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Le possible est une matrice formidable.

VicTOrR HUGO

Unfortunately, no one can be told what the Matriz is.
You have to see it for yourself.

Tagline du film MATRIX (traduction en exercice).

Avant de rentrer dans le vif du sujet en algébre linéaire (les fameux espaces vectoriels, que nous
aborderons au deuxiéme semestre), un chapitre plus orienté calcul sur un outil qui sera fondamental
dans la suite du cours : les matrices. Il s’agit ici simplement d’apprendre a calculer avec les matrices,
mais aussi de voir le lien entre ces nouveaux objets et une autre notion que vous maitrisez déja : les
systémes d’équations linéaires, pour lesquels nous verrons une méthode de résolution systématique.

Objectifs du chapitre :

e maitriser le calcul matriciel, calculs de puissances ou d’inverse notamment.

e comprendre le fonctionnement de ’algorithme du pivot de Gauss, et savoir 'appliquer ef-
ficacement dans le cadre de l'inversion de matrices comme dans celui de la résolution de
systémes.

Introduction : un exemple ludique.

Pour introduire le concept de matrice et en particulier le produit matriciel (qui est 'opération
la moins naturelle parmi celles que nous allons introduire dans ce chapitre), intéressons-nous au
probléme tout a fait concret suivant : dans un jeu video débile (qui a dit pléonasme?), on peut
composer des armées constituées de trois types de créatures, trolls, orcs et gobelins. Un éléve de
PTSI ayant trop de temps & perdre contitue lors d’'une méme soirée les trois armées suivantes :

Trolls | Ores | Gobelins
Armeée 1 3 5 8
Armée 2 6 2 12
Armée 3 5 5 15




Mathématiquement, on considérera que le tableau de nombres ainsi obtenu (sans les intitulés des
lignes et colonnes, bien entendu) est justement ce qu’on appellera une matrice, ici une matrice

3 5 8
trois lignes et trois colonnes que l'on notera | 6 2 12 |. Les bébétes constituant les troupes de
5 5 15

nos armées étant assez gourmandes, il faudra les nourrir quotidiennement d’une certaine quantité
d’huitres, d’humains et de poulets (régime alimentaire parfaitement adapté a ce genre de créatures,
ne vous inquiétez pas). La quantité de nourriture ingurgitée par chaque type de créature est donnée,
en unités par jour, dans le tableau suivant :

Huitres | Humains | Poulets
Troll 10 3 8
Orc 8 4 10
Gobelin 2 6 2

On vient ainsi de définir une seconde matrice, trois lignes trois colonnes elle aussi. La question est
alors fort simple : quelle quantité de chaque aliment le larbin chargé de faire les courses doit-il se
procurer pour nourrir chacune des armées ? La réponse peut étre obtenue en construisant le dernier
tableau suivant :

Huitres | Humains | Poulets
Armeée 1 86 77 90
Armée 2 100 98 92
Armée 3 120 125 120

Le remplissage du dernier tableau découle d’un calcul assez simple. Pour trouver par exemple la
valeur 86 de la premiére case, on a multiplié deux a deux les éléments de la premiére ligne du premier
tableau (celle qui correspond & la premiére armée) par ceux de la premiére colonne du deuxiéme
tableau (celle qui correspond aux huitres), et additionné le tout : 3 x 10+ 5 x 848 x 2 = 86. Les trois
types de créatures qui étaient communs aux deux tableaux, ont disparu une fois ce calcul effectué.
De méme pour les autres éléments, on effectue a chaque fois le « produit » d’une ligne du premier
tableau par une colonne du deuxiéme tableau. Eh bien, ce qu'on vient de faire, c’est exactement
un produit de matrices. Cette opération en apparence peu naturelle quand on la présente de fagon
formelle (ce qu’on ne va pas tarder a faire) est donc en réalité trés concréte. Elle interviendra
systématiquement dés qu’on posséde trois lots de données, deux tableaux exprimant la premiére
donnée en fonction de la deuxiéme et la deuxiéme en fonction de la troisiéme, et qu’on cherche a
exprimer directement la premiére donnée en fonction de la troisiéme (on reviendra sur cet aspect
du calcul matriciel quand on reverra ces magnifiques objets dans le cadre des applications linéaires
entre espaces vectoriels). Mathématiquement, on écrirait le calcul effectué dans cette introduction

3 5 8 10 3 8 8 77 90
sous la forme : 6 2 12 X 8§ 4 10 = 100 98 92 ]. Notons pour conclure
5 5 15 2 6 2 120 125 120

qu’il n’est absolument pas obligatoire d’avoir des tableaux de nombres ayant le méme nombre de
colonnes que de lignes pour effectuer le calcul. Ici, on aurait pu ajouter ou supprimer une armée
(donc modifier le nombre de lignes de la premiére matrice), ou bien mettre au régime les monstres en
leur supprimant leurs rations de poulet (une colonne en moins dans la deuxiéme matrice) sans que ¢a
ne pose probléme. Il est par contre indispensable que le nombre de colonnes de la premiére matrice
soit égal au nombre de lignes de la deuxiéme. Derniére remarque : faire le produit dans ’autre sens
(multiplier les lignes du deuxiéme tableau par les colonnes du premier) n’aurait absolument aucun
sens concret, et donnerait en tout cas un résultat bien différent de celui obtenu ici.



1 Les anneaux M, (K).

1.1 Somme et produits.

Définition 1. Une matrice a n lignes et p colonnes a coefficients dans un corps K (qui sera pour
nous systématiquement le corps des réels ou celui des complexes) est un tableau rectangulaire (& n

lignes et p colonnes) contenant np éléments de K. On note un tel objet M = (m;;)1<i<n ou de fagon
1<j<p

plus compléte

mi1 MMl ... Minp

mo1 - m2
M = "

mn1 c. oo Mpn

Autrement dit, m;; est le terme de la matrice M se trouvant a I'intersection de la i-éme ligne et de
la j-éme colonne.

Définition 2. Une matrice a n lignes et p colonnes est aussi appelée matrice de taille (n,p). Une
matrice est par ailleurs carrée si n = p (on parle alors aussi de matrice carrée d’ordre n).

Définition 3. L’ensemble des matrices a n lignes et p colonnes & coefficients dans K est noté

M, p(K).

L’ensemble des matrices carrées d’ordre n est noté plus simplement M,, (K).

Remarque 1. Dans le cas ot n = 1, la matrice se réduit & une ligne, et on parle effectivement
de matrice-ligne. De méme, lorsque p = 1, on parlera de matrice-colonne. La notation est alors
extrémement similaire a celle utilisée pour désigner un élément de K” par ses coordonnées dans une
base, et on identifiera de fait souvent K" a M,, 1(K).

Définition 4. Soient A et B deux matrices appartenant a M,, ,(K), la somme de A et de B est la
matrice A+ B = C, ou Cij = Qi j + bi,j.

2 3 -1 -3 0 0 -1 3 -1
Exemple : si A = 0 6 3 et B= 5 =2 7 |, A+B= 5 4 10
—4 1 -2 4 -1 -1 0 0 -3

Il faut bien évidemment que les deux matrices aient la méme taille (méme nombre de lignes et de
colonnes) pour pouvoir effectuer leur somme.

Définition 5. La matrice nulle 0, , (ou plus simplement 0 si les dimensions de la matrice sont
claires dans le contexte) est la matrice a n lignes et p colonnes dont tous les coefficients sont nuls.

Proposition 1. L’ensemble (M,, ,(K), +) est un groupe commutatif.

Démonstration. Toutes les propriétés sont évidentes, elles découlent immeédiatement des propriétés
de la somme de réels, puisque la somme se fait terme & terme. O

Définition 6. Le produit d’une matrice A par un élément A\ € K est la matrice, notée \A,
obtenue & partir de A en multipliant chacun de ses coefficients par .

On dit qu'une matrice M € M, ,(K) est combinaison linéaire des matrices Ay, Ag, ..., Ay sion

k
peut écrire M sous la forme M = Z NA; = MAL+ AAg + -+ N AL
i=1



Proposition 2. Propriétés du produit d’'une matrice par un réel :

e VAe M, ,(K),1xA=A

e compatibilité avec le produit dans K : VA € M,, ,(K), V(A p) € K2, A x (u x A) =
(Ap) x A

e double distributivité par rapport aux sommes : VA € M, ,(K), V(A p) € K2,
A+p)x A=AxA+pux A, et V(A4,B) € Mp,(K)2, VA € K, Ax (A+ B) =
AxXA+AxB.

Remarque 2. Ces propriétés du produit « extérieur » (par opposition au produit intérieur, c’est-a-
dire au produit de deux matrices qu’on va définir juste aprés), cumulées aux propriétés de la somme
de matrices, font de M,, ,(K) ce qu'on appelera bientot un espace vectoriel réel. On notera par
ailleurs désormais ce produit sans utiliser de symbole de multiplication, sous la forme plus simple
AA.

Définition 7. Dans M, ,(K) on note E; ; les matrices de la forme

0 0 ... .o i .0
0
(L) 0 1
EZ,‘]_
(L;) 0
S
0 0O O

Proposition 3. Toute matrice M € M,, ,(K) est combinaison linéaire de toutes les ma-
trices Fj ;.

n n
Démonstration. C’est évident, il suffit d’écrire que M = Z Z m;jE;j. On verra plus tard que cette
i=1 j=1
propriété signifie que les matrices E; ; forment ce qu’on appelle une famille génératrice de I'espace
vectoriel M, ,(K). O

Définition 8. Soit A € M,, ,(K) et B € M, ,(K), alors le produit des deux matrices A et B est

P
la matrice Ax B=C e M, ,K)ouVie{l,....n},Vjie{l,...,q}, cij = Zaikbkj.
k=1

Remarque 3. Cette définition correspond exactement & ce qu’on a vu dans notre exemple introductif :
on multiplie terme & terme la i-éme ligne de A par la j-éme colonne de B et on somme le tout. Il
faut faire trés attention a ce que les tailles des matrices soient compatibles pour que le produit existe
(nombre de colonnes de la premiére matrice égal au nombre de lignes de la deuxiéme).

1 0 ... 0
0 1 0 0
Définition 9. La matrice identité de taille n est la matrice carrée I,, =
S—
0 0 1



Proposition 4. Propriétés élémentaires du produit de matrices :

e Le produit de matrices est associatif : VA € M, ,(R), VA € M,,R), VC €
Myr(R), (AB)C = A(BC).

e Le produit de matrices est distributif par rapport & la somme : pour toutes matrices
de tailles compatibles, A(B+ C) = AB + AC et (A+ B)C = AC + BC.

e Les matrices identité jouent le role d’éléments neutres pour le produit : VA €
M, p(R), INA = AL, = A.

e Les matrices nulles sont des éléments absorbants pour le produit matriciel : VA €
My p(R),0x A=0et Ax0=0.

Démonstration.
e Pour prouver l'associativité, il faut juste un peu de courage : considérons A, B et C ayant
q

les dimensions indiquées. Si on note D = (AB)C, on peut alors écrire d;; = Z(AB)ikaj =
k=1

]
M"G

(

aiibiy)cj. On peut écrire ceci plus simplement sous la forme d’une somme double

o
[

A
T

1

M=
M'ﬁ

p P q
a;bicrj. De méme, en notant ' = A(BC), on aura E;; = Z a;,(BCO)y; = Z aik(z bricij) =
=1

k=1 1=1 k=1 k=1
p P
Z Z a;xbricy;. Les deux formules sont bien les mémes puisque les indices dans une somme
k=1 I=1
double sont muets (on inverse simplement le role des deux indices).
P P p
o (C’est un calcul assez élémentaire sur les sommes : Z aik (b + cij) = g a;brj + Z ik Chj-

L’autre calcul est essentiellement identique.
e Pour cette propriété, on notera juste I et pas I, par souci de lisibilité. Soit m;; le terme

n
d’indice 7,j de la matrice produit JA. On a par définition m;; = ZIikAkj- Mais le seul

k=1
terme non nul parmi les I;;, est I;;, qui vaut 1. On a donc bien m;; = A;;. Pour le produit a

droite par I, la démonstration est la méme.
e Bon, ¢a c’est vraiment trivial.

O]

Remarque 4. Attention aux gros piéges suivants quand on manipule le produit matriciel :

e Le produit de matrices n’est pas commutatif. En fait, I’existence du produit AB n’implique
méme pas celle de BA, mais méme dans le cas des matrices carrées, par exemple, on a en
général AB # BA.

e Parler de division de matrice n’a absolument aucun sens. Il faudrait en fait distinguer une
division « & gauche » et une division « & droite ». En pratique, I’équivalent d’une division sera
simplement obtenu en multipliant par la matrice inverse, & condition bien entendu qu’elle
existe (voir plus loin dans ce méme chapitre).

e On ne peut pas simplifier les produits : AB = AC n’implique en général pas B = C', méme
si A n’est pas la matrice nulle (on peut en fait simplifier que si la matrice A est inversible,
en multipliant chaque membre de 1'égalité a gauche par A~!). De méme, AB = 0 n’implique
absolument pas qu’une des deux matrices soit nulle.

-2 6

Exemple : Si A = 34—l et B = 1 —1 |,alors Ax B=
2 0 5 5 3

—4 11

6 27>etB><A:



6 —8 32

1 4 -6
12 8 13
. 4 =2 1 -3 . 10 -5
Exemple.SlA—(_2 1 )etB—<2 _6>alorsAxB—0malsB><A—<20 _10>.

Proposition 5. L’ensemble (M,,(K), +,) est un anneau non commutatif.

Démonstration. 11 suffit de constater que le produit est bien une opération interne dans M, (K),
toutes les propriétés qui en font un anneau ont déja été prouvées. Remarquons que cet anneau n’est
pas du tout un anneau intégre au vu des exemples donnés ci-dessus. O

Définition 10. Le symbole de Kronecker §;; vaut 1 lorsque 7 = j, 0 lorsque 7 # j.

Proposition 6. Si M € M,, ,(K), son produit & gauche par la matrice E; ; est la matrice
N dont les coefficients vérifient Ny; = d;.my;. Le produit & droite par cette méme matrice
E;; est la matrice P dont les coefficients vérifient Py = 0jlmy,.

Démonstration. Il n’y a qu’a écrire la formule, c’est évident. O

1.2 Transposition

Définition 11. La transposée d’une matrice A € M, ,(K) est la matrice M € M, ,(K), ou
m;; = aj;. On la note AT. Autrement dit, les lignes de A sont les colonnes de AT et vice-versa.

Proposition 7. La transposition vérifie les propriétés suivantes :

VA € My ,p(K), (AN = A.

VA,B € M, ,(K)?, (A+B)T =AT + BT.

VA € M p(K), VA €K, (AA)T = XAT.

VA € M, ,(K), VC € M, ,(K), (AC)T =CTAT.

Démonstration. Les trois premiéres propriétés ne posent aucun probléme, mais la derniére est moins

évidente. Ecrivons ce que vaut le terme d’indice ij & gauche et & droite de 'égalité. Pour (AC) T, il est
P P P
égal au terme d’indice ji de AC, c’est-a-dire & Z @k Chi- A droite, on a Z(CT)ik(AT)kj = Z ChiQ k-
k=1 k=1 k=1
Les deux quantités sont bien égales.

4 3 =2 4 0 -1
Exemple : si A = 0 5 1 alors AT = 3 5 1
-1 1 8 -2 1 8

Définition 12. Une matrice A € M, (K) est symétrique si AT = A, c’est-a-dire si Vi,j €
{1,...,n}? a;j = aj;. Elle est antisymétrique si AT = —A.

Remarque 5. Une matrice antisymétrique a donc une diagonale nécessairement nulle (alors que, pour
une matrice symétrique, la diagonale est quelconque).



Définition 13. On note S,,(K) 'ensemble des matrices symétriques de M,,(K), et A, (K) 'ensemble
des matrices antisymétriques de M, (K).

1 2 3
Exemple : on peut décomposer la matrice A = 4 5 6 comme somme d’une matrice sy-
789
1 3 5
métrique et d’'une matrice antisymétrique. Il suffit pour cela de poser B = 3 5 7 et C =
5 79
0 -1 -2

1 0 —1 |.La matrice B est symétrique, C' est antisymétrique, et on a bien A = B+ C. En
2 1 0
fait, cette décomposition est unique : par exemple on doit avoir b3 + c13 = 3 et b31 + 31 = 7, ce qui
impose b1 — c13 = 7 puisque les matrices doivent étre respectivement symétrique et antisymétrique.

3+7 3 —
Ces deux conditions imposent b3 = St =5etciz = — = —2, et on peut faire le méme genre
de raisonnement pour les autres coefficients. En fait, toute matrice carrée A peut étre décomposée
: : A+ AT A—AT
de cette fagon (quelle que soit sa taille) en posant B = —5 et C = —g

1.3 Puissances de matrices carrées.

Définition 14. Les puissances entiéres (positives) d’une matrice carrée sont définies par récurrence
de la facon suivante : si A € M, (K), A =1, et Vn € N, A"l = A x A"

Remarque 6. Une matrice commute toujours avec toutes ses puissances, on peut donc aussi écrire
APl = A" x A. 1] est bien siir indispensable que la matrice A soit carrée pour calculer ses puissances,
sinon on ne peut méme pas la multiplier par elle-méme pour calculer son carré!

Définition 15. Une matrice carrée A € M,,(K) est diagonale si V(i,j) € {1,...,n}? i # j =
aij =0.

all 0 0
. 0 ago
Autrement dit, A =
0
0 0 app

Remarque 7. Les coefficients diagonaux de la matrice A (ceux qui sont sur la diagonale, donc) ont
tout a fait le droit d’étre nuls eux aussi. La matrice nulle de taille (n,n) est un exemple de matrice
diagonale.

Proposition 8. Toutes les puissances d’une matrice diagonale sont diagonales. Plus pré-

ail 0 e 0 a’fl 0 e 0
- : n .
cisément, si A = 0 azm , on aura A" = O 422
0 R 0 . 0 a},

Démonstration. Récurrence triviale si on veut vraiment prouver cette propriété assez évidente. [



Définition 16. Une matrice carrée est triangulaire supérieure si V(i,7) € {1,...,n}%, i > j =

ailp] a2 ... Qin
. 0 a P . . . .
a;j = 0, ou encore si A = 22 . On définit de méme des matrices triangulaires
0 .. 0 anpp

inférieures par la condition i < j = a;; = 0.

Proposition 9. Le produit de deux matrices triangulaires supérieures est une matrice
triangulaire supérieure (et de méme pour les matrices triangulaires inférieures). De plus,
les coefficients diagonaux du produit sont les produits des coefficients diagonaux des deux
matrices.

Démonstration. Prenons donc deux matrices triangulaires supérieures A et B et supposons ¢ > j.

n i—1 n
Le terme d’indice ¢j du produit AB est égal a Z a;kbrj = Z 0 X bg; + Z a;r X 0 = 0. La matrice
k=1 k=1 k=i
AB est donc triangulaire supérieure. O
2 3 -1 1 -5 2 2 -1 -6
Exemple :si A= 0 6 3 et B=| 0 3 -3 J,alosAxB=| 0 18 -15
0 0 =2 0 0 1 0o 0 =2

Remarquez au passage que les termes diagonaux de A x B sont obtenus en effectuant le produit de
ceux de A par ceux de B.

Exercice : Dans le cas d’une matrice quelconque de taille pas trop grande, il est fréquent de calculer
ses puissances successives par récurrence. Voici un exercice-type sur ce sujet, les méthodes utilisées
dans ce cas particulier peuvent facilement étre généralisées a tout exercice du méme genre. On pose

2 -2 1
donc A = 2 -3 2
-1 2 0

1. Calculer A? puis déterminer deux constantes réelles a et b telles que A2 = a A + bl;.

2. Montrer par récurrence l'existence de deux suites réelles (ay) et (by) telles que, ¥n € N,
A" = a, A+ b, I5.

3. A l’aide des relations de récurrence obtenues a la question précédente, calculer explicitement
a, puis b, en fonction de n.

4. En déduire la valeur de A", et donner en particulier A7.

Solution :
-1 4 =2
1. On calcule donc A2 = | —4 9 —4 |. Les coefficients en-dehors de la diagonale ont été
2 -4 3
multipliés par —2 par rapport a ceux de A, donc a = —2. En observant ensuite la diagonale

on trouve facilement b = 3 (on peut aussi écrire dés le départ un systéme, mais on évitera
dans ce cas d’écrire les neuf équations issues des neuf coefficients de la matrice, on en écrit un
nombre suffisant, habituellement deux, et on vérifie & la fin que la relation fonctionne aussi
pour les coefficients restants).



2. Prouvons donc par récurrence la propriété P, : A™ = up, A+ v, I. Au rang 0, il suffit de poser
ag = 0 et by = 1 pour que ¢a fonctionne puisque A° = I_0 x A+ 1 x I3. De méme, la propriété
Py est vérifiée en posant a; = 1 et by = 0 (méme si on n’a absolument pas besoin d’une
initialisation double pour cette récurrence). Supposons maintenant le résultat vrai au rang
n, on a alors A" = A" x A = (a,A + b,I3)A = a, A% + b, A = ap(—2A + 313) + b, A =
(by, — 2an)A+3apIs. En posant a,+1 = —2ay, + by et by,11 = 3a,, on a bien la forme demandée
au rang n + 1, d’ou 'existence des coefficients a,, et b, pour tout entier naturel n.

3. Nous avons obtenu & la question précédente des relations de récurrence qui permettent de faire
le calcul suivant : ap12 = —2ap+1 + bpy1 = —2an+1 + 3a,. La suite (a,) est donc récurrente

linéaire d’ordre 2. Son équation caractéristique est 2% + 2z — 3 = 0, elle a pour discriminant

—2—4 —2+4
A =4+412 =16, et admet donc deux racines r = —y = -3, et ro = + =1.0Onen

déduit 'existence de deux réels « et 5 tels que Vn € N, a,, = a(=3)"+ 5. Or,ap =a+5=0

1
et a; = —3a+ S =1, dont on tire a = —en faisant la différence des deux équations, puis

n
B = % On a donc a,, = i(l — (=3)™), puis b, = 3a,_1 = Z(l —(=3)" 1) = 3+(4_3)
n n

1—(4—3) A+ 3+ (—3)
coefficients de la matrice mais ¢a n’a pas vraiment d’intérét. Contentons-nous, comme le
demandait I’énoncé, d’expliciter A7. On sait tous que (—3)7 = —2 187, donc A7 = 547A —

548 —1094 547
54613 = 1094 —2187 1094 |. Palpitant.

—547 1094 —546

4. Par construction, A" = I3. On peut écrire explicitement tous les

Définition 17. Une matrice carrée A est dite nilpotente s’il existe un entier n € N tel que A" = 0.

Remarque 8. Les propriétés du produit matriciel font qu’il existe des quantités de matrices non
nulles qui sont nilpotentes. Ainsi, une matrice triangulaire stricte (avec des 0 sur la diagonale) sera
notamment toujours nilpotente. Une remarque en passant : si une matrice carrée d’ordre n est
nilpotente, elle vérifie nécessairement A™ = 0 (pour l'entier n correspondant aux nombres de lignes
et de colonnes de la matrice). C’est un théoréme (hors-programme) loin d’étre simple & démontrer.

Théoréme 1. Formule du bin6me de Newton, version matricielle.

Soient (A, B) € M,(R)? deux matrices qui commutent, alors Yk € N, (A + B)¥ =

Zk: (’:) A'BFE,

=0

Démonstration. 1l ne s’agit que d’un cas particulier de la formule du binéme de Newton énoncée
dans le cadre des anneaux. O

Exemple : On appliquera souvent cette formule dans le cas ot I'une des deux matrices est diagonale,
et I'autre nilpotente, ce qui en pratique réduit le nombre de termes de la somme a une quantité

1 2 3
indépendante de n (et assez petite). Ainsi, si A = [ 0 1 2 |, on peut écrire A = B + I3, ou
0 01
0 2 3 0 0 4
B = 0 0 2 vérifie B? = 0 0 0 |, puis B¥ = 0 a partir de k = 3 (autrement dit, la
0 01 0 00



matrice B est nilpotente). Les matrices I3 et B commutant certainement, on peut appliquer la formule
du binéme (en ne gardant que les trois premiers termes de la somme puisque tous les suivants seront

- n(n—1)
2

nuls) : A" = (B+13)" = Z (Z) BFIZF = I3+ nx B+ x B2 On peut méme facilement

k=0
1 2n 3n+2n(n—1) 1 2n n(2n+1)
écrire les puissances explicitesde A : A | 0 1 2n =10 1 2n
0 0 1 0 0 1

n
Définition 18. La trace d’une matrice carrée A € M,,(K) est le nombre Tr(A) = Z ;.-

Proposition 10. La trace est une application linéaire : pour des matrices de méme taille,
Tr(AM + uB) = ATr(A) 4+ uTr(B).

La trace vérifie la formule Tr(AB) = Tr(BA).

Démonstration. La premiére proprlete est completement évidente. La deux1eme I est un peu moins.

Calculons donc Tr(AB) = Z(AB WZZQW ji- De méme, Tr(BA) = Zwaaﬂ Quitte a

=1 =1 j=1 =1 j=1
échanger le role des deux variables muettes i et j, c’est bien la méme chose. O

2 Inversion de matrices.

Définition 19. Une matrice carrée A € M,,(K) est inversible s’il existe une matrice B € M,,(K)
telle que AB = BA = I,,. La matrice B est alors notée A~! et on I'appelle matrice inverse de la
matrice A. On note GL,(K) (et on appelle groupe linéaire d’ordre n) I’ensemble de toutes les
matrices inversibles d’ordre n.

Remarque 9. La notion n’a bien siir aucun sens dans le cas de matrices qui ne sont pas carrées. On
retrouve encore une fois le vocabulaire défini de fagon général dans les anneaux.

Exemple : L’inverse de la matrice I, est bien sir [,, elle-méme. La matrice nulle n’est pas inversible,
mais c’est loin d’étre la seule dans ce cas. Ainsi, toute matrice contenant une ligne ou une colonne
entiére de zéros ne peut pas étre inversible (si ¢’est une ligne de zéros par exemple, quand on calculera
un produit du type AB, il restera toujours une ligne de zéros, il est donc impossible d’avoir AB = I,,).

2 1
Exemple : Cherchons & déterminer de fagon trés rudimentaire I'inverse de la matrice A = < 3 9 )

en exploitant naivement la définition. On cherche donc une matrice B = ( : y ) telle que AB = I

t

(dans ce cas, le produit dans ’autre sens sera automatiquement égal a I, comme on pourra le vérifier

2z + 2z =1
. . 29 + t = . , .

facilement). On trouve donc le systéme 3 4+ 2 — 0 La deuxiéme équation donne t = —2y,
Jy + 2t =1

ce qui en reportant dans la derniére améne y = —1, et donc t = 2. La premiére équation donne

z = 1 — 2z, soit en reportant dans la troisiéme —z + 2 = 0, donc x = 2, puis z = —3. Finalement,

2 -1
-3 2
des méthodes de calcul d’inverse plus efficace, car je doute que vous ayez envie de calculer 'inverse
d’une matrice d’ordre 5 de cette fagon.

la matrice A est inversible, et son inverse est B = ( ) On va trés vite essayer de trouver
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Remarque 10. Une matrice diagonale est inversible si et seulement si tous ses coeflicients diagonaux

a1 0 ... 0 ait 0 ... 0
: : 1
sont non nuls. On a alors, si A = 0 ax LA = 0 ay
0 0
0 0 ann 0 0 ap!

Proposition 11. Principales propriétés calculatoires de I'inversion de matrices.

e Si A est inversible, son inverse est unique.

e Si A est inversible, alors A~! aussi et (A71)~! = A.

e Si A, B € M,(K)? sont deux matrices inversibles, le produit AB est inversible et
(AB)"™' = B7tA~L

e Si A est une matrice inversible, A* est inversible pour tout entier n € N, et (A")~! =
(a1

e Si A, B € M,(K) vérifient AB = I,,, alors BA = I, et A et B sont inversibles et

inverses 'une de l'autre.

Démonstration. Tout a déja été vu dans un anneau quelconque, mais ¢a ne fait pas de mal de refaire
les démonstrations dans ce cas particulier.

e Supposons donc que A admette deux inverses distincts qu’on va noter B et C, autrement dit
que AB = BA = AC = CA = I,,. On peut alors calculer C(AB) = CI,, = C, mais aussi
(CA)B = I,B = B. Le produit étant associatif, on trouve nécessairement C' = B.

e C’est évident au vu de la définition de I'inverse.

e Vérifions que le produit de AB par ce que je prétends étre son inverse donne bien 'identité :
ABB~'A7! = AILA~!' = AA~! = I,,, dans 'autre sens c’est pareil.

e Sans faire une belle récurrence, constatons que A x --- x A x A7 x --- x A7l = [, par
simplifications successives « par le milieu ».

e C’est plus dur qu’il n’y parait, on va admettre ce résultat.

O

Remarque 11. Un des principaux intéréts de travailler avec des matrices inversibles est qu’on peut
simplifier un peu plus naturellement certains calculs, notammant : si A est une matrice inversible et
AB = AC, alors B = C (il suffit de multiplier 1’égalité & gauche par A~! pour obtenir le résultat).
Autre remarque utile : si A et B sont deux matrices non nulles telles que AB = 0, alors aucune des
deux matrices n’est inversible (sinon, par I’absurde, en multipliant & gauche par I'inverse de A ou a
droite par l'inverse de B, on constaterait que I'autre matrice est nulle).

Exemple : Le calcul d’inverse de matrices peut étre grandement simplifié si on connait un polynéme
annulateur de la matrice A (en pratique, si on arrive a exprimer par exemple A2 en fonction de A et

-3 4 2 5 —4 =2
de I,,) :soit A= —2 3 1 |.Un petit calcul permet d’obtenir A2 = 2 —1 —1 | etde
2 =20 -2 2 2

1
constater que A% = 2I3— A, ce qu’on peut écrire A+A% = 213, ou encore §A(A+Ig) = I3. Ceci suffit a

-1 2 1
1
montrer que A est inversible et que son inverse est 3 (A+13). Autrement dit, A~ = [ —1 2 %
1 -1 1
2

Il est maintenant temps de donner une méthode algorithmique systématique pour déterminer 'inverse
d’une matrice carrée donnée (ou constater qu’elle n’est pas inversible le cas échéant). Cet algorithme,
connu sous le nom de pivot de Gauss, est un peu lourd & décrire (et & appliquer aussi) mais représente
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la méthode la plus raisonnable pour calculer les inverses de fagon efficace (et automatisable, c’est
Palgorithme qui est implanté dans vos calculatrices par exemple). On retrouvera le méme algorithme
dans la derniére partie du cours pour la résolution de systémes linéaires.

Définition 20. Les opérations élémentaires sur les lignes d’une matrice sont les suivantes :

e ¢change des lignes i et j, noté L; <+ L;

e multiplication d’une ligne par une constante non nulle, noté L; < aL; (a # 0)

e combinaison des lignes i et j, noté L; < L; + bL; (b € K), qui n’est rien d’autre qu’'une
combinaison (d’ott le nom) des deux opérations précédentes.

On peut définir de méme des opérations élémentaires sur les colonnes, mais nous ne nous servirons que

des lignes pour le pivot de Gauss. En pratique, on abusera légérement du vocabulaire en effectuant

des « combinaisons » qui sont en fait obtenues en combinant les deux derniers types d’opération,
[N .

c’est-a-dire du type L; <= aL; + bL;.

Proposition 12. Chaque opération élémentaire sur les lignes d’une matrice A correspond
a un produit & gauche de A par une matrice (inversible) donnée par le tableau situé sur la
page suivante.

Théoréme 2. Toute matrice inversible peut étre transformée par une succession d’opéra-
tions élémentaires sur ses lignes en la matrice identité I,,.

Démonstration. Nous n’allons pas prouver ce théoréme fondamental, mais simplement comprendre
pourquoi il permet de donner une méthode pratique d’inversion. Nous allons décrire ensuite une
procédure purement algorithmique permettant effectivement, a partir de la matrice A, d’arriver
jusqu’a I,, par une suite d’opérations élémentaires sur les lignes de la matrice (ou plutot sur les lignes
des matrices successivement obtenues aprés chaque étape). Chacun de ces calculs correspond donc a
un produit & une gauche par une matrice, notons (dans 'ordre ot on effectue les étapes) By, Bo, ...,
By les matrices correspondantes. On a donc, par construction, By X Bi_1 X --- X Bo X By X A = I,,.
Mais alors, la matrice A est effectivement inversible, et A~! = By, x --- x By x Bj. Il suffit donc de
reprendre exactement les mémes opérations élémentaires (dans le méme ordre) a partir de la matrice
I,, pour obtenir la matrice A1 O
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Opération sur les lignes du systéme Produit de la matrice A par :
0
1
(Ls) 0 1
1
Echange L; < L;
1
(L) 1 0
1
SO
0 e 0 1
1 0 0
0
1
Produit par un réel L; < aL; (L;) : A
1
0
. 0 1
1 0 0
0
(L;) 1 o
Combinaison linéaire L; < L; + aL;
(Lj) 1
0
0 0 1

Définition 21. Les matrices dont le produit permet d’effectuer les opérations élémentaires sont
(pour cette raison) appelées matrices élémentaires. En particulier, les matrices correspondant
aux opérations L; < al; sont appelées matrices de dilatation et les matrices correspondant aux
opérations de combinaison sont appelées matrices de transvection.

Algorithme du pivot de Gauss : Pour inverser une matrice carrée A, on effectue en pratique
successivement les opérations suivantes :

e Si besoin est, on échange la ligne L; avec une ligne L; sur laquelle le coefficient a;1 est non
nul (s’il n’y a pas de tel coefficient non nul, la matrice contient une colonne entiérement nulle
et ne peut pas étre inversible).

X . .. Qi1 .
e A l'aide de combinaisons du type L; < L; — — L1, on annule tous les coefficients a;1, pour
a1l

i > 2 (on peut le faire car aji, qui sera appelé pivot de 'opération, est désormais non nul).
e On reprend l'algorithme sur la sous-matrice carrée formée des n—1 derniéres lignes et colonnes,
et ainsi de suite jusqu’a obtenir une matrice triangulaire supérieure.
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e Si la matrice triangulaire obtenue a (au moins) un coefficient diagonal nul, elle n’est pas
inversible, et la matrice A non plus. Sinon, on est certains a cette étape que la matrice est
inversible.

e On annule ensuite les coefficients au-dessus de la diagonale & 1’aide de pivots situés sur la dia-
gonale, mais en commencant cette fois par annuler la derniére colonne (& I'aide du coefficient
ann), puis avant-derniére (a I'aide de an—1,—1) etc, de facon a ne pas faire réapparaitre de
coefficients non nuls ailleurs que sur la diagonale.

e On obtient finalement une matrice diagonale, il ne reste qu’a multiplier chaque ligne par une
constante pour trouver 'identité.

e On reprend les mémes opérations (ou on les effectue en paralléle) en partant de la matrice
identité pour déterminer A~1.

Nous allons calculer I'inverse de la matrice suivante en utilisant le pivot de Gauss : & gauche, les
opérations sur la matrice A, & droite les mémes opérations & partir de I3 pour obtenir I'inverse.

1 2 -1 1 00
A= 2 4 -1 Lo« Ly — 214 010 =13
-2 -5 3 L3« L3+ 2L, 0 01
1 2 -1 1 00
0 0 1 Lo < Lg -2 10
0 -1 1 2 1
1 2 -1 L+ L1+ Ls 1 0 0
0 -1 1 L2 — L2 — L3 1
0 0 1 -2 10
1 2 0 Ly Ly +2, -1 1 0
0 -1 0 4 -1 1
0 0 1 -2 1
1 0 0 7T -1 2
-1 0 L2 < —L2 4 -1 1
0 0 1 -2 1 0
1 00 7T -1 2
10 -4 1 -1 =A"!
0 0 1 -2 1 0
7T -1 2
Conclusion de ce long calcul : A~ '=| —4 1 -1
-2 1 0

Définition 22. Deux matrices sont équivalentes par lignes si on peut passer de I'une a l'autre
par opérations élémentaires sur les lignes. On le note A ~; B. Remarquons qu’une matrice A est
inversible si et seulement si A ~p, I,.

3 Systémes linéaires.

Nous ne revenons pas sur le vocabulaire de base associé aux systémes linéaires, qui a déja été vu
dans le chapitre 5.

Définition 23. La matrice associée a un systéme S de n équations & p inconnues est la matrice
de ses coefficients A = (aj;). Si on note également les inconnues sous forme de matrice-colonne
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I bl

T b2
X = . , ainsi que le second membre B = . , le systéme est alors simplement équivalent

Tp bn
a I’équation matricielle AX = B.

Définition 24. Un systéme linéaire est carré si sa matrice associée est carrée (il a donc autant
d’inconnues que d’équations). De méme, il est dit triangulaire si la matrice associée est trian-
gulaire (généralement triangulaire supérieure), auquel cas sa résolution peut se faire facilement en
« remontant » le systéme.

Théoréme 3. Un systéme linéaire carré est de Cramer si et seulement si sa matrice associée
A est inversible. Dans ce cas, I'unique solution du systéme est donnée par X = A~!'B.

Remarque 12. Autrement dit, le fait qu’un systéme ait une solution unique ou non ne dépend que
des coefficients de chaque équation, mais pas de son second membre.

Démonstration. 11 y a un sens évident : si la matrice est inversible, il suffit de multiplier 1’égalité
AX = B a gauche par A~! pour obtenir le résultat. L’autre sens ne sera pas démontré, il découle de
I’algorithme du pivot de Gauss que nous allons décrire ci-dessous. O

Définition 25. Un systéme linéaire est homogeéne si tous les coefficients apparaissant dans son
second membre (ceux que nous avons noté b; un peu plus haut) sont nuls. Le systéme homogéne
associé a un systéme d’équations linéaires est le systéme obtenu en remplagant chaque second
membre par 0.

Remarque 13. Vous ne manquerez pas de remarquer la similarité de vocabulaire entre les systémes
linéaires et les équations différentielles linéaires. Ce n’est pas un hasard du tout, il y a effectivement
un regroupement théorique possible entre ces notions a priori assez éloignées. Sans rentrer dans les
détails (on aurait bien du mal pour l'instant), I’ensemble des solutions est dans les deux cas un
sous-espace affine (non, non, je ne vous définirai pas ce que c’est), ce qui revient a dire qu’on peut les
décrire par le schéma suivant : toutes les solutions sont obtenues en faisant la somme d’une solution
particuliére et de toutes les solutions de I’équation homogéne associée.

Définition 26. Les opérations élémentaires sur les lignes d’un systéme sont les mémes que celle
que nous avons définies sur les matrices.

Proposition 13. Les opérations élémentaires sur les lignes d’un systéme le transforment
en systéme équivalent.

Algorithme du pivot de Gauss sur les systémes : L’algorithme est rigoureusement le méme
que pour 'inversion des matrices, & ceci prés qu’on a en pratique beaucoup moins de travail. On se
contente en effet d’effectuer la premiére phase du pivot de Gauss pour transformer le systéme en
systéme triangulaire, et surtout on n’a pas besoin de faire deux fois les opérations comme dans un
pivot de Gauss matriciel classique.

Exemple : nous allons résoudre un systéme a 4 équations et 4 inconnues en suivant scrupuleusement
I’algorithme décrit :
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3. + y — 3z + 2t = 7
x — 2y + z — t = =9 Lo+ L1 —3Lo
2¢  — Sy - 2z + t = -4 L3 — 2L — 3L3
| —Z 4+ 5z — 3t = -—11 Ly+ L1+ 3Ly
3 + y — 3z + 2t = 7
N Ty — 6z + 5t = 34
11y + t = 26 Ly <+ 11Ly —T7Ljg
L y + 12z — 7t = -26 Ly<+ Lo—TLy
3r + y — 3z 4+ 2t = 7
- Ty — 6z 4+ 56t = 34
—66z + 48 = 192
L —90z + 54t = 216 Ly <+ 90L3 —66Ly
3 + y — 3z 4+ 2t = 7
o Ty — 6z + 5 = 34
—66z + 48 = 192
756t = 3024

\

En remontant le systéme, on obtient t = 4, puis —66z = 192—48t = 0, donc z = 0, Ty = 34+62—5¢ =
14 donc y = 2, et enfin 3x =7 —y + 32 — 2t = —3 donc z = —1. Le systéme a donc une unique
solution : § = {(—1,2,0,4)}.

On ne peut qu’étre un peu frustré d’avoir fait des calculs si compliqués pour une solution aussi
simple. On peut en fait les réduire grandement en utilisant le pivot de facon plus subtile, c’est-a-dire
en choisissant un bon pivot & chaque étape. Par exemple :

( 3z + y — 3z + 2t = 7 L1+ Lo
x - 2y + z - t = -9
2 — 3y — 2z + t = -4
—T 4+ 5z — 3t = -—11
zr — 2y + z — t = -9
PN 3x + y — 3z + 2t = 7 Lo <+ 3L1 — Lo
20 — 3y — 2z + t = -4 L3 <+ 2Ly — Ls
- + 5z — 3t = -—-11 Ly L+ Ly
r — 2y 4+ 2z — t = =9
o Ty + 6z — 5t = —-34 Lo < Lj
-y + 4z - 3t = -—-14
L -2y 4+ 6z — 4t = =20
x — 2y + 2z — t = -9
PN -y + 4z — 3t = -—14
—7y 4+ 6z — 5 = —-34 L3 — TLy — L3
—2y + 6z — 4 = =20 Ly 2Ly — Ly
x — 2y + 2z - t = -9
PN -y + 4z - 3t = -4
22z — 16t = —-64
2z — 2t = =8 L4 — L3 — 11L4
(2 — 2y + =z — t = -9
PN -y + 4z - 3t = -1l4
22z — 16t = —-64
6t = 24
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On retrouve bien évidemment la méme solution que tout & I’heure.

Il existe d’autres fagons de résoudre les systémes, ou plutot d’autres fagons de présenter le méme
calcul. On peut évidemment faire un calcul d’inverse de la matrice A associée au systéme puis calculer
A~1B, mais c’est extrémement lourd dans la mesure ot le pivot de Gauss matriciel demande déja de
faire deux fois les mémes opérations sur les lignes, a partir de A et a partir de I,. Pour éviter cela,
il existe une possibilité, c’est de regrouper les deux calculs en un seul :

Définition 27. La matrice augmentée associée au systéme, et notée (A | B), est simplement la
matrice & p lignes et n 4+ 1 colonnes obtenues en rajoutant & la matrice A une derniére colonne égale
a la matrice B (on sépare en pratique la « vraie » matrice du second membre en matérialisant une
barre verticale au milieu de la matrice).

Exemple : Si on souhaite résoudre un systéme a ’aide de la matrice augmentée, on effectue le pivot
en cherchant & transformer ce qui se trouve a gauche de la barre verticale en I,, (et en modifiant
simultanément la derniére colonne ajoutée), et les valeurs obtenues sur la derniére colonne une fois
la transformation terminée seront tout simplement les valeurs prises par les différentes inconnues
dans I'unique solution du systéme. Il est par ailleurs tout a fait possible d’utiliser une rédaction
« mixte » ol on commence les calculs avec une matrice augmentée, puis on revient a un systéme
pour terminer la résolution (par exemple une fois que la partie gauche de la matrice augmentée est
devenue triangulaire). Prenons un exemple pas trop méchant avec le systéme suivant :

r + y - z 3
2r — y + 2z =0
2 + 2y 4+ z = 6
1 1 -1 | 3
2 —1 1 | 0 L2<—L2—2L1
2 2 1 | 6 L3<—L3—2L1
1 1 -1 1] 3
0 -3 3 ‘ —6 L2<——L2/3
0 0 3 | 0 L3<—L3/3
1 1 -1 ‘ 3 L1+ L1+ Lj
(0 1 -1 | 2 Ly Ly+ L3
00 1 |0
1 10| 3 Ly + Ly — Ly
(0 10| 2
0010
100 |1
010 | 2
00110

On peut simplement conclure que le systéme a pour unique solution {(1,2,0)}.

Remarque 14. On peut bien siir également utiliser, de fagon symétrique, les techniques de résolution
de systémes pour inverser des matrices. Ainsi, on pourra écrire une matrice augmentée dont les
deux moitiés sont carrées pour calculer I'inverse d’une matrice A plutdt que de faire deux fois les
mémes opérations a partir de A et de I,, (méthode qui a le trés léger inconvénient de faire faire
quelques calculs inutiles dans la deuxiéme partie de la matrice augmentée quand la matrice n’est pas
inversible).
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On peut méme effectuer une « vraie » résolution de systéme pour inverser une matrice : on part
du systéme ayant pour matrice A et un second membre inconnu B (par exemple, si la matrice est
carrée d’ordre 3, on notera a, b et ¢ les trois valeurs du second membre), et on résout le systéme,
c’est-a-dire qu’on exprime z, y et z en fonction de a, b et c. Les coefficients obtenus seront alors
ceux de A~! (puisqu’on a transformé une équation matricielle de la forme AX = Ben X = A~ B).
Cette méthode est particuliérement rapide si on est a 'aise avec les opérations « efficaces » sur les

systémes.
1 1 -1

Exemple : Calculons par exemple 'inverse de la matrice A= 2 -1 1 (c’est la matrice du
2 2 1

systéme résolu dans 'exercice précédent) avec cette méthode. On part donc du systéme
r + y — z = a

2c — y 4+ 2z = b et on effectue les opérations Lo < Lo — 2Ly et Ly < L3 — 2L pour
2t + 2y + z = ¢
T + y - z = a
obtenir immédiatement le systéme triangulaire — 3y 4+ 32z = b—2a . On peut donc
3z = c—2a
) . 2 1 ) 2a—b 1 1
simplement remonter le systéme : z = —ga + gc, puis y = 3 +z = fgb + gc et enfin
r=a4+z—y= %a + éb. I1 ne reste plus qu’a mettre les coefficients (dans le bon ordre) dans une
1 1 0
matrice pour conclure que A est inversible et que A~ = 3 0 -1 1
-2 0 1
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