Feuille d'exercices nº 4 : corrigé

MPSI Lycée Camille Jullian

2 octobre 2025

Exercice 1 (*)

Pour $\frac{\pi}{8}$, on ne peut pas faire grand chose d'autre qu'utiliser des formules de duplication, sauf si on connait déjà les lignes trigonométriques de l'angle $\frac{\pi}{12}$ (vues en cours). On écrit donc $\frac{\sqrt{2}}{2} = \cos\left(\frac{\pi}{4}\right) = \cos\left(2 \times \frac{\pi}{8}\right) = 2\cos^2\left(\frac{\pi}{8}\right) - 1$. On en déduit que $\cos^2\left(\frac{\pi}{8}\right) = \frac{1}{2}\left(\frac{\sqrt{2}}{2} + 1\right) = \frac{2 + \sqrt{2}}{4}$. Comme le cosinus recherché est certainement positif, on en déduit que $\cos\left(\frac{\pi}{8}\right) = \frac{\sqrt{2 + \sqrt{2}}}{2}$. Il existe alors diverses possibilités pour retrouver le sinus, par exemple en utilisant $\sin^2\left(\frac{\pi}{8}\right) = 1 - \cos^2\left(\frac{\pi}{8}\right) = \frac{2 - \sqrt{2}}{4}$, d'où $\sin\left(\frac{\pi}{8}\right) = \frac{\sqrt{2 - \sqrt{2}}}{2}$ (là encore, la valeur est bien sûr positive). On déduit des deux valeurs déjà calculées que $\tan\left(\frac{\pi}{8}\right) = \sqrt{\frac{2 - \sqrt{2}}{2 + \sqrt{2}}} = \sqrt{\frac{(2 - \sqrt{2})^2}{4 - 2}} = \frac{2 - \sqrt{2}}{\sqrt{2}} = \sqrt{2} - 1$.

Pour $\frac{\pi}{24}$, on peut aussi passer par les formules de duplication : $2 \times \frac{\pi}{24} = \frac{\pi}{12}$, donc $\cos\left(\frac{\pi}{12}\right) = 2\cos^2\left(\frac{\pi}{24}\right) - 1$. On en déduit que $\cos\left(\frac{\pi}{24}\right) = \sqrt{\frac{1}{2}\left(\cos\left(\frac{\pi}{12}\right) + 1\right)} = \sqrt{\frac{\sqrt{6} + \sqrt{2} + 4}{8}}$. En exploitant ensuite la relation $\cos^2 + \sin^2 = 1$, on trouve $\sin\left(\frac{\pi}{24}\right) = \sqrt{\frac{4 - \sqrt{6} - \sqrt{2}}{8}}$, puis enfin $\tan\left(\frac{\pi}{24}\right) = \sqrt{\frac{4 - \sqrt{6} - \sqrt{2}}{4 + \sqrt{6} + \sqrt{2}}}$, ce qu'on peut essayer de simplifier si on a du temps à perdre (mais on n'obtient

Autre possibilité, écrire $\frac{\pi}{24} = \frac{\pi}{6} - \frac{\pi}{8}$ puis appliquer les formules d'addition, ce qui donne par exemple $\cos\left(\frac{\pi}{24}\right) = \frac{\sqrt{3}}{2} \times \frac{\sqrt{2+\sqrt{2}}}{2} + \frac{1}{2} \times \frac{\sqrt{2-\sqrt{2}}}{2}$. Ce n'est pas vraiment plus emballant que par la première méthode.

Exercice 2 (** à ***)

- 1. C'est une application directe du cours : on a soit $3x \equiv x[2\pi]$, soit $3x \equiv \pi x[2\pi]$, ce qui donne les deux possibilités $x \equiv 0[\pi]$ et $x \equiv \frac{\pi}{4} \left[\frac{\pi}{2}\right]$ (plein d'autres méthodes plus compliquées également disponibles).
- 2. Cela se produit si $2x = \frac{\pi}{4} + k\pi$, soit $x = \frac{\pi}{8} + k\frac{\pi}{2}$, ce qu'on note également $x \equiv \frac{\pi}{8} \left[\frac{\pi}{2} \right]$.
- 3. $\sin\left(x + \frac{3\pi}{4}\right) = \cos\left(\frac{x}{4}\right) \Leftrightarrow \cos\left(\frac{\pi}{2} x \frac{3\pi}{4}\right) = \cos\left(\frac{x}{4}\right) \Leftrightarrow -x \frac{\pi}{4} \equiv \frac{x}{4}[2\pi] \text{ ou } -x \frac{\pi}{4} \equiv -\frac{x}{4}[2\pi] \Leftrightarrow \frac{5x}{4} \equiv -\frac{\pi}{4}[2\pi] \text{ ou } \frac{3x}{4} \equiv -\frac{\pi}{4}[2\pi], \text{ donc } \mathcal{S} = \left\{-\frac{\pi}{5} + k\frac{8\pi}{5}, -\frac{\pi}{3} + k\frac{3\pi}{5} \mid k \in \mathbb{Z}\right\}.$

- 4. On effectue bien entendu le changement de variable $X=\cos(x)$ pour se ramener à l'équation du troisième degré $2X^3+X^2-5X+2=0$. Cette dernière a le bon goût d'admettre 1 comme racine évidente, on peut donc factoriser sous la forme $2X^3+X^2-5X+2=(X-1)(aX^2+bX+c)=aX^3+(b-a)X^2+(c-b)X-c$. Par identification des coefficients, on obtient a=2; b-a=1, donc b=3; puis c-b=-5 donc c=-2, ce qui est cohérent avec la dernière condition. Déterminons maintenant les racines du trinôme $2X^2+3X-2$, qui admet pour discriminant $\Delta=9+16=25$ et donc pour racines $X_1=\frac{-3-5}{4}=-2$ et $X_2=\frac{-3+5}{4}=\frac{1}{2}$. On peut éliminer la valeur X_1 qui n'est pas très crédible pour un cosinus, et il nous reste donc les deux possibilités (n'oublions pas la racine évidente) $\cos(x)=1$, ce qui donne $x\equiv 0[2\pi]$; et $\cos(x)=\frac{1}{2}$, qui donne $x\equiv \frac{\pi}{3}[2\pi]$ ou $x\equiv -\frac{\pi}{3}[2\pi]$.
- 5. Il suffit d'utiliser la formule de transformation produit/somme : $\cos\left(x + \frac{\pi}{6}\right)\cos\left(x \frac{\pi}{6}\right) = \frac{1}{2} \Leftrightarrow \frac{1}{2}\left(\cos(2x) + \cos\left(\frac{\pi}{3}\right)\right) = \frac{1}{2} \Leftrightarrow \cos(2x) = 1 \cos\left(\frac{\pi}{3}\right) = \frac{1}{2} \Leftrightarrow 2x \equiv \frac{\pi}{3}[2\pi]$ ou $2x \equiv -\frac{\pi}{3}[2\pi]$, donc $S = \left\{\frac{\pi}{6} + k\pi, -\frac{\pi}{6} + k\pi \mid k \in \mathbb{Z}\right\}$.
- 6. Beaucoup moins compliqué que ça n'en a l'air, il suffit d'y croire :

$$\sin(3x)\cos^{3}(x) + \sin^{3}(x)\cos(3x) = \frac{3}{4}$$

$$\Leftrightarrow (3\sin(x) - 4\sin^{3}(x))\cos^{3}(x) + \sin^{3}(x)(4\cos^{3}(x) - 3\cos(x)) = \frac{3}{4}$$

$$\Leftrightarrow \sin(x)\cos^{3}(x) - \sin^{3}(x)\cos(x) = \frac{1}{4}$$

$$\Leftrightarrow \sin(x)\cos(x)(\cos^{2}(x) - \sin^{2}(x)) = \frac{1}{4}$$

$$\Leftrightarrow \frac{1}{2}\sin(2x)\cos(2x) = \frac{1}{4}$$

$$\Leftrightarrow \sin(4x) = 1$$

On a donc $4x \equiv \frac{\pi}{2}[2\pi]$ et $S = \left\{\frac{\pi}{8} + k\frac{\pi}{2} \mid k \in \mathbb{Z}\right\}$.

- 7. Cette équation ne peut avoir de sens que si $x \in [-1,1]$. Appliquons la fonction sinus à chaque membre de l'égalité : notre équation implique que $x = \sin\left(\arccos\left(\frac{1}{3}\right) \arccos\left(\frac{1}{4}\right)\right) = \frac{1}{4}\sin\left(\arccos\left(\frac{1}{3}\right)\right) \frac{1}{3}\sin\left(\arccos\left(\frac{1}{4}\right)\right)$ (via formule d'addition des sinus). Or, on sait que $\sin(\arccos(x)) = \sqrt{1-x^2}$ (formule utilisée par exemple pour démontrer la formule donnant la dérivée de la fonction \arccos), donc notre membre de droite est égal à $\frac{1}{4}\sqrt{1-\frac{1}{9}} \frac{1}{3}\sqrt{1-\frac{1}{16}} = \frac{\sqrt{8}}{12} \frac{\sqrt{15}}{12} = \frac{2\sqrt{2} \sqrt{15}}{12}$. Cette unique valeur possible est bien solution de l'équation (le membre de droite de l'équation initiale est un angle compris entre $-\frac{\pi}{2}$ et $\frac{\pi}{2}$ comme différence d'arccosinus de valeurs positives, donc il correspond nécessairement à l'arcsinus d'un certain réel).
- 8. L'équation ne peut avoir de sens que si $x \in [-1,1]$ et $2x \in [-1,1]$, donc $x \in \left[-\frac{1}{2},\frac{1}{2}\right]$. On peut ensuite prendre le sin de chaque côté de l'équation. Comme $\arccos(x) \in [0,\pi]$, $\sin(\arccos(x)) > 0$, et $\sin(\arccos(x)) = \sqrt{1-\cos^2(\arccos(x))} = \sqrt{1-x^2}$. Quant au sinus de $\arcsin(2x)$, il vaut évidemment 2x, ce qui donne la condition nécessaire $2x = \sqrt{1-x^2}$. Les solutions de l'équation sont donc forcément positives et vérifient, en élevant au carré l'égalité précédente, $4x^2 = 1 x^2$, soit $x^2 = \frac{1}{5}$, donc $x = \frac{\sqrt{5}}{5}$ (la solution négative ayant déjà été

exclue). Cette valeur est bien inférieure à $\frac{1}{2}$, donc $S = \left\{ \frac{\sqrt{5}}{5} \right\}$.

- 9. On doit déjà avoir $x\sqrt{3} \in [-1,1]$, donc $x \in \left[-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right]$ pour que l'équation puisse avoir un sens. Ensuite, on peut par exemple écrire $\arcsin(x\sqrt{3}) = \frac{\pi}{2} \arcsin(x)$ et prendre le sinus des deux côtés pour obtenir la condition nécessaire $x\sqrt{3} = \cos(\arcsin(x)) = \sqrt{1-x^2}$, donc (en élevant au carré) $3x^2 = 1 x^2$. On trouve alors la condition nécessaire $x^2 = \frac{1}{4}$, soit $x = \pm \frac{1}{2}$. On constate aisément que $\frac{1}{2}$ est solution de l'équation initiale (qui se traduit alors par l'égalité $\frac{\pi}{6} + \frac{\pi}{3} = \frac{\pi}{2}$) mais pas $-\frac{1}{2}$ (dans ce cas le membre de gauche est égal à $-\frac{\pi}{2}$). La seule solution de notre équation est donc $\frac{1}{2}$.
- 10. Il faut cette fois avoir $x \in \left[-\frac{1}{2}, \frac{1}{2}\right]$ pour que l'équation ait un sens. Écrivons l'équation sous la forme $\arcsin(x) + \arcsin(x\sqrt{3}) = \arcsin(2x)$, et prenons le sinus de chaque membre pour obtenir la condition nécessaire $x\sqrt{1-3x^2}+x\sqrt{3}\sqrt{1-x^2}=2x$. Après avoir vérifié que x=0 était bien solution de l'équation initiale (les trois arcsinus sont alors nuls), on simplifie par x et on a donc $\sqrt{1-3x^2}+\sqrt{3-3x^2}=2$. On élève tout au carré (encore une fois, aucune raison que chacune de ces étapes soit une équivalence, on procède seulement pas implications successives) : $1-3x^2+3-3x^2+2\sqrt{3-12x^2+9x^4}=4$, ce qui donne $\sqrt{3-12x^2+9x^4}=3x^2$, et donc en élevant une fois de plus au carré $3-12x^3+9x^4=9x^4$. Tout cela se réduit à la condition fort simple $x^2=\frac{1}{4}$, ce qui donne comme seules possibilités $x=\frac{1}{2}$ et $x=-\frac{1}{2}$. On vérifie sans peine que ces deux valeurs sont solutions de l'équation initiale, par exemple pour $x=\frac{1}{2}$, on trouve $\frac{\pi}{2}-\frac{\pi}{3}=\frac{\pi}{6}$, ce qui est certainement vrai (tous les signes sont simplement opposés pour $-\frac{1}{2}$). L'équation a donc trois solutions : $0,\frac{1}{2}$ et $-\frac{1}{2}$.
- 11. Si on note $g: x \mapsto \arctan(x-1) + \arctan(x) + \arctan(x) + \arctan(x+1)$, la fonction g est définie sur \mathbb{R} , strictement croissante comme somme de trois fonctions croissantes, et vérifie $\lim_{x \to -\infty} g(x) = -\frac{3\pi}{2}$ et $\lim_{x \to +\infty} g(x) = \frac{3\pi}{2}$. La fonction g est donc bijective de \mathbb{R} vers $\left] -\frac{3\pi}{2}, \frac{3\pi}{2} \right[$, et notre équation admet nécessairement une solution unique, positive qui plus est (puisque g(0) = 0, la fonction est de façon impaire). Écrivons alors l'équation sous la forme $\arctan(x-1) + \arctan(x+1) = \frac{\pi}{2} \arctan(x)$, et composons des deux côtés par la fonction tangente (l'équation obtenue ne sera a priori pas équivalente à l'équation initiale). La formule d'addition des tangentes, ainsi que la formule $\tan\left(\frac{\pi}{2} x\right) = \frac{1}{\tan(x)}$ permettant alors d'obtenir $\frac{x-1+x+1}{1-(x-1)(x+1)} = \frac{1}{x}$, soit $\frac{2x}{2-x^2} = \frac{1}{x}$, ou encore $2x^2 = 2-x^2$. Bref, on a $x^2 = \frac{2}{3}$, et puisque notre solution est positive, elle est donc nécessairement égale à $\sqrt{\frac{2}{3}}$.

Exercice 3 (**)

Parmi les douze mille méthodes possibles, on peut commencer par utiliser la formule de duplication $\cos(2a) = 2\cos^2(a) - 1$ pour la mettre sous la forme $\cos^2(a) = \frac{1}{2}(\cos(2a) + 1)$. En notant S la somme qu'on nous demande de calculer, on a donc $S = \sum_{k=1}^4 \frac{1}{2} \left(\cos\left(\frac{2k\pi}{9}\right) + 1\right) = 1$

$$\frac{\cos(\frac{2\pi}{9}) + \cos(\frac{4\pi}{9}) + \cos(\frac{6\pi}{9}) + \cos(\frac{8\pi}{9})}{2} + 2. \text{ Or on sait très bien que } \cos\left(\frac{6\pi}{9}\right) = \cos\left(\frac{2\pi}{3}\right) = -\frac{1}{2}, \text{ et }$$
 un petit coup de transformation somme-produit donne $\cos\left(\frac{2\pi}{9}\right) + \cos\left(\frac{4\pi}{9}\right) = 2\cos\left(\frac{3\pi}{9}\right)\cos\left(\frac{\pi}{9}\right) = \cos\left(\frac{\pi}{9}\right) = \cos\left(\frac{\pi}{9}\right) = \cos\left(\frac{\pi}{9}\right)$ puisque $\frac{8\pi}{9} = \pi - \frac{\pi}{9}$. Bref il ne reste dans notre somme (outre le 2 ajouté ensuite) qu'un facteur $-\frac{1}{2} \times \frac{1}{2}$, et $S = -\frac{1}{4} + 2 = \frac{7}{4}$.

Exercice 4 (**)

Il suffit d'appliquer une deuxième fois la formule de duplication des tangentes : $\tan(4x) = \tan(2x + 2x)$

$$2x) = \frac{2\tan(2x)}{1 - \tan^2(2x)} = \frac{\frac{4\tan(x)}{1 - \tan^2(x)}}{1 - \frac{4\tan^2(x)}{(1 - \tan^2(x))^2}} = \frac{4\tan(x)(1 - \tan^2(x))}{1 - 6\tan^2(x) + \tan^4(x)}.$$

Appliquons la formule à $x = \arctan\left(\frac{1}{5}\right)$ (qui a évidemment pour tangente $\frac{1}{5}$) pour obtenir $\tan(4x) = \frac{\frac{4}{5} \times (1 - \frac{1}{25})}{1 - \frac{6}{25} + \frac{1}{625}} = \frac{20 \times 24}{625 - 150 + 1} = \frac{480}{476} = \frac{120}{119}$. Calculons maintenant $\tan\left(\frac{\pi}{4} + \arctan\left(\frac{1}{239}\right)\right) = \frac{1 + \frac{1}{239}}{1 - \frac{1}{239}} = \frac{240}{238} = \frac{120}{119}$. Ca vous rappelle quelque chose? Les deux angles $4\arctan\left(\frac{1}{5}\right)$ et $\frac{\pi}{4}$ arctan $\left(\frac{1}{239}\right)$ ont la même tangente, et ils sont tous les deux positifs et plus petits que $\frac{\pi}{2}$, ce qui permet de conclure à l'égalité des deux angles, ce qui prouve la formule de Machin.

La deuxième formule est plus simple : $\tan\left(\arctan\left(\frac{1}{2}\right) + \arctan\left(\frac{1}{3}\right)\right) = \frac{\frac{1}{2} + \frac{1}{3}}{1 - \frac{1}{6}} = \frac{\frac{5}{6}}{\frac{5}{6}} = 1$. Comme on sait par ailleurs que $\tan\left(\frac{\pi}{4}\right) = 1 > \frac{1}{2} > \frac{1}{3}$, il est facile de voir que $\arctan\left(\frac{1}{2}\right) + \arctan\left(\frac{1}{3}\right) < \frac{\pi}{2}$, ce qui achève la démonstration de l'égalité.

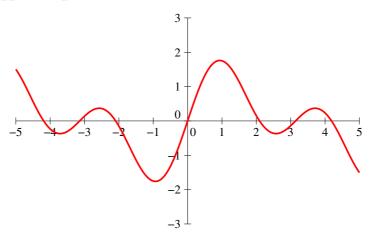
Exercice 5 (***)

• La fonction f est définie sur \mathbb{R} , 2π -périodique et impaire. On va donc restreindre son étude à l'intervalle $[0;\pi]$. Elle est dérivable, de dérivée $f'(x) = \cos(x) + 2\cos(2x) = \cos(x) + 2(2\cos^2(x) - 1) = 4\cos^2(x) + \cos(x) - 2$. En posant $X = \cos(x)$, on se ramène à l'étude du signe du trinome $4X^2 + X - 2$, qui a pour discriminant $\Delta = 1 + 32 = 33$, et admet donc pour racines $X_1 = \frac{-1 + \sqrt{33}}{8}$ et $X_2 = \frac{-1 - \sqrt{33}}{8}$. Ces valeurs n'étant certainement pas des cosinus d'angles remarquables, on ne peut que les exprimer à l'aide de la fonction arccos (les deux valeurs sont comprises entre -1 et 1). Comme arccos est une fonction décroissante, $\arccos(X_1) < \arccos(X_2)$, et le tableau de variations ressemble à ceci :

x	0	$x_1 = \arccos$	(X_1)	$x_2 = \arccos$	(X_2) π
f'(x)	+	0	_	0	+
f	0	$f(x_1)$		$f(x_2)$	0

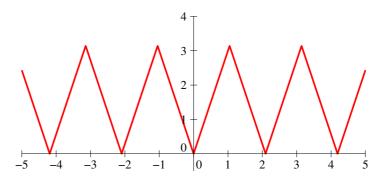
On peut, si on est vraiment très motivé, chercher à calculer les valeurs du minimum et du maximum, mais on va tomber sur des valeurs affreuses. Par exemple, $f(x_1) = \sin(\arccos(X_1)) +$

 $\sin(2\arccos(X_1)) = \sin(\arccos(X_1)) + 2\sin(\arccos(X_1))\cos(\arccos(X_1))$ en appliquant la formule de duplication. Or, $\sin(\arccos(X_1)) = \sqrt{1 - \cos^2(\arccos(X_1))}$ (les sinus sont positifs puisqu'on est dans $[0;\pi]$), donc $\sin(\arccos(X_1)) = \sqrt{1-X_1^2}$, avec $X_1^2 = \frac{1+33-2\sqrt{33}}{64} = \frac{34-2\sqrt{33}}{64}$, soit $\sin(\arccos(X_1)) = \sqrt{\frac{30+2\sqrt{33}}{64}} = \frac{\sqrt{30+2\sqrt{33}}}{8}$. On obtient alors $f(x_1) = \frac{\sqrt{30+2\sqrt{33}}}{8} + 2\frac{\sqrt{30+2\sqrt{33}}}{8} + 2\frac{\sqrt{30+2\sqrt{33}}}{8} = \frac{\sqrt{30+2\sqrt{33}}}{8} + \frac{(\sqrt{33}-1)\sqrt{30+2\sqrt{33}}}{32} = \frac{(\sqrt{33}+3)\sqrt{30+2\sqrt{33}}}{32}$. C'est très laid et fort peu expoitable, on se dispensera donc de tenter un calcul du minimum



• La fonction g est définie sur \mathbb{R} , car $\cos(3x)$ étant toujours compris entre -1 et 1, on tombe toujours dans l'intervalle de définition de la fonction arccos. La fonction est de plus paire (puisque cos l'est), et $\frac{2\pi}{3}$ périodique (comme $x \mapsto \cos(3x)$). On peut donc restreindre l'intervalle d'étude à $\left[0, \frac{\pi}{3}\right]$. Or, sur cet intervalle, on constate que $3x \in [0, \pi]$, donc $\arccos(\cos(3x)) = 3x$. La courbe représentative de g sur cet intervalle est donc un segment de droite, et le reste s'en déduit par la symétrie et la périodicité.

Les plus courageux auront calculé la dérivée : $g'(x) = -3\sin(3x) \times \frac{-1}{\sqrt{1-\cos^2(3x)}} =$ $\frac{3\sin(3x)}{\sqrt{\sin^2(3x)}} = 3\frac{\sin(3x)}{|\sin(3x)|}, \text{ qui vaut 3 ou } -3 \text{ selon le signe de } \sin(3x). \text{ On retrouve alors l'allure}$

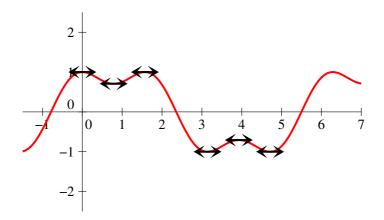


• La fonction h est définie sur \mathbb{R} , 2π -périodique, mais ni paire ni impaire. On va donc restreindre son étude à l'intervalle $[0; 2\pi]$. On peut la dériver : $h'(x) = -3\sin(x)\cos^2(x) +$ $3\cos(x)\sin^2(x) = 3\sin(x)\cos(x)(\sin(x) - \cos(x))$. Le dernier facteur s'annule en $\frac{\pi}{4}$ et en $\frac{5\pi}{4}$, ce qui permet d'établir le tableau de variations suivant :

x	0	$\frac{\pi}{4}$	7	<u>τ</u>	π		$\frac{5\pi}{4}$		$\frac{3\pi}{2}$		2π
$\cos(x)$	+		+ () –		_		_	0	+	
$\sin(x)$	0 +		+	+	0	_		_		_	0
$\sin(x) - \cos(x)$	_	0	+	+		+	0	_		_	
h'(x)	0 -	0	+ () –	0	+	0	_	0	+	0
h	1	$\frac{\sqrt{2}}{2}$			-1		$-\frac{\sqrt{2}}{2}$		-1	/	1

Calcul des valeurs intéressantes : $f(0) = 1^3 + 0^3 = 1$; $f\left(\frac{\pi}{4}\right) = \left(\frac{\sqrt{2}}{2}\right)^3 + \left(\frac{\sqrt{2}}{2}\right)^3 = 1$

 $\frac{2\sqrt{2}}{8} + \frac{2\sqrt{2}}{8} = \frac{\sqrt{2}}{2}$; les derniers calculs sont extrêmement similaires. On peut enfin tracer une fort belle courbe :



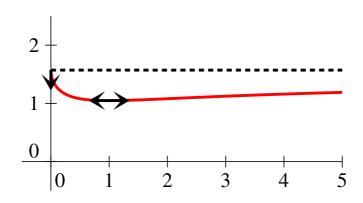
• La fonction i ne peut être définie que si $x \ge 0$ (à cause de la racine carrée) et si $\frac{\sqrt{x}}{1+x} \in [-1;1]$ à cause du arccos. Puisqu'on a déjà supposé $x \ge 0$, cela revient à dire qu'on doit avoir $\sqrt{x} \le 1+x$, soit en élevant au carré $x \le 1+2x+x^2$, ce qui est toujours le cas. On a donc $\mathcal{D}_i = \mathbb{R}^+$. On peut dériver la fonction i, ce qui donne $i'(x) = \frac{\frac{1+x}{2\sqrt{x}} - \sqrt{x}}{(1+x)^2} \times \frac{-1}{\sqrt{1-\frac{x}{(1+x)^2}}} = \frac{1+x}{\sqrt{1-\frac{x}{(1+x)^2}}}$

 $-\frac{1-x}{2\sqrt{x}(1+x)^2} \times \frac{1+x}{\sqrt{(1+x)^2-x}} = \frac{x-1}{2\sqrt{x}(1+x)\sqrt{x^2+x+1}}.$ On peut constater en passant que la fonction i n'est pas dérivable en 0 (il y aura une tangente verticale puisque la dérivée y a une limite infinie), et la dérivée, bien qu'assez laide, est simplement du signe de x-1. La fonction admet donc un minimum en 1, de valeur $i(1) = \arccos\left(\frac{1}{2}\right) = \frac{\pi}{3}$. Par ailleurs,

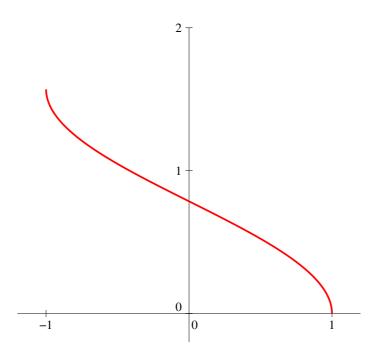
 $f(0) = \arccos(0) = \frac{\pi}{2}$, et comme $\lim_{x \to +\infty} \frac{\sqrt{x}}{x+1} = 0$, on aura également $\lim_{x \to +\infty} i(x) = \frac{\pi}{2}$. On peut donc dresser le tableau de variations suivant :

\boldsymbol{x}	0	1	$+\infty$
i	$\frac{\pi}{2}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$

Et tracer une magnifique courbe :



• La fonction arctan étant définie sur \mathbb{R} , ce n'est pas elle qui posera problème, la seule condition à vérifier est donc que $\frac{1-x}{1+x}\geqslant 0$, ce qui est le cas sur]-1,1]. La fonction j est dérivable sur]-1,1[, et en posant $u(x)=\sqrt{\frac{1-x}{1+x}},$ et même tant qu'à faire $v(x)=\frac{1-x}{1+x},$ on peut commencer par calculer $v'(x)=\frac{-1-x-1+x}{(1+x)^2}=-\frac{2}{(1+x)^2}$. C'est suffisant pour savoir que la fonction j sera décroissante sur]-1,1[(pusiqu'on compose ensuite par la racine carrée puis l'arctangente qui sont deux fonctions croissantes sur leur domaine de définition), mais continuons quand même le calcul : $u'(x)=\frac{-\frac{2}{(1+x)^2}}{2\sqrt{\frac{1-x}{1+x}}}=-\frac{1}{\sqrt{1-x}(1+x)^{\frac{3}{2}}},$ et enfin $j'(x)=-\frac{1}{\sqrt{1-x}(1+x)^{\frac{3}{2}}}\times\frac{1}{1+\frac{1-x}{1+x}}=-\frac{1}{\sqrt{1-x}(1+x)^{\frac{3}{2}}}\times\frac{1+x}{2}=-\frac{1}{2\sqrt{1-x}\sqrt{1+x}}=-\frac{1}{2\sqrt{1-x}\sqrt{1+x}}$. Oh surprise, on reconnait, à un facteur $\frac{1}{2}$ près, la dérivée de la fonction arccos, et on en déduit donc que $j(x)=\frac{1}{2}\arccos(x)+k$ pour une certaine constante réelle k. Comme $j(0)=\arctan(1)=\frac{\pi}{4}=\frac{1}{2}\arccos(0)$, on a en fait exactement $j(x)=\frac{1}{2}\arccos(x)$. Si on ne s'en est pas rendu compte, on calcule quand même $j(1)=\arctan(1)=0$, et $\lim_{x\to -1} j(x)=\lim_{x\to -1} x\to 0$. Dans tous les cas, la courbe ne sera pas surprenante :



Exercice 6 (**)

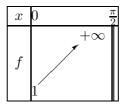
- 1. Reprenez la construction donnée dans le cours, à l'aide du cercle trigonométrique, du sinus et de la tangente. On peut tout interpréter en termes de longueur : $\sin(h)$ (remplacez le x du cours par un h) est la hauteur du triangle intérieur au cercle, dont les sommets sont O, M et le point I de coordonnées (1,0). La valeur de $\tan(h)$ est la hauteur du triangle extérieur au cercle et tangent extérieurement au point I. Quant à x, c'est par définition la longueur de l'arc de cercle reliant le point I à M. Ainsi, l'aire du petit triangle vaut $\frac{1}{2}\sin(h)$, celle du triangle extérieur vaut $\frac{1}{2}\tan(h)$, et la portion de disque contenue entre les deux a pour aire $\pi \times \frac{h}{2\pi} = \frac{h}{2}$. En multipliant tout par 2, on obtient $\sin(h) \leqslant h \leqslant \tan(h)$.
- 2. L'inégalité de droite a déjà été prouvée. Celle de gauche s'obtient en partant de $h \leqslant \tan(h)$ et en multipliant de chaque côté par $\cos(h)$. En divisant tout cela par h, on a alors $\cos(h) \leqslant \frac{\sin(h)}{h} \leqslant 1$. Comme $\cos(0) = 1$, $\frac{\sin(h)}{h}$ est encadré par deux expressions tendant vers 1 en 0, donc $\lim_{h\to 0} \frac{\sin(h)}{h} = 1$.
- 3. Puisque $\sin(0) = 0$, on en déduit facilement que $\lim_{h \to 0} \frac{\sin^2(h)}{h} = 0$. Or, $\frac{\sin^2(h)}{h} = \frac{1 \cos^2(h)}{h} = (1 + \cos(h)) \frac{1 \cos(h)}{h}$. Le premier terme ayant pour limite 2 en 0, le deuxième doit nécessairement avoir une limite nulle pour que le produit tende vers 0.
- 4. Revenons à la définition de la dérivée : le taux d'accroissement du cos en x vaut $\tau_x(h) = \frac{\cos(x+h) \cos(x)}{h}$. En utilisant les formules d'addition, on trouve $\tau_x(h) = \frac{\cos(x)\cos(h) \sin(x)\sin(h) \cos(x)}{h} = \cos(x)\frac{\cos(h) 1}{h} \sin(x)\frac{\sin(h)}{h}.$ Le premier quotient tend vers 0, le deuxième vers 1, donc $\lim_{h\to 0} \tau_x(h) = -\sin(x)$, ce qui donne bien
- 5. Même principe, cette fois-ci $\tau_x(h) = \frac{\sin(x+h) \sin(x)}{h} = \frac{\cos(x)\sin(h) + \sin(x)\cos(h) \sin(x)}{h} = \frac{\sin(x+h) \sin(x)}{h}$

la dérivée que vous connaissez par coeur pour le cosinus.

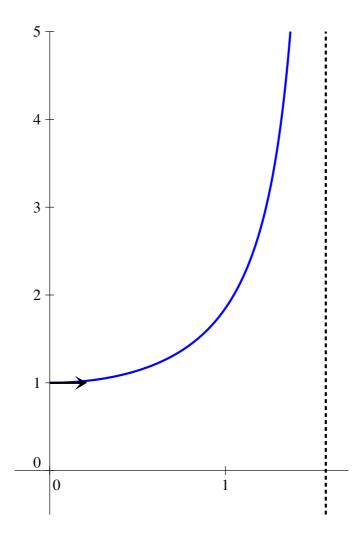
 $\cos(x)\frac{\sin(h)}{h} + \sin(x)\frac{1-\cos(h)}{h}$. Les mêmes limites que tout à l'heure permettent de conclure.

Exercice 7 (**)

- 1. La fonction f n'est pas définie lorsque $x \equiv \frac{\pi}{2}[\pi]$ (comme la fonction tangente), le plus grand intervalle possible avec les condition imposées est donc $I = \left[0, \frac{\pi}{2}\right[$.
- 2. La fonction cos étant décroissante et positive sur l'intervalle I, son inverse sera croissante. Si on le souhaite, on peut bien sûr aussi calculer sa dérivée (la fonction f est dérivable partout où elle est définie) $f'(x) = \frac{\sin(x)}{\cos^2(x)}$, qui est bien positive sur tout l'intervalle I. On a bien sûr f(0) = 1, et $\lim_{x \to \frac{\pi}{2}^-} f(x) = +\infty$, d'où le tableau de variations suivant :



La dérivée s'annulant en 0, on peut indiquer la demi-tangente horizontale sur l'allure de courbe :



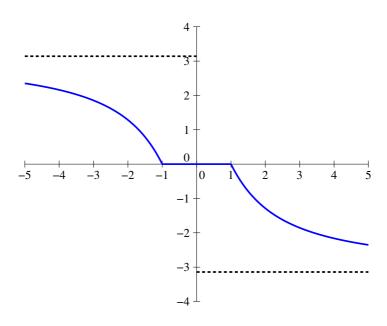
- 3. La fonction est continue et strictement croissante sur I, c'est donc une application directe du théorème de la bijection. Les calculs effectués ci-dessus prouvent que $J = [1, +\infty[$.
- 4. On applique la formule vue en cours : $(f^{-1})'(x) = \frac{1}{(\frac{1}{\cos})'(f^{-1}(x))} = \frac{\cos^2(f^{-1}(x))}{\sin(f^{-1}(x))}$ d'après le calcul de dérivée effectué plus haut. Or, par définition de la réciproque, $f(f^{-1}(x)) = x$, donc $\frac{1}{\cos(f^{-1}(x))} = x$. Autrement dit, $\cos(f^{-1}(x)) = \frac{1}{x}$, dont on déduit facilement $\cos^2(f^{-1}(x)) = \frac{1}{x^2}$, puis $\sin^2(f^{-1}(x)) = 1 \frac{1}{x^2} = \frac{x^2 1}{x^2}$. Les valeurs prises par x étant nécessairement supérieures ou égales à 1, et $\sin(f^{-x}(x))$ étant toujours positif (la fonction f^{-1} étant à valeurs dans $\left[0, \frac{\pi}{2}\right[$), on peut conclure que $\sin(f^{-1}(x)) = \frac{\sqrt{x^2 1}}{x}$, puis enfin que $(f^{-1})'(x) = \frac{1}{x\sqrt{x^2 1}}$.

Exercice 8 (**)

- 1. L'arctangente étant définie sur \mathbb{R} , et le dénominateur $1+x^2$ ne risquant pas de s'annuler, la seule condition pour que x appartienne à \mathcal{D}_f est que $\frac{2x}{1+x^2} \in [-1,1]$. Autrement dit, il faut avoir $\frac{2x}{1+x^2} \leqslant 1$, soit $2x \leqslant 1+x^2$ (le dénominateur étant toujours positif, on peut multiplier sans risque), et donc $1+x^2-2x\geqslant 0$, condition qui est toujours vérifiée puisque $1+x^2-2x=(x-1)^2$ est toujours positif; et il faut par ailleurs que $\frac{2x}{1+x^2}\geqslant -1$, soit $2x\geqslant -1-x^2$, donc $x^2+2x+1\geqslant 0$, condition qui est elle aussi toujours vérifiée puisque $x^2+2x+1=(x+1)^2\geqslant 0$. Finalement, on a simplement $\mathcal{D}_f=\mathbb{R}$. Qui plus est, la fonction f est impaire, on peut donc restreindre son étude à l'intervalle $[0,+\infty[$.
- 2. Calculons donc $f(0) = \arcsin(0) 2\arctan(0) = 0 0 = 0$; $f(1) = \arcsin(1) 2\arctan(1) = \frac{\pi}{2} 2 \times \frac{\pi}{4} = 0$; et enfin $f(\sqrt{3}) = \arcsin\left(\frac{\sqrt{3}}{2}\right) 2\arctan(\sqrt{3}) = \frac{\pi}{3} 2 \times \frac{\pi}{3} = -\frac{\pi}{3}$.
- 3. La dérivée existe si ce qui se trouve dans l'arcsinus dans la définition de f n'est pas égal à 1 ou à -1. D'après les calculs effectués dans la première question, cette situation se produit lorsque $x^2 2x + 1 = 0$ ou lorsque $x^2 + 2x + 1 = 0$, c'est-à-dire lorsque x = -1 ou x = 1. Quand f' est définie, on peut écrire $f(x) = \arcsin(u(x)) 2\arctan(x)$ avec $u(x) = \frac{2x}{1+x^2}$, et on peut calculer $u'(x) = \frac{2(1+x^2)-4x^2}{(1+x^2)^2} = \frac{2(1-x^2)}{(1+x^2)^2}$. Ensuite, $f'(x) = \frac{u'(x)}{\sqrt{1-u^2(x)}} \frac{2}{1+x^2} = \frac{2(1-x^2)}{(1+x^2)^2} \times \frac{1+x^2}{\sqrt{1+x^4+2x^2-4x^2}} \frac{2}{1+x^2} = \frac{2(1-x^2)}{1+x^2} \times \frac{1}{\sqrt{(1-x^2)^2}} \frac{2}{1+x^2} = \frac{2(1-x^2)}{(1+x^2)^2} \times \frac{1}{\sqrt{1-x^2}} \times \frac{1}{\sqrt{1-x^2}} \frac{2}{1+x^2} = \frac{2(1-x^2)}{(1+x^2)^2} \times \frac{1}{\sqrt{1-x^2}} \frac{2}{1+x^2} = \frac{2(1-x^2)}{(1+x^2)^2} \times \frac{1}{\sqrt{1-x^2}} \frac{2}{1+x^2}$.
- 4. Si $x \in [-1,1]$, $1-x^2 \ge 0$ et $f'(x) = \frac{2}{1+x^2} \frac{2}{1+x^2} = 0$. La fonction f est donc constante sur [-1,1], et même nulle sur cet intervalle vu les valeurs calculées plus haut.
- 5. Si $x \ge 1$, on a désormais $f'(x) = -\frac{2}{1+x^2} \frac{2}{1+x^2} = -\frac{4}{1+x^2}$, donc $f(x) = -4\arctan(x) + k$. La constante k est par exemple obtenue en regardant pour $s = \sqrt{3}$: $-\frac{\pi}{3} = -4 \times \frac{\pi}{3} + k$, donc $k = \pi$ et $f(x) = \pi 4\arctan(x)$.
- 6. On sait que la fonction arctan est croissante sur \mathbb{R} , ce qui donne facilement les variations de la fonction f. On utilise aussi l'imparité pour compléter le tableau, la seule chose restant à calculer est la limite de f lorsque x tend vers $+\infty$. On l'obtient sans problème avec la forme initiale ou avec la forme simplifiée : $\lim_{x\to +\infty} f(x) = -\pi$. D'où le tableau complet suivant :

x	$-\infty$	-1		0		1	$+\infty$
f	π	<u> </u>	\rightarrow	0	\rightarrow	0_	$-\pi$

Il ne reste plus qu'à donner l'allure de la courbe :



Exercice 9 (**)

- 1. Posons donc $f(x) = \arctan\left(\frac{1}{x}\right) + \arctan\left(\frac{x-1}{x+1}\right)$. La fonction f est définie et dérivable sur $]0, +\infty[$, et $f'(x) = -\frac{1}{x^2} \times \frac{1}{1+\frac{1}{x^2}} + \frac{x+1-(x-1)}{(x+1)^2} \times \frac{1}{1+\frac{(x-1)^2}{(x+1)^2}} = -\frac{1}{x^2+1} + \frac{2}{(x+1)^2+(x-1)^2} = -\frac{1}{x^2+1} + \frac{1}{x^2+1} = 0$. La fonction f est donc constante sur $]0, +\infty[$. Comme par ailleurs $f(1) = \arctan(1) + \arctan(0) = \frac{\pi}{4}$, la valeur de cette constante est égale à $\frac{\pi}{4}$, ce qui prouve l'égalité souhaitée.
- 2. On utilise la formule d'addition des tangentes pour obtenir $\frac{\frac{1}{x} + \frac{x-1}{x+1}}{1 \frac{x-1}{x(x+1)}} = \frac{x+1+x(x-1)}{x(x+1)-(x-1)} = \frac{x^2+1}{x^2+1} = 1$. Notre membre de gauche a donc une tangente égale à 1, mais ça ne suffit pas à affirmer qu'il vaut $\frac{\pi}{4}$. Pour cela, ajoutons le fait que $\arctan\left(\frac{1}{x}\right) \in \left[0, \frac{\pi}{2}\right]$, et $\arctan\left(\frac{x-1}{x+1}\right) \in \left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$ (le quotient dand l'arctangente est nécessairement inférieur à 1, et supérieur à -1 puisque le numérateur ne peut pas être inférieur à -1 et le dénominateur est toujours au moins égal à 1), donc notre membre de gauche est un angle appartenant à l'intervalle $\left[-\frac{\pi}{4}, \frac{3\pi}{4}\right]$ ayant la même tangente que $\frac{\pi}{4}$, il ne peut qu'être égal à $\frac{\pi}{4}$.

Exercice 10 (**)

- 1. Il faut bien évidemment que $x \in [-1,1]$ pour que $\arcsin(x)$ soit défini. De plus, on a la condition $\frac{1+x}{1-x} \geqslant 0$ (la fonction arctan étant définie sur \mathbb{R} , ce sera la seule condition supplémentaire), ce qui est le cas si $x \in [-1,1[$ (un petit tableau de signes si besoin). Finalement, $\mathcal{D}_f = [-1,1[$.
- 2. Pour dériver, procédons par étapes. En posant $g(x) = \frac{1+x}{1-x}$, on obtient d'abord $g'(x) = \frac{2}{(1-x)^2}$. On compose ensuite par la racine carrée pour obtenir $\frac{g'(x)}{2\sqrt{g(x)}} = \frac{1}{(1-x)^2}\sqrt{\frac{1-x}{1+x}} = \frac{1}{\sqrt{(1+x)(1-x)^3}}$. Il ne reste plus qu'à ajouter l'arctangente pour obtenir la deuxième moitié de la dérivée de $f: f'(x) = \frac{1}{\sqrt{1-x^2}} \frac{2}{\sqrt{(1+x)(1-x)^3}} \times \frac{1}{1+\frac{1+x}{1-x}} = \frac{1}{\sqrt{1-x^2}} \frac{2}{\sqrt{(1+x)(1-x)^3}} \times \frac{1-x}{2} = \frac{1}{\sqrt{1-x^2}} \frac{1}{\sqrt{(1+x)(1-x)}} = 0$. La fonction f est donc constante. Comme $f(0) = \arcsin(0) 2\arctan(1) = -\frac{\pi}{2}$, on en déduit que, $\forall x \in [-1,1[$, $f(x) = -\frac{\pi}{2}$.
- 3. Posons donc $x = \cos(\theta)$ (ce qui est certainement faisable puisque $x \in [-1, 1[$. On peut alors écrire $\arcsin(x) = \arcsin(\cos(\theta)) = \frac{\pi}{2} \arccos(\cos(\theta)) = \frac{\pi}{2} \theta$ (on peut toujours choisir $\theta \in [0, \pi]$). Par ailleurs, $\frac{1+x}{1-x} = \frac{1+\cos(\theta)}{1-\cos(\theta)} = \frac{(1+\cos(\theta))^2}{1-\cos^2(\theta)} = \frac{(1+\cos(\theta))^2}{\sin^2(\theta)}$, donc $\sqrt{\frac{1+x}{1-x}} = \frac{1+\cos(\theta)}{\sin(\theta)}$ (sur $[0, \pi]$, le sinus est nécessairement positif). Avec un bon feeling, ou plutôt en regardant bien ce qu'on veut obtenir à la fin, on peut alors penser à tout exprimer en fonction de l'angle $\frac{\theta}{2}$: les formules de duplication assurent que $\cos(\theta) = 2\cos^2\left(\frac{\theta}{2}\right) 1$, et $\sin(\theta) = 2\cos\left(\frac{\theta}{2}\right)\sin\left(\frac{\theta}{2}\right)$, on en déduit que $\frac{1+\cos(\theta)}{\sin(\theta)} = \frac{2\cos^2(\frac{\theta}{2})}{2\sin(\frac{\theta}{2})\cos(\frac{\theta}{2})} = \frac{\cos(\frac{\theta}{2})}{\sin(\frac{\theta}{2})} = \frac{1}{\tan(\frac{\theta}{2})}$. En utilisant l'une des nombreuses formules du cours, $\frac{1}{\tan(\frac{\theta}{2})} = \tan\left(\frac{\pi}{2} \frac{\theta}{2}\right)$, ce qui permet, en ajoutant l'arctangente, de simplifier f(x) sous la forme $f(x) = \frac{\pi}{2} \theta 2\left(\frac{\pi}{2} \frac{\theta}{2}\right) = -\frac{\pi}{2}$. On retrouve le même résultat qu'à la question précédente.

Exercice 11 (***)

- 1. La fonction cos étant définie sur \mathbb{R} , le domaine de définition de T_n est le même que celui de la fonction arccos, c'est-à-dire le segment [-1,1].
- 2. Calculons : $T_n(1) = \cos(n\arccos(1)) = \cos(0) = 1$; $T_n(0) = \cos(n\arccos(0)) = \cos\left(\frac{n\pi}{2}\right)$ (qui vaut 0 si n est impair, 1 si n est multiple de 4 et -1 si n est pair mais pas multiple de 4); et $T_n(-1) = \cos(n\pi) = (-1)^n$.
- 3. Si $x \in [0, \pi]$, on peut simplifier $\arccos(\cos(x))$ pour trouver $T_n(\cos(x)) = \cos(nx)$, donc g(x) = 0. De plus, g est une fonction paire, car cos est paire, elle s'annule donc aussi sur $[-\pi, 0]$. Enfin, g est 2π -périodique tout comme cosinus, donc, étant nulle sur une période, elle est toujours nulle. Cela prouve bien que $\forall x \in \mathbb{R}, T_n(\cos(x)) = \cos(nx)$.
- 4. C'est du simple calcul : $T_0(x) = \cos(0) = 1$ (polynôme constant) ; $T_1(x) = \cos(\arccos(x)) = x$ (dans ce sens-là, ça marche toujours, du moins bien évidemment pour les valeurs de x pour

- lesquelles arccos est définie); $T_2(x) = \cos(2\arccos(x)) = 2\cos^2(\arccos(x)) 1 = 2x^2 1$ en utilisant les formules de duplication; et $T_3(x) = 4x^3 3x$ de même, en utilisant cette fois la formule de triplication du cosinus.
- 5. (a) Le plus simple est de partir de la formule de transformation produit-somme appliquée avec b=(n+1)a, ce qui donne $\cos(a)\cos((n+1)a)=\frac{1}{2}(\cos(a+(n+1)a)+\cos((n+1)a-a))=\frac{1}{2}(\cos((n+2)a)-\cos(na))$. La formule demandée en découle immédiatement.
 - (b) On applique tout simplement la formule précédente en choisissant $a = \arccos(x)$ (et on simplifie bien sûr le $\cos(\arccos(x))$ en x).
 - (c) Encore du calcul bête : $T_3(x) = 2xT_2(x) T_1(x) = 2x(2x^2 1) x = 4x^3 3x$; puis $T_4(x) = 2xT_3(x) T_2(x) = 2x(4x^3 3x) (2x^2 1) = 8x^4 8x^2 + 1$; et enfin $T_5(x) = 2xT_4(x) T_3(x) = 2x(8x^4 8x^2 + 1) (4x^3 3x) = 16x^5 20x^3 + 5x$.
- 6. Il faut simplement chercher les valeurs de x pour lesquelles $n \arccos(x) = \frac{\pi}{2} + k\pi = (2k+1)\frac{\pi}{2}$, ce qui revient bien à dire que $x = \cos\left(\frac{(2k+1)\pi}{2n}\right)$. La seule chose à comprendre, c'est qu'on peut se restreindre aux valeurs de k comprises entre 0 et n-1, mais pour les autres valeurs de k, on va tout simplement retomber sur les mêmes valeurs du cosinus! Par exemple $\cos\left(\frac{(2n+1)\pi}{2n}\right) = \cos\left(\pi + \frac{\pi}{2n}\right) = \cos\left(\pi \frac{\pi}{2n}\right) = \cos\left(\frac{(2n-1)\pi}{2n}\right)$. De toute façon, les valeurs de x_k , pour k compris entre 0 et n-1, sont toutes distinctes (ce sont des cosinus d'angles distincts compris entre 0 et π), et T_n , qui est un polynôme de degré n, ne peut pas avoir plus de n racines distinctes.

Exercice 12 (**)

- 1. Les fonctions sh et arctan étant toutes deux définies sur \mathbb{R} , arctan \circ sh l'est aussi. C'est moins évident pour la deuxième moitié puisque la fonction arccos n'est définie que sur [-1,1], mais ça tombe bien, la fonction th est justement à valeurs dans cet intervalle, ce qui permet d'affirmer que $\mathcal{D}_f = \mathbb{R}$.
- 2. La fonction f est toujours dérivable (th ne prend jamais les valeurs 1 et -1 qui sont les seules pour lesquelles arccos n'est pas dérivable), et $f'(x) = \frac{\sinh'(x)}{1 + \sinh^2(x)} \frac{\tanh'(x)}{\sqrt{1 \th^2(x)}}$. Or, on sait bien que $\sinh' = \cosh$ et que $\cosh^2 \sinh^2 = 1$ (c'est la seule formule de trigonométrie hyperbolique à connaître), donc $1 + \sinh^2(x) = \cosh^2(x)$ et notre premier quotient se simplifie en $\frac{1}{\cosh(x)}$ (qui est bien défini sur \mathbb{R} puisque la fonction ch ne s'annule jamais). Pour la deuxième moitié, on peut utiliser les résultats vus dans le problème de la feuille d'exercices : $\sinh'(x) = \frac{1}{\cosh^2(x)}$, et $1 \sinh^2(x) = \frac{1}{\cosh^2(x)}$ également. Comme ch est une fonction strictement positive, $\frac{1}{\sqrt{1 \sinh^2(x)}} = \cosh(x)$, et la deuxième moitié de notre dérivée se simplifie exactement comme la première pour donner la conclusion inattendue que f'(x) = 0. La fonction f est donc constante sur \mathbb{R} , égale à $f(0) = \arctan(0) + \arccos(0) = 0 + \frac{\pi}{2} = \frac{\pi}{2}$.
- 3. Rappelons qu'une des expressions de la fonction th est $\operatorname{th}(x) = \frac{e^{2x} 1}{e^{2x} + 1}$, ce qui permet de transformer l'équation à résoudre en équation équivalente $13(e^{2x} 1) = 5(e^{2x} + 1)$, soit $e^{2x} = \frac{18}{8} = \frac{9}{4}$. On en déduit que $2x = \ln\left(\frac{9}{4}\right) = 2\ln(3) 2\ln(2)$, donc l'unique solution est $x = \ln(3) \ln(2)$.

4. La fonction arctan étant strictement croissante sur \mathbb{R} , l'équation $\arctan(y) = \frac{\pi}{2} - \arccos\left(\frac{5}{13}\right)$ ne peut avoir qu'au plus une solution (peut-être zéro). Or, on sait que, si $x = \ln(3) - \ln(2)$, alors $\operatorname{th}(x) = \frac{5}{13}$, et qu'alors $f(x) = \arctan(\operatorname{sh}(x)) + \arccos(\operatorname{th}(x)) = \frac{\pi}{2}$, ce qui prouve que $y = \operatorname{sh}(x)$ est une solution de l'équation. Il ne reste donc plus qu'à calculer la valeur de $\operatorname{sh}\left(\ln\left(\frac{3}{2}\right)\right) = \frac{e^{\ln(\frac{3}{2})} - e^{-\ln(\frac{3}{2})}}{2} = \frac{\frac{3}{2} - \frac{2}{3}}{2} = \frac{5}{12}$.

Exercice 13 (*)

On ne va pas s'embêter et utiliser une méthode brutale à base de dérivation. Posons $f(x) = \arctan(\operatorname{sh}(x))$, la fonction f est bien sûr définie et dérivable sur $[0, +\infty[$, et $f'(x) = \operatorname{ch}(x) \times \frac{1}{1 + \operatorname{sh}^2(x)}$. Or, on sait que $1 + \operatorname{sh}^2(x) = \operatorname{ch}^2(x)$, donc $f'(x) = \frac{1}{\operatorname{ch}(x)}$. Posons maintenant $g(x) = \arccos\left(\frac{1}{\operatorname{ch}(x)}\right)$. La fonction g est bien définie sur $[0, +\infty[$ puisque $\operatorname{ch}(x) \geqslant 1 \Rightarrow \frac{1}{\operatorname{ch}(x)} \in]0, 1]$. La fonction g est dérivable et $g'(x) = -\frac{\operatorname{sh}(x)}{\operatorname{ch}^2(x)} \times \frac{-1}{\sqrt{1 - \frac{1}{\operatorname{ch}^2(x)}}} = \frac{\operatorname{sh}(x)}{\operatorname{ch}(x)\sqrt{\operatorname{ch}^2(x) - 1}}$. On utilise à nouveau le fait que $\operatorname{ch}^2(x) - 1 = \operatorname{sh}^2(x)$, et que $\operatorname{sh}(x) \geqslant 0$ sur notre intervalle, pour simplifier et obtenir à nouveau $g'(x) = \frac{1}{\operatorname{ch}(x)}$. Nos deux fonctions ont la même dérivée, elles sont donc égales à une constante près. Calculons alors $f(0) = \arctan(0) = 0$ et $g(0) \arccos(1) = 0$ pour conclure à l'égalité des deux fonctions.

Exercice 14 (**)

Vu ce qui nous est demandé, il est pertinent de poser $\alpha = \arctan(x)$ et $\beta = \arctan(y)$, ou plutôt $x = \tan(\alpha)$ et $y = \tan(\beta)$ (ce qu'on peut faire pour n'importe quel réel), avec bien sûr $(\alpha,\beta) \in \left] -\frac{\pi}{2}, \frac{\pi}{2}\right[^2$. On peut alors écrire $\frac{1-xy}{\sqrt{1+x^2}\sqrt{1+y^2}} = \frac{1-\tan(\alpha)\tan(\beta)}{\sqrt{1+\tan^2(\alpha)}\sqrt{1+\tan^2(\beta)}}$. Commençons par simplifier, en utilisant les deux écritures de la dérivée de la tangente, $\frac{1}{\sqrt{1+\tan^2(\alpha)}} = \sqrt{\cos^2(\alpha)} = \cos(\alpha)$ (le cosinus est nécessairement positif vu l'intervalle dans lequel se trouve α). On fait bien sûr de même avec le second terme du dénominateur, ce qui nous donne $\frac{1-xy}{\sqrt{1+x^2}\sqrt{1+y^2}} = (1-\tan(\alpha)\tan(\beta))\cos(\alpha)\cos(\beta) = \cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta) = \cos(\alpha+\beta)$. Reste donc à simplifier arccos $(\cos(\alpha+\beta))$ en faisant un peu attention : $\sin\alpha+\beta\in[0,\pi[$, c'est-à-dire si $x+y\geqslant0$ (si les deux réels sont de même signe, les deux arctan seront aussi de même signe, et s'ils sont de signe opposé le signe de la somme $\alpha+\beta$ sera toujours le même que celui de x+y), alors l'expression vaut simplement $\alpha+\beta$, c'est-à-dire que arccos $\left(\frac{1-xy}{\sqrt{1+x^2}\sqrt{1+y^2}}\right) = \arctan(x) + \arctan(y)$. Mais si $\alpha+\beta\in]-\pi,0[$, donc lorsque x+y<0, on trouvera arccos $\left(\frac{1-xy}{\sqrt{1+x^2}\sqrt{1+y^2}}\right) = -\arctan(x) - \arctan(x) - \arctan(y)$ (angle appartenant à $[0,\pi]$ de même cosinus que son opposé).

Exercice 15 (***)

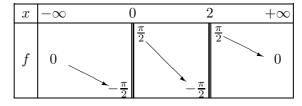
1. La fonction arctan étant définie sur \mathbb{R} , seule l'annulation possible du dénominateur de la fraction à l'intérieur de l'arctangente est à prendre en compte. On en déduit que \mathcal{D}_f

 $\mathbb{R}\setminus\{0,2\}.$

- 2. On cherche donc à résoudre l'équation $\arctan\left(\frac{2-2x}{2x-x^2}\right) = \frac{\pi}{6}$. En composant par la fonction tangente, cette équation implique (en fait c'est une équivalence à cause de la bijectivité de la fonction arctangente) que $\frac{2-2x}{2x-x^2} = \tan\left(\frac{\pi}{6}\right) = \frac{1}{\sqrt{3}}$, soit $2\sqrt{3} - 2\sqrt{3}x = 2x - x^2$ et donc $x^2 - 2(1 + \sqrt{3})x + 2\sqrt{3} = 0$. Cette équation du second degré a pour discriminant $\Delta = 4(1+\sqrt{3})^2 - 8\sqrt{3} = 4+12 = 16$, et admet pour racines $x_1 = \frac{2(1+\sqrt{3}-4)}{2} = \sqrt{3}-1$ et $x_2 = \frac{2(1+\sqrt{3})+4}{2} = \sqrt{3}+3$. Si on le souhaite, on vérifie que ces deux réels sont bien
- 3. Il suffit de calculer $\frac{2-2(2-x)}{2(2-x)-(2-x)^2} = \frac{2x-2}{-x^2+2x} = -\frac{2-2x}{2x-x^2}$. La fonction arctangente étant impaire, on aura bien f(2-x) = -f(x). Les deux réels x et 2-x étant symétriques par rapport à 1, la courbe représentative de f sera symétrique par rapport au point de coordonnées (1,0).
- 4. Comme $\lim_{x\to\pm\infty}\frac{2-2x}{2x-x^2}=0$ (par exemple en exploitant le quotient des termes de plus haut degré), on aura $\lim_{x\to\pm\infty}f(x)=\arctan(0)=0$. Pour les autres limites (en 0 et en 2, des deux côtés), le signe de $2x-x^2$ est positif uniquement entre ses racines, dont on déduit que $\lim_{x\to 0^-}\frac{2-2x}{2x-x^2}=-\infty \ (\mathrm{donc}\ \lim_{x\to 0^-}f(x)=-\frac{\pi}{2}) \ \mathrm{et}\ \lim_{x\to 0^+}\frac{2-2x}{2x-x^2}=+\infty \ (\mathrm{donc}\ \lim_{x\to 0^-}f(x)=\frac{\pi}{2}).$ Même principe pour les autres limites, mais avec un numérateur qui a une limite négative : $\lim_{x\to 2^-}f(x)=-\frac{\pi}{2} \ \mathrm{et}\ \lim_{x\to 2^+}f(x)=\frac{\pi}{2}.$
- 5. Pour simplifier un peu le calcul, commençons par poser $g(x) = \frac{2-2x}{2x-x^2}$ et par calculer la dérivée de cette fonction (qui est définie et dérivable, comme f elle-même, sur tout \mathcal{D}_f): $g'(x) = \frac{-2(2x-x^2)-(2-2x)^2}{(2x-x^2)^2} = \frac{2x^2-4x-4+8x-4x^2}{x^2(2-x)^2} = \frac{-2x^2+4x-4}{x^2(2-x)^2}.$ On peut déjà constater que g'(x) est toujours négatif (le numérateur a un discriminant négatif), donc la fonction q est strictement décroissante sur chacun de ses intervalles de définition, et faussi (la composition par arctan qui est définie et croissante sur $\mathbb R$ ne modifiera pas les variations). Mais calculons tout de même f'(x), car ça va se simplifier : $f'(x) = \frac{g'(x)}{1 + a^2(x)} =$

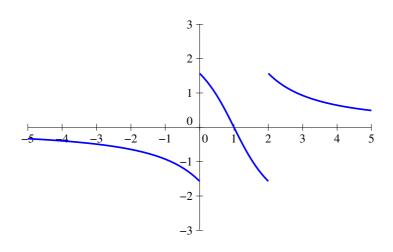
 $\frac{-2x^2 + 4x - 4}{x^2(2 - x)^2} \times \frac{1}{1 + \frac{(2 - 2x)^2}{x^2(2 - x)^2}} = \frac{-2x^2 + 4x - 4}{(2x - x^2)^2 + (2 - 2x)^2}, \text{ qui est bien sûr toujours négatif.}$

Voici donc le tableau de variations complet de la fonction f:



6. Il n'y a en fait pas grand chose à indiquer sur cette courbe à part les limites : la symétrie signalée en question 3 impose que f(1) = 0, et on peut bien sûr placer correctement les antécédents de $\frac{\pi}{6}$:

15



7. La simplification de f' ne sautant pas vraiment aux yeux, on ne peut que développer son dénominateur : $(2x-x^2)^2 + (2-2x)^2 = 4x^2 - 4x^3 + x^4 + 4 - 8x + 4x^2 = x^4 - 4x^3 + 8x^2 - 8x + 4$, et espérer que ça se simplifie avec son numérateur (divisé par -2 pour alléger un tout petit peu le calcul). Pour celà, effectuons une division euclidienne :

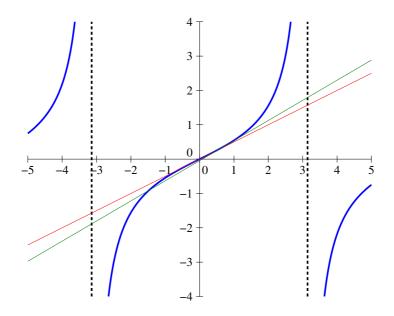
Tiens, c'est amusant, le quotient est le même que le polynôme par lequel on a divisé! On a donc $f'(x) = \frac{-2(x^2-2x+2)}{(x^2-2x+2)^2} = -\frac{2}{x^2-2x+2} = -\frac{2}{1+(x-1)^2}$ (oui, ça aussi, il faut le voir), autrement dit f' est la dérivée de la fonction $x\mapsto -2\arctan(x-1)$. On peut donc simplifier l'expression de la fonction f, en faisant toutefois attention à bien distinguer ses trois intervalles de définition :

- sur]0,2[, on peut écrire $f(x) = -2\arctan(x-1) + K_1$, avec $K_1 \in \mathbb{R}$, et la condition f(1) = 0 assure que $K_1 = 0$. On a donc simplement $f(x) = -2\arctan(x-1)$ sur cet intervalle.
- sur $]2, +\infty[$, on peut écrire $f(x) = -2\arctan(x-1) + K_2$, avec $K_2 \in \mathbb{R}$ (constante n'ayant aucune raison d'être égale à la précédente). Comme on ne dispose pas de valeur évidente à calculer sur cette intervalle, on peut exploiter la limite en $+\infty$: avec l'expression que nous venons de donner, on aura $\lim_{x \to +\infty} f(x) = -2 \times \frac{\pi}{2} + K_2 = K_2 \pi$. Comme on a vu par ailleurs que cette limite était nulle, celà impose $K_2 = \pi$, et donc $f(x) = \pi 2\arctan(x-1)$ sur cet intervalle.
- enfin, sur] $-\infty$, 0[, on peut procéder de même ou exploiter la symétrie de la courbe par rapport au point de coordonnées (1,0) et on obtient $f(x) = -2\arctan(x-1) \pi$.
- 8. On a vu à la question 2 que $f(\sqrt{3}+3)=\frac{\pi}{6}$. Comme $\sqrt{3}+3>2$, on peut donc en déduire, en exploitant les expressions obtenues à la question précédente, que $-2\arctan(\sqrt{3}+3-1)=\frac{\pi}{6}$, soit $\arctan(\sqrt{3}-2)=-\frac{\pi}{12}$. Par imparité de la fonction \arctan , on en déduit que $\frac{\pi}{12}=\arctan(2-\sqrt{3})$, et donc que $\tan\left(\frac{\pi}{12}\right)=2-\sqrt{3}$ en composant simplement l'égalité par la fonction tangente.
- 9. Si $x \in]0,2[, 1-x \in]-1,1[$, et on peut donc écrire $x=1-\tan(\theta)$ (ou si on préfére poser $\theta=\arctan(1-x)$) avec $\theta\in\left]-\frac{\pi}{4},\frac{\pi}{4}\right[$ (comme très souvent dans ce genre de calcul,

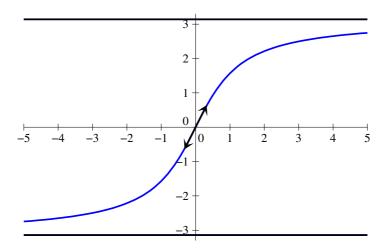
l'intervalle aura une importance primordiale pour la simplification finale). Calculons alors $f(x) = \arctan\left(\frac{2-2(1-\tan(\theta))}{2(1-\tan(\theta))-(1-\tan(\theta))^2}\right) = \arctan\left(\frac{2\tan(\theta)}{1-\tan^2(\theta)}\right) = \arctan(\tan(2\theta))$ (on a reconnu la formule de duplication des tangentes dans la parenthèse). Or, $2\theta \in \left]-\frac{\pi}{2}, \frac{\pi}{2}\right[$ (ça tombe bien, quand même), ce qui permet de simplifier : $f(x) = 2\theta = 2\arctan(1-x) = -2\arctan(x-1)$.

Exercice 16 (**)

- 1. Le seul problème qui peut se poser est celui de l'annulation du dénominateur, qui se produira lorsque $\cos(x) = -1$, donc lorsque $x \equiv \pi[2\pi]$. Si on tient absolument à écrire un bel ensemble, $\mathcal{D}_f = \mathbb{R} \setminus \{(2k+1)\pi \mid k \in \mathbb{Z}\}.$
- 2. La parité des fonctions sin et cos implique que f est une fonction impaire (quotient d'une fonction impaire par une fonction paire). Elle est de plus bien entendu 2π -périodique. On pourra donc l'étudier sur l'intervalle $I = [0, \pi[$ et compléter par symétrie puis par périodicité.
- 3. Calculons donc $f\left(\frac{\pi}{3}\right) = \frac{\frac{\sqrt{3}}{2}}{1 + \frac{1}{2}} = \frac{\sqrt{3}}{3}$, puis $f\left(-\frac{\pi}{4}\right) = \frac{-\frac{\sqrt{2}}{2}}{1 + \frac{\sqrt{2}}{2} + 1} = -\frac{\sqrt{2}}{2 + \sqrt{2}}$ $= -\frac{\sqrt{2}(2 \sqrt{2})}{4 2} = \sqrt{2} 1$, et enfin $f\left(\frac{5\pi}{6}\right) = \frac{\frac{1}{2}}{1 \frac{\sqrt{3}}{2}} = \frac{1}{2 \sqrt{3}} = 2 + \sqrt{3}$.
- 4. L'équation f(x)=1 implique que $\sin(x)=1+\cos(x)$, ou encore $\sin(x)-\cos(x)=1$. Une méthode originale consiste à tout élever au carré (ce n'est bien sûr qu'une implication) pour obtenir $\sin^2(x)-2\sin(x)\cos(x)+\cos^2(x)=1$, donc $\sin(x)\cos(x)=0$ en utilisant l'égalité classique $\sin^2(x)+\cos^2(x)=1$. Les valeurs vérifiant cette dernière équation (et pour lesquelles f est définie) sont les x tels que $x\equiv 0[2\pi]$ (mais on vérifie facilement que dans ce cas f(x)=0, donc x n'est pas solution de l'équation de départ), et ceux tels que $x\equiv \frac{\pi}{2}[\pi]$. Comme $f\left(\frac{\pi}{2}\right)=\frac{1}{0+1}=1$, et que par imparité de f on a donc nécessairement $f\left(-\frac{\pi}{2}\right)=-1$, les seules solutions de l'équation f(x)=1 sont les nombres de la forme $x\equiv \frac{\pi}{2}[2\pi]$.
- 5. La fonction f est certainement dérivable sur chacun de ses intervalles de définition, et $f'(x) = \frac{\cos(x)(1+\cos(x))+\sin^2(x)}{(1+\cos(x))^2} = \frac{\cos(x)+1}{(1+\cos(x))^2} = \frac{1}{1+\cos(x)}$, qui est toujours positif puisque $\cos(x)$ est minoré par -1. La fonction f est donc croissante sur chacun de ses intervalles de définition, et en particulier sur $[0,\pi[$.
- 6. Puisque f(0) = 0 et $f'(0) = \frac{1}{2}$, la première tangente a pour équation $y = \frac{1}{2}x$. Le deuxième calcul de la question 3 et l'imparité de f impliquent que $f\left(\frac{\pi}{4}\right) = \sqrt{2} 1$, et $f'\left(\frac{\pi}{4}\right) = \frac{1}{1 + \frac{\sqrt{2}}{2}} = \frac{2}{2 + \sqrt{2}} = 2 \sqrt{2}$. La deuxième tangente demandée a donc pour équation $y = (2 \sqrt{2})\left(x \frac{\pi}{4}\right) + \sqrt{2} 1$ (développer l'équation ne présente pas le moindre intérêt).
- 7. Les tangentes seront à peu près indistinguables sur la courbe suivante :



8. La fonction étant continue et strictement croissante, elle est bijective sur $]-\pi,\pi[$. Le calcul de limites ne pose aucun problème : $\lim_{x\to\pi^-}f(x)=+\infty$ (et on aura une limite opposée en $-\pi$ par imparité), donc l'intervalle image est simplement $\mathbb R$ tout entier. La courbe de la réciproque est obtenue par symétrie par rapport à la droite d'équation y=x (on peut indiquer la tangente à l'origine, qui aura pour équation y=2x, là aussi à cause de la symétrie) :



Exercice 17 (***)

1. Pour que x appartienne à \mathcal{D}_f , il faut déjà que $1-x^2\geqslant 0$, donc que $x\in[-1,1]$. Ensuite, pour pouvoir composer par l'arcsinus, il faut en plus vérifier que $2x\sqrt{1-x^2}\in[-1,1]$. Pour celà, posons $g(x)=2x\sqrt{1-x^2}$, et étudions la fonction g, qui est définie sur [-1,1], dérivable sur]-1,1[, de dérivée $g'(x)=2\sqrt{1-x^2}+2x\times\frac{-2x}{2\sqrt{1-x^2}}=\frac{2(1-x^2)-2x^2}{\sqrt{1-x^2}}=\frac{2(1-2x^2)}{\sqrt{1-x^2}}$. Cette dérivée s'annule lorsque $1-2x^2=0$, donc $x=\pm\frac{1}{\sqrt{2}}$, la fonction g étant croissante entre ces deux valeurs et décroissante en-dehors de l'intervalle $\left[-\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}\right]$. On calcule donc $g\left(\frac{1}{\sqrt{2}}\right)=\sqrt{2}\sqrt{1-\frac{1}{2}}=1$. La fonction g étant impaire, même pas besoin de calculer son

minimum pour pouvoir dresser le tableau suivant :

x	-1	$-\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$	1
g	0		1	

La conclusion est qu'on a tout simplement $\mathcal{D}_f = [-1, 1]$. La fonction f étant elle aussi impaire (puisque g et arcsin le sont toute les deux), on peut se contenter de l'étudier sur [0, 1].

- 2. On a déjà signalé que g (et donc f) ne serait pas dérivable en -1 et en 1 à cause de la racine carrée. La composition par arcsin peut également poser problème aux endroits où $g(x) = \pm 1$, donc f ne sera a priori pas dérivable non plus en $\pm \frac{1}{\sqrt{2}}$.
- 3. Calculons donc : partout où celà a un sens, $f'(x) = \frac{g'(x)}{\sqrt{1-g^2(x)}} = \frac{2(1-2x^2)}{\sqrt{1-x^2}} \times \frac{1}{\sqrt{1-4x^2(1-x^2)}} = \frac{2(1-2x^2)}{\sqrt{1-x^2}\sqrt{(1-2x^2)^2}}$. On peut simplifier le numérateur avec la deuxième racine carrée du dénominateur sans changement de signe si $1-2x^2>0$. On en déduit que, sur $\left]-\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}\right[$, on a $f'(x) = \frac{2}{\sqrt{1-x^2}}$, alors que, sur chacun des deux autres intervalles de dérivabilité de f, on

a $f'(x) = \frac{2}{\sqrt{1-x^2}}$, alors que, sur chacun des deux autres intervalles de dérivabilité de f, on aura $f'(x) = -\frac{2}{\sqrt{1-x^2}}$.

- 4. On reconnait bien sûr (au signe près selon les intervalles) dans f'(x) la dérivée de $2\arcsin(x)$, ce qui permet de tirer les conclusions suivantes :
 - sur $\left] -\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right[$, il existe une constante $K \in \mathbb{R}$ telle que $f(x) = 2\arcsin(x) + K$. Mais comme $f(0) = \arcsin(0) = 0$, on a nécessairement K = 0 et donc $f(x) = 2\arcsin(x)$.
 - sur $\left[\frac{1}{\sqrt{2}}, 1\right]$, il existe une constante réelle L telle que $f(x) = L 2\arcsin(x)$. Par continuité cette égalité restera valable lorsque x = 1, ce qui implique $f(1) = 0 = L 2\arcsin(1) = L \pi$, donc $L = \pi$ et $f(x) = \pi 2\arcsin(x)$.
 - on peut tout simplement utiliser l'imparité de f pour en déduire que $f(x) = -\pi 2\arcsin(x)$ sur l'intervalle restant $\left[-1, \frac{1}{\sqrt{2}}\right[$.

Autrement dit, l'égalité $\arcsin(2x\sqrt{1-x^2}) = 2\arcsin(x)$ estvraie sur l'intervalle $\left[-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right]$ (on peut inclure les bornes où l'égalité restera vraie par continuité de toutes les fonctions manipulées).

- 5. (a) C'est la définition même de la fonction arcsin, il suffit de poser $\theta = \arcsin(x)$.
 - (b) Si $t \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$, alors πt est un angle ayant le même sinus que t et appartenant à l'intervalle $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ sur lequel l'égalité $\arcsin(\sin(x)) = x$ est vérifiée. On a donc $\arcsin(\sin(t)) = \arcsin(\sin(\pi t)) = \pi t$, comme demandé par l'énoncé. Comme arcsin et sin sont deux fonctions impaires, on peut en déduire que, si $t \in \left[-\frac{3\pi}{2}, -\frac{\pi}{2}\right]$, alors $\arcsin(\sin(t)) = -\arcsin(\sin(-t)) = -(\pi + t) = -\pi t$.
 - (c) Calculons donc $f(x) = f(\sin(\theta)) = \arcsin(2\sin(\theta)\sqrt{1-\sin^2(\theta)}) = \arcsin(2\sin(\theta)\sqrt{\cos^2(\theta)})$. Les hypothèses faites sur θ font que $\cos(\theta) \ge 0$, donc $f(x) = \arcsin(2\sin(\theta)\cos(\theta)) = \arcsin(\sin(2\theta))$. On obtiendra donc $f(x) = 2\theta = 2\arcsin(x)$ à la condition que $2\theta \in (\cos(\theta))$

 $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, donc que $\theta \in \left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$. Puisqu'on a posé $x = \sin(\theta)$, ceci se produit exactement quand $x \in \left[-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right]$. On retrouve bien entendu le résultat de la question 4. C'est pareil pour les autres expressions possibles : si $x > \frac{1}{\sqrt{2}}$, alors $\theta > \frac{\pi}{4}$ et $f(x) = \pi - 2\theta = \pi - 2\arcsin(x)$ en reprenant la formule prouvée en question 5.b. Le dernier intervalle se traite de la même manière.

Problème

I. Calcul de $\cos\left(\frac{\pi}{5}\right)$.

- 1. (a) On sait que $\cos(2x) = 2\cos^2(x) 1$, donc $\cos(4x) = 2\cos^2(2x) 1 = 2(2\cos^2(x) 1)^2 1 = 2(4\cos^4(x) 4\cos^2(x) + 1) 1 = 8\cos^4(x) 8\cos^2(x) + 1$.
 - (b) En posant $x = \frac{\pi}{5}$, on aura $4x = \frac{4\pi}{5} = \pi x$, donc $\cos(4x) = -\cos(x)$. Au vu de la relation précédente, on a donc $8\alpha^4 8\alpha^2 + 1 = -\alpha$, soit $8\alpha^4 8\alpha^2 + x + 1 = 0$.
 - (c) La racine la plus évidente est $-1:8(-1)^4-8(-1)^2-1+1=0$. On peut donc factoriser: $8x^4-8x^2+x+1=(x+1)(ax^3+bx^2+cx+d)=ax^4+(a+b)x^3+(b+c)x^2+(c+d)x+d$. On a donc a=8; a+b=0, soit b=-8; b+c=-8 soit c=0; c+d=1 soit d=1. Soit $8x^4-8x^2+x+1=(x+1)(8x^3-8x^2+1)$. Reste à trouver une deuxième racine, $x=\frac{1}{2}$ convient puisque $\frac{8}{8}-\frac{8}{4}+1=1-2+1=0$. On peut donc à nouveau factoriser: $8x^3-8x^2+1=\left(x-\frac{1}{2}\right)(ex^2+fx+g)=ex^3+\left(f-\frac{1}{2}e\right)x^2+\left(g-\frac{1}{2}f\right)x-\frac{1}{2}g$. Par identification, on obtient e=8; $f-\frac{1}{2}e=-8$, soit f=-4; $g-\frac{1}{2}f=0$ soit g=-2. Finalement, $8x^4-8x^2+x+1=(x+1)\left(x-\frac{1}{2}\right)(8x^2-4x-2)$.
 - (d) Déterminons les racines du dernier facteur obtenu ci-dessus. Le trinome $4x^2-2x-1$ (on peut factoriser par 2) a pour discriminant $\Delta=4+16=20$, et admet deux racines $x_1=\frac{2+\sqrt{20}}{8}=\frac{1+\sqrt{5}}{4}$, et $x_2=\frac{1-\sqrt{5}}{4}$. La valeur de α est donc celle d'une des quatre racines trouvées pour l'équation. Ce n'est sûrement pas -1 puisque $\alpha>0$ (c'est le cosinus d'un angle inférieur à $\frac{\pi}{2}$), pas non plus x_2 qui est également négative, et ça ne peut pas être $\frac{1}{2}$ puisqu'on sait qu'il s'agit du cosinus de l'angle $\frac{\pi}{3}$, et que la fonction cosinus ne peut pas prendre deux fois cette valeur avant $\frac{\pi}{2}$. Finalement, $\alpha=\cos\left(\frac{\pi}{5}\right)=\frac{1+\sqrt{5}}{4}$.
- 2. (a) Prenons plutôt les choses à l'envers : $\sin(4x) = 2\sin(2x)\cos(2x) = 4\sin(x)\cos(x)(2\cos^2(x) 1)$ 1) $= 2\sin(x)(4\cos^2(x) - 2\cos(x))$, donc pour tous les angles vérifiant $\sin(x) \neq 0$, $\frac{\sin(4x)}{2\sin(x)} = 4\cos^2(x) - 2\cos(x) = \cos(3x) + \cos(x)$ puisqu'on sait que $\cos(3x) = 4\cos^3(x) - 3\cos(x)$.
 - (b) On a donc $\cos\left(\frac{\pi}{5}\right) + \cos\left(\frac{3\pi}{5}\right) = \frac{\sin(\frac{4\pi}{5})}{2\sin(\frac{\pi}{5})}$. Or, $\sin\left(\frac{4\pi}{5}\right) = \sin\left(\pi \frac{\pi}{5}\right) = \sin\left(\frac{\pi}{5}\right)$. Finalement, $\alpha + \cos\left(\frac{3\pi}{5}\right) = \frac{1}{2}$.
 - (c) À l'aide de la formule de transformation d'un produit en somme, $\alpha \times \cos\left(\frac{3\pi}{5}\right) = \frac{1}{2}\cos\left(\frac{4\pi}{5}\right) + \frac{1}{2}\cos\left(\frac{-2\pi}{5}\right)$. Or, $\cos\left(\frac{4\pi}{5}\right) = \cos\left(\pi \frac{\pi}{5}\right) = -\cos\left(\frac{\pi}{5}\right)$; et de même

$$\cos\left(-\frac{2\pi}{5}\right) = \cos\left(\frac{2\pi}{5}\right) = -\cos\left(\frac{3\pi}{5}\right). \text{ Au vu du résultat de la question précédente, on a donc } \alpha\cos\left(\frac{3\pi}{5}\right) = -\frac{1}{2}\times\frac{1}{2} = -\frac{1}{4}.$$

(d) Le réel α est donc solution de l'équation $x^2 - \frac{1}{2}x - \frac{1}{4}$, dont le discriminant est $\Delta = \frac{1}{4} + 1 = \frac{5}{4}$, et qui admet pour racines $x_1 = \frac{\frac{1}{2} + \frac{\sqrt{5}}{2}}{2} = \frac{1 + \sqrt{5}}{4}$, et $x_2 = \frac{1 - \sqrt{5}}{4}$. Comme dans la première partie de l'exercice, on conclut pour des raisons de signe que $\alpha = \frac{1 + \sqrt{5}}{4}$. On a au passage prouvé que $\cos\left(\frac{3\pi}{5}\right) = \frac{1 - \sqrt{5}}{4}$.

II. Même chose avec $\cos\left(\frac{\pi}{17}\right)$!

- 1. Si $\sin\left(\frac{h}{2}\right) = 0$, c'est que $\frac{h}{2} \equiv 0[\pi]$, donc $h \equiv 0[2\pi]$. Mais alors on a , pour tout entier k, $\cos(a+kh) = \cos(a)$ et $\sin(a+kh) = \sin(a)$, donc $S_n(a,h) = n\sin(a)$ et $C_n(a,h) = n\cos(a)$.
- 2. Je donne le calcul avec les complexes car c'est quand même plus agréable : $C_n(a,h) + iS_n(a,h) = \sum_{k=0}^{n-1} e^{i(a+kh)} = e^{ia} \frac{1-e^{inh}}{1-e^{ih}} = e^{ia} \frac{e^{i\frac{nh}{2}}2i\sin(\frac{nh}{2})}{e^{i\frac{h}{2}}2i\sin(\frac{h}{2})} = e^{i(a+(n-1)\frac{h}{2})} \frac{\sin(\frac{nh}{2})}{\sin(\frac{h}{2})}$. Il ne reste plus qu'à prendre les parties réelle et imaginaire pour obtenir les formules demandées.
- 3. Parmi les quatre cosinus dont x_1 est la somme, seul le dernier est négatif puisque $\frac{3\pi}{17} \in \left[0, \frac{\pi}{2}\right]$, $\frac{5\pi}{17} \in \left[0, \frac{\pi}{2}\right]$ et $\frac{7\pi}{17} \in \left[0, \frac{\pi}{2}\right]$. De plus, $\cos\left(\frac{11\pi}{17}\right) = -\cos\left(\frac{6\pi}{17}\right)$ et $\cos\left(\frac{6\pi}{17}\right) < \cos\left(\frac{5\pi}{17}\right)$, donc $\cos(5\theta) + \cos(11\theta) > 0$, et x_1 , obtenu en ajoutant encore deux termes positifs, est bien positif.
- 4. La somme $x_1 + x_2$ est exactement de la forme $C_n(a, h)$, avec $a = \theta$, $h = 2\theta$ et n = 8. D'après la question 2, on a donc $x_1 + x_2 = \frac{\sin(8\theta)\cos(8\theta)}{\sin(\theta)} = \frac{1}{2}\frac{\sin(16\theta)}{\sin(\theta)}$. Mais $16\theta = \frac{16\pi}{17} = \pi \theta$, donc $\sin(16\theta) = \sin(\theta)$ et $x_1 + x_2 = \frac{1}{2}$.
- 5. Il faut y croire:

$$x_1x_2 = \cos(3\theta)\cos(\theta) + \cos(3\theta)\cos(9\theta) + \cos(3\theta)\cos(13\theta) + \cos(3\theta)\cos(15\theta) + \cos(5\theta)\cos(\theta) + \cos(5\theta)\cos(\theta) + \cos(5\theta)\cos(13\theta) + \cos(5\theta)\cos(15\theta) + \cos(7\theta)\cos(\theta) + \cos(7\theta)\cos(\theta) + \cos(7\theta)\cos(13\theta) + \cos(7\theta)\cos(15\theta) + \cos(11\theta)\cos(\theta) + \cos(11\theta)\cos(\theta) + \cos(11\theta)\cos(11\theta)\cos(11\theta)\cos(11\theta)\cos(11\theta)\cos(11\theta)\cos(11\theta)\cos(11\theta)\cos(11\theta)\cos(11\theta)$$

On utilise les formules de transformation produit/somme et on obtient x_1x_2 , comme sommes des cosinus des 32 angles suivants (on peut oublier les signes puisque le cos est pair) : 4θ , 2θ , 12θ , 6θ , 16θ , 10θ , 18θ , 12θ , 6θ , 4θ , 14θ , 4θ , 18θ , 8θ , 20θ , 10θ , 8θ , 6θ , 16θ , 2θ , 20θ , 6θ , 22θ , 8θ , 12θ , 10θ , 20θ , 2θ , 24θ , 2θ , 26θ et 4θ . Or, $26\theta \equiv -8\theta[2\pi]$, donc $\cos(26\theta) = \cos(8\theta)$. De même, $\cos(24\theta) = \cos(10\theta)$, $\cos(22\theta) = \cos(12\theta)$, $\cos(20\theta) = \cos(14\theta)$ et $\cos(18\theta) = \cos(16\theta)$. En regroupant tout ceci, on obtient $x_1x_2 = 2(\cos(2\theta) + \cos(4\theta) + \cos(6\theta) + \cos(8\theta) + \cos(10\theta) + \cos(12\theta) + \cos(14\theta) + \cos(16\theta)$). La parenthèse vaut $C_8(2\theta, 2\theta) = \frac{\sin(8\theta)\cos(9\theta)}{\sin(\theta)}$, avec $\cos(9\theta) = \cos\left(\frac{\pi}{2} - 8\theta\right) = -\cos(8\theta)$, d'où $x_1x_2 = -2(x_1 + x_2) = -1$.

6. On connait la somme et le produit de x_1 et x_2 , ils sont solutions de l'équation $x^2 - \frac{1}{2}x - 1 = 0 \Leftrightarrow 2x^2 - x - 2 = 0$, de discriminant 1 + 16 = 17. Comme on l'a vu plus haut, $x_1 > 0$, donc

on a
$$x_1 = \frac{1+\sqrt{17}}{4}$$
 et $x_2 = \frac{1-\sqrt{17}}{4}$.

7. Allons-y: $y_1y_2 = \cos(3\theta)\cos(7\theta) + \cos(3\theta)\cos(11\theta) + \cos(5\theta)\cos(7\theta) + \cos(5\theta)\cos(11\theta) = \frac{1}{2}(\cos(10\theta) + \cos(4\theta) + \cos(14\theta) + \cos(8\theta) + \cos(12\theta) + \cos(2\theta) + \cos(16\theta) + \cos(6\theta)) = \frac{1}{4}x_1x_2 = -\frac{1}{4}.$

De même, $y_3y_4 = \cos(\theta)\cos(9\theta) + \cos(\theta)\cos(15\theta) + \cos(13\theta)\cos(9\theta) + \cos(13\theta)\cos(15\theta) = \frac{1}{2}(\cos(10\theta) + \cos(8\theta) + \cos(16\theta) + \cos(14\theta) + \cos(22\theta) + \cos(4\theta) + \cos(28\theta) + \cos(2\theta)) = -\frac{1}{4}$ (après simplifications similaires à celles faites pour x_1x_2).

- 8. y_1 et y_2 ayant pour somme x_1 et produit $-\frac{1}{4}$, ils sont solutions de l'équation $x^2 x_1x \frac{1}{4}$, donc le discriminant vaut $x_1^2 + 1 = \frac{1}{2}x_1 + 2 = \frac{17 + \sqrt{17}}{8}$ et les solutions $\frac{1 + \sqrt{17} \pm \sqrt{34 + 2\sqrt{17}}}{8}$. La solution positive est égale à y_1 , car y_2 est somme de deux cosinus négatifs. De même, on obtient $y_3 = \frac{1 \sqrt{17} + \sqrt{34 2\sqrt{17}}}{8}$ et $y_4 = \frac{1 \sqrt{17} \sqrt{34 2\sqrt{17}}}{8}$.
- 9. De plus en plus facile : $\cos(\theta)\cos(13\theta) = \frac{1}{2}(\cos(14\theta) + \cos(12\theta)) = \frac{1}{2}(-\cos(5\theta) \cos(3\theta)) = -\frac{y_1}{2}$. Comme de plus $\cos(\theta) + \cos(13\theta) = y_3$, les réels $\cos(\theta)$ et $\cos(13\theta)$ sont solutions de l'équation $x^2 y_3x \frac{y_1}{2}$, $\cos(\theta)$ étant la solution positive. Le discriminant de l'équation vaut $y_3^2 + 2y_1 = \frac{1 + 17 + 34 2\sqrt{17} 2\sqrt{17} + 2\sqrt{34 2\sqrt{17}} 2\sqrt{578 34\sqrt{17}}}{64} + \frac{1 + \sqrt{17} + \sqrt{34 + 2\sqrt{17}}}{4} = \frac{68 + 12\sqrt{17} + 2\sqrt{34 2\sqrt{17}} + 16\sqrt{34 + 2\sqrt{17}} 2\sqrt{578 34\sqrt{17}}}{64}$ et on a ensuite $\cos\left(\frac{\pi}{17}\right) = \frac{1 \sqrt{17} + \sqrt{34 2\sqrt{17}} + \sqrt{68 + 12\sqrt{17} + 2\sqrt{34 2\sqrt{17}} + 16\sqrt{34 + 2\sqrt{17}} 2\sqrt{578 34\sqrt{17}}}$.

Étonnant, non?