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Monsieur et Madame Ome ont une fille, comment s’appelle-t-elle ?

1l faut vraiment que je donne la réponse ?

1l s’embrouillait dans les polynomes, se disculpa
le professeur de mathématiques, et quand un éléve
s’embrouille dans les polynémes, que peut-on faire ¢

ANTONIO LOBO ANTUNES.

Avant de s’attaquer vraiment & ’algébre linéaire, ce chapitre servira entre autres d’introduction
par ’exemple aux concepts plus généraux développés ensuite dans toute leur généralité sur les espaces
vectoriels. Les polynoémes constituent en effet un excellent exemple d’objet mathématique formel,
mais avec lequel on peut faire des calculs, par le biais d’opérations simples comme la somme, le
produit ou la composition. C’est ce genre de notions (opérations « utiles » sur un ensemble) que nous
essaierons de généraliser ensuite. Ce chapitre sera également I’occasion d’exploiter les théorémes vus
en arithmétique pour les « copier » dans le cadre des anneaux de polynoémes, mais aussi de croiser
pour la premiére fois une formule d’importance capitale en analyse, et que nous retrouverons sous
d’autres formes & plusieurs reprises ensuite : la formule de Taylor. Bref, les polynémes forment un
objet d’études central en mathématiques, a la frontiére de domaines trés variés : algébre, arithmétique,
analyse. C’est pourquoi les applications des méthodes vues dans ce chapitre sont aussi nombreuses
et variées.

Objectifs du chapitre :

e savoir factoriser ou effectuer une division euclidienne sur des polynémes a coefficients réels ou
complexes.

e maitriser la factorisation d’'un polynéme en produits de facteurs irréductibles, dans R[X]
comme dans C[X].

e comprendre ce que signifie la formule de Taylor d’un point de vue analytique.

1 L’anneau K[X].

Dans toute cette partie, comme précédemment dans le chapitre de calcul matriciel, la notation
K désigne un corps quelconque qui sera en pratique la plupart du temps R ou C, avec quelques rares
incursions dans le corps Q des rationnels.



Définition 1. Un polynéme a coefficients dans K est un objet mathématique formel s’écrivant
k=n

P = E ap X", ou (ag,at,...,a,) € K" et X est 'indéterminée destinée & étre remplacée par

k=0
n’importe quel objet pour lequel le calcul de P peut avoir un sens (des nombres réels ou complexes

feront bien str 'affaire, mais aussi tout objet mathématique pour lequel on peut calculer des puis-
sances et qu’on peut multiplier par des éléments de K, notamment les matrices carrées, les suites ou
les fonctions).

Remarque 1. 11 est important de ne pas identifier (surtout si K = R) le polynéme avec la fonction
polyndmiale associée. C’est en partie pour cela que I'indéterminée est notée X et non x quand on
parle de polynomes formels : X n’est pas forcément un nombre. Ainsi, si P = X2 + 3X + 1, on
peut calculer, pour une matrice M € M3(R), P(M) = M? + 3M + I3 (attention & ne pas oublier
de remplacer le 1, qu’on devrait techniquement noter X°, par 1’élément neutre de I’ensemble ot se
trouve 1'objet auquel on applique le polynéme). On peut méme calculer, pour une fonction comme
In, P(In) qui sera la fonction f : z — In?(z) + 31In(z) + 1.

k=n

Définition 2. Soit P = Z ap X" un polynéme, avec a,, # 0.

k=0
Les nombres ay sont les coefficients du polynéme P
I'entier n est le degré de P (souvent noté d°(P))
le coefficient a,, est le coefficient dominant de P
un polyndéme est unitaire si ce coefficient dominant est égal a 1
un mondéme est un polynéme n’ayant qu'un seul coefficient non nul (tout polynéme est donc
par définition une somme de monomes).

Remarque 2. Par convention, le polynéme nul a pour degré —oo. C’est relativement cohérent avec
les propriétés énoncées ci-dessous.

Définition 3. On note K[X] 'ensemble de tous les polynémes a coefficients dans K, sans distinction
de degré. On note aussi, pour tout entier naturel n, K, [X] I'ensemble des polynomes de degré inférieur
ou égal & n a coeflicients dans K.

Remarque 3. On considére I'ensemble des polyndmes vérifiant la condition d°(P) < n et non pas
d°(P) = n car ce dernier ensemble ne serait pas stable par somme, comme on va le voir ci-dessous,
et ne serait pour cette raison pas muni d’une structure d’espace vectoriel.

n p
Définition 4. Soient P = Zaka et Q = Zkak deux polynémes appartenant a K[X], leur

k=0 k=0
max(n,p)
somme est le polynéome P + Q = Z (ar, + bp) X*.
k=0

Proposition 1. La somme de polynémes est associative, commutative, et admet pour

élément neutre le polynéme nul (noté 0) dont tous les coefficients sont nuls. De plus, tout
n n

polynéme P = Zaka admet un opposé noté —P défini par —P = Z(—ak)Xk, et

k=0 k=0
vérifiant donc P + (—P) = 0. Autrement dit, (K[X], +) est un groupe commutatif.

Démonstration. Tout est absolument trivial. O



n p
Définition 5. Soient P = Zaka et Q = Zkak deux polynomes appartenant a K[X], leur

k=0 k=0
n+p k
produit est le polynéme PQ = Z (Z aika-) X",
k=0 \i=0

Proposition 2. L’élément neutre pour le produit de polynémes est le polyndéme constant
1. L’ensemble (K[X], 4, X) est un anneau commutatif intégre.

Démonstration. Ces résultats sont nettement moins évidents & prouver que pour la somme. La com-
mutativité s’obtient assez facilement en effectuant le changement d’indice j = k — ¢ dans la somme
intérieure de la définition du produit (ce qui a bien un sens, cela revient a parcourir cette somme « a
Ienvers »). La distributivité est également assez facile en découpant simplement la somme définissant
P(Q+ R) en deux morceaux. Le fait que 1 soit élément neutre est facile. Par contre, I’associativité est
franchement pénible, puisqu’il faut des triples sommes pour décrire le produit P(QR). Contentons-
nous d’écrire son coefficient de degré k (en notant a;, b; et ¢, les coefficients respectifs des polynomes

p k—i
P,Qet R) : il vaut Z a; Z b;jck—i—;. On peut Iécrire plus simplement sous la forme Z a;bjcy,.
=0 j=0 i+j+p=Fk

Cette formule est complétement symétrique par rapport aux trois polynémes, on obtiendra exacte-
ment la méme pour (PQ)R, ce qui prouve l'associativité du produit. Enfin, l'intégrité de ’anneau
découle du fait que, par définition méme du produit, on aura d°(PQ) = d°(P) + d°(Q) pour deux
polynomes non nuls P et @, leur produit ne peut donc pas étre nul (il est de degré positif). [l

Remarque 4. On peut aussi munir ensemble K[X] d’un produit extérieur par les éléments de K en
identifiant simplement ces deniers avec les polyndmes constants (ce qu’on fait de fait en permanence),
ce qui munit alors K[X] d’une structure d’espace vectoriel sur K. Vous aurez bien sir droit a une
définition compléte (et affreuse) dans un chapitre ultérieur, mais 'idée est 1a : un produit par des
constantes et une addition qui vérifient quelques propriétés élémentaires naturelles. C’est d’ailleurs
pour que K,[X] soit un sous-espace vectoriel de K[X] qu’'on a inclus dans cet ensemble tous les
polynémes de degré strictement inférieur & n (pour étre un sous-espace vectoriel, un sous-ensemble
doit notamment étre un sous-groupe, donc stable par somme, ce qui ne serait pas le cas de I’ensemble
des polyndmes de degré exactement égal a n).

Proposition 3. Soient P et ) deux polynoémes, alors d°(P + Q) < max(d’(P),d°(Q)), et
F(PQ) = &(P) + &(Q).

Démonstration. Cela découle immédiatement des définitions données des deux opérations (on l'a
d’ailleurs déja indiqué plus haut pour le produit). L’inégalité peut étre stricte pour le degré de la
somme, dans le cas ou P et () sont de méme degré mais ont un coefficient dominant opposé. Par
contre, c’est toujours une égalité pour le produit, le coefficient dominant du produit étant le produit
des coefficients dominants de P et Q. O

Remarque 5. Les seuls éléments inversibles de K[X] sont les polyndémes constants (non nuls).
n
Définition 6. Soit P = Zaka et (@ deux polynémes, le polynéme composé de P et @) est le
k=0

n
polynéme P o ) = Z arQF.
k=0



Exemple : Si P = X2+ 1et Q =2X +3, alors PoQ = (2X +3)? + 1 = 4X? + 12X + 10, alors
que Qo P =2(X2+1)+3=2X2%+5.

Proposition 4. Si P et @) sont deux polynémes, d°(P o Q) = d°(P) x d°(Q).

n P

Démonstration. En effet, Po Q = Z ak(z b; X")*, dont le terme dominant vaut (si on développe
k=0 =0

tout brutalement & coups de formules du binome de Newton) a,by X*". 0

2 Racines d’un polynoéme.

2.1 Division euclidienne.

Définition 7. Le polynome P est divisible par @ (ou @ divise P, ou encore P est un multiple de
Q) si le reste de la division euclidienne de P par @ est nul. Autrement dit, il existe un troisiéme
polynéme R tel que P = QR. On peut le noter, comme pour les entiers, @ | P.

Remarque 6. La relation de divisibilité n’est pas une relation d’ordre sur K[X] : elle est transitive
et réflexive mais pas antisymétrique. Plus précisément, deux polynémes P et () sont divisibles I'un
par 'autre « dans les deux sens » s’il existe une constante A\ € K telle que P = AQ. On parle alors
de polynomes associés. Les propriétés de la relation de divisibilité dans K[X] sont extrémement
similaires a celles déja vues sur Z (ce qui explique la similarité des théorémes arithmétiques énoncés
plus loin dans ce chapitre). Par exemple, si R divise les deux polynomes P et @, alors R divise toute
combinaison linéaire de P et Q. Si P divise Q, alors P* divise Q¥ pour tout entier naturel k.

Théoréme 1. Division euclidienne dans K[X].
Soient A, B € K[X]?, alors il existe un unique couple (Q, R) € K[X]? tel que

e A=BQ+R
o d°(R) < d°(B)

Le polynéme @ est appelé quotient de la division de A par B, et le polynéme R reste de
cette méme division.

Démonstration. La preuve de l'existence de la division peut se faire par récurrence sur le degré
de A, le polynéme B restant fixé. L’existence est triviale si d°(A) < d°(B) puisqu’on peut écrire
A =0B+ A, ce qui sert d’initialisation. Supposons désormais l'existence de la division prouvée pour
tout polynéme de degré n, et choisissons A un polynéme de degré n + 1. Notons a, X" ! son terme
dominant, et b, X? celui de B, alors C' = A — Z—nX”‘H_pB est un polyndéme de degré n (en effet, on
a soustrait & A un polynéme de méme degré eljc de méme coefficient dominant). Par hypothése de

récurrence, il existe donc des polynémes @ et R tels que C = BQ + R, avec d°(R) < d°(B). Mais
alors A = [ Q + Z—"X "t1=p ) B + R, et comme R n’a pas changé de degré, on vient d’écrire une

division euclidienne de A par B.

Pour l'unicité, on suppose évidemment qu'il y a deux couples possibles : BQ + R = BQ' + R/,
alors B(Q — Q') = R — R/, avec par hypothése et régles de calculs sur le degré d’une somme
d°(R—R') <d°(B).Or, d°(B(Q — Q")) > d°(B), sauf si @ — Q' =0, soit Q@ = @’. On en déduit que
R — R’ =0, donc les deux couples sont égaux. [l



Exemple : Pour effectuer en pratique une division euclidienne de polynémes, on procéde comme
pour les entiers, les termes de différents degrés jouant le role joué par les différents chiffres de I’écriture
décimale dans une division entiére, par exemple pour diviser X4 —3X3+5X2+X —3 par X2 —2X +1:

X+ — 3X3 4+ 5X? 4+ X - 3| X?2-2X+1
- (Xt - 2X3 + X?) X2 X +2
- X3 4+ 4X? + X - 3
- (=X3 + 2X? - X)
2X?2 4+ 2X - 3
— (2X%2 - 4X + 2)
6X — 5

Conclusion : X4 —3X3 +5X%2+ X —3 = (X% - X +2)(X?—2X +1)+6X — 5. Rappelons que cette
méthode de calcul est une alternative & I'identification lorsqu’on cherche & factoriser un polynéme,
par exemple aprés en avoir trouvé une racine évidente. Il est par contre hors de question dans le cas
d’une division de polyndémes de pousser les calculs « aprés la virgule » comme on peut le faire pour
une division entiére.

Exemple : La division euclidienne peut étre utilisée comme alternative aux suites récurrentes pour
calculer les puissances d’une matrice dont on connait un polynéme annulateur. Prenons par exemple

2 21 7 12 6
lamatrice A= 1 3 1 |.Onecalcule A2=| 6 13 6 |, puis on constate que A2 = 64 — 5I5.
1 2 2 6 12 7

On peut alors dire que P = X? — 6X + 5 est un polynéme annulateur de la matrice A. On peut
déduire plusieurs choses a partir de ce polynéme annulateur :

e la matrice est inversible dés lors que le polynéme annulateur a un coefficient constant non nul
(méthode déja vue, on isole I3 dans I’égalité puis on factorise 'autre membre par A. Ici, on

1 6 1 6
obtiendrait —5A2 + gA = I3, donc A est inversible et A~ = —gA + 513.

e on peut calculer A™ pour tout entier naturel n en utilisant la méthode des suites récurrentes
ou le calcul plus rapide suivant : le polynéme annulateur X2 — 6X + 5 se factorise sous la
forme (X —1)(X +5) (1 en est une racine évidente). La division euclidienne du monéme X"
par X2 —6X +5 peut s’écrire sous la forme X" = Q(X2 —6X +5) + a, X + b, (le reste étant
de degré strictement plus petit que celui de P, il est ici de degré inférieur ou égal a 1). On
peut calculer rapidement a,, et b, en évaluant cette égalité pour les deux racines de P : pour

X =1, on aura P(1) =0, donc 1 = ay, + b,. De méme pour X =5 on aura 5" = 5a,, + b,,. En
5" —1

soustrayant ces deux équations on trouve 4a, = 5" — 1, soit a,, = . On en déduit que

5—5"

bp,=1-—a, = . I ne reste plus qu’a évaluer la division euclidienne pour X = A (on
a bien entendu le droit!) pour que le miracle s’opére : A" = Q(A)P(A) + a,A + b, I3, donc
A" = an A+ byI3 (puisque P(A) = 0). Les suites (ay) et (b,) ne sont en fait rien d’autre que
celles qu’on aurait obtenues par la méthode « classique » mais, en maitrisant bien la division
euclidienne, on les calcule plus rapidement.

2.2 Racines et factorisation.

Définition 8. Soit P € K[X] et a € K. On dit que a est une racine du polynéme P si P(a) = 0.

Remarque 7. On identifie ici le polyndme et la fonction polynoémiale associée pour le calcul de P(a),
comme ce sera le cas dans tout ce paragraphe. Il y a tout de méme une certaine ambiguité sur le
terme racine dans le cas d’un polynoéme & coefficients réels, qui peut également étre vu comme un cas
particulier de polynéme a coefficients complexes. Les nombres complexes vérifiant P(a) = 0 seront



bien qualifiés de racines, on précisera les choses si besoin dans les énoncés en parlant des racines
réelles ou des racines complexes du polynéme. Par contre, une matrice vérifiant une relation du type
A? —3A = 0 ne sera pas considérée comme une racine du polynéme P = X2 —3X, on dira simplement
que le polynéome P annule la matrice A.

Proposition 5. Le nombre a est racine du polynéme P si et seulement si P est divisible
par X — a.

Démonstration. C’est une conséquence de la division euclidienne. Si on effectue la division de P par
X —a, on sait que le reste sera de degré strictement inférieur a celui de X —a, donc sera une constante.
Autrement dit, 3k € K, P = Q(X —a) + k. On a donc P(a) =0« Q(a)(a—a)+k=0< k= 0.
Autrement dit, a est une racine de P lorsque le reste de la division de P par X — a est nul, donc
quand P est divisible par X — a. O

Exemple : on a déja fréquemment utilisé cette propriété pour factoriser des polyndémes de degré
3 possédant une récine « évidente ». Soit par exemple P = 2X3 — 3X2 4+ 5X — 4. On constate
que 1 est racine évidente de P (P(1) =2 -3+ 5—4 = 0), donc P est factorisable par X — 1 :
P=(X-1)(aX?+bX +c)=aX>?+ (b—a)X?+ (c—b)X — c. Par identification, on obtient a = 2,
donca=2,b—a=—-3doncb=—1,et c—b=>5donc ¢ =4 (ce qui est cohérent avec la derniére
condition), soit P = (X — 1)(2X? — X + 4). Ce dernier facteur ayant un discriminant négatif, P
n’admet pas d’autre racine réelle que 1.

Corollaire 1. Un polynéme admet a1, ao, ..., ar comme racines distinctes si et seulement
k

si il est divisible par [ [(X — a;).
=1

Démonstration. On peut procéder par récurrence (forte) sur le nombre de racines distinctes. L'initia-
lisation correspond a la propriété précédente. Si on suppose qu’on polynéme P a k racines distinctes
est toujours factorisable comme décrit, en ajoutant une racine agy1, on pourra commencer par écrire

k
P= H(X —a;) X @, et comme P(a;11) = 0, on a nécessairement Q(a;+1) = 0 (en effet, les facteurs
1=1

précédents a;+1 — a; ne peuvent s’annuler puisque les racines sont supposées distinctes). En appli-
quant & nouveau notre propriété, on peut donc écrire @) = (X —ag41)R, ce qui donne la factorisation
souhaitée pour P, et achéve la récurrence. O

Corollaire 2. Un polynéme de degré n admet au maximum 7 racines distinctes.

n+1

Démonstration. En effet, s’il en avait plus, on pourrait ’écrire sous la forme H(X —a;) X Q, qui
k=1

est de degré au moins n + 1. Il y a 1 une contradiction flagrante. O



Corollaire 3. Un polynome admettant une infinité de racines est nécessairement le poly-
nome nul.

Démonstration. En effet, par contraposée, un polyndéme non nul a un certain degré n, et ne peut
donc pas avoir plus de n racines. O

Corollaire 4. Principe d’identification des coeflicients.

Si E C K est un ensemble infini tel que, Vax € E, P(x) = Q(z), alors les polynémes P et
() sont égaux.

Démonstration. Dans ce cas, P — @ est un polynéme admettant un ensemble infini de racines, donc
P — @Q = 0 d’apres le corollaire précédent. C’est bien ce principe qu’on utilise pour identifier les
coefficients de deux polyndémes correspondant a des expressions polyndémiales égales. O

2.3 Multiplicité d’une racine.

Définition 9. Soit P un polynoéme et a une racine de P. On dit que a est une racine de multiplicité
k € N* si P est divisible par (X — @), mais pas par (X — a)*+1.

Remarque 8. Cela revient en gros a dire que la racine « compte pour k racines » lors de la factorisation
du polynéme. En particulier, on peut facilement affiner un des corollaires du paragraphe précédent
de la fagon suivante : un polynéme P de degré n admet au maximum n racines comptées avec
multiplicité. Ainsi, un polynéme de degré 5 admettant une racine triple (c’est-a-dire d’ordre de
multiplicité 3), ne peut avoir (au maximum) que deux autres racines, car la factorisation de P par
(X — a)? laissera un deuxiéme facteur de degré 2.

k=n
Définition 10. Soit P = Zaka € K[X]. Le polynome dérivé de P est le polynome P’ =

k=0
k=n

Z kar X*~1. On notera également P” le polynome de dérivé de P/, et P(™ le polynéme dérivé n

k=1
fois du polynéme P.

Remarque 9. Cette dérivation, bien que définie de fagon formelle, coincide évidemment avec la dé-

rivation usuelle sur les fonctions polynomiales, et de ce fait vérifie toutes les formules de dérivation
n

usuelles, en particulier la formule de Leibniz : PQ™ = Z <Z> P(k)Q("fk). Cette formule, que nous

k=0
reverrons dans le prochain chapitre consacré a la dérivation, se démontre exactement via la méme

réurrence que la formule du binéme de Newton avec laquelle la similarité formelle est frappante.

Proposition 6. Une racine a est de multiplicité k& pour P si et seulement si P(a) =
P'(a) =---=P¥D(a) =0et P*(a) #0.




Démonstration. Une fagon de prouver ce résultat est de prouver le lemme suivant : si a est racine
d’ordre k de P alors a est racine d’ordre k— 1 de P'. En effet, si P = (X —a)*Q, avec Q(a) # 0 alors
P! = b(X—a)" 1 Q+(X—a)* @ = (X—a)* L (kQ+(X—a)Q"), ave kQ(a)+(a—a)@' (a) = kQ(a) # 0.
Par une récurrence facile, une racine d’ordre k sera donc racine de tous les polyndémes dérivés jusqu’au
k — 1-éme, mais pas du k-éme. O

Exemple : Considérons le polynéme P = X4 —2X3 —19X? 468X — 60 et constatons ensemble que 2
est une racine double de P. En effet, on a P(2) = 16—2x8—-19x4+68x2—60 = 16—16—76+136—60 =
Oet P =4X3—-6X% 38X +68,donc P'(2) =4x8—6x4—38x2+68=232—24—76+68 =0.
On peut en déduire, via la proposition précédente, que P est factorisable par (X — 2)2. Effectuons
une petite division euclidienne pour obtenir cette factorisation :

X4t — 2x3 — 19X%2 4+ 68X — 60 | X2—4X+4
- (Xt - 4x? + 4X?) X2 42X —15
2X3 —  23X%2 4+ 68X — 60

- (2X3 -  8X?2 4+ 8X)
—  15X%2 + 60X — 60
— (~15X%? + 60X — 60)
0

On adonc P(X) = (X —2)2(X2+2X —15). Le deuxiéme facteur a pour discriminant A = 4+60 = 64,
-2 - —2+38

2
sous la forme P(X) = (X —2)2(X — 3)(X +5). On ne risque pas de factoriser plus puisqu’il ne reste

que des facteurs de degré 1.

et admet deux racines réelles x1 = —5 = —5et x9 = = 3. On peut donc factoriser P

Définition 11. Un polynéme P est scindé s’il peut s’écrire comme produit de polyndémes de degré
1 (autrement dit s’il a un nombre de racines, comptées avec multiplicité, égal & son degré). Il est
scindé a racines simples si de plus toutes ses racines sont distinctes.

Théoréme 2. Théoréme de d’Alembert-Gauss.

Tout polynéme dans C[X] est scindé.

Démonstration. Ce résultat fondamental a déja été croisé dans le chapitre sur les nombres complexes
sous une forme légérement différente. Nous n’avons toujours pas les moyens de le démontrer mainte-
nant, mais il suffit pour le prouver de montrer qu'un polynéme de degré au moins 1 appartenant a
C[X] admet toujours une racine (on applique ensuite ce résultat récursivement aprés avoir commencé
a factoriser le polyndme, jusqu’a retomber sur des facteurs qui sont tous de degré 1). O

Exemple : Le polynome X4 — 1 se factorise dans C[X] sous la forme X4 —1 = (X — 1)(X +1)(X —
i)(X +1).



2.4 Relations coefficients-racines.

n
Proposition 7. Soit P = Z arX* e K[X], et a1, ag, ..., oy, ses racines (éventuellement
k=0
répétées plusieurs fois en cas de racines multiples). On a alors les relations suivantes entre

les coefficients et les racines de P :

1<i1 <l << <n.

e [Tes =12
i=1

an

Démonstration. 11 suffit d’identifier la forme développée du polynéme et sa forme factorisée pour
obtenir ces relations. On part de la forme factorisée P = ap(X — aq)(X — a2)... (X — ay) (on
connait toutes les racines), et on développe brutalement ce produit, le terme dominant sera alors
an X™ (ce qui ne donne évidemment aucune information), le terme de degré n — 1 est obtenu en
additionnant n termes provenant du produit d’une des racines (avec un petit signe —) par n — 1
facteurs X piochés dans les autres parentheéses, il vaut donc an(—ole"_1 —e X —oan"_l),
qu’on identifie & a,,_1 X™ ! pour obtenir la premiére formule annoncée. Les autres sont obtenues de la
méme fagon, on ne détaillera pas rigoureusement cette démonstration hors-programme. La derniére
relation correspond au terme constant, obtenu en multipliant les opposés des racines présentes dans

n
chaque parenthése, donc égal a a,, x (—1)" H Q. O
k=1
Définition 12. En notant o, = Z Qi 0y - .. 0y, la k-éme relation coefficient-racines
1< <io << <N
. . Qp— , . L
s'écrit simplement oy, = (—1)F-—= * Les nombres o) sont appelés fonctions symétriques des

Qan
racines du polynéme.

Exemple : Pour un polynéme de degré 4 ayant pour racines a, b, ¢ et d, les formules deviennent :

eatbtetd=-2
Qa4
o ab+ac+ad+betbd+ed=2
ay
) abc—i—abd—i—acd—kbcd:—%
4

ap
e abcd = —
ay

Exemple : On cherche a factoriser le polynome 4X? — 4X? — 15X + 18, sachant qu’un ami nous a
glissé un indice : deux de ses racines ont une somme égale a 3.

On utilise les relations coefficients-racines. En notant a et b les racines dont la somme est égale & 3



3+c =1

15
et ¢ la troisiéme racine de P, on aura le systéme ab+ac+bec = ~4 - La premiére équation
9
abc = —3
nous donne immédiatement ¢ = —2, on peut alors remplacer dans la derniére équation pour trouver

9
ab = 1 On connait la somme et le produit des deux racines restantes, qui sont donc solutions de

I'équation z? — 3z + 1= 0. Cette équation a pour discriminant A = 9 — 9 = 0 et admet donc

pour racine double x = —. On en déduit la factorisation souhaitée, en n’oubliant pas le coefficient

W N W

2
dominant : P =4 <X - §> (X +2).

Variation sur le méme théme : on reprend le méme polyndéme, mais cette fois, 'indice qui nous a été
glissé est la présence d’une racine double.

Puisqu’il y a une racine double, celle-ci est également racine de P’. Or, P/ = 12X? — 8X — 15 =

4(3X?%2-2X — =) Ce trindéme a pour discriminant A = 4 + 3 x 15 = 49, et admet pour racines

247 3 2-7 5 27 9 45
;(; :45%25 ethzT:—é.Vériﬁonssin estracinedeP:4X§—4x1—7+18:
CUREY +9 = 0, donc — est la racine double recherchée. Inutile de vérifier si — est aussi racine double,

un polynome de degré 3 ne peut pas avoir deux racines doubles. Pour déterminer la derniére racine,
on peut effectuer une division euclidienne ou plus simplement utiliser le fait que le produit des trois

2
. 18 . . .
racines sera égal a 1 Comme ce produit vaut, en notant « la derniére racine, 3 X o = Za,

3\ 2
on en déduit que o = —2, et P =4 (X— §> (X +2).

3 Arithmétique dans K[X].

3.1 Polyndémes irréductibles.

Définition 13. Un polynoéme P est irréductible s’il ne peut pas se décomposer comme produit de
deux polynémes de degré strictement inférieur au sien.

Remarque 10. Par convention, on décréte donc que les polynémes constants ne sont pas irréductibles.

Remarque 11. Attention, la notion de polyndme irréductible dépend fortement du corps de base
choisi. Ainsi, le polynome X2 + 4 est irréductible dans R[X] (si on pouvait le factoriser, ce serait
comme produit de deux polynoémes de degré 1, ce qui supposerait qu’il ait deux racines réelles. Or
ce n'est pas le cas). Par contre, il n’est pas du tout irréductible dans C[X] puisqu’on peut ’écrire
sous la forme (X + 2i)(X — 2i).

Théoréme 3. Les polynomes irréductibles de C[X] sont les polynomes de degré 1.

Les polynomes irréductibles de R[X] sont les polynomes de degré 1 et les polynéomes de
degré 2 & discriminant strictement négatif.
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Démonstration. Le premier énoncé est une conséquence directe du théoréme de d’Alembert-Gauss :
tout polynome de degré supérieur ou égal a 2 dans C[X| admet une racine et ne peut donc pas étre
irréductible. Pour le cas des coefficients réels, cela découlera de la démonstration du théoréme de
décomposition énoncé plus bas. [l

3.2 PGCD et PPCM dans K[X].

Définition 14. Si P et ) sont deux polynémes non nuls, on appelle PGCD de P et @ tout polyndéme
de degré maximal divisant simultanément P et ). De méme, on appelle PPCM de P et @ tout
polynéme de degré minimal qui est a la fois multiple de P et de Q.

Remarque 12. Tous les PGCD de deux polyndémes P et () sont associés. On appellera donc « le
PGCD de P et Q » 'unique PGCD unitaire de P et Q. On le notera usuellement P A Q. On notera
de méme PV @Q le PPCM de P et @), c’est-a-dire 'unique PPCM unitaire des deux polyndomes.

Théoréme 4. Algorithme d’Euclide du calcul de P A Q.

Comme dans le cas des entiers naturels, on peut calculer P A @ & ’aide de la procédure
algorithmique suivante : on pose Ry = P, R1 = @ puis, pour tout n > 2, R,, est le reste de
la division euclidienne de R,,_s par R,_1. On obtiendra toujours R, = 0 aprés un nombre
fini d’étapes, et R,_1 sera alors égal & P A Q.

On peut méme, exactement comme pour les entiers, calculer les coefficients d’une relation de Bézout
reliant les polynomes P et @ (cf plus bas) via l'algorithme d’Euclide étendu, en posant Uy = 1,
Uy =0, Ry =0, Ry =1 et en leur appliquant les relations de récurrence Uy,y1 = Up—1 — QnU, et
Vis1 = Voo 1—Qn V. Par exemple, sion pose P = 6 X44+8X3—7X2-5X—2et Q = 6X3—4X?—X—1:

e on effectue la division de P par @, et on obtient 6 X% +8X3 —7X2 —-5X —2 = (X +2)(6X3 —
4X2—-X—1)4+2X%2-2X.Onposedonc Qy = X +2, Ry =2X?2-2X, et Uy =1, Vo = —X —2.

e on effectue la division euclidienne de @ par Rs, qui donne 6X3 —4X? — X —1 = (3X +
1)(2X2 —2X) + X — 1. On pose donc Q3 = 3X +1, R3 = X — 1, et U3 = —3X — 1,
Va=1+(X+2)(3X +1)=32>+7X +3.

e on constate que Ro = 2X R3, le reste de la prochaine division euclidienne sera nul. On conclut
que PAQ=X—1,et que (BX2+7X+3)Q - (3X +1)P =X —1.

Définition 15. Comme pour les entiers, on étend la définition du PGCD et du PPCM a toute
famille finie de polynémes.

Définition 16. Deux polynomes P et () sont premiers entre eux si P A Q = 1.

Les polynomes Py, Py, ..., P, sont premiers entre eux dans leur ensemble si PGCD(A;, As, ..., Ag) =
1.

Remarque 13. Comme dans le cas des entiers, des polynémes premiers entre eux dans leur ensemble
ne sont pas forcément premiers entre eux deux a deux.

Théoréme 5. Théoréme de Bézout.

Deux polynémes P et @ sont premiers entre eux si et seulement s’il existe un couple de
polynémes (A, B) tels que AP + BQ = 1. Plus généralement, il existe toujours un couple
de polynémes tels que AP + BQ = P A Q.
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Théoréme 6. Théoréme de Gauss.

Si P et @ sont deux polynomes premiers entre eux, et P | QR, alors P | R.

3.3 Décomposition en produit de polynémes irréductibles.

Théoréme 7. Tout polyndéme unitaire P € R[X] peut se factoriser sous la forme P =
P

q
H(X —a;)" I_I(X2 +b;X 4 ¢;)%. Dans cette écriture :
i=1 j=1

® a1,a9,...,a, sont les racines réelles du polynéme P

e «; représente la multiplicité de la racine a;

e les polynémes du second degré X2 + b; X + c;j sont des polynémes a discriminant

strictement négatif
e [3; représente la multiplicité des racines (complexes) du polynome X 24 b; X +¢;j

Cette décomposition est unique a l'ordre des facteurs prés.

Exemple : On souhaite factoriser le plus possible le polynéme P = X% — 1. Que le calcul s’ef-
fectue dans R[X] ou dans C[X], il faut de toute fagon commencer par trouver toutes les racines
complexes du polyndme. C’es_t';r ici immé(_i%f}t puisqu’il s’agit desAEaCines Sixiémgrs de T'unité com-
plexe, donc z1 = 1, 29 = €'3, z3 = €3, 2y = —1, z5 = €3 et zg = €'3. La décomposi-
tion de P dans C[X] en découle immédiatement, en écrivant ces racines sous forme algébrique
(et en placant les racines réelles en premier, ce qui n’est pas du tout une obligation) : P =

1 V3 1 V3 1 V3 1, V3
(X—l)(X+1)<X—§—z7><X+§—z7><X+5+27><X—§+27>.

Pour passer dans R[X], il faut réussir a regrouper certains facteurs a coefficients complexes et a
effectuer leur produit de fagon a ce que le résultat ait des coefficients réels. Le théoréme énoncé ci-
dessus stipule qu’on peut toujours y arriver a I’aide de produits de deux polynémes (pas de facteurs
de dégré plus grand que 2 a la fin), ce qui est en pratique trés simple en regroupant les facteurs
dont les racines sont conjuguées. Ici, par exemple, (X — e%)(X — ei%ﬂ) = X2 — X + 1. On obtient
la décomposition suivante pour P dans R[X]: P = (X — 1)(X + 1)(X?2 - X +1)(X2 4+ X 4+ 1).

Démonstration. Généralisons simplement les constatations faites sur I’exemple que nous venons de
développer. Si on trouve parmi les racines complexes d’un polynéme P une racine a et son conjugué
@, alors (X —a)(X —a) = X? — (a+ @)X +aa = X? — 2Re (a)X + |a|? est bien un polynome
de degré 2 a coefficients réels (et a discriminant nécessairement négatif puisque ses racines sont
complexes). Or, lorsque a est racine complexe d'un polynome a coefficients réels, @ l'est aussi :

n n
P(a) = Z apa® = Z aga® = P(a) = 0. De plus, la multiplicité de a sera toujours la méme que
k=1 k=1

celle de @ puisque le raisonnement précédent peut s’appliquer a I'identique aux polynoémes dérivés
successifs de P (qui garderont évidemment des coefficient réels). On peut donc toujours effectuer la
procédure détaillée dans I'exemple (factorisation dans C[X], regroupement des facteurs correspondant
a des racines conjuguées) pour obtenir la forme annoncée dans I’énoncé du théoréme. O

12



Théoréme 8. Tout polynéme P € K[X] peut s’écrire comme produit de facteurs irréduc-

tibles.

Démonstration. Ce dernier théoréme n’est qu'une fagon légérement différente d’énoncer la factorisa-
tion des polynémes vue un peu plus haut. [l

Remarque 14. Ces théorémes de factorisation sont 1’équivalent dans K[X] du théoréme de décom-
position en produit de facteurs premiers dans N. Les polynoémes irréductibles jouent le méme role
que les facteurs premiers (éléments impossibles & décomposer sous forme de produit), et toute la
démonstration découle de facon naturelle de I'existence d’un théoréme de division euclienne dans les
deux ensembles.

4 Compléments.

Les deux compléments présentés dans cette derniére partie, qui sont totalement indépendants
I'un de 'autre, reposent toutefois sur un méme principe, qui est fortement lié a la notion d’espace
vectoriel que nous ne tarderons pas a étudier : pour décrire un polynéme de degré n, on a besoin
de n + 1 informations indépendantes (cette valeur n + 1 correspond techniquement & la dimension
de l'espace vectoriel K,,[X]). La fagon la plus simple de le faire est de donner les n + 1 coefficients
du polyndéme, mais cette information n’est par exemple pas immédiatement exploitable pour obtenir
des informations sur la représentation graphique de la fonction polynémiale correspondante (pour
un polynome a coefficients réels). Savoir par exemple qu'un polynéme de degré 5 a un coefficient
de degré 3 égal a 1 ne donne aucune information concréte (point de la courbe, tangente, etc). Nous
allons étudier deux autres fagons de décrire un polynéme & 'aide de n + 1 informations, qui sont
nettement plus directement exploitables graphiquement :

e donner les valeurs du polynéme en n + 1 réels distincts. Nous allons détailler plus bas cette
méthode qui donne une information trés concréte mais éparpillée & n + 1 endroits différents
(on connait n + 1 points de la courbe).

e la derniére méthode que nous verrons concentre au contraire toute 'information au méme
endroit, puisque la formule de Taylor reconstitue le polynéme & partir des valeurs de ses
différentes dérivées en un méme réel a.

4.1 Polynoémes interpolateurs de Lagrange.

Théoréme 9. Soit (ag,...,a,) une liste de réels deux a deux distincts, et (b, ..., b,) une
deuxiéme liste de réels (pas nécessairement distincts). Alors il existe un unique polynéme
P € R, [X] de degré au plus n tel que Vk € {0,...,n}, P(a;) = b;. Ce polynome est appelé
polynéme interpolateur de Lagrange.

Démonstration. La démonstration de ’existence est trés simple puisqu’on construit explicitement le
polynoéme prenant les n + 1 valeurs demandées. Pour cela, on commence par définir n+ 1 polyndémes
de degré n suivants (ce sont techniquement eux qu’on appelle polynémes de Lagrange) : L; =
[1x —a))
J#

H(ai - aj)

J#

. Le numérateur est simplement le polynéme de degré n unitaire ayant pour racines
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tous les nombres a; sauf a; (I'entier i étant préalablement fixé), et on le divise ensuite par une
constante (non nulle puisque les a; sont par définition différents de a;) de facon a avoir L;(a;) = 1.
Par construction, on a par ailleurs L;(aj) = 0 si j # i puisque a; est une racine du numérateur.
Le polynéme L; est donc une solution du probléme d’interpolation particulier ot une des valeurs

n
imposées est égale a 1 et toutes les autres & 0. Il suffit maintenant de poser P = ZbiLi pour
i=0

obtenir un polynéme qui prend comme valeur b; en a; (dans le calcul de L(a;), tous les termes de la
somme sont nuls sauf celui d’indice i qui vaut b; x 1). Ce polynéome est de degré au plus n puisqu’il
est une somme de polynémes de degré n, il répond donc au probléme posé.

Reste a prouver 'unicité : supposons donc que deux polynémes P et ) conviennent. Puisque ces
deux polyndémes prennant la méme valeur en n + 1 réels distincts, leur différence P — Q admet donc
(au moins) n + 1 racines. Or, P — @ est par hypothése une différence de deux polynémes dont le
degré ne dépasse pas n, donc lui-méme de degré inférieur ou égal a n. Il est alors nécessairement nul,
ce qui prouve que P = Q. O

Exemple : On souhaite déterminer un polynéme de degré 2 vérifiant P(1) =3, P(2) =2 et P(3) =
—1. On va numéroter les valeurs 1, 2 et 3 plutot que 0, 1 et 2 pour ne pas créer de confusion inutile,

X-2)(X -3 1 5 X-1)(X-3
et on définit donc Ly = ( I ) =_—X2_--X+3 Ly= ( ) ) =—X24+4X -3
(1-2)(1-3) 2 2 (2-1)(2-3)
X—-1)(X -2 1
et Ly = ( I ) = —X? — =X + 1 (notez au passage que ces polynomes ne dépendent pas

3-1)(3-2) 2 2

du tout du choix des valeurs b;). On calcule ensuite P = 3L; + 2Ly — Ly = —X24+2X +2 On
vérifie aisément que le polynéme est bien solution du probléme. Bien entendu, les plus courageux
peuvent résoudre ce genre de probléme en résovant un systéme de n + 1 équations a n + 1 inconnues
en recherchant les coefficients du polynéme & partir des conditions sur les valeurs prises.

4,,

Remarque 15. Plus généralement, tous les polyndémes vérifiant P(a;) = b; (sans imposer un degré
n
égal a n) sont de la forme Py + @ H(X —a;), ot Py est I'unique solution de degré au plus n décrite

i=0
ci-dessus. C’est méme assez évident : un tel polynéme convient (le produit de droite s’annule pour
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tous les a; donc ne changera pas la valeur du polynéme en a;), et si P est un polynéme solution,
n

alors P — Py admet tous les nombres a; comme racines, donc se factorise par H(X — a;), ce qui
i=0
correspond exactement & la forme donnée.

4.2 Formule de Taylor.

Le principe de la formule de Taylor, que nous reverrons sous d’autres formes trés bientot puis-
qu’elle est & la base des développements limités qui constitueront le coeur du principal chapitre
d’analyse du second semestre, est de généraliser la notion de tangente & une courbe & des polyndémes
de degré plus grand que 1. On cherche par exemple, pour une fonction donnée, la parabole (courbe
d’un polynéme de degré 2) qui « colle » le plus possible a la courbe au voisinage d’un point donné. La
formule de Taylor donne directement ’équation de cette parabole (et des courbes de degré supérieur
analogues) a partir des valeurs prises par les dérivées d’ordre supérieur de la fonction. Bien stir, si
on applique la formule & un polynoéme, on est dans un cas particulier puisque la courbe polynémiale
la plus proche de celle de la fonction sera évidemment celle du polynéme lui-méme. La formule est
malgré tout intéressante parce qu’elle donne des coefficients qu’on retrouvera dans toutes les ver-
sions de la formule de Taylor, et aussi parce qu’elle montre qu’on peut reconstituer intégralement un
polynoéme de degré n & partir des valeurs de ses dérivées en un méme point a.

Théoréme 10. Formule de Taylor, version polynémes.
n
Pk)(a)

Soit P € R,[X] et a € R, alors P(X) = Z —— (X —a)k
k=0

k!

Démonstration. On va se contenter de prouver la formule dans le cas particulier ou P(X) = X™.
Dans ce cas, les dérivées du polynome sont données par P'(X) = n X" 1 P"(X) =n(n—-1)X""2, ...,

|
PRE(X) =n(n—-1)...(n—k+1)X"F = %X”*k (une récurrence est nécessaire pour prouver ce
n—k)!
|
résultat tout a fait rigoureusement, on s’en passera). On en déduit que pk) (a) = ﬁa”*k, puis
n —k)!
n n n

P(]C)(CL) k n! n—k k n k _n—k n n
que];)T(X—a) :kzoma (X—a) :kzo i (X—a)"a" " =(X—-a+a)" =X
en reconnaissant la formule du binéme de Newton. O

Exemple : Soit P = 2X3 ~3X2+ X —4, et posons a = 2. On calcule sans difficulté P(2) = 16— 12+
2—4 =2; P' =6X?—-6X+1donc P'(2) = 24—12+1 = 13; P"(2) = 12X —6 donc P"(2) = 18 et enfin
P"(2) = 12. La formule de Taylor affirme alors que P = 2+ 13(X —2) +9(X —2)2+2(X —2)3. Vous
pouvez naturellement tout développer pour vérifier que ¢a marche. On remarquera que, présentés
dans cet ordre, les différents termes de la formule de Taylor sont de plus en plus petits quand on se
rapproche de 2, ou si on on préfére que les formules obtenues en ne prenant qu’une partie des termes
du membre de droite deviennent des approximations de plus en plus précises de P(X).
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