Dating events within gene trees: speciations, duplications, losses

PhD defense

Guillaume Louvel Supervision: Dr. Hugues Roest Crollius September 7, 2020

Institut de Biologie de l'École normale supérieure, Paris

Introduction

Phylogenetic species tree X

Gene tree ≠ species tree

Topics

- I. The accuracy of dating gene tree events
- II. Finding gene trees with correlated losses

Copy Number Variants: **5-9 %**

Duplication and Diversification

Duplication and Diversification

Gene duplications: a continuous mutation process

Gene duplications: ~ 400/22000

Fate of duplicate genes

- loss, pseudogeneisation
- selection for increased dosage
- neofunctionalisation
- subfunctionalisation

Fate of duplicate genes

- loss, pseudogeneisation
- selection for increased dosage
- neofunctionalisation
- subfunctionalisation

- Material for adaptation
- Source of genetic reproductive incompatibilities

Fate of duplicate genes

- loss, pseudogeneisation
- selection for increased dosage
- neofunctionalisation
- subfunctionalisation

- Material for adaptation
- Source of genetic reproductive incompatibilities

Does duplication foster species diversification?

Diversification = speciation – extinction

• 🔇

Diversification = speciation - extinction

Diversification = speciation - extinction

What is the dynamic of gene duplication?

Duplication and Diversification Molecular clock

Zuckerkandl & Pauling, early 80's (Linus

Pauling Institute Newsletter)

Gene tree ≠ species tree Duplication and Diversification Molecular clock

Zuckerkandl & Pauling, early 80's (Linus

Pauling Institute Newsletter)

FIG. 2.—Tryptic peptide patterns of primate hemoglobins. The eircled spot on the Rhesus monkey pattern represents phenylalanine added two and a half inches to the anodal side of the point of application of the peptide mixture.

Figure 2 from Zuckerkandl, Jones, et al. (1960).

100-160 My

100-160 My

100-160 My

From strict to relaxed clocks

• Between genes variation¹

¹Wolfe et al, 1989

²Wu et al, 1985; Britten et al, 1986; Pagel et al, 2006

- Between genes variation¹
- Between taxon variation²

¹Wolfe et al, 1989

²Wu et al, 1985; Britten et al, 1986; Pagel et al, 2006

- Between genes variation¹
- Between taxon variation²
- True for DNA as for proteins.

¹Wolfe et al, 1989

²Wu et al, 1985; Britten et al, 1986; Pagel et al, 2006

- Between genes variation¹
- Between taxon variation²
- True for DNA as for proteins.

¹Wolfe et al, 1989

²Wu et al, 1985; Britten et al, 1986; Pagel et al, 2006

- Between genes variation¹
- Between taxon variation²
- True for DNA as for proteins.

No reason to be constant

- stochastic variations around a mean
- Amino-acids are subject to selection
- Different taxa have different generation times/population sizes...

¹Wolfe et al, 1989

²Wu et al, 1985; Britten et al, 1986; Pagel et al, 2006

Gene tree ≠ species tree

Observations

- Between genes variation¹
- Between taxon variation²
- True for DNA as for proteins.

No reason to be constant

- stochastic variations around a mean
- Amino-acids are subject to selection
- Different taxa have different generation times/population sizes...

¹Wolfe et al, 1989
²Wu et al, 1985; Britten et al, 1986; Pagel et al, 2006

Molecular clock

Modern molecular clock models

• account for site variation of substitution rates,

Molecular clock

Modern molecular clock models

- account for site variation of substitution rates,
- branch rate relaxation,

Modern molecular clock models

- account for site variation of substitution rates,
- branch rate relaxation,
- models fossils placement probabilities.

Modern molecular clock models

- account for site variation of substitution rates,
- branch rate relaxation,
- models fossils placement probabilities.
- Algorithms of inference:

Method	Mean-Path	Least	Markov Chain
	-Length	squares	Monte Carlo (MCMC)
Speed	++	++	
Probabilities	×	×	11

Modern molecular clock models

- account for site variation of substitution rates,
- branch rate relaxation,
- models fossils placement probabilities.
- Algorithms of inference:

Method	Mean-Path	Least	Penalised	Markov Chain
	-Length	squares	likelihood	Monte Carlo (MCMC)
Speed	++	++	+	
Probabilities	×	×	1	11

Sources of uncertainty on dating

From molecular phylogeny

Sources of uncertainty on dating

From molecular phylogeny

Sources of uncertainty on dating

From molecular phylogeny

Sources of uncertainty on dating

Sources of uncertainty on dating

From rates

too low \rightarrow large variance too high \rightarrow saturation

Sources of uncertainty on dating

From rates

too low \rightarrow large variance too high \rightarrow saturation

Sources of uncertainty on dating

From rates

too low \rightarrow large variance too high \rightarrow saturation

Mode of rate variation autocorrelated

Sources of uncertainty on dating

From rates

too low \rightarrow large variance too high \rightarrow saturation

Mode of rate variation autocorrelated VS uncorrelated

≠ species tree Diversification clock single genes	Gene tree ≠ species tree	Duplication and Diversification	Molecular clock	Dating single genes	
---	-----------------------------	------------------------------------	--------------------	------------------------	--

Standard strategy: *concatenate* genes

Gene tree ≠ species tree	Duplication and Diversification	Molecular clock	Dating single genes	
Standard str	rategy: <i>concatenate</i> o	jenes		
?	Bu	t can we date <i>short</i>	sequences?	

Gene tree ≠ species tree	Duplication and Diversification	Molecular clock	Dating single genes	
Standard st	rategy: <i>concatenate</i> g	jenes		
?	Bu	t can we date <i>short</i>	sequences?	

- viruses
- transposons
- miRNAs
- genes families (duplications)

- viruses
- transposons
- miRNAs
- genes families (duplications)

Gene tree ≠ species tree	Duplication and Diversification	Molecular clock	Dating single genes	
Standard str	ategy: <i>concatenate</i> ge	nes		
?	But	can we date <i>short</i>	sequences?	
			Gene 380 (2006) 21-29	
		Evolutionary rate varia Implications for da	tion among vertebrate β gl ting gene family duplication	obin genes: n events
 viruses 		Gabriela Aguileta ^a ,	Joseph P. Bielawski ^{a,b,c,*} , Ziheng	Yang ^a
			PLOS ONE May 17, 2018	
 transposor 	IS	So many ger	nes, so little time: A practical	
		approach to	divergence-time estimation ir	1
 IIIRINAS 	S CITE SETIOITIL ET a			
 genes fami 	ilies			
(duplicatio	nc)			
(duplicatio	(15)			

Gene tree ≠ species tree	Duplication and Diversification	Molecular clock	Dating single genes	
Standard stra	ategy: <i>concatenate</i> ge	enes		
?	But	can we date short	sequences?	
		Evolutionary rate varia Implications for da	Gene 380 (2006) 21–29 tion among vertebrate β g ting gene family duplication	globin genes: on events
 viruses 		Gabriela Aguileta ^a , .	Joseph P. Bielawski ^{a, b, c, *} , Ziheng PLOS ONE May 17, 2018	Yang ^a
 transposon 	S	So many gen	es, so little time: A practical	
 miRNAs 		the genomic	era	
<i>с</i> .		Stephen A. Smith ¹⁺ , Jos	eph W. Brown ^{2e} , Joseph F. Walker ^{1e}	
 genes fami 	lies		Virus Evolution, 2020, 5(2): vez036	
(duplicatio	าร)	Divergence dating	using mixed effects clock mo	delling:
		An application to H	IV-1	

Magda Bletsa, ¹ Marc A. Suchard, ^{2,3,4,†} Xiang Ji,² Sophie Gryseels, ^{1,5} Bram Vrancken, ^{1,4} Guy Baele, ¹ Michael Worobey, ⁵ and Philippe Lemey^{1,*,§}

Can we date gene divergences with confidence?

Can we date gene divergences with confidence?

speciations, duplications

The accuracy of dating gene tree events

Speciations: reference dates

dos Reis et al. (2018)

Test data

EnsEMBL Compara Vertebrata v93

dos Reis et al. (2018)

THE TIMESCALE of LIFE

dos Reis et al. (2018)

Test data

EnsEMBL Compara Vertebrata v93

• 24,562 gene trees & alignments

Test data

EnsEMBL Compara Vertebrata v93

24,562 gene trees & alignments •

5.235 Without duplication/loss.

[=]

dos Reis et al. (2018)

Test data

EnsEMBL Compara Vertebrata v93

• 24,562 gene trees & alignments

• 5,235 Without duplication/loss.

dos Reis et al. (2018)

Test data

EnsEMBL Compara Vertebrata v93

• 24,562 gene trees & alignments

5,235 Without duplication/loss.

Accuracy of dating events in gene trees?

Process alignments

Process alignments

Infer synonymous substitutions

Infer synonymous substitutions

Process alignments

Infer synonymous substitutions

Process alignments

original Ensembl cleaned HmmCleaner¹: alignment segment filtering. realigned FSA: Fast Statistical Aligner²: conservative

Infer synonymous substitutions

Process alignments

Infer synonymous substitutions

Convert to time

original	Ensembl
cleaned	HmmCleaner ¹ : alignment segment filtering.
realigned	FSA: Fast Statistical Aligner ² : conservative

Codeml³

Measure synonymous substitutions (dS).

- site model (gamma)

- branch model ("free-ratio").

Mean-Path-Length (MPL)⁴

(implemented)

¹Di Franco et al. (2019) ²Bradley et al. (2009) ³Yang (2007)

Process alignments

Infer synonymous substitutions

Convert to time

original	Ensembl
cleaned	HmmCleaner ¹ : alignment segment filtering.
realigned	FSA: Fast Statistical Aligner ² : conservative

Codeml³

Measure synonymous substitutions (dS).

- site model (gamma)

 branch model ("free-ratio").

, free-ratio).

Mean-Path-Length (MPL)⁴

(implemented)

(1) original, siteMPL

(2) original, branchMPL

- (3) cleaned, branchMPL
- (4) FSA, branchMPL
- (5) FSA+cleaned, branchMPL

¹Di Franco et al. (2019) ²Bradley et al. (2009) ³Yang (2007) ⁴Britton, Oxelman, et al. (2002) and Britton, Anderson, et al. (2007)

Process alignments

Infer synonymous substitutions

Convert to time

Codeml ^o	Beast2 ⁵
Measure synonymous substitutions (<i>dS</i>). • <i>site</i> model (gamma) • <i>branch</i> model "free-ratio").	Bayesian (MCMC) simultaneous fit.
Mean-Path-Length (MPL) ⁴	
(implemented)	

(1) original, siteMPL

- (2) original, branchMPL
- (3) cleaned, branchMPL
- (4) FSA, branchMPL
- (5) FSA+cleaned, branchMPL

Process alignments

Infer synonymous substitutions

Convert to time

original	Ensembl
cleaned	HmmCleaner 1 : alignment segment filtering.
realigned	FSA: Fast Statistical Aligner ² : conservative

Codeml ⁵	Beast2 ⁵
Aeasure synonymous ubstitutions (<i>dS</i>). <i>site</i> model (gamma) <i>branch</i> model "free-ratio").	Bayesian (MCMC) simultaneous fit.
4ean-Path-Length (MPL) ⁴	
implemented)	

(1) original, siteMPL

- (2) original, branchMPL
- (3) cleaned, branchMPL
- (4) FSA, branchMPL
- (5) FSA+cleaned, branchMPL
- (6) FSA, Beast
- (7) FSA+cleaned, Beast.

Dispersion: Mean Absolute Deviation from the Median

 $\frac{1}{n}\sum_{i=1}^{n}|x_{i}-\mathrm{med}(X)|$

Dispersion: Mean Absolute Deviation from the Median

$$\frac{1}{n}\sum_{i}^{n}|x_{i}-\mathrm{med}(X)|$$

More robust than standard deviation More sensitive than quantile intervals.

I. Evaluating the dating confidence

I. Evaluating the dating confidence

Low Error

I. Evaluating the dating confidence ts Ardeaned

Beast

 $(\tilde{7})$

4.07

4.89

0.83

1,49

1,99

3.40

4.25

3.43

2.54

2.04

1.14

Low Error

(6)

3.22

3.75

1.18

1.65

2.05

3.15

3.64

4.33

3.39

3.08

2.55

1.44

(5)

4.17

4.05

1.10

1.79

2.00

3.10

3.27

3.40

3.37

2.98

1.96

1.18

MAD (My)

I. Evaluating the dating confidence

18

dating confidence 55Arcleaned 15 Ardeaned Planthal pranchapt branchapt original t cleaned original FSA Beast (2) (5) (6) $(\tilde{7})$ (3) (4) Bolivian squirrel monkey Cebidae 4.21 4.23 4.17 3.22 4.07 Capuchin 3.75 Platyrrhini 4.16 4.13 4.05 4.89 Mas night monkey Marmoset Pan paniscus Pan 1.24 1.20 1.10 1.18 0.83 Chimpanzee -HomoPan 1.88 1.86 1.79 1.65 1,49 Human -Homininae 2.83 2.08 2.07 2.00 2.05 1,99 Gorilla -Hominidae 3.84 3.12 3.16 3.10 3.15 3.40 Orangutan Hominoidea 4.01 3.30 3.33 3.27 3.64 4.25 Gibbon Catarrhini 3.36 3.40 4.33 3.85 3.56 3.40 Angola colobus Cercopithecidae 4.00 3.42 3.40 3.37 3.39 3.43 Vervet Monkey Cercopithecinae 3.82 3.06 3.06 2.98 3.08 2.54 Sooty mangabey Drill Papionini 3.04 2.10 2.07 1.96 2.55 2.04 Olive baboon -Pig-tailed macaque Crab-eating macaque Rhesus Macaca 1.36 1.34 1.18 1.44 1.14 Mean 3.61 2.77 2.77 2.70 2.79 2.97 10 20 30 40 Ó 50

High Error

Age (Mya)

MAD (My)

18

I. Evaluating the

Low Error

I. Evaluating the dating confidence

18

A branch model and better alignments give lower dispersions

Procedure FSA+cleaned, branchMPL

Procedure FSA+cleaned, branchMPL

Procedure FSA+cleaned, branchMPL

60 gene tree features

• Alignment features:

length, gaps, %GC, entropy...

• Substitution features:

dS rate, transition/transversion ratio...

• Cleaning statistics:

proportion removed by HmmCleaner,...

60 gene tree features

• Alignment features:

length, gaps, %GC, entropy...

• Substitution features:

dS rate, transition/transversion ratio...

• Cleaning statistics:

proportion removed by HmmCleaner,...

60 gene tree features

• Alignment features:

length, gaps, %GC, entropy...

• Substitution features:

dS rate, transition/transversion ratio...

• Cleaning statistics:

proportion removed by HmmCleaner,...

Dimension reduction Lasso regression

Rate variation and alignment length influence the dating accuracy

The controled dates were obtained for constrained trees...

The controled dates were obtained for constrained trees...

Summary

Desirable features for confident dating

- dS heterotachy $< 1.7 \times 10^{-3}$ subst/codon/My

Summary

Desirable features for confident dating

- dS heterotachy $< 1.7 \times 10^{-3}$ subst/codon/My
- alignment lengths > 1289 bp.

Summary

Desirable features for confident dating

- dS heterotachy $< 1.7 \times 10^{-3}$ subst/codon/My
- alignment lengths > 1289 bp.
Summary

Desirable features for confident dating

- dS heterotachy $< 1.7 \times 10^{-3}$ subst/codon/My
- alignment lengths > 1289 bp.

"Factors influencing the accuracy in dating single gene trees". Louvel, G and H. Roest Crollius (submitted + bioRyiv) • Real genome-wide data

- Real genome-wide data
- Noisy rates at the scale of the gene

- Real genome-wide data
- Noisy rates at the scale of the gene
- Genes with duplications/loss are inaccurate

- Real genome-wide data
- Noisy rates at the scale of the gene
- Genes with duplications/loss are inaccurate
- Molecular clock dating on short sequences (virus, genes): challenging.

Finding gene trees with correlated losses

I. Evaluating the	II. Predicted accuracy	III. Correlated
dating confidence	with duplications	gene losses

Jeanne Amiel¹, Christopher Gordon¹, Bruno Reversade²

Genetic laterality disorders

- situs inversus
- heart & visceral organ defects

¹Institut Imagine, Paris

²Institute of Medical Biology, Singapore

I. Evaluating the	II. Predicted accuracy	III. Correlated
dating confidence	with duplications	gene losses

Jeanne Amiel¹, Christopher Gordon¹, Bruno Reversade²

Genetic laterality disorders

- situs inversus
- heart & visceral organ defects

Embryonic Left-Right Organizer (from Tajhya

& Delling, 2019)

¹Institut Imagine, Paris

²Institute of Medical Biology, Singapore

- The lateralisation mechanism is partially understood
- It is medically relevant (1/10000 births have defects)

- The lateralisation mechanism is partially understood
- It is medically relevant (1/10000 births have defects)

Genes: MMP21, PKD1L1, DAND5, ...

2 independent losses of motile cilia in amniotes.

2 independent losses of motile cilia in amniotes. MMP21, PKD1L1, DAND5 genes.

?

Can we find unknown lateralisation genes based on their phylogeny?

Phylogenetic presence score

I. Evaluating the	II. Predicted accuracy	III. Correlated
dating confidence	with duplications	gene losses

Phylogenetic presence score

Score	Human gene	Description
1.948	MMP21	matrix metallopeptidase 21
1.897	CDC42SE2	CDC42 small effector 2
1.807	ADIPOR1	adiponectin receptor 1
1.756	DAND5	DAN domain BMP antagonist family member 5
1.748	SLC25A18	solute carrier family 25 member 18
1.671	TNFRSF14	TNF receptor superfamily member 14
1.628	TRIM60;TRIM75P	tripartite motif containing 60; 75, pseudogene
1.410	PKD1L1	polycystin 1 like 1, transient receptor potential channel interacting
1.346	RPL41	ribosomal protein L41
1.307	ARL6IP1	ADP ribosylation factor like GTPase 6 interacting protein 1
1.282	MS4A4A;MS4A4E	membrane spanning 4-domains A4A; A4E
1.243	HS3ST3A1	heparan sulfate-glucosamine 3-sulfotransferase 3A1
1.230	C1orf127	chromosome 1 open reading frame 127
1.230	SMIM22	small integral membrane protein 22
1.205	L3MBTL4	L3MBTL4, histone methyl-lysine binding protein
1.2	PPP2R2D	protein phosphatase 2 regulatory subunit Bdelta
1.182	ADGRG4	adhesion G protein-coupled receptor G4
1.141	PSKH2	protein serine kinase H2
1.141	AC067968.1; ZNF155, 221-225, 230,	Zinc fingers proteins
	234, 284	
1.128	LMLN2	leishmanolysin like peptidase 2
1.102		
1.102	AC022167.5	lipopolysaccharide-induced tumor necrosis factor-alpha factor-like
1.082	CHIT1	chitinase 1
1.076	RPL39	ribosomal protein L39
1.076	KIAA1586	KIAA1586

Score	Human gene	Description
1.948	MMP21	matrix metallopeptidase 21
1.897	CDC42SE2	CDC42 small effector 2
1.807	ADIPOR1	adiponectin receptor 1
1.756	DAND5	DAN domain BMP antagonist family member 5
1.748	SLC25A18	solute carrier family 25 member 18
1.671	TNFRSF14	TNF receptor superfamily member 14
1.628	TRIM60;TRIM75P	tripartite motif containing 60; 75, pseudogene
1.410	PKD1L1	polycystin 1 like 1, transient receptor potential channel interacting
1.346	RPL41	ribosomal protein L41
1.307	ARL6IP1	ADP ribosylation factor like GTPase 6 interacting protein 1
1.282	MS4A4A;MS4A4E	membrane spanning 4-domains A4A; A4E
1.243	HS3ST3A1	heparan sulfate-glucosamine 3-sulfotransferase 3A1
1.230	C1orf127	chromosome 1 open reading frame 127
1.230	SMIM22	small integral membrane protein 22
1.205	L3MBTL4	L3MBTL4, histone methyl-lysine binding protein
1.2	PPP2R2D	protein phosphatase 2 regulatory subunit Bdelta
1.182	ADGRG4	adhesion G protein-coupled receptor G4
1.141	PSKH2	protein serine kinase H2
1.141	AC067968.1; ZNF155, 221-225, 230,	Zinc fingers proteins
	234, 284	
1.128	LMLN2	leishmanolysin like peptidase 2
1.102		
1.102	AC022167.5	lipopolysaccharide-induced tumor necrosis factor-alpha factor-like
1.082	CHIT1	chitinase 1
1.076	RPL39	ribosomal protein L39
1.076	KIAA1586	KIAA1586

Score	Human gene	Description
1.948	MMP21	matrix metallopeptidase 21
1.897	CDC42SE2	CDC42 small effector 2
1.807	ADIPOR1	adiponectin receptor 1
1.756	DAND5	DAN domain BMP antagonist family member 5
1.748	SLC25A18	solute carrier family 25 member 18
1.671	TNFRSF14	TNF receptor superfamily member 14
1.628	TRIM60;TRIM75P	tripartite motif containing 60; 75, pseudogene
1.410	PKD1L1	polycystin 1 like 1, transient receptor potential channel interacting
1.346	RPL41	ribosomal protein L41
1.307	ARL6IP1	ADP ribosylation factor like GTPase 6 interacting protein 1
1.282	MS4A4A;MS4A4E	membrane spanning 4-domains A4A; A4E
1.243	HS3ST3A1	heparan sulfate-glucosamine 3-sulfotransferase 3A1
1.230	C1orf127	chromosome 1 open reading frame 127
1.230	SMIM22	small integral membrane protein 22
1.205	L3MBTL4	L3MBTL4, histone methyl-lysine binding protein
1.2	PPP2R2D	protein phosphatase 2 regulatory subunit Bdelta
1.182	ADGRG4	adhesion G protein-coupled receptor G4
1.141	PSKH2	protein serine kinase H2
1.141	AC067968.1; ZNF155, 221-225, 230,	Zinc fingers proteins
	234, 284	
1.128	LMLN2	leishmanolysin like peptidase 2
1.102		
1.102	AC022167.5	lipopolysaccharide-induced tumor necrosis factor-alpha factor-like
1.082	CHIT1	chitinase 1
1.076	RPL39	ribosomal protein L39
1.076	KIAA1586	KIAA1586

30

Score	Human gene	Description	
1.948	MMP21	matrix metallopeptidase 21	With signal pentide
1.897	CDC42SE2	CDC42 small effector 2	with signat peptide
1.807	ADIPOR1	adiponectin receptor 1	
1.756	DAND5	DAN domain BMP antagonist family member 5	
1.748	SLC25A18	solute carrier family 25 member 18	
1.671	TNFRSF14	TNF receptor superfamily member 14	
1.628	TRIM60;TRIM75P	tripartite motif containing 60; 75, pseudogene	
1.410	PKD1L1	polycystin 1 like 1, transient receptor potential channel in	teracting
1.346	RPL41	ribosomal protein L41	
1.307	ARL6IP1	ADP ribosylation factor like GTPase 6 interacting protein 1	
1.282	MS4A4A;MS4A4E	membrane spanning 4-domains A4A; A4E	
1.243	HS3ST3A1	heparan sulfate-glucosamine 3-sulfotransferase 3A1	
1.230	C1orf127	chromosome 1 open reading frame 127	
1.230	SMIM22	small integral membrane protein 22	
1.205	L3MBTL4	L3MBTL4, histone methyl-lysine binding protein	
1.2	PPP2R2D	protein phosphatase 2 regulatory subunit Bdelta	
1.182	ADGRG4	adhesion G protein-coupled receptor G4	
1.141	PSKH2	protein serine kinase H2	
1.141	AC067968.1; ZNF155, 221-225, 230,	Zinc fingers proteins	
	234, 284		
1.128	LMLN2	leishmanolysin like peptidase 2	
1.102			
1.102	AC022167.5	lipopolysaccharide-induced tumor necrosis factor-alpha fa	ctor-like
1.082	CHIT1	chitinase 1	
1.076	RPL39	ribosomal protein L39	
1.076	KIAA1586	KIAA1586	

Score	Human gene	Description	
1.948	MMP21	matrix metallopeptidase 21	With signal pentide
1.897	CDC42SE2	CDC42 small effector 2	with signal peptide
1.807	ADIPOR1	adiponectin receptor 1	
1.756	DAND5	DAN domain BMP antagonist family member 5	
1.748	SLC25A18	solute carrier family 25 member 18	
1.671	TNFRSF14	TNF receptor superfamily member 14	
1.628	TRIM60;TRIM75P	tripartite motif containing 60; 75, pseudogene	
1.410	PKD1L1	polycystin 1 like 1, transient receptor potential channel in	teracting
1.346	RPL41	ribosomal protein L41	
1.307	ARL6IP1	ADP ribosylation factor like GTPase 6 interacting protein 1	
1.282	MS4A4A;MS4A4E	membrane spanning 4-domains A4A; A4E	
1.243	HS3ST3A1	heparan sulfate-glucosamine 3-sulfotransferase 3A1	
1.230	C1orf127	chromosome 1 open reading frame 127	
1.230	SMIM22	small integral membrane protein 22	
1.205	L3MBTL4	L3MBTL4, histone methyl-lysine binding protein	
1.2	PPP2R2D	protein phosphatase 2 regulatory subunit Bdelta	
1.182	ADGRG4	adhesion G protein-coupled receptor G4	
1.141	PSKH2	protein serine kinase H2	
1.141	AC067968.1; ZNF155, 221-225, 230,	Zinc fingers proteins	
	234, 284		
1.128	LMLN2	leishmanolysin like peptidase 2	
1.102			
1.102	AC022167.5	lipopolysaccharide-induced tumor necrosis factor-alpha fa	ctor-like
1.082	CHIT1	chitinase 1	
1.076	RPL39	ribosomal protein L39	
1.076	KIAA1586	KIAA1586	

Score	Human gene	Description	
1.948	MMP21	matrix metallopeptidase 21	With signal pentide
1.897	CDC42SE2	CDC42 small effector 2	with signal peptide
1.807	ADIPOR1	adiponectin receptor 1	
1.756	DAND5	DAN domain BMP antagonist family member 5	
1.748	SLC25A18	solute carrier family 25 member 18	
1.671	TNFRSF14	TNF receptor superfamily member 14	
1.628	TRIM60;TRIM75P	tripartite motif containing 60; 75, pseudogene	
1.410	PKD1L1	polycystin 1 like 1, transient receptor potential channel in	teracting
1.346	RPL41	ribosomal protein L41	
1.307	ARL6IP1	ADP ribosylation factor like GTPase 6 interacting protein 1	L
1.282	MS4A4A;MS4A4E	membrane spanning 4-domains A4A; A4E	
1.243	HS3ST3A1	heparan sulfate-glucosamine 3-sulfotransferase 3A1	
1.230	C1orf127 = TDT	chromosome 1 open reading frame 127	
1.230	SMIM22	small integral membrane protein 22	
1.205	L3MBTL4	L3MBTL4, histone methyl-lysine binding protein	
1.2	PPP2R2D	protein phosphatase 2 regulatory subunit Bdelta	
1.182	ADGRG4	adhesion G protein-coupled receptor G4	
1.141	PSKH2	protein serine kinase H2	
1.141	AC067968.1; ZNF155, 221-225, 230,	Zinc fingers proteins	
	234, 284		
1.128	LMLN2 = ALED	leishmanolysin like peptidase 2	
1.102			
1.102	AC022167.5	lipopolysaccharide-induced tumor necrosis factor-alpha fa	actor-like
1.082	CHIT1	chitinase 1	
1.076	RPL39	ribosomal protein L39	
1.076	KIAA1586	KIAA1586	

I. Evaluating the	II. Predicted accuracy	III. Correlated
dating confidence	with duplications	gene losses

Experimental validation of TDT and ALED.

"A functional operon delineates an extracellular pathway that controls Left-Right patterning only in animals with a ciliated organizer".

Szenker-Ravi, E et al. (submitted)

I. Evaluating the	II. Predicted accuracy	III. Correlated
dating confidence	with duplications	gene losses

Experimental validation of TDT and ALED.

Screened 2 millions Conserved Non-Coding Elements.

"A functional operon delineates an extracellular pathway that controls Left-Right patterning only in animals with a ciliated organizer".

Szenker-Ravi, E et al. (submitted)

Conclusions & perspectives

• Estimating rates does not necessarily requires dates (Birth-Death model)

• Estimating rates does not necessarily requires dates (Birth-Death model)

• Estimating rates does not necessarily requires dates (Birth-Death model)

Family-wise duplication

Estimating rates does not necessarily requires dates (Birth-Death model)

Phylogeny-aware correlation

"clocks without rocks"¹

¹Tiley et al, 2020

- "clocks without rocks"¹
- flood of new genomes (Genome10K vertebrates)

¹Tiley et al, 2020

- "clocks without rocks"¹
- flood of new genomes (Genome10K vertebrates)

¹Tiley et al, 2020

- "clocks without rocks"¹
- flood of new genomes (Genome10K vertebrates)

Are needed:

• Phylogenetic Comparative Methods

¹Tiley et al, 2020

- "clocks without rocks"¹
- flood of new genomes (Genome10K vertebrates)

Are needed:

- Phylogenetic Comparative Methods
- Genomic information complementary to sequences.

¹Tiley et al, 2020

Hugues Roest Crollius

Dyogen team Alexandra Louis **Camille Berthelot** Yves Clément Lambert Moyon Élise Parev François Giudicelli Nga Thi-Thuy Nguyen Gosia, Axelle, Franklin

IT platform Pierre Vincens Bilel, Catherine, Nolwenn, Phi-Phong

PhD committee & advice Gilles Fischer Nicolas Lartillot Hélène Morlon **4th year funding** Fondation pour la Recherche Médicale FRM FDT201904008392

Supplementary

Desirable features for confident dating

From 5235 constrained trees, 24566 total.

Number of trees

- alignment length < 1289
- dS heterotachy > 1.7×10^{-3} :

Alternative threshold

50% of tested trees are in the 10th decile of the training set dating error.

- alignment length: 822 bp (622 trees)
- dS heterotachy: 2.23 \times 10 $^{-3}$ (241 trees)

Desirable features for confident dating - table

	Error (My)	dS heterotachy	Alignment length	Mean dS rate (10 ^{–3}	Mean GC (%)
		(10 ⁻³	(nucleotides)	subst/codon/My)
		subst/codon/My	')		
10% lowest predicted accuracy	$3,74 \pm 1,42$	$\textbf{1,7} \pm \textbf{1,1}$	1289 ± 702	$\textbf{2},\textbf{02}\pm\textbf{1},\textbf{07}$	$52,0\pm8,5$
10% highest predicted accuracy	$\textbf{1},\textbf{28}\pm\textbf{0},\textbf{39}$	$0,46\pm0,26$	$\textbf{7031} \pm \textbf{3866}$	$2,02\pm0,95$	$55,7\pm7,4$

Estimated VS reference ages

Age distributions

IQR95 by procedure

	Dating method							
	(1) ioin	AP (2) ioin	at mpt area	that a sarah	chest arch	eaned the the topean	st (1) at ch	eaned
Cebidae	32.95	32.55	21.68	22.02	21.55	18.56	19.53	
Platyrrhini	30.78	28.31	22.21	22.70	22.05	22.58	26.54	
Pan	20.24	15.51	7.17	6.62	5.91	7.42	4.51	
HomoPan	22.37	16.17	9.80	9.95	9.50	9.62	7.54	
မ္မ Homininae	24.16	15.93	11.10	11.15	10.68	12.26	10.70	
² Hominidae	24.99	21.42	16.45	16.90	16.60	18.74	17.54	
਼ੁਰੂ Hominoidea	25.86	22.10	17.26	17.51	17.04	21.43	22.92	
Catarrhini	20.21	18.72	17.77	18.11	18.20	23.40	32.41	
🖁 Cercopithecidae	26.41	21.26	18.01	17.83	17.59	20.32	19.41	
Cercopithecinae	27.44	20.17	15.92	15.98	15.72	17.31	14.17	
Papionini	26.75	17.32	11.60	11.31	10.64	15.06	11.94	
Macaca	22.92	17.60	8.30	8.13	6.76	9.25	6.70	
Mean	25.42	20.59	14.77	14.85	14.35	16.33	16.16	

Row maximum

Row minimum

Relative dispersion (horizontally)

Regressing features specific to each speciation

Considering each speciation independently: 12 regressions.

Regressing features specific to each speciation

Considering each speciation independently: 12 regressions.

New X variable: local heterotachy

Regressing features specific to each speciation

Considering each speciation independently: 12 regressions.

New X variable: local heterotachy

Local rate: variable impact

- Local rate: variable impact
- Global rate: consistent impact

- Local rate: variable impact
- Global rate: consistent impact
- Heterotachy: more impact locally

- Local rate: variable impact
- Global rate: consistent impact
- Heterotachy: more impact locally
- Alignment length

- Local rate:
 variable impact
- Global rate: consistent impact
- Heterotachy: more impact locally
- Alignment length
- No obvious trend by age

Approximate rate & heterotachy

Calibration

MPL with internal calibrations

Prediction: root-to-tip approx, keep unwanted

Prediction: root-to-tip approx

Prediction: spe-to-spe approx

Dated duplications

Duplication rates by family

Distribution of the family-wise duplication rate

	δ	$\delta > 0$	λ	$\lambda_{\delta > 0}$	$\lambda_{\delta=0}$	
Beta prime	0.1859	0.0533	0.5878	1.5192	0.8092	Column maximum
Chi	0.1832	0.1756	0.5753	1.4657	0.7949	Condition
Chi²	0.1859	0.0842	0.5877	1.5192	0.8092	
Exponentielle	0.3270	0.0853	0.5996	1.3368	0.8027	
Exponentielle puissance	0.2046	0.1684	0.5708	1.4015	0.7917	
Log-logistique (Fisk)	0.2126	0.0527	0.6413	1.6800	0.8609	
Cauchy repliée	0.2759	0.0993	0.6636	1.6801	0.8835	
Normale repliée	0.7073	0.1748	0.5421	1.3965	0.8127	
Gompertz	0.3270	0.0897	0.5582	1.3834	0.7979	
Gamma	0.1860	0.0842	0.5877	1.5192	0.8092	
Gamma généralisée	0.1902	0.0609	0.6181	1.4959		
Gamma inverse	0.2332	0.2538	1.3521	1.6917	1.3176	
Gaussienne inverse	0.1178	0.1720	2.2396	2.3991	2.0919	
Pareto	0.4207	0.9280	inf			
Pareto généralisée	0.2418	0.0878	0.5532	1.3426		
Weibull	0.2109	0.0966	0.5820	1.5007	0.8110	
Weibull exponentielle	0.1918	0.0583	0.6149	1.4947	inf	
Fréchet	0.2119	0.2396	1.0256	1.3763	1.0619	

Column minimum

Residual plots of the global regression

Genome assembly quality

N50 *size* of scaffold such that 50% genes are in larger scaffolds

K70 number of largest scaffolds containing > 70% genes.

Remove aberrant branch lengths from the forest

Figure 5: Distribution of log(branch lengths) in *all* gene trees

Remove aberrant branch lengths from the forest

Figure 5: Distribution of log(branch lengths) in *all* gene trees

Remove aberrant branch lengths from the forest

Figure 5: Distribution of log(branch lengths) in *all* gene trees

Features correlated with the duplication rate

GO terms comparison of high error trees VS low error trees

Results 🕐

Results 🕐			
	Reference list	low_err_tested_geneids.txt	high_err_tested_geneids.txt
Uniquely Mapped IDS:	<u>1945</u> out of 1944	1565 out of 1565	380 out of 379
Unmapped IDs:	46	24	22
Multiple mapping information:	2	Q	2

mort able XML with user input ids JSON with user input ids

Isolaving only results for FDR P < 0.05, click here to display all results

	tested_geneids.txt (REF)		low_err_tested_geneids.txt (▼ Hierarchy_NEWI ⑦)						high_err_tested_geneids.txt (Hierarchy) NEW! (?)						
GO biological process complete	<u>#</u>	<u>#</u>	expected	Fold Enrichment	<u>+/-</u>	raw P value	FDR	Ħ	expected	Fold Enrichment	+/-	raw P value	FDR		
G protein-coupled receptor signaling pathway	227	113	182.74	.62		9.14E-06	7.87E-03	<u>114</u>	44.26	2.58	+	1.75E-17	1.51E-14		
detection of chemical stimulus involved in sensory perception of smell	<u>145</u>	<u>45</u>	116.73	.39	-	1.13E-09	8.79E-06	<u>100</u>	28.27	3.54	+	9.33E-23	7.23E-19		
+sensory perception of smell	<u>146</u>	<u>46</u>	117.54	.39	-	1.42E-09	5.51E-06	<u>100</u>	28.46	3.51	+	1.36E-22	5.28E-19		
4sensory perception of chemical stimulus	<u>153</u>	<u>51</u>	123.17	.41	-	2.87E-09	7.41E-06	<u>102</u>	29.83	3.42	+	2.03E-22	5.25E-19		
4sensory perception	<u>198</u>	<u>91</u>	159.40	.57	-	2.41E-06	2.33E-03	<u>107</u>	38.60	2.77	+	3.21E-18	3.11E-15		
hervous system process	234	122	188.38	.65	-	3.82E-05	2.96E-02	<u>112</u>	45.62	2.46	+	5.51E-16	4.28E-13		
+detection of chemical stimulus involved in sensory perception	<u>148</u>	<u>48</u>	119.15	.40	-	3.21E-09	6.22E-06	<u>100</u>	28.85	3.47	+	2.89E-22	5.60E-19		
Indetection of stimulus involved in sensory perception	<u>156</u>	<u>56</u>	125.59	.45	-	2.06E-08	2.67E-05	<u>100</u>	30.41	3.29	+	6.02E-21	7.78E-18		
Hetection of stimulus	<u>175</u>	72	140.88	.51	-	2.74E-07	3.04E-04	<u>103</u>	34.12	3.02	+	1.51E-19	1.67E-16		
4detection of chemical stimulus	<u>153</u>	<u>52</u>	123.17	.42	-	7.06E-09	1.10E-05	<u>101</u>	29.83	3.39	+	6.07E-22	9.42E-19		

