelli’08)

\[
\exp^{j-1} \left(\frac{\lambda(d, j) - o(1)}{p^{1/(d-j+1)}} \right) \leq T_{\text{rel}} \leq \exp^{d-1} \left(\frac{O(1)}{p} \right).
\]
FA$^j f$, $d \geq j \geq 3$

Theorem (Cancrini, Martinelli, Roberto, Toninelli’08)

$$\exp^{j-1} \left(\frac{\lambda(d,j) - o(1)}{p^{1/(d-j+1)}} \right) \leq T_{\text{rel}} \leq \exp^{d-1} \left(\frac{O(1)}{p} \right).$$

Theorem (Martinelli, Toninelli’19)

$$T_{\text{rel}} \leq \exp^{j-1} \left(\frac{O(1)}{p^{1/(d-j+1)}} \right).$$
FAjf, $d \geq j \geq 3$

Theorem (Cancrini, Martinelli, Roberto, Toninelli’08)

$$\exp^{j-1} \left(\frac{\lambda(d, j) - o(1)}{p^{1/(d-j+1)}} \right) \leq T_{\text{rel}} \leq \exp^{d-1} \left(\frac{O(1)}{p} \right).$$

Theorem (Martinelli, Toninelli’19)

$$T_{\text{rel}} \leq \exp^{j-1} \left(\frac{O(1)}{p^{1/(d-j+1)}} \right).$$

Theorem (Martinelli, Toninelli, H.’20+)

$$T_{\text{rel}} \leq \exp^{j-1} \left(\frac{\lambda(d, j)}{p^{1/(d-j+1)}} - \frac{\Omega(1)}{p^{1/(2(d-j+1))}} \right).$$
Importance

For the model:
Importance

For the model:

- Mechanism behind.
Importance

For the model:

- Mechanism behind.
- Bootstrap percolation paradox and slow convergence for $j \geq 3$.
Importance

For the model:

- Mechanism behind.
- Bootstrap percolation paradox and slow convergence for $j \geq 3$.
- Sharp thresholds.
Importance

For the model:

- Mechanism behind.
- Bootstrap percolation paradox and slow convergence for $j \geq 3$.
- Sharp thresholds.

Generalisations:
Importance

For the model:

- Mechanism behind.
- Bootstrap percolation paradox and slow convergence for $j \geq 3$.
- Sharp thresholds.

Generalisations:

- Sharp thresholds for most other models available in bootstrap percolation transfer to KCM.
Importance

For the model:

- Mechanism behind.
- Bootstrap percolation paradox and slow convergence for $j \geq 3$.
- Sharp thresholds.

Generalisations:

- Sharp thresholds for most other models available in bootstrap percolation transfer to KCM.
- The proof extends to all models for which similar results hold (called isotropic). [H.’20+]
Importance

For the model:

- Mechanism behind.
- Bootstrap percolation paradox and slow convergence for \(j \geq 3 \).
- Sharp thresholds.

Generalisations:

- Sharp thresholds for most other models available in bootstrap percolation transfer to KCM.
- The proof extends to all models for which similar results hold (called isotropic). [H.’20+]
- The techniques allow proving tight upper bounds completing universality for critical KCM. [Marêché, H.20+; H.’20+]
Flashes of the proof
Flashes of the proof

- Droplets
Flashes of the proof

- Droplets
- g-CBSEP
Flashes of the proof

- Droplets
- g-CBSEP
- ‘Toy’ model
Flashes of the proof

- Droplets
- \(g \)-CBSEP
- ‘Toy’ model
- Overcoming with non-product measures
Flashes of the proof

- Droplets
- g-CBSEP
- ‘Toy’ model
- Overcoming with non-product measures
- Mobility-cost trade-off
Flashes of the proof

- Droplets
- g-CBSEP
- ‘Toy’ model
- Overcoming with non-product measures
- Mobility-cost trade-off
- ...

Ivailo Hartarsky
CBSEP and FA
Some questions that are not crazy (any more)

- Close the logarithmic gap for T_{Sob}. Also between T_{Sob} and T_{mix}.
Some questions that are not crazy (any more)

- Close the logarithmic gap for T_{Sob}. Also between T_{Sob} and T_{mix}.
- Can one further exploit CBSEP for FA1f?
Some questions that are not crazy (any more)

- Close the logarithmic gap for T_{Sob}. Also between T_{Sob} and T_{mix}.
- Can one further exploit CBSEP for FA1f?
- Is there a discrepancy in the second term between bootstrap percolation and FA2f?
Some questions that are not crazy (any more)

- Close the logarithmic gap for T_{Sob}. Also between T_{Sob} and T_{mix}.
- Can one further exploit CBSEP for FA1f?
- Is there a discrepancy in the second term between bootstrap percolation and FA2f?
- Does the same hold for FAjf out of equilibrium?
Some questions that are not crazy (any more)

- Close the logarithmic gap for T_{Sob}. Also between T_{Sob} and T_{mix}.
- Can one further exploit CBSEP for FA1f?
- Is there a discrepancy in the second term between bootstrap percolation and FA2f?
- Does the same hold for FAj out of equilibrium?
Thank you.
Theorem

There exists $c > 0$ s.t. for any $p_n \to 0$

$$T_{Sob} \leq c \max \left(\frac{d_{\text{avg}} d_{\text{max}}}{d_{\text{min}}^2} T_{\text{mix}}^{\text{rw}} \log(n), \left(\max_y \bar{R}_y \right) n|\log(p_n)| \right),$$

where $T_{\text{mix}}^{\text{rw}}$ is the mixing time of the lazy simple random walk on G.

[Alon-Kozma’18+Lee-Yau’98]