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Monsieur et Madame Ôme ont une fille, comment s’appelle-t-elle ?

Il faut vraiment que je donne la réponse ?

Il s’embrouillait dans les polynômes, se disculpa

le professeur de mathématiques, et quand un élève

s’embrouille dans les polynômes, que peut-on faire ?

Antonio Lobo Antunes.

Avant de s’attaquer vraiment à l’algèbre linéaire, ce chapitre servira entre autres d’introduction
par l’exemple aux concepts plus généraux développés ensuite dans toute leur généralité sur les espaces
vectoriels. Les polynômes constituent en effet un excellent exemple d’objet mathématique formel,
mais avec lequel on peut faire des calculs, par le biais d’opérations simples comme la somme, le
produit ou la composition. C’est ce genre de notions (opérations « utiles » sur un ensemble) que nous
essaierons de généraliser ensuite. Ce chapitre sera également l’occasion d’exploiter les théorèmes vus
en arithmétique pour les « copier » dans le cadre des anneaux de polynômes, mais aussi de croiser
pour la première fois une formule d’importance capitale en analyse, et que nous retrouverons sous
d’autres formes à plusieurs reprises ensuite : la formule de Taylor. Bref, les polynômes forment un
objet d’études central en mathématiques, à la frontière de domaines très variés : algèbre, arithmétique,
analyse. C’est pourquoi les applications des méthodes vues dans ce chapitre sont aussi nombreuses
et variées.

Objectifs du chapitre :

• savoir factoriser ou effectuer une division euclidienne sur des polynômes à coefficients réels ou
complexes.

• maîtriser la factorisation d’un polynôme en produits de facteurs irréductibles, dans R[X]
comme dans C[X].

• comprendre ce que signifie la formule de Taylor d’un point de vue analytique.

1 L’anneau K[X].

Dans toute cette partie, comme précédemment dans le chapitre de calcul matriciel, la notation
K désigne un corps quelconque qui sera en pratique la plupart du temps R ou C, avec quelques rares
incursions dans le corps Q des rationnels.
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Définition 1. Un polynôme à coefficients dans K est un objet mathématique formel s’écrivant

P =
k=n
∑

k=0

akX
k, où (a0, a1, . . . , an) ∈ Kn+1, et X est l’indéterminée destinée à être remplacée par

n’importe quel objet pour lequel le calcul de P peut avoir un sens (des nombres réels ou complexes
feront bien sûr l’affaire, mais aussi tout objet mathématique pour lequel on peut calculer des puis-
sances et qu’on peut multiplier par des éléments de K, notamment les matrices carrées, les suites ou
les fonctions).

Remarque 1. Il est important de ne pas identifier (surtout si K = R) le polynôme avec la fonction
polynômiale associée. C’est en partie pour cela que l’indéterminée est notée X et non x quand on
parle de polynômes formels : X n’est pas forcément un nombre. Ainsi, si P = X2 + 3X + 1, on
peut calculer, pour une matrice M ∈ M3(R), P (M) = M2 + 3M + I3 (attention à ne pas oublier
de remplacer le 1, qu’on devrait techniquement noter X0, par l’élément neutre de l’ensemble où se
trouve l’objet auquel on applique le polynôme). On peut même calculer, pour une fonction comme
ln, P (ln) qui sera la fonction f : x 7→ ln2(x) + 3 ln(x) + 1.

Définition 2. Soit P =

k=n
∑

k=0

akX
k un polynôme, avec an 6= 0.

• Les nombres ak sont les coefficients du polynôme P

• l’entier n est le degré de P (souvent noté d°(P ))
• le coefficient an est le coefficient dominant de P

• un polynôme est unitaire si ce coefficient dominant est égal à 1
• un monôme est un polynôme n’ayant qu’un seul coefficient non nul (tout polynôme est donc

par définition une somme de monômes).

Remarque 2. Par convention, le polynôme nul a pour degré −∞. C’est relativement cohérent avec
les propriétés énoncées ci-dessous.

Définition 3. On note K[X] l’ensemble de tous les polynômes à coefficients dans K, sans distinction
de degré. On note aussi, pour tout entier naturel n, Kn[X] l’ensemble des polynômes de degré inférieur
ou égal à n à coefficients dans K.

Remarque 3. On considère l’ensemble des polynômes vérifiant la condition d°(P ) 6 n et non pas
d°(P ) = n car ce dernier ensemble ne serait pas stable par somme, comme on va le voir ci-dessous,
et ne serait pour cette raison pas muni d’une structure d’espace vectoriel.

Définition 4. Soient P =

n
∑

k=0

akX
k et Q =

p
∑

k=0

bkX
k deux polynômes appartenant à K[X], leur

somme est le polynôme P +Q =

max(n,p)
∑

k=0

(ak + bk)X
k.

Proposition 1. La somme de polynômes est associative, commutative, et admet pour
élément neutre le polynôme nul (noté 0) dont tous les coefficients sont nuls. De plus, tout

polynôme P =

n
∑

k=0

akX
k admet un opposé noté −P défini par −P =

n
∑

k=0

(−ak)X
k, et

vérifiant donc P + (−P ) = 0. Autrement dit, (K[X],+) est un groupe commutatif.

Démonstration. Tout est absolument trivial.
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Définition 5. Soient P =
n
∑

k=0

akX
k et Q =

p
∑

k=0

bkX
k deux polynômes appartenant à K[X], leur

produit est le polynôme PQ =

n+p
∑

k=0

(

k
∑

i=0

aibk−i

)

Xk.

Proposition 2. L’élément neutre pour le produit de polynômes est le polynôme constant
1. L’ensemble (K[X],+,×) est un anneau commutatif intègre.

Démonstration. Ces résultats sont nettement moins évidents à prouver que pour la somme. La com-
mutativité s’obtient assez facilement en effectuant le changement d’indice j = k − i dans la somme
intérieure de la définition du produit (ce qui a bien un sens, cela revient à parcourir cette somme « à
l’envers »). La distributivité est également assez facile en découpant simplement la somme définissant
P (Q+R) en deux morceaux. Le fait que 1 soit élément neutre est facile. Par contre, l’associativité est
franchement pénible, puisqu’il faut des triples sommes pour décrire le produit P (QR). Contentons-
nous d’écrire son coefficient de degré k (en notant ai, bj et cp les coefficients respectifs des polynômes

P , Q et R) : il vaut
p
∑

i=0

ai

k−i
∑

j=0

bjck−i−j. On peut l’écrire plus simplement sous la forme
∑

i+j+p=k

aibjck.

Cette formule est complètement symétrique par rapport aux trois polynômes, on obtiendra exacte-
ment la même pour (PQ)R, ce qui prouve l’associativité du produit. Enfin, l’intégrité de l’anneau
découle du fait que, par définition même du produit, on aura d°(PQ) = d°(P ) + d°(Q) pour deux
polynômes non nuls P et Q, leur produit ne peut donc pas être nul (il est de degré positif).

Remarque 4. On peut aussi munir l’ensemble K[X] d’un produit extérieur par les éléments de K en
identifiant simplement ces deniers avec les polynômes constants (ce qu’on fait de fait en permanence),
ce qui munit alors K[X] d’une structure d’espace vectoriel sur K. Vous aurez bien sûr droit à une
définition complète (et affreuse) dans un chapitre ultérieur, mais l’idée est là : un produit par des
constantes et une addition qui vérifient quelques propriétés élémentaires naturelles. C’est d’ailleurs
pour que Kn[X] soit un sous-espace vectoriel de K[X] qu’on a inclus dans cet ensemble tous les
polynômes de degré strictement inférieur à n (pour être un sous-espace vectoriel, un sous-ensemble
doit notamment être un sous-groupe, donc stable par somme, ce qui ne serait pas le cas de l’ensemble
des polynômes de degré exactement égal à n).

Proposition 3. Soient P et Q deux polynômes, alors d°(P +Q) 6 max(d°(P ), d°(Q)), et
d°(PQ) = d°(P ) + d°(Q).

Démonstration. Cela découle immédiatement des définitions données des deux opérations (on l’a
d’ailleurs déjà indiqué plus haut pour le produit). L’inégalité peut être stricte pour le degré de la
somme, dans le cas où P et Q sont de même degré mais ont un coefficient dominant opposé. Par
contre, c’est toujours une égalité pour le produit, le coefficient dominant du produit étant le produit
des coefficients dominants de P et Q.

Remarque 5. Les seuls éléments inversibles de K[X] sont les polynômes constants (non nuls).

Définition 6. Soit P =

n
∑

k=0

akX
k et Q deux polynômes, le polynôme composé de P et Q est le

polynôme P ◦Q =

n
∑

k=0

akQ
k.
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Exemple : Si P = X2 + 1 et Q = 2X + 3, alors P ◦ Q = (2X + 3)2 + 1 = 4X2 + 12X + 10, alors
que Q ◦ P = 2(X2 + 1) + 3 = 2X2 + 5.

Proposition 4. Si P et Q sont deux polynômes, d°(P ◦Q) = d°(P )× d°(Q).

Démonstration. En effet, P ◦Q =
n
∑

k=0

ak(

p
∑

i=0

biX
i)k, dont le terme dominant vaut (si on développe

tout brutalement à coups de formules du binôme de Newton) anb
n
pX

in.

2 Racines d’un polynôme.

2.1 Division euclidienne.

Définition 7. Le polynôme P est divisible par Q (ou Q divise P , ou encore P est un multiple de
Q) si le reste de la division euclidienne de P par Q est nul. Autrement dit, il existe un troisième
polynôme R tel que P = QR. On peut le noter, comme pour les entiers, Q | P .

Remarque 6. La relation de divisibilité n’est pas une relation d’ordre sur K[X] : elle est transitive
et réflexive mais pas antisymétrique. Plus précisément, deux polynômes P et Q sont divisibles l’un
par l’autre « dans les deux sens » s’il existe une constante λ ∈ K telle que P = λQ. On parle alors
de polynômes associés. Les propriétés de la relation de divisibilité dans K[X] sont extrêmement
similaires à celles déjà vues sur Z (ce qui explique la similarité des théorèmes arithmétiques énoncés
plus loin dans ce chapitre). Par exemple, si R divise les deux polynômes P et Q, alors R divise toute
combinaison linéaire de P et Q. Si P divise Q, alors P k divise Qk pour tout entier naturel k.

Théorème 1. Division euclidienne dans K[X].
Soient A,B ∈ K[X]2, alors il existe un unique couple (Q,R) ∈ K[X]2 tel que

• A = BQ+R

• d°(R) < d°(B)

Le polynôme Q est appelé quotient de la division de A par B, et le polynôme R reste de
cette même division.

Démonstration. La preuve de l’existence de la division peut se faire par récurrence sur le degré
de A, le polynôme B restant fixé. L’existence est triviale si d°(A) < d°(B) puisqu’on peut écrire
A = 0B+A, ce qui sert d’initialisation. Supposons désormais l’existence de la division prouvée pour
tout polynôme de degré n, et choisissons A un polynôme de degré n+ 1. Notons anX

n+1 son terme
dominant, et bpX

p celui de B, alors C = A− an

bp
Xn+1−pB est un polynôme de degré n (en effet, on

a soustrait à A un polynôme de même degré et de même coefficient dominant). Par hypothèse de
récurrence, il existe donc des polynômes Q et R tels que C = BQ + R, avec d°(R) < d°(B). Mais

alors A =

(

Q+
an

bp
Xn+1−p

)

B + R, et comme R n’a pas changé de degré, on vient d’écrire une

division euclidienne de A par B.
Pour l’unicité, on suppose évidemment qu’il y a deux couples possibles : BQ + R = BQ′ + R′,
alors B(Q − Q′) = R − R′, avec par hypothèse et règles de calculs sur le degré d’une somme
d°(R−R′) < d°(B). Or, d°(B(Q−Q′)) > d°(B), sauf si Q−Q′ = 0, soit Q = Q′. On en déduit que
R−R′ = 0, donc les deux couples sont égaux.
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Exemple : Pour effectuer en pratique une division euclidienne de polynômes, on procède comme
pour les entiers, les termes de différents degrés jouant le rôle joué par les différents chiffres de l’écriture
décimale dans une division entière, par exemple pour diviser X4−3X3+5X2+X−3 par X2−2X+1 :

X4 − 3X3 + 5X2 + X − 3 X2 − 2X + 1

− (X4 − 2X3 + X2) X2 −X + 2
− X3 + 4X2 + X − 3
− (−X3 + 2X2 − X)

2X2 + 2X − 3
− (2X2 − 4X + 2)

6X − 5

Conclusion : X4 − 3X3 +5X2 +X − 3 = (X2 −X +2)(X2 − 2X +1)+6X − 5. Rappelons que cette
méthode de calcul est une alternative à l’identification lorsqu’on cherche à factoriser un polynôme,
par exemple après en avoir trouvé une racine évidente. Il est par contre hors de question dans le cas
d’une division de polynômes de pousser les calculs « après la virgule » comme on peut le faire pour
une division entière.

Exemple : La division euclidienne peut être utilisée comme alternative aux suites récurrentes pour
calculer les puissances d’une matrice dont on connait un polynôme annulateur. Prenons par exemple

la matrice A =





2 2 1
1 3 1
1 2 2



. On calcule A2 =





7 12 6
6 13 6
6 12 7



, puis on constate que A2 = 6A−5I3.

On peut alors dire que P = X2 − 6X + 5 est un polynôme annulateur de la matrice A. On peut
déduire plusieurs choses à partir de ce polynôme annulateur :

• la matrice est inversible dès lors que le polynôme annulateur a un coefficient constant non nul
(méthode déjà vue, on isole I3 dans l’égalité puis on factorise l’autre membre par A. Ici, on

obtiendrait −1

5
A2 +

6

5
A = I3, donc A est inversible et A−1 = −1

5
A+

6

5
I3.

• on peut calculer An pour tout entier naturel n en utilisant la méthode des suites récurrentes
ou le calcul plus rapide suivant : le polynôme annulateur X2 − 6X + 5 se factorise sous la
forme (X − 1)(X +5) (1 en est une racine évidente). La division euclidienne du monôme Xn

par X2 − 6X +5 peut s’écrire sous la forme Xn = Q(X2 − 6X+5)+ anX + bn (le reste étant
de degré strictement plus petit que celui de P , il est ici de degré inférieur ou égal à 1). On
peut calculer rapidement an et bn en évaluant cette égalité pour les deux racines de P : pour
X = 1, on aura P (1) = 0, donc 1 = an+ bn. De même pour X = 5 on aura 5n = 5an+ bn. En

soustrayant ces deux équations on trouve 4an = 5n − 1, soit an =
5n − 1

4
. On en déduit que

bn = 1 − an =
5− 5n

4
. Il ne reste plus qu’à évaluer la division euclidienne pour X = A (on

a bien entendu le droit !) pour que le miracle s’opère : An = Q(A)P (A) + anA + bnI3, donc
An = anA+ bnI3 (puisque P (A) = 0). Les suites (an) et (bn) ne sont en fait rien d’autre que
celles qu’on aurait obtenues par la méthode « classique » mais, en maîtrisant bien la division
euclidienne, on les calcule plus rapidement.

2.2 Racines et factorisation.

Définition 8. Soit P ∈ K[X] et a ∈ K. On dit que a est une racine du polynôme P si P (a) = 0.

Remarque 7. On identifie ici le polynôme et la fonction polynômiale associée pour le calcul de P (a),
comme ce sera le cas dans tout ce paragraphe. Il y a tout de même une certaine ambiguïté sur le
terme racine dans le cas d’un polynôme à coefficients réels, qui peut également être vu comme un cas
particulier de polynôme à coefficients complexes. Les nombres complexes vérifiant P (a) = 0 seront
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bien qualifiés de racines, on précisera les choses si besoin dans les énoncés en parlant des racines
réelles ou des racines complexes du polynôme. Par contre, une matrice vérifiant une relation du type
A2−3A = 0 ne sera pas considérée comme une racine du polynôme P = X2−3X, on dira simplement
que le polynôme P annule la matrice A.

Proposition 5. Le nombre a est racine du polynôme P si et seulement si P est divisible
par X − a.

Démonstration. C’est une conséquence de la division euclidienne. Si on effectue la division de P par
X−a, on sait que le reste sera de degré strictement inférieur à celui de X−a, donc sera une constante.
Autrement dit, ∃k ∈ K, P = Q(X − a) + k. On a donc P (a) = 0 ⇔ Q(a)(a − a) + k = 0 ⇔ k = 0.
Autrement dit, a est une racine de P lorsque le reste de la division de P par X − a est nul, donc
quand P est divisible par X − a.

Exemple : on a déjà fréquemment utilisé cette propriété pour factoriser des polynômes de degré
3 possédant une récine « évidente ». Soit par exemple P = 2X3 − 3X2 + 5X − 4. On constate
que 1 est racine évidente de P (P (1) = 2 − 3 + 5 − 4 = 0), donc P est factorisable par X − 1 :
P = (X − 1)(aX2 + bX + c) = aX3 + (b− a)X2 + (c− b)X − c. Par identification, on obtient a = 2,
donc a = 2, b − a = −3 donc b = −1, et c − b = 5 donc c = 4 (ce qui est cohérent avec la dernière
condition), soit P = (X − 1)(2X2 − X + 4). Ce dernier facteur ayant un discriminant négatif, P
n’admet pas d’autre racine réelle que 1.

Corollaire 1. Un polynôme admet a1, a2, . . ., ak comme racines distinctes si et seulement

si il est divisible par
k
∏

i=1

(X − ai).

Démonstration. On peut procéder par récurrence (forte) sur le nombre de racines distinctes. L’initia-
lisation correspond à la propriété précédente. Si on suppose qu’on polynôme P à k racines distinctes
est toujours factorisable comme décrit, en ajoutant une racine ak+1, on pourra commencer par écrire

P =

k
∏

i=1

(X − ai)×Q, et comme P (ai+1) = 0, on a nécessairement Q(ai+1) = 0 (en effet, les facteurs

précédents ai+1 − ai ne peuvent s’annuler puisque les racines sont supposées distinctes). En appli-
quant à nouveau notre propriété, on peut donc écrire Q = (X−ak+1)R, ce qui donne la factorisation
souhaitée pour P , et achève la récurrence.

Corollaire 2. Un polynôme de degré n admet au maximum n racines distinctes.

Démonstration. En effet, s’il en avait plus, on pourrait l’écrire sous la forme
n+1
∏

k=1

(X − ai) × Q, qui

est de degré au moins n+ 1. Il y a là une contradiction flagrante.
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Corollaire 3. Un polynôme admettant une infinité de racines est nécessairement le poly-
nôme nul.

Démonstration. En effet, par contraposée, un polynôme non nul a un certain degré n, et ne peut
donc pas avoir plus de n racines.

Corollaire 4. Principe d’identification des coefficients.

Si E ⊂ K est un ensemble infini tel que, ∀x ∈ E, P (x) = Q(x), alors les polynômes P et
Q sont égaux.

Démonstration. Dans ce cas, P −Q est un polynôme admettant un ensemble infini de racines, donc
P − Q = 0 d’après le corollaire précédent. C’est bien ce principe qu’on utilise pour identifier les
coefficients de deux polynômes correspondant à des expressions polynômiales égales.

2.3 Multiplicité d’une racine.

Définition 9. Soit P un polynôme et a une racine de P . On dit que a est une racine de multiplicité

k ∈ N∗ si P est divisible par (X − a)k, mais pas par (X − a)k+1.

Remarque 8. Cela revient en gros à dire que la racine « compte pour k racines » lors de la factorisation
du polynôme. En particulier, on peut facilement affiner un des corollaires du paragraphe précédent
de la façon suivante : un polynôme P de degré n admet au maximum n racines comptées avec
multiplicité. Ainsi, un polynôme de degré 5 admettant une racine triple (c’est-à-dire d’ordre de
multiplicité 3), ne peut avoir (au maximum) que deux autres racines, car la factorisation de P par
(X − a)3 laissera un deuxième facteur de degré 2.

Définition 10. Soit P =

k=n
∑

k=0

akX
k ∈ K[X]. Le polynôme dérivé de P est le polynôme P ′ =

k=n
∑

k=1

kakX
k−1. On notera également P ′′ le polynôme de dérivé de P ′, et P (n) le polynôme dérivé n

fois du polynôme P .

Remarque 9. Cette dérivation, bien que définie de façon formelle, coïncide évidemment avec la dé-
rivation usuelle sur les fonctions polynômiales, et de ce fait vérifie toutes les formules de dérivation

usuelles, en particulier la formule de Leibniz : PQ(n) =

n
∑

k=0

(

n

k

)

P (k)Q(n−k). Cette formule, que nous

reverrons dans le prochain chapitre consacré à la dérivation, se démontre exactement via la même
réurrence que la formule du binôme de Newton avec laquelle la similarité formelle est frappante.

Proposition 6. Une racine a est de multiplicité k pour P si et seulement si P (a) =
P ′(a) = · · · = P (k−1)(a) = 0 et P (k)(a) 6= 0.
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Démonstration. Une façon de prouver ce résultat est de prouver le lemme suivant : si a est racine
d’ordre k de P alors a est racine d’ordre k−1 de P ′. En effet, si P = (X−a)kQ, avec Q(a) 6= 0 alors
P ′ = k(X−a)k−1Q+(X−a)kQ′ = (X−a)k−1(kQ+(X−a)Q′), avec kQ(a)+(a−a)Q′(a) = kQ(a) 6= 0.
Par une récurrence facile, une racine d’ordre k sera donc racine de tous les polynômes dérivés jusqu’au
k − 1-ème, mais pas du k-ème.

Exemple : Considérons le polynôme P = X4−2X3−19X2+68X−60 et constatons ensemble que 2
est une racine double de P . En effet, on a P (2) = 16−2×8−19×4+68×2−60 = 16−16−76+136−60 =
0 et P ′ = 4X3 − 6X2 − 38X +68, donc P ′(2) = 4× 8− 6× 4− 38× 2 + 68 = 32− 24− 76 + 68 = 0.
On peut en déduire, via la proposition précédente, que P est factorisable par (X − 2)2. Effectuons
une petite division euclidienne pour obtenir cette factorisation :

X4 − 2X3 − 19X2 + 68X − 60 X2 − 4X + 4

− (X4 − 4X3 + 4X2) X2 + 2X − 15
2X3 − 23X2 + 68X − 60

− (2X3 − 8X2 + 8X)
− 15X2 + 60X − 60
− (−15X2 + 60X − 60)

0

On a donc P (X) = (X−2)2(X2+2X−15). Le deuxième facteur a pour discriminant ∆ = 4+60 = 64,

et admet deux racines réelles x1 =
−2− 8

2
= −5 et x2 =

−2 + 8

2
= 3. On peut donc factoriser P

sous la forme P (X) = (X − 2)2(X − 3)(X +5). On ne risque pas de factoriser plus puisqu’il ne reste
que des facteurs de degré 1.

Définition 11. Un polynôme P est scindé s’il peut s’écrire comme produit de polynômes de degré
1 (autrement dit s’il a un nombre de racines, comptées avec multiplicité, égal à son degré). Il est
scindé à racines simples si de plus toutes ses racines sont distinctes.

Théorème 2. Théorème de d’Alembert-Gauss.

Tout polynôme dans C[X] est scindé.

Démonstration. Ce résultat fondamental a déjà été croisé dans le chapitre sur les nombres complexes
sous une forme légèrement différente. Nous n’avons toujours pas les moyens de le démontrer mainte-
nant, mais il suffit pour le prouver de montrer qu’un polynôme de degré au moins 1 appartenant à
C[X] admet toujours une racine (on applique ensuite ce résultat récursivement après avoir commencé
à factoriser le polynôme, jusqu’à retomber sur des facteurs qui sont tous de degré 1).

Exemple : Le polynôme X4 − 1 se factorise dans C[X] sous la forme X4− 1 = (X − 1)(X +1)(X −
i)(X + i).
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2.4 Relations coefficients-racines.

Proposition 7. Soit P =

n
∑

k=0

akX
k ∈ K[X], et α1, α2, . . ., αn ses racines (éventuellement

répétées plusieurs fois en cas de racines multiples). On a alors les relations suivantes entre
les coefficients et les racines de P :

•
n
∑

i=1

αi = −an−1

an

•
∑

16i<j6n

αiαj =
an−2

an
• . . .
•

∑

16i1<i2<···<ik6n

αi1αi2 . . . αik = (−1)k
an−k

an
• . . .

•
n
∏

i=1

αi = (−1)n
a0

an

Démonstration. Il suffit d’identifier la forme développée du polynôme et sa forme factorisée pour
obtenir ces relations. On part de la forme factorisée P = an(X − α1)(X − α2) . . . (X − αn) (on
connait toutes les racines), et on développe brutalement ce produit, le terme dominant sera alors
anX

n (ce qui ne donne évidemment aucune information), le terme de degré n − 1 est obtenu en
additionnant n termes provenant du produit d’une des racines (avec un petit signe −) par n − 1
facteurs X piochés dans les autres parenthèses, il vaut donc an(−α1X

n−1−α2X
n−1−· · ·−αnX

n−1),
qu’on identifie à an−1X

n−1 pour obtenir la première formule annoncée. Les autres sont obtenues de la
même façon, on ne détaillera pas rigoureusement cette démonstration hors-programme. La dernière
relation correspond au terme constant, obtenu en multipliant les opposés des racines présentes dans

chaque parenthèse, donc égal à an × (−1)n
n
∏

k=1

αi.

Définition 12. En notant σk =
∑

16i1<i2<···<ik6n

αi1αi2 . . . αik , la k-ème relation coefficient-racines

s’écrit simplement σk = (−1)k
an−k

an
. Les nombres σk sont appelés fonctions symétriques des

racines du polynôme.

Exemple : Pour un polynôme de degré 4 ayant pour racines a, b, c et d, les formules deviennent :

• a+ b+ c+ d = −a3

a4

• ab+ ac+ ad+ bc+ bd+ cd =
a2

a4

• abc+ abd+ acd+ bcd = −a1

a4

• abcd =
a0

a4

Exemple : On cherche à factoriser le polynôme 4X3 − 4X2 − 15X + 18, sachant qu’un ami nous a
glissé un indice : deux de ses racines ont une somme égale à 3.

On utilise les relations coefficients-racines. En notant a et b les racines dont la somme est égale à 3
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et c la troisième racine de P , on aura le système















3 + c = 1

ab+ ac+ bc = −15

4

abc = −9

2

. La première équation

nous donne immédiatement c = −2, on peut alors remplacer dans la dernière équation pour trouver

ab =
9

4
. On connait la somme et le produit des deux racines restantes, qui sont donc solutions de

l’équation x2 − 3x +
9

4
= 0. Cette équation a pour discriminant ∆ = 9 − 9 = 0 et admet donc

pour racine double x =
3

2
. On en déduit la factorisation souhaitée, en n’oubliant pas le coefficient

dominant : P = 4

(

X − 3

2

)2

(X + 2).

Variation sur le même thème : on reprend le même polynôme, mais cette fois, l’indice qui nous a été
glissé est la présence d’une racine double.

Puisqu’il y a une racine double, celle-ci est également racine de P ′. Or, P ′ = 12X2 − 8X − 15 =

4

(

3X2 − 2X − 15

4

)

. Ce trinôme a pour discriminant ∆ = 4 + 3 × 15 = 49, et admet pour racines

X1 =
2 + 7

6
=

3

2
et X2 =

2− 7

6
= −5

6
. Vérifions si X1 est racine de P : 4× 27

8
− 4× 9

4
− 45

2
+ 18 =

27

2
− 45

2
+9 = 0, donc

3

2
est la racine double recherchée. Inutile de vérifier si

5

6
est aussi racine double,

un polynôme de degré 3 ne peut pas avoir deux racines doubles. Pour déterminer la dernière racine,
on peut effectuer une division euclidienne ou plus simplement utiliser le fait que le produit des trois

racines sera égal à −18

4
. Comme ce produit vaut, en notant α la dernière racine,

(

3

2

)2

× α =
9

4
α,

on en déduit que α = −2, et P = 4

(

X − 3

2

)2

(X + 2).

3 Arithmétique dans K[X].

3.1 Polynômes irréductibles.

Définition 13. Un polynôme P est irréductible s’il ne peut pas se décomposer comme produit de
deux polynômes de degré strictement inférieur au sien.

Remarque 10. Par convention, on décrète donc que les polynômes constants ne sont pas irréductibles.

Remarque 11. Attention, la notion de polynôme irréductible dépend fortement du corps de base
choisi. Ainsi, le polynôme X2 + 4 est irréductible dans R[X] (si on pouvait le factoriser, ce serait
comme produit de deux polynômes de degré 1, ce qui supposerait qu’il ait deux racines réelles. Or
ce n’est pas le cas). Par contre, il n’est pas du tout irréductible dans C[X] puisqu’on peut l’écrire
sous la forme (X + 2i)(X − 2i).

Théorème 3. Les polynômes irréductibles de C[X] sont les polynômes de degré 1.

Les polynômes irréductibles de R[X] sont les polynômes de degré 1 et les polynômes de
degré 2 à discriminant strictement négatif.
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Démonstration. Le premier énoncé est une conséquence directe du théorème de d’Alembert-Gauss :
tout polynôme de degré supérieur ou égal à 2 dans C[X] admet une racine et ne peut donc pas être
irréductible. Pour le cas des coefficients réels, cela découlera de la démonstration du théorème de
décomposition énoncé plus bas.

3.2 PGCD et PPCM dans K[X ].

Définition 14. Si P et Q sont deux polynômes non nuls, on appelle PGCD de P et Q tout polynôme
de degré maximal divisant simultanément P et Q. De même, on appelle PPCM de P et Q tout
polynôme de degré minimal qui est à la fois multiple de P et de Q.

Remarque 12. Tous les PGCD de deux polynômes P et Q sont associés. On appellera donc « le

PGCD de P et Q » l’unique PGCD unitaire de P et Q. On le notera usuellement P ∧Q. On notera
de même P ∨Q le PPCM de P et Q, c’est-à-dire l’unique PPCM unitaire des deux polynômes.

Théorème 4. Algorithme d’Euclide du calcul de P ∧Q.

Comme dans le cas des entiers naturels, on peut calculer P ∧ Q à l’aide de la procédure
algorithmique suivante : on pose R0 = P , R1 = Q puis, pour tout n > 2, Rn est le reste de
la division euclidienne de Rn−2 par Rn−1. On obtiendra toujours Rn = 0 après un nombre
fini d’étapes, et Rn−1 sera alors égal à P ∧Q.

On peut même, exactement comme pour les entiers, calculer les coefficients d’une relation de Bézout
reliant les polynômes P et Q (cf plus bas) via l’algorithme d’Euclide étendu, en posant U0 = 1,
U1 = 0, R0 = 0, R1 = 1 et en leur appliquant les relations de récurrence Un+1 = Un−1 − QnUn et
Vn+1 = Vn−1−QnVn. Par exemple, si on pose P = 6X4+8X3−7X2−5X−2 et Q = 6X3−4X2−X−1 :

• on effectue la division de P par Q, et on obtient 6X4+8X3−7X2−5X−2 = (X+2)(6X3−
4X2−X−1)+2X2−2X. On pose donc Q2 = X+2, R2 = 2X2−2X, et U2 = 1, V2 = −X−2.

• on effectue la division euclidienne de Q par R2, qui donne 6X3 − 4X2 − X − 1 = (3X +
1)(2X2 − 2X) + X − 1. On pose donc Q3 = 3X + 1, R3 = X − 1, et U3 = −3X − 1,
V3 = 1 + (X + 2)(3X + 1) = 3x2 + 7X + 3.

• on constate que R2 = 2XR3, le reste de la prochaine division euclidienne sera nul. On conclut
que P ∧Q = X − 1, et que (3X2 + 7X + 3)Q− (3X + 1)P = X − 1.

Définition 15. Comme pour les entiers, on étend la définition du PGCD et du PPCM à toute
famille finie de polynômes.

Définition 16. Deux polynômes P et Q sont premiers entre eux si P ∧Q = 1.

Les polynômes P1, P2, . . ., Pk sont premiers entre eux dans leur ensemble si PGCD(A1, A2, . . . , Ak) =
1.

Remarque 13. Comme dans le cas des entiers, des polynômes premiers entre eux dans leur ensemble
ne sont pas forcément premiers entre eux deux à deux.

Théorème 5. Théorème de Bézout.
Deux polynômes P et Q sont premiers entre eux si et seulement s’il existe un couple de
polynômes (A,B) tels que AP +BQ = 1. Plus généralement, il existe toujours un couple
de polynômes tels que AP +BQ = P ∧Q.
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Théorème 6. Théorème de Gauss.
Si P et Q sont deux polynômes premiers entre eux, et P | QR, alors P | R.

3.3 Décomposition en produit de polynômes irréductibles.

Théorème 7. Tout polynôme unitaire P ∈ R[X] peut se factoriser sous la forme P =
p
∏

i=1

(X − ai)
αi

q
∏

j=1

(X2 + bjX + cj)
βj . Dans cette écriture :

• a1, a2, . . . , an sont les racines réelles du polynôme P

• αi représente la multiplicité de la racine ai
• les polynômes du second degré X2 + bjX + cj sont des polynômes à discriminant

strictement négatif
• βj représente la multiplicité des racines (complexes) du polynôme X2 + bjX + cj

Cette décomposition est unique à l’ordre des facteurs près.

Exemple : On souhaite factoriser le plus possible le polynôme P = X6 − 1. Que le calcul s’ef-
fectue dans R[X] ou dans C[X], il faut de toute façon commencer par trouver toutes les racines
complexes du polynôme. C’est ici immédiat puisqu’il s’agit des racines sixièmes de l’unité com-
plexe, donc z1 = 1, z2 = ei

π
3 , z3 = ei

2π
3 , z4 = −1, z5 = ei

4π
3 et z6 = ei

5π
3 . La décomposi-

tion de P dans C[X] en découle immédiatement, en écrivant ces racines sous forme algébrique
(et en plaçant les racines réelles en premier, ce qui n’est pas du tout une obligation) : P =

(X − 1)(X + 1)

(

X − 1

2
− i

√
3

2

)(

X +
1

2
− i

√
3

2

)(

X +
1

2
+ i

√
3

2

)(

X − 1

2
+ i

√
3

2

)

.

Pour passer dans R[X], il faut réussir à regrouper certains facteurs à coefficients complexes et à
effectuer leur produit de façon à ce que le résultat ait des coefficients réels. Le théorème énoncé ci-
dessus stipule qu’on peut toujours y arriver à l’aide de produits de deux polynômes (pas de facteurs
de dégré plus grand que 2 à la fin), ce qui est en pratique très simple en regroupant les facteurs
dont les racines sont conjuguées. Ici, par exemple, (X − e

iπ
3 )(X − ei

5π
3 ) = X2 −X + 1. On obtient

la décomposition suivante pour P dans R[X] : P = (X − 1)(X + 1)(X2 −X + 1)(X2 +X + 1).

Démonstration. Généralisons simplement les constatations faites sur l’exemple que nous venons de
développer. Si on trouve parmi les racines complexes d’un polynôme P une racine a et son conjugué
a, alors (X − a)(X − a) = X2 − (a + a)X + aa = X2 − 2Re (a)X + |a|2 est bien un polynôme
de degré 2 à coefficients réels (et à discriminant nécessairement négatif puisque ses racines sont
complexes). Or, lorsque a est racine complexe d’un polynôme à coefficients réels, a l’est aussi :

P (a) =
n
∑

k=1

aka
k =

n
∑

k=1

akak = P (a) = 0. De plus, la multiplicité de a sera toujours la même que

celle de a puisque le raisonnement précédent peut s’appliquer à l’identique aux polynômes dérivés
successifs de P (qui garderont évidemment des coefficient réels). On peut donc toujours effectuer la
procédure détaillée dans l’exemple (factorisation dans C[X], regroupement des facteurs correspondant
à des racines conjuguées) pour obtenir la forme annoncée dans l’énoncé du théorème.
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Théorème 8. Tout polynôme P ∈ K[X] peut s’écrire comme produit de facteurs irréduc-
tibles.

Démonstration. Ce dernier théorème n’est qu’une façon légèrement différente d’énoncer la factorisa-
tion des polynômes vue un peu plus haut.

Remarque 14. Ces théorèmes de factorisation sont l’équivalent dans K[X] du théorème de décom-
position en produit de facteurs premiers dans N. Les polynômes irréductibles jouent le même rôle
que les facteurs premiers (éléments impossibles à décomposer sous forme de produit), et toute la
démonstration découle de façon naturelle de l’existence d’un théorème de division euclienne dans les
deux ensembles.

4 Compléments.

Les deux compléments présentés dans cette dernière partie, qui sont totalement indépendants
l’un de l’autre, reposent toutefois sur un même principe, qui est fortement lié à la notion d’espace
vectoriel que nous ne tarderons pas à étudier : pour décrire un polynôme de degré n, on a besoin
de n + 1 informations indépendantes (cette valeur n + 1 correspond techniquement à la dimension
de l’espace vectoriel Kn[X]). La façon la plus simple de le faire est de donner les n + 1 coefficients
du polynôme, mais cette information n’est par exemple pas immédiatement exploitable pour obtenir
des informations sur la représentation graphique de la fonction polynômiale correspondante (pour
un polynôme à coefficients réels). Savoir par exemple qu’un polynôme de degré 5 a un coefficient
de degré 3 égal à 1 ne donne aucune information concrète (point de la courbe, tangente, etc). Nous
allons étudier deux autres façons de décrire un polynôme à l’aide de n + 1 informations, qui sont
nettement plus directement exploitables graphiquement :

• donner les valeurs du polynôme en n + 1 réels distincts. Nous allons détailler plus bas cette
méthode qui donne une information très concrète mais éparpillée à n + 1 endroits différents
(on connait n+ 1 points de la courbe).

• la dernière méthode que nous verrons concentre au contraire toute l’information au même
endroit, puisque la formule de Taylor reconstitue le polynôme à partir des valeurs de ses
différentes dérivées en un même réel a.

4.1 Polynômes interpolateurs de Lagrange.

Théorème 9. Soit (a0, . . . , an) une liste de réels deux à deux distincts, et (b0, . . . , bn) une
deuxième liste de réels (pas nécessairement distincts). Alors il existe un unique polynôme
P ∈ Rn[X] de degré au plus n tel que ∀k ∈ {0, . . . , n}, P (ai) = bi. Ce polynôme est appelé
polynôme interpolateur de Lagrange.

Démonstration. La démonstration de l’existence est très simple puisqu’on construit explicitement le
polynôme prenant les n+1 valeurs demandées. Pour cela, on commence par définir n+1 polynômes
de degré n suivants (ce sont techniquement eux qu’on appelle polynômes de Lagrange) : Li =
∏

j 6=i

(X − aj)

∏

j 6=i

(ai − aj)
. Le numérateur est simplement le polynôme de degré n unitaire ayant pour racines
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tous les nombres aj sauf ai (l’entier i étant préalablement fixé), et on le divise ensuite par une
constante (non nulle puisque les aj sont par définition différents de ai) de façon à avoir Li(ai) = 1.
Par construction, on a par ailleurs Li(aj) = 0 si j 6= i puisque aj est une racine du numérateur.
Le polynôme Li est donc une solution du problème d’interpolation particulier où une des valeurs

imposées est égale à 1 et toutes les autres à 0. Il suffit maintenant de poser P =

n
∑

i=0

biLi pour

obtenir un polynôme qui prend comme valeur bi en ai (dans le calcul de L(ai), tous les termes de la
somme sont nuls sauf celui d’indice i qui vaut bi × 1). Ce polynôme est de degré au plus n puisqu’il
est une somme de polynômes de degré n, il répond donc au problème posé.

Reste à prouver l’unicité : supposons donc que deux polynômes P et Q conviennent. Puisque ces
deux polynômes prennant la même valeur en n+1 réels distincts, leur différence P −Q admet donc
(au moins) n + 1 racines. Or, P − Q est par hypothèse une différence de deux polynômes dont le
degré ne dépasse pas n, donc lui-même de degré inférieur ou égal à n. Il est alors nécessairement nul,
ce qui prouve que P = Q.

Exemple : On souhaite déterminer un polynôme de degré 2 vérifiant P (1) = 3, P (2) = 2 et P (3) =
−1. On va numéroter les valeurs 1, 2 et 3 plutôt que 0, 1 et 2 pour ne pas créer de confusion inutile,

et on définit donc L1 =
(X − 2)(X − 3)

(1− 2)(1 − 3)
=

1

2
X2 − 5

2
X + 3, L2 =

(X − 1)(X − 3)

(2− 1)(2 − 3)
= −X2 + 4X − 3

et L3 =
(X − 1)(X − 2)

(3− 1)(3− 2)
=

1

2
X2 − 3

2
X + 1 (notez au passage que ces polynômes ne dépendent pas

du tout du choix des valeurs bi). On calcule ensuite P = 3L1 + 2L2 − L3 = −X2 + 2X + 2. On
vérifie aisément que le polynôme est bien solution du problème. Bien entendu, les plus courageux
peuvent résoudre ce genre de problème en résovant un système de n+1 équations à n+1 inconnues
en recherchant les coefficients du polynôme à partir des conditions sur les valeurs prises.

0 1 2 3 4 5−1−2

0

1

2

3

4

−1

−2

−3

Remarque 15. Plus généralement, tous les polynômes vérifiant P (ai) = bi (sans imposer un degré

égal à n) sont de la forme P0 +Q

n
∏

i=0

(X − ai), où P0 est l’unique solution de degré au plus n décrite

ci-dessus. C’est même assez évident : un tel polynôme convient (le produit de droite s’annule pour
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tous les ai donc ne changera pas la valeur du polynôme en ai), et si P est un polynôme solution,

alors P − P0 admet tous les nombres ai comme racines, donc se factorise par
n
∏

i=0

(X − ai), ce qui

correspond exactement à la forme donnée.

4.2 Formule de Taylor.

Le principe de la formule de Taylor, que nous reverrons sous d’autres formes très bientôt puis-
qu’elle est à la base des développements limités qui constitueront le coeur du principal chapitre
d’analyse du second semestre, est de généraliser la notion de tangente à une courbe à des polynômes
de degré plus grand que 1. On cherche par exemple, pour une fonction donnée, la parabole (courbe
d’un polynôme de degré 2) qui « colle » le plus possible à la courbe au voisinage d’un point donné. La
formule de Taylor donne directement l’équation de cette parabole (et des courbes de degré supérieur
analogues) à partir des valeurs prises par les dérivées d’ordre supérieur de la fonction. Bien sûr, si
on applique la formule à un polynôme, on est dans un cas particulier puisque la courbe polynômiale
la plus proche de celle de la fonction sera évidemment celle du polynôme lui-même. La formule est
malgré tout intéressante parce qu’elle donne des coefficients qu’on retrouvera dans toutes les ver-
sions de la formule de Taylor, et aussi parce qu’elle montre qu’on peut reconstituer intégralement un
polynôme de degré n à partir des valeurs de ses dérivées en un même point a.

Théorème 10. Formule de Taylor, version polynômes.

Soit P ∈ Rn[X] et a ∈ R, alors P (X) =

n
∑

k=0

P (k)(a)

k!
(X − a)k.

Démonstration. On va se contenter de prouver la formule dans le cas particulier où P (X) = Xn.
Dans ce cas, les dérivées du polynôme sont données par P ′(X) = nXn−1, P ′′(X) = n(n−1)Xn−2, . . .,

P (k)(X) = n(n−1) . . . (n−k+1)Xn−k =
n!

(n− k)!
Xn−k (une récurrence est nécessaire pour prouver ce

résultat tout à fait rigoureusement, on s’en passera). On en déduit que P (k)(a) =
n!

(n − k)!
an−k, puis

que
n
∑

k=0

P (k)(a)

k!
(X−a)k =

n
∑

k=0

n!

(n− k)!k!
an−k(X−a)k =

n
∑

k=0

(

n

k

)

(X−a)kan−k = (X−a+a)n = Xn

en reconnaissant la formule du binôme de Newton.

Exemple : Soit P = 2X3−3X2+X−4, et posons a = 2. On calcule sans difficulté P (2) = 16−12+
2−4 = 2 ; P ′ = 6X2−6X+1 donc P ′(2) = 24−12+1 = 13 ; P ′′(2) = 12X−6 donc P ′′(2) = 18 et enfin
P ′′′(2) = 12. La formule de Taylor affirme alors que P = 2+13(X−2)+9(X−2)2+2(X−2)3. Vous
pouvez naturellement tout développer pour vérifier que ça marche. On remarquera que, présentés
dans cet ordre, les différents termes de la formule de Taylor sont de plus en plus petits quand on se
rapproche de 2, ou si on on préfère que les formules obtenues en ne prenant qu’une partie des termes
du membre de droite deviennent des approximations de plus en plus précises de P (X).
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