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Le possible est une matrice formidable.

Victor Hugo

Unfortunately, no one can be told what the Matrix is.
You have to see it for yourself.

Tagline du film Matrix (traduction en exercice).

Avant de rentrer dans le vif du sujet en algèbre linéaire (les fameux espaces vectoriels, que nous
aborderons au deuxième semestre), un chapitre plus orienté calcul sur un outil qui sera fondamental
dans la suite du cours : les matrices. Il s’agit ici simplement d’apprendre à calculer avec les matrices,
mais aussi de voir le lien entre ces nouveaux objets et une autre notion que vous maîtrisez déjà : les
systèmes d’équations linéaires, pour lesquels nous verrons une méthode de résolution systématique.

Objectifs du chapitre :

• maîtriser le calcul matriciel, calculs de puissances ou d’inverse notamment.
• comprendre le fonctionnement de l’algorithme du pivot de Gauss, et savoir l’appliquer ef-

ficacement dans le cadre de l’inversion de matrices comme dans celui de la résolution de
systèmes.

Introduction : un exemple ludique.

Pour introduire le concept de matrice et en particulier le produit matriciel (qui est l’opération
la moins naturelle parmi celles que nous allons introduire dans ce chapitre), intéressons-nous au
problème tout à fait concret suivant : dans un jeu video débile (qui a dit pléonasme ?), on peut
composer des armées constituées de trois types de créatures, trolls, orcs et gobelins. Un élève de
PTSI ayant trop de temps à perdre contitue lors d’une même soirée les trois armées suivantes :

Trolls Orcs Gobelins
Armée 1 3 5 8

Armée 2 6 2 12

Armée 3 5 5 15
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Mathématiquement, on considèrera que le tableau de nombres ainsi obtenu (sans les intitulés des
lignes et colonnes, bien entendu) est justement ce qu’on appellera une matrice, ici une matrice

trois lignes et trois colonnes que l’on notera

 3 5 8
6 2 12
5 5 15

. Les bêbêtes constituant les troupes de

nos armées étant assez gourmandes, il faudra les nourrir quotidiennement d’une certaine quantité
d’huitres, d’humains et de poulets (régime alimentaire parfaitement adapté à ce genre de créatures,
ne vous inquiétez pas). La quantité de nourriture ingurgitée par chaque type de créature est donnée,
en unités par jour, dans le tableau suivant :

Huitres Humains Poulets
Troll 10 3 8

Orc 8 4 10

Gobelin 2 6 2

On vient ainsi de définir une seconde matrice, trois lignes trois colonnes elle aussi. La question est
alors fort simple : quelle quantité de chaque aliment le larbin chargé de faire les courses doit-il se
procurer pour nourrir chacune des armées ? La réponse peut être obtenue en construisant le dernier
tableau suivant :

Huitres Humains Poulets
Armée 1 86 77 90

Armée 2 100 98 92

Armée 3 120 125 120

Le remplissage du dernier tableau découle d’un calcul assez simple. Pour trouver par exemple la
valeur 86 de la première case, on a multiplié deux à deux les éléments de la première ligne du premier
tableau (celle qui correspond à la première armée) par ceux de la première colonne du deuxième
tableau (celle qui correspond aux huitres), et additionné le tout : 3×10+5×8+8×2 = 86. Les trois
types de créatures qui étaient communs aux deux tableaux, ont disparu une fois ce calcul effectué.
De même pour les autres éléments, on effectue à chaque fois le « produit » d’une ligne du premier
tableau par une colonne du deuxième tableau. Eh bien, ce qu’on vient de faire, c’est exactement
un produit de matrices. Cette opération en apparence peu naturelle quand on la présente de façon
formelle (ce qu’on ne va pas tarder à faire) est donc en réalité très concrète. Elle interviendra
systématiquement dès qu’on possède trois lots de données, deux tableaux exprimant la première
donnée en fonction de la deuxième et la deuxième en fonction de la troisième, et qu’on cherche à
exprimer directement la première donnée en fonction de la troisième (on reviendra sur cet aspect
du calcul matriciel quand on reverra ces magnifiques objets dans le cadre des applications linéaires
entre espaces vectoriels). Mathématiquement, on écrirait le calcul effectué dans cette introduction

sous la forme :

 3 5 8
6 2 12
5 5 15

 ×
 10 3 8

8 4 10
2 6 2

 =

 86 77 90
100 98 92
120 125 120

. Notons pour conclure

qu’il n’est absolument pas obligatoire d’avoir des tableaux de nombres ayant le même nombre de
colonnes que de lignes pour effectuer le calcul. Ici, on aurait pu ajouter ou supprimer une armée
(donc modifier le nombre de lignes de la première matrice), ou bien mettre au régime les monstres en
leur supprimant leurs rations de poulet (une colonne en moins dans la deuxième matrice) sans que ça
ne pose problème. Il est par contre indispensable que le nombre de colonnes de la première matrice
soit égal au nombre de lignes de la deuxième. Dernière remarque : faire le produit dans l’autre sens
(multiplier les lignes du deuxième tableau par les colonnes du premier) n’aurait absolument aucun
sens concret, et donnerait en tout cas un résultat bien différent de celui obtenu ici.
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1 Les anneaux Mn(K).

1.1 Somme et produits.

Définition 1. Une matrice à n lignes et p colonnes à coefficients dans un corps K (qui sera pour
nous systématiquement le corps des réels ou celui des complexes) est un tableau rectangulaire (à n
lignes et p colonnes) contenant np éléments de K. On note un tel objet M = (mij)1⩽i⩽n

1⩽j⩽p

ou de façon

plus complète

M =


m11 m12 . . . m1n

m21
. . . m2n

...
. . .

...
mn1 . . . . . . mnn


Autrement dit, mij est le terme de la matrice M se trouvant à l’intersection de la i-ème ligne et de
la j-ème colonne.

Définition 2. Une matrice à n lignes et p colonnes est aussi appelée matrice de taille (n, p). Une
matrice est par ailleurs carrée si n = p (on parle alors aussi de matrice carrée d’ordre n).

Définition 3. L’ensemble des matrices à n lignes et p colonnes à coefficients dans K est noté
Mn,p(K).

L’ensemble des matrices carrées d’ordre n est noté plus simplementMn(K).

Remarque 1. Dans le cas où n = 1, la matrice se réduit à une ligne, et on parle effectivement
de matrice-ligne. De même, lorsque p = 1, on parlera de matrice-colonne. La notation est alors
extrêmement similaire à celle utilisée pour désigner un élément de Kn par ses coordonnées dans une
base, et on identifiera de fait souvent Kn àMn,1(K).

Définition 4. Soient A et B deux matrices appartenant àMn,p(K), la somme de A et de B est la
matrice A+B = C, où ci,j = ai,j + bi,j .

Exemple : si A =

 2 3 −1
0 6 3
−4 1 −2

 et B =

 −3 0 0
5 −2 7
4 −1 −1

, A+B =

 −1 3 −1
5 4 10
0 0 −3

.

Il faut bien évidemment que les deux matrices aient la même taille (même nombre de lignes et de
colonnes) pour pouvoir effectuer leur somme.

Définition 5. La matrice nulle 0n,p (ou plus simplement 0 si les dimensions de la matrice sont
claires dans le contexte) est la matrice à n lignes et p colonnes dont tous les coefficients sont nuls.

Proposition 1. L’ensemble (Mn,p(K),+) est un groupe commutatif.

Démonstration. Toutes les propriétés sont évidentes, elles découlent immédiatement des propriétés
de la somme de réels, puisque la somme se fait terme à terme.

Définition 6. Le produit d’une matrice A par un élément λ ∈ K est la matrice, notée λA,
obtenue à partir de A en multipliant chacun de ses coefficients par λ.

On dit qu’une matrice M ∈ Mn,p(K) est combinaison linéaire des matrices A1, A2, . . ., Ak si on

peut écrire M sous la forme M =
k∑

i=1

λiAi = λ1A1 + λ2A2 + · · ·+ λkAk.
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Proposition 2. Propriétés du produit d’une matrice par un réel :

• ∀A ∈Mn,p(K), 1×A = A
• compatibilité avec le produit dans K : ∀A ∈Mn,p(K), ∀(λ, µ) ∈ K2, λ× (µ×A) =
(λµ)×A
• double distributivité par rapport aux sommes : ∀A ∈ Mn,p(K), ∀(λ, µ) ∈ K2,

(λ + µ) × A = λ × A + µ × A, et ∀(A,B) ∈ Mn,p(K)2, ∀λ ∈ K, λ × (A + B) =
λ×A+ λ×B.

Remarque 2. Ces propriétés du produit « extérieur » (par opposition au produit intérieur, c’est-à-
dire au produit de deux matrices qu’on va définir juste après), cumulées aux propriétés de la somme
de matrices, font de Mn,p(K) ce qu’on appelera bientôt un espace vectoriel réel. On notera par
ailleurs désormais ce produit sans utiliser de symbole de multiplication, sous la forme plus simple
λA.

Définition 7. DansMn,p(K) on note Ei,j les matrices de la forme

Ei,j =

(Li)

(Lj)



0 0 . . . . . . . . . . . . 0

0
. . . . . .

...
...

. . . 0 . . . 1
...

...
. . . . . .

...
...

...
. . . 0

. . .
...

...
. . . . . . 0

0 . . . . . . . . . . . . 0 0


.

Proposition 3. Toute matrice M ∈ Mn,p(K) est combinaison linéaire de toutes les ma-
trices Ei,j .

Démonstration. C’est évident, il suffit d’écrire que M =

n∑
i=1

n∑
j=1

mijEij . On verra plus tard que cette

propriété signifie que les matrices Ei,j forment ce qu’on appelle une famille génératrice de l’espace
vectorielMn,p(K).

Définition 8. Soit A ∈ Mn,p(K) et B ∈ Mp,q(K), alors le produit des deux matrices A et B est

la matrice A×B = C ∈Mn,q(K) où ∀i ∈ {1, . . . , n}, ∀j ∈ {1, . . . , q}, cij =
p∑

k=1

aikbkj .

Remarque 3. Cette définition correspond exactement à ce qu’on a vu dans notre exemple introductif :
on multiplie terme à terme la i-ème ligne de A par la j-ème colonne de B et on somme le tout. Il
faut faire très attention à ce que les tailles des matrices soient compatibles pour que le produit existe
(nombre de colonnes de la première matrice égal au nombre de lignes de la deuxième).

Définition 9. La matrice identité de taille n est la matrice carrée In =


1 0 . . . . . . 0
0 1 0 . . . 0
...

. . . . . . . . .
...

...
. . . . . . 0

0 . . . . . . 0 1

.
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Proposition 4. Propriétés élémentaires du produit de matrices :

• Le produit de matrices est associatif : ∀A ∈ Mn,p(R), ∀A ∈ Mp,q(R), ∀C ∈
Mq,r(R), (AB)C = A(BC).
• Le produit de matrices est distributif par rapport à la somme : pour toutes matrices

de tailles compatibles, A(B + C) = AB +AC et (A+B)C = AC +BC.
• Les matrices identité jouent le rôle d’éléments neutres pour le produit : ∀A ∈
Mn,p(R), InA = AIp = A.
• Les matrices nulles sont des éléments absorbants pour le produit matriciel : ∀A ∈
Mn,p(R), 0×A = 0 et A× 0 = 0.

Démonstration.
• Pour prouver l’associativité, il faut juste un peu de courage : considérons A, B et C ayant

les dimensions indiquées. Si on note D = (AB)C, on peut alors écrire dij =

q∑
k=1

(AB)ikCkj =

q∑
k=1

(

p∑
l=1

ailblk)ckj . On peut écrire ceci plus simplement sous la forme d’une somme double

q∑
k=1

p∑
l=1

ailblkckj . De même, en notant E = A(BC), on aura Eij =

p∑
k=1

aik(BC)kj =

p∑
k=1

aik(

q∑
l=1

bklclj) =

p∑
k=1

p∑
l=1

aikbklclj . Les deux formules sont bien les mêmes puisque les indices dans une somme

double sont muets (on inverse simplement le rôle des deux indices).

• C’est un calcul assez élémentaire sur les sommes :
p∑

k=1

aik(bkj + ckj) =

p∑
k=1

aikbkj +

p∑
k=1

aikckj .

L’autre calcul est essentiellement identique.
• Pour cette propriété, on notera juste I et pas In par souci de lisibilité. Soit mij le terme

d’indice i, j de la matrice produit IA. On a par définition mij =
n∑

k=1

IikAkj . Mais le seul

terme non nul parmi les Iik est Iii, qui vaut 1. On a donc bien mij = Aij . Pour le produit à
droite par Ip, la démonstration est la même.
• Bon, ça c’est vraiment trivial.

Remarque 4. Attention aux gros pièges suivants quand on manipule le produit matriciel :
• Le produit de matrices n’est pas commutatif. En fait, l’existence du produit AB n’implique

même pas celle de BA, mais même dans le cas des matrices carrées, par exemple, on a en
général AB ̸= BA.
• Parler de division de matrice n’a absolument aucun sens. Il faudrait en fait distinguer une

division « à gauche » et une division « à droite ». En pratique, l’équivalent d’une division sera
simplement obtenu en multipliant par la matrice inverse, à condition bien entendu qu’elle
existe (voir plus loin dans ce même chapitre).
• On ne peut pas simplifier les produits : AB = AC n’implique en général pas B = C, même

si A n’est pas la matrice nulle (on peut en fait simplifier que si la matrice A est inversible,
en multipliant chaque membre de l’égalité à gauche par A−1). De même, AB = 0 n’implique
absolument pas qu’une des deux matrices soit nulle.

Exemple : Si A =

(
3 4 −1
2 0 5

)
et B =

 −2 6
1 −1
2 3

, alors A × B =

(
−4 11
6 27

)
et B × A =
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 6 −8 32
1 4 −6
12 8 13

.

Exemple : Si A =

(
4 −2
−2 1

)
et B =

(
1 −3
2 −6

)
alors A×B = 0 mais B ×A =

(
10 −5
20 −10

)
.

Proposition 5. L’ensemble (Mn(K),+, )̇ est un anneau non commutatif.

Démonstration. Il suffit de constater que le produit est bien une opération interne dans Mn(K),
toutes les propriétés qui en font un anneau ont déjà été prouvées. Remarquons que cet anneau n’est
pas du tout un anneau intègre au vu des exemples donnés ci-dessus.

Définition 10. Le symbole de Kronecker δij vaut 1 lorsque i = j, 0 lorsque i ̸= j.

Proposition 6. Si M ∈Mn,p(K), son produit à gauche par la matrice Ei,j est la matrice
N dont les coefficients vérifient Nkl = δikmkl. Le produit à droite par cette même matrice
Eij est la matrice P dont les coefficients vérifient Pkl = δjlmkl.

Démonstration. Il n’y a qu’à écrire la formule, c’est évident.

1.2 Transposition

Définition 11. La transposée d’une matrice A ∈ Mn,p(K) est la matrice M ∈ Mp,n(K), où
mij = aji. On la note A⊤. Autrement dit, les lignes de A sont les colonnes de A⊤ et vice-versa.

Proposition 7. La transposition vérifie les propriétés suivantes :

• ∀A ∈Mn,p(K), (A⊤)⊤ = A.
• ∀A,B ∈Mn,p(K)2, (A+B)⊤ = A⊤ +B⊤.
• ∀A ∈Mn,p(K), ∀λ ∈ K, (λA)⊤ = λA⊤.
• ∀A ∈Mn,p(K), ∀C ∈Mp,q(K), (AC)⊤ = C⊤A⊤.

Démonstration. Les trois premières propriétés ne posent aucun problème, mais la dernière est moins
évidente. Écrivons ce que vaut le terme d’indice ij à gauche et à droite de l’égalité. Pour (AC)⊤, il est

égal au terme d’indice ji de AC, c’est-à-dire à
p∑

k=1

ajkcki. À droite, on a
p∑

k=1

(C⊤)ik(A
⊤)kj =

p∑
k=1

ckiajk.

Les deux quantités sont bien égales.

Exemple : si A =

 4 3 −2
0 5 1
−1 1 8

 alors A⊤ =

 4 0 −1
3 5 1
−2 1 8

.

Définition 12. Une matrice A ∈ Mn(K) est symétrique si A⊤ = A, c’est-à-dire si ∀i, j ∈
{1, . . . , n}2, aij = aji. Elle est antisymétrique si A⊤ = −A.

Remarque 5. Une matrice antisymétrique a donc une diagonale nécessairement nulle (alors que, pour
une matrice symétrique, la diagonale est quelconque).
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Définition 13. On note Sn(K) l’ensemble des matrices symétriques deMn(K), et An(K) l’ensemble
des matrices antisymétriques deMn(K).

Exemple : on peut décomposer la matrice A =

 1 2 3
4 5 6
7 8 9

 comme somme d’une matrice sy-

métrique et d’une matrice antisymétrique. Il suffit pour cela de poser B =

 1 3 5
3 5 7
5 7 9

 et C = 0 −1 −2
1 0 −1
2 1 0

. La matrice B est symétrique, C est antisymétrique, et on a bien A = B + C. En

fait, cette décomposition est unique : par exemple on doit avoir b13 + c13 = 3 et b31 + c31 = 7, ce qui
impose b13− c13 = 7 puisque les matrices doivent être respectivement symétrique et antisymétrique.

Ces deux conditions imposent b13 =
3 + 7

2
= 5 et c13 =

3− 7

2
= −2, et on peut faire le même genre

de raisonnement pour les autres coefficients. En fait, toute matrice carrée A peut être décomposée

de cette façon (quelle que soit sa taille) en posant B =
A+A⊤

2
et C =

A−A⊤

2
.

1.3 Puissances de matrices carrées.

Définition 14. Les puissances entières (positives) d’une matrice carrée sont définies par récurrence
de la façon suivante : si A ∈Mn(K), A0 = In et ∀n ∈ N, An+1 = A×An.

Remarque 6. Une matrice commute toujours avec toutes ses puissances, on peut donc aussi écrire
An+1 = An×A. Il est bien sûr indispensable que la matrice A soit carrée pour calculer ses puissances,
sinon on ne peut même pas la multiplier par elle-même pour calculer son carré !

Définition 15. Une matrice carrée A ∈ Mn(K) est diagonale si ∀(i, j) ∈ {1, . . . , n}2, i ̸= j ⇒
aij = 0.

Autrement dit, A =


a11 0 . . . 0

0 a22
. . .

...
...

. . . . . . 0
0 . . . 0 ann

.

Remarque 7. Les coefficients diagonaux de la matrice A (ceux qui sont sur la diagonale, donc) ont
tout à fait le droit d’être nuls eux aussi. La matrice nulle de taille (n, n) est un exemple de matrice
diagonale.

Proposition 8. Toutes les puissances d’une matrice diagonale sont diagonales. Plus pré-

cisément, si A =


a11 0 . . . 0

0 a22
. . .

...
...

. . . . . . 0
0 . . . 0 ann

, on aura An =


an11 0 . . . 0

0 an22
. . .

...
...

. . . . . . 0
0 . . . 0 annn

.

Démonstration. Récurrence triviale si on veut vraiment prouver cette propriété assez évidente.
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Définition 16. Une matrice carrée est triangulaire supérieure si ∀(i, j) ∈ {1, . . . , n}2, i > j ⇒

aij = 0, ou encore si A =


a11 a12 . . . a1n

0 a22
. . .

...
...

. . . . . .
...

0 . . . 0 ann

. On définit de même des matrices triangulaires

inférieures par la condition i < j ⇒ aij = 0.

Proposition 9. Le produit de deux matrices triangulaires supérieures est une matrice
triangulaire supérieure (et de même pour les matrices triangulaires inférieures). De plus,
les coefficients diagonaux du produit sont les produits des coefficients diagonaux des deux
matrices.

Démonstration. Prenons donc deux matrices triangulaires supérieures A et B et supposons i > j.

Le terme d’indice ij du produit AB est égal à
n∑

k=1

aikbkj =
i−1∑
k=1

0× bkj +
n∑

k=i

aik × 0 = 0. La matrice

AB est donc triangulaire supérieure.

Exemple : si A =

 2 3 −1
0 6 3
0 0 −2

 et B =

 1 −5 2
0 3 −3
0 0 1

, alors A × B =

 2 −1 −6
0 18 −15
0 0 −2

.

Remarquez au passage que les termes diagonaux de A×B sont obtenus en effectuant le produit de
ceux de A par ceux de B.

Exercice : Dans le cas d’une matrice quelconque de taille pas trop grande, il est fréquent de calculer
ses puissances successives par récurrence. Voici un exercice-type sur ce sujet, les méthodes utilisées
dans ce cas particulier peuvent facilement être généralisées à tout exercice du même genre. On pose

donc A =

 2 −2 1
2 −3 2
−1 2 0

.

1. Calculer A2 puis déterminer deux constantes réelles a et b telles que A2 = aA+ bI3.

2. Montrer par récurrence l’existence de deux suites réelles (an) et (bn) telles que, ∀n ∈ N,
An = anA+ bnI3.

3. À l’aide des relations de récurrence obtenues à la question précédente, calculer explicitement
an puis bn en fonction de n.

4. En déduire la valeur de An, et donner en particulier A7.

Solution :

1. On calcule donc A2 =

 −1 4 −2
−4 9 −4
2 −4 3

. Les coefficients en-dehors de la diagonale ont été

multipliés par −2 par rapport à ceux de A, donc a = −2. En observant ensuite la diagonale
on trouve facilement b = 3 (on peut aussi écrire dès le départ un système, mais on évitera
dans ce cas d’écrire les neuf équations issues des neuf coefficients de la matrice, on en écrit un
nombre suffisant, habituellement deux, et on vérifie à la fin que la relation fonctionne aussi
pour les coefficients restants).
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2. Prouvons donc par récurrence la propriété Pn : An = unA+ vnI. Au rang 0, il suffit de poser
a0 = 0 et b0 = 1 pour que ça fonctionne puisque A0 = I=0×A+1×I3. De même, la propriété
P1 est vérifiée en posant a1 = 1 et b1 = 0 (même si on n’a absolument pas besoin d’une
initialisation double pour cette récurrence). Supposons maintenant le résultat vrai au rang
n, on a alors An+1 = An × A = (anA + bnI3)A = anA

2 + bnA = an(−2A + 3I3) + bnA =
(bn−2an)A+3anI3. En posant an+1 = −2an+bk et bn+1 = 3an, on a bien la forme demandée
au rang n+ 1, d’où l’existence des coefficients an et bn pour tout entier naturel n.

3. Nous avons obtenu à la question précédente des relations de récurrence qui permettent de faire
le calcul suivant : an+2 = −2an+1 + bn+1 = −2an+1 + 3an. La suite (an) est donc récurrente
linéaire d’ordre 2. Son équation caractéristique est x2 + 2x− 3 = 0, elle a pour discriminant

∆ = 4+ 12 = 16, et admet donc deux racines r1 =
−2− 4

2
= −3, et r2 =

−2 + 4

2
= 1. On en

déduit l’existence de deux réels α et β tels que ∀n ∈ N, an = α(−3)n+β. Or, a0 = α+β = 0

et a1 = −3α + β = 1, dont on tire α = −1

4
en faisant la différence des deux équations, puis

β =
1

4
. On a donc an =

1

4
(1− (−3)n), puis bn = 3an−1 =

3

4
(1− (−3)n−1) =

3 + (−3)n

4
.

4. Par construction, An =
1− (−3)n

4
A +

3 + (−3)n

4
I3. On peut écrire explicitement tous les

coefficients de la matrice mais ça n’a pas vraiment d’intérêt. Contentons-nous, comme le
demandait l’énoncé, d’expliciter A7. On sait tous que (−3)7 = −2 187, donc A7 = 547A −

546I3 =

 548 −1 094 547
1 094 −2 187 1 094
−547 1 094 −546

. Palpitant.

Définition 17. Une matrice carrée A est dite nilpotente s’il existe un entier n ∈ N tel que An = 0.

Remarque 8. Les propriétés du produit matriciel font qu’il existe des quantités de matrices non
nulles qui sont nilpotentes. Ainsi, une matrice triangulaire stricte (avec des 0 sur la diagonale) sera
notamment toujours nilpotente. Une remarque en passant : si une matrice carrée d’ordre n est
nilpotente, elle vérifie nécessairement An = 0 (pour l’entier n correspondant aux nombres de lignes
et de colonnes de la matrice). C’est un théorème (hors-programme) loin d’être simple à démontrer.

Théorème 1. Formule du binôme de Newton, version matricielle.

Soient (A,B) ∈ Mn(R)2 deux matrices qui commutent, alors ∀k ∈ N, (A + B)k =
k∑

i=0

(
k

i

)
AiBk−i.

Démonstration. Il ne s’agit que d’un cas particulier de la formule du binôme de Newton énoncée
dans le cadre des anneaux.

Exemple : On appliquera souvent cette formule dans le cas où l’une des deux matrices est diagonale,
et l’autre nilpotente, ce qui en pratique réduit le nombre de termes de la somme à une quantité

indépendante de n (et assez petite). Ainsi, si A =

 1 2 3
0 1 2
0 0 1

, on peut écrire A = B + I3, où

B =

 0 2 3
0 0 2
0 0 1

 vérifie B2 =

 0 0 4
0 0 0
0 0 0

, puis Bk = 0 à partir de k = 3 (autrement dit, la
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matrice B est nilpotente). Les matrices I3 et B commutant certainement, on peut appliquer la formule
du binôme (en ne gardant que les trois premiers termes de la somme puisque tous les suivants seront

nuls) : An = (B + I3)
n =

n∑
k=0

(
n

k

)
BkIn−k

3 = I3 + n×B +
n(n− 1)

2
×B2. On peut même facilement

écrire les puissances explicites de A : An

 1 2n 3n+ 2n(n− 1)
0 1 2n
0 0 1

 =

 1 2n n(2n+ 1)
0 1 2n
0 0 1

.

Définition 18. La trace d’une matrice carrée A ∈Mn(K) est le nombre Tr(A) =

n∑
i=1

aii.

Proposition 10. La trace est une application linéaire : pour des matrices de même taille,
Tr(λA+ µB) = λTr(A) + µTr(B).

La trace vérifie la formule Tr(AB) = Tr(BA).

Démonstration. La première propriété est complètement évidente. La deuxième l’est un peu moins.

Calculons donc Tr(AB) =
n∑

i=1

(AB)ii

n∑
i=1

n∑
j=1

aijbji. De même, Tr(BA) =
n∑

i=1

n∑
j=1

bijaji. Quitte à

échanger le rôle des deux variables muettes i et j, c’est bien la même chose.

2 Inversion de matrices.

Définition 19. Une matrice carrée A ∈ Mn(K) est inversible s’il existe une matrice B ∈ Mn(K)
telle que AB = BA = In. La matrice B est alors notée A−1 et on l’appelle matrice inverse de la
matrice A. On note GLn(K) (et on appelle groupe linéaire d’ordre n) l’ensemble de toutes les
matrices inversibles d’ordre n.

Remarque 9. La notion n’a bien sûr aucun sens dans le cas de matrices qui ne sont pas carrées. On
retrouve encore une fois le vocabulaire défini de façon général dans les anneaux.

Exemple : L’inverse de la matrice In est bien sûr In elle-même. La matrice nulle n’est pas inversible,
mais c’est loin d’être la seule dans ce cas. Ainsi, toute matrice contenant une ligne ou une colonne
entière de zéros ne peut pas être inversible (si c’est une ligne de zéros par exemple, quand on calculera
un produit du type AB, il restera toujours une ligne de zéros, il est donc impossible d’avoir AB = In).

Exemple : Cherchons à déterminer de façon très rudimentaire l’inverse de la matrice A =

(
2 1
3 2

)
en exploitant naïvement la définition. On cherche donc une matrice B =

(
x y
z t

)
telle que AB = I2

(dans ce cas, le produit dans l’autre sens sera automatiquement égal à I, comme on pourra le vérifier

facilement). On trouve donc le système


2x + z = 1
2y + t = 0
3x + 2z = 0
3y + 2t = 1

. La deuxième équation donne t = −2y,

ce qui en reportant dans la dernière amène y = −1, et donc t = 2. La première équation donne
z = 1 − 2x, soit en reportant dans la troisième −x + 2 = 0, donc x = 2, puis z = −3. Finalement,

la matrice A est inversible, et son inverse est B =

(
2 −1
−3 2

)
. On va très vite essayer de trouver

des méthodes de calcul d’inverse plus efficace, car je doute que vous ayez envie de calculer l’inverse
d’une matrice d’ordre 5 de cette façon.
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Remarque 10. Une matrice diagonale est inversible si et seulement si tous ses coefficients diagonaux

sont non nuls. On a alors, si A =


a11 0 . . . 0

0 a22
. . .

...
...

. . . . . . 0
0 . . . 0 ann

, A−1 =


a−1
11 0 . . . 0

0 a−1
22

. . .
...

...
. . . . . . 0

0 . . . 0 a−1
nn

.

Proposition 11. Principales propriétés calculatoires de l’inversion de matrices.

• Si A est inversible, son inverse est unique.
• Si A est inversible, alors A−1 aussi et (A−1)−1 = A.
• Si A,B ∈ Mn(K)2 sont deux matrices inversibles, le produit AB est inversible et
(AB)−1 = B−1A−1.
• Si A est une matrice inversible, Ak est inversible pour tout entier n ∈ N, et (An)−1 =
(A−1)n.
• Si A,B ∈ Mn(K) vérifient AB = In, alors BA = In et A et B sont inversibles et

inverses l’une de l’autre.

Démonstration. Tout a déjà été vu dans un anneau quelconque, mais ça ne fait pas de mal de refaire
les démonstrations dans ce cas particulier.

• Supposons donc que A admette deux inverses distincts qu’on va noter B et C, autrement dit
que AB = BA = AC = CA = In. On peut alors calculer C(AB) = CIn = C, mais aussi
(CA)B = InB = B. Le produit étant associatif, on trouve nécessairement C = B.
• C’est évident au vu de la définition de l’inverse.
• Vérifions que le produit de AB par ce que je prétends être son inverse donne bien l’identité :
ABB−1A−1 = AInA

−1 = AA−1 = In, dans l’autre sens c’est pareil.
• Sans faire une belle récurrence, constatons que A × · · · × A × A−1 × · · · × A−1 = In par

simplifications successives « par le milieu ».
• C’est plus dur qu’il n’y parait, on va admettre ce résultat.

Remarque 11. Un des principaux intérêts de travailler avec des matrices inversibles est qu’on peut
simplifier un peu plus naturellement certains calculs, notammant : si A est une matrice inversible et
AB = AC, alors B = C (il suffit de multiplier l’égalité à gauche par A−1 pour obtenir le résultat).
Autre remarque utile : si A et B sont deux matrices non nulles telles que AB = 0, alors aucune des
deux matrices n’est inversible (sinon, par l’absurde, en multipliant à gauche par l’inverse de A ou à
droite par l’inverse de B, on constaterait que l’autre matrice est nulle).

Exemple : Le calcul d’inverse de matrices peut être grandement simplifié si on connait un polynôme
annulateur de la matrice A (en pratique, si on arrive à exprimer par exemple A2 en fonction de A et

de In) : soit A =

 −3 4 2
−2 3 1
2 −2 0

. Un petit calcul permet d’obtenir A2 =

 5 −4 −2
2 −1 −1
−2 2 2

 et de

constater que A2 = 2I3−A, ce qu’on peut écrire A+A2 = 2I3, ou encore
1

2
A(A+I3) = I3. Ceci suffit à

montrer que A est inversible et que son inverse est
1

2
(A+I3). Autrement dit, A−1 =

 −1 2 1
−1 2 1

2
1 −1 1

2

.

Il est maintenant temps de donner une méthode algorithmique systématique pour déterminer l’inverse
d’une matrice carrée donnée (ou constater qu’elle n’est pas inversible le cas échéant). Cet algorithme,
connu sous le nom de pivot de Gauss, est un peu lourd à décrire (et à appliquer aussi) mais représente
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la méthode la plus raisonnable pour calculer les inverses de façon efficace (et automatisable, c’est
l’algorithme qui est implanté dans vos calculatrices par exemple). On retrouvera le même algorithme
dans la dernière partie du cours pour la résolution de systèmes linéaires.

Définition 20. Les opérations élémentaires sur les lignes d’une matrice sont les suivantes :

• échange des lignes i et j, noté Li ↔ Lj

• multiplication d’une ligne par une constante non nulle, noté Li ← aLi (a ̸= 0)
• combinaison des lignes i et j, noté Li ← Li + bLj (b ∈ K), qui n’est rien d’autre qu’une

combinaison (d’où le nom) des deux opérations précédentes.

On peut définir de même des opérations élémentaires sur les colonnes, mais nous ne nous servirons que
des lignes pour le pivot de Gauss. En pratique, on abusera légèrement du vocabulaire en effectuant
des « combinaisons » qui sont en fait obtenues en combinant les deux derniers types d’opération,
c’est-à-dire du type Li ⇐ aLI + bLj .

Proposition 12. Chaque opération élémentaire sur les lignes d’une matrice A correspond
à un produit à gauche de A par une matrice (inversible) donnée par le tableau situé sur la
page suivante.

Théorème 2. Toute matrice inversible peut être transformée par une succession d’opéra-
tions élémentaires sur ses lignes en la matrice identité In.

Démonstration. Nous n’allons pas prouver ce théorème fondamental, mais simplement comprendre
pourquoi il permet de donner une méthode pratique d’inversion. Nous allons décrire ensuite une
procédure purement algorithmique permettant effectivement, à partir de la matrice A, d’arriver
jusqu’à In par une suite d’opérations élémentaires sur les lignes de la matrice (ou plutôt sur les lignes
des matrices successivement obtenues après chaque étape). Chacun de ces calculs correspond donc à
un produit à une gauche par une matrice, notons (dans l’ordre où on effectue les étapes) B1, B2, . . . ,
Bk les matrices correspondantes. On a donc, par construction, Bk ×Bk−1× · · · ×B2×B1×A = In.
Mais alors, la matrice A est effectivement inversible, et A−1 = Bk × · · · ×B2 ×B1. Il suffit donc de
reprendre exactement les mêmes opérations élémentaires (dans le même ordre) à partir de la matrice
In pour obtenir la matrice A−1.
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Opération sur les lignes du système Produit de la matrice A par :

Échange Li ↔ Lj

(Li)

(Lj)



1 0 . . . . . . . . . . . . . . . . . . . . . . . . 0

0
. . . . . .

...
...

. . . 1
...

... 0 . . . . . . . . . 1
...

...
... 1

...
...

...
...

. . .
...

...
...

... 1
...

...
... 1 . . . . . . . . . 0

...
... 1

. . .
...

...
. . . . . . 0

0 . . . . . . . . . . . . . . . . . . . . . . . . 0 1



Produit par un réel Li ← αLi (Li)



1 0 . . . . . . . . . . . . 0

0
. . . . . .

...
...

. . . 1
. . .

...
...

. . . α
. . .

...
...

. . . 1
...

...
...

. . . . . . 0
0 . . . . . . . . . . . . 0 1



Combinaison linéaire Li ← Li + αLj

(Li)

(Lj)



1 0 . . . . . . . . . . . . 0

0
. . . . . .

...
...

. . . 1 . . . α
...

...
. . . . . .

...
...

...
. . . 1

. . .
...

...
. . . . . . 0

0 . . . . . . . . . . . . 0 1



Définition 21. Les matrices dont le produit permet d’effectuer les opérations élémentaires sont
(pour cette raison) appelées matrices élémentaires. En particulier, les matrices correspondant
aux opérations Li ← aLi sont appelées matrices de dilatation et les matrices correspondant aux
opérations de combinaison sont appelées matrices de transvection.

Algorithme du pivot de Gauss : Pour inverser une matrice carrée A, on effectue en pratique
successivement les opérations suivantes :

• Si besoin est, on échange la ligne L1 avec une ligne Li sur laquelle le coefficient ai1 est non
nul (s’il n’y a pas de tel coefficient non nul, la matrice contient une colonne entièrement nulle
et ne peut pas être inversible).
• À l’aide de combinaisons du type Li ← Li −

ai1
a11

L1, on annule tous les coefficients ai1, pour

i ⩾ 2 (on peut le faire car a11, qui sera appelé pivot de l’opération, est désormais non nul).
• On reprend l’algorithme sur la sous-matrice carrée formée des n−1 dernières lignes et colonnes,

et ainsi de suite jusqu’à obtenir une matrice triangulaire supérieure.
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• Si la matrice triangulaire obtenue a (au moins) un coefficient diagonal nul, elle n’est pas
inversible, et la matrice A non plus. Sinon, on est certains à cette étape que la matrice est
inversible.
• On annule ensuite les coefficients au-dessus de la diagonale à l’aide de pivots situés sur la dia-

gonale, mais en commençant cette fois par annuler la dernière colonne (à l’aide du coefficient
ann), puis l’avant-dernière (à l’aide de an−1,n−1) etc, de façon à ne pas faire réapparaitre de
coefficients non nuls ailleurs que sur la diagonale.
• On obtient finalement une matrice diagonale, il ne reste qu’à multiplier chaque ligne par une

constante pour trouver l’identité.
• On reprend les mêmes opérations (ou on les effectue en parallèle) en partant de la matrice

identité pour déterminer A−1.

Nous allons calculer l’inverse de la matrice suivante en utilisant le pivot de Gauss : à gauche, les
opérations sur la matrice A, à droite les mêmes opérations à partir de I3 pour obtenir l’inverse.

A =

 1 2 −1
2 4 −1
−2 −5 3

 L2 ← L2 − 2L1

L3 ← L3 + 2L1

 1 0 0
0 1 0
0 0 1

 = I3

 1 2 −1
0 0 1
0 −1 1

 L2 ↔ L3

 1 0 0
−2 1 0
2 0 1


 1 2 −1

0 −1 1
0 0 1

 L1 ← L1 + L3

L2 ← L2 − L3

 1 0 0
2 0 1
−2 1 0


 1 2 0

0 −1 0
0 0 1

 L1 ← L1 + 2L2

 −1 1 0
4 −1 1
−2 1 0


 1 0 0

0 −1 0
0 0 1

 L2 ← −L2

 7 −1 2
4 −1 1
−2 1 0


 1 0 0

0 1 0
0 0 1

  7 −1 2
−4 1 −1
−2 1 0

 = A−1

Conclusion de ce long calcul : A−1 =

 7 −1 2
−4 1 −1
−2 1 0

.

Définition 22. Deux matrices sont équivalentes par lignes si on peut passer de l’une à l’autre
par opérations élémentaires sur les lignes. On le note A ∼L B. Remarquons qu’une matrice A est
inversible si et seulement si A ∼L In.

3 Systèmes linéaires.

Nous ne revenons pas sur le vocabulaire de base associé aux systèmes linéaires, qui a déjà été vu
dans le chapitre 5.

Définition 23. La matrice associée à un système S de n équations à p inconnues est la matrice
de ses coefficients A = (aij). Si on note également les inconnues sous forme de matrice-colonne
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X =


x1
x2
...
xp

, ainsi que le second membre B =


b1
b2
...
bn

, le système est alors simplement équivalent

à l’équation matricielle AX = B.

Définition 24. Un système linéaire est carré si sa matrice associée est carrée (il a donc autant
d’inconnues que d’équations). De même, il est dit triangulaire si la matrice associée est trian-
gulaire (généralement triangulaire supérieure), auquel cas sa résolution peut se faire facilement en
« remontant » le système.

Théorème 3. Un système linéaire carré est de Cramer si et seulement si sa matrice associée
A est inversible. Dans ce cas, l’unique solution du système est donnée par X = A−1B.

Remarque 12. Autrement dit, le fait qu’un système ait une solution unique ou non ne dépend que
des coefficients de chaque équation, mais pas de son second membre.

Démonstration. Il y a un sens évident : si la matrice est inversible, il suffit de multiplier l’égalité
AX = B à gauche par A−1 pour obtenir le résultat. L’autre sens ne sera pas démontré, il découle de
l’algorithme du pivot de Gauss que nous allons décrire ci-dessous.

Définition 25. Un système linéaire est homogène si tous les coefficients apparaissant dans son
second membre (ceux que nous avons noté bi un peu plus haut) sont nuls. Le système homogène
associé à un système d’équations linéaires est le système obtenu en remplaçant chaque second
membre par 0.

Remarque 13. Vous ne manquerez pas de remarquer la similarité de vocabulaire entre les systèmes
linéaires et les équations différentielles linéaires. Ce n’est pas un hasard du tout, il y a effectivement
un regroupement théorique possible entre ces notions a priori assez éloignées. Sans rentrer dans les
détails (on aurait bien du mal pour l’instant), l’ensemble des solutions est dans les deux cas un
sous-espace affine (non, non, je ne vous définirai pas ce que c’est), ce qui revient à dire qu’on peut les
décrire par le schéma suivant : toutes les solutions sont obtenues en faisant la somme d’une solution
particulière et de toutes les solutions de l’équation homogène associée.

Définition 26. Les opérations élémentaires sur les lignes d’un système sont les mêmes que celle
que nous avons définies sur les matrices.

Proposition 13. Les opérations élémentaires sur les lignes d’un système le transforment
en système équivalent.

Algorithme du pivot de Gauss sur les systèmes : L’algorithme est rigoureusement le même
que pour l’inversion des matrices, à ceci près qu’on a en pratique beaucoup moins de travail. On se
contente en effet d’effectuer la première phase du pivot de Gauss pour transformer le système en
système triangulaire, et surtout on n’a pas besoin de faire deux fois les opérations comme dans un
pivot de Gauss matriciel classique.

Exemple : nous allons résoudre un système à 4 équations et 4 inconnues en suivant scrupuleusement
l’algorithme décrit :
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
3x + y − 3z + 2t = 7
x − 2y + z − t = −9 L2 ← L1 − 3L2

2x − 3y − 2z + t = −4 L3 ← 2L1 − 3L3

−x + 5z − 3t = −11 L4 ← L1 + 3L4

⇔


3x + y − 3z + 2t = 7

7y − 6z + 5t = 34
11y + t = 26 L3 ← 11L2 − 7L3

y + 12z − 7t = −26 L4 ← L2 − 7L4

⇔


3x + y − 3z + 2t = 7

7y − 6z + 5t = 34
−66z + 48t = 192
−90z + 54t = 216 L4 ← 90L3 − 66L4

⇔


3x + y − 3z + 2t = 7

7y − 6z + 5t = 34
−66z + 48t = 192

756t = 3024

En remontant le système, on obtient t = 4, puis −66z = 192−48t = 0, donc z = 0, 7y = 34+6z−5t =
14 donc y = 2, et enfin 3x = 7 − y + 3z − 2t = −3 donc x = −1. Le système a donc une unique
solution : S = {(−1, 2, 0, 4)}.

On ne peut qu’être un peu frustré d’avoir fait des calculs si compliqués pour une solution aussi
simple. On peut en fait les réduire grandement en utilisant le pivot de façon plus subtile, c’est-à-dire
en choisissant un bon pivot à chaque étape. Par exemple :

3x + y − 3z + 2t = 7 L1 ↔ L2

x − 2y + z − t = −9
2x − 3y − 2z + t = −4
−x + 5z − 3t = −11

⇔


x − 2y + z − t = −9
3x + y − 3z + 2t = 7 L2 ← 3L1 − L2

2x − 3y − 2z + t = −4 L3 ← 2L1 − L3

−x + 5z − 3t = −11 L4 ← L1 + L4

⇔


x − 2y + z − t = −9

−7y + 6z − 5t = −34 L2 ↔ L3

−y + 4z − 3t = −14
−2y + 6z − 4t = −20

⇔


x − 2y + z − t = −9

−y + 4z − 3t = −14
−7y + 6z − 5t = −34 L3 ← 7L2 − L3

−2y + 6z − 4t = −20 L4 ← 2L2 − L4

⇔


x − 2y + z − t = −9

−y + 4z − 3t = −14
22z − 16t = −64
2z − 2t = −8 L4 ← L3 − 11L4

⇔


x − 2y + z − t = −9

−y + 4z − 3t = −14
22z − 16t = −64

6t = 24
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On retrouve bien évidemment la même solution que tout à l’heure.

Il existe d’autres façons de résoudre les systèmes, ou plutôt d’autres façons de présenter le même
calcul. On peut évidemment faire un calcul d’inverse de la matrice A associée au système puis calculer
A−1B, mais c’est extrêmement lourd dans la mesure où le pivot de Gauss matriciel demande déjà de
faire deux fois les mêmes opérations sur les lignes, à partir de A et à partir de In. Pour éviter cela,
il existe une possibilité, c’est de regrouper les deux calculs en un seul :

Définition 27. La matrice augmentée associée au système, et notée (A | B), est simplement la
matrice à p lignes et n+1 colonnes obtenues en rajoutant à la matrice A une dernière colonne égale
à la matrice B (on sépare en pratique la « vraie » matrice du second membre en matérialisant une
barre verticale au milieu de la matrice).

Exemple : Si on souhaite résoudre un système à l’aide de la matrice augmentée, on effectue le pivot
en cherchant à transformer ce qui se trouve à gauche de la barre verticale en In (et en modifiant
simultanément la dernière colonne ajoutée), et les valeurs obtenues sur la dernière colonne une fois
la transformation terminée seront tout simplement les valeurs prises par les différentes inconnues
dans l’unique solution du système. Il est par ailleurs tout à fait possible d’utiliser une rédaction
« mixte » où on commence les calculs avec une matrice augmentée, puis on revient à un système
pour terminer la résolution (par exemple une fois que la partie gauche de la matrice augmentée est
devenue triangulaire). Prenons un exemple pas trop méchant avec le système suivant :


x + y − z = 3
2x − y + z = 0
2x + 2y + z = 6

 1 1 −1 | 3
2 −1 1 | 0
2 2 1 | 6

 L2 ← L2 − 2L1

L3 ← L3 − 2L1 1 1 −1 | 3
0 −3 3 | −6
0 0 3 | 0

 L2 ← −L2/3
L3 ← L3/3 1 1 −1 | 3

0 1 −1 | 2
0 0 1 | 0

 L1 ← L1 + L3

L2 ← L2 + L3 1 1 0 | 3
0 1 0 | 2
0 0 1 | 0

 L1 ← L1 − L2

 1 0 0 | 1
0 1 0 | 2
0 0 1 | 0


On peut simplement conclure que le système a pour unique solution {(1, 2, 0)}.

Remarque 14. On peut bien sûr également utiliser, de façon symétrique, les techniques de résolution
de systèmes pour inverser des matrices. Ainsi, on pourra écrire une matrice augmentée dont les
deux moitiés sont carrées pour calculer l’inverse d’une matrice A plutôt que de faire deux fois les
mêmes opérations à partir de A et de In (méthode qui a le très léger inconvénient de faire faire
quelques calculs inutiles dans la deuxième partie de la matrice augmentée quand la matrice n’est pas
inversible).
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On peut même effectuer une « vraie » résolution de système pour inverser une matrice : on part
du système ayant pour matrice A et un second membre inconnu B (par exemple, si la matrice est
carrée d’ordre 3, on notera a, b et c les trois valeurs du second membre), et on résout le système,
c’est-à-dire qu’on exprime x, y et z en fonction de a, b et c. Les coefficients obtenus seront alors
ceux de A−1 (puisqu’on a transformé une équation matricielle de la forme AX = B en X = A−1B).
Cette méthode est particulièrement rapide si on est à l’aise avec les opérations « efficaces » sur les
systèmes.

Exemple : Calculons par exemple l’inverse de la matrice A =

 1 1 −1
2 −1 1
2 2 1

 (c’est la matrice du

système résolu dans l’exercice précédent) avec cette méthode. On part donc du système
x + y − z = a
2x − y + z = b
2x + 2y + z = c

et on effectue les opérations L2 ← L2 − 2L1 et L3 ← L3 − 2L1 pour

obtenir immédiatement le système triangulaire


x + y − z = a
− 3y + 3z = b− 2a

3z = c− 2a
. On peut donc

simplement remonter le système : z = −2

3
a +

1

3
c, puis y =

2a− b

3
+ z = −1

3
b +

1

3
c et enfin

x = a + z − y =
1

3
a +

1

3
b. Il ne reste plus qu’à mettre les coefficients (dans le bon ordre) dans une

matrice pour conclure que A est inversible et que A−1 =
1

3

 1 1 0
0 −1 1
−2 0 1

.
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