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Exercice 1 (*)

a b ¢ a+2d b+2e c+2f
1. Soit donc une matrice B=| d e f |.Onaalors AB=| 2a+d 2b+e 2c+f
g h i d e f

Pour que la matrice AB soit nulle, il faut donc avoir d = e = f = 0, puisa = b = ¢ =
0. Autrement dit, les deux premiéres lignes de B doivent étre nulles, et la troisiéme est

quelconque.
0 00
2. D’aprés la question précédente, C' doit étre de la forme | O 0 0 |. Sion effectue le produit
g h 1
0 0 0
C A pour une telle matrice, on obtient 0 0 0 |. Pour que ce produit soit
g+2h 29g+h+7 O
0 0 0
nul, il faut donc avoir g = —2h et i = —2g — h = 3h, soit C' = 0 0 0 |,leréelh
—2h h 3h

étant quelconque.

Exercice 2 (* a *¥*)

e Soit M = < Jz: 4 > une matrice dans Ms(R), on calcule AM = (

r+2z y+2t >
t

3r+4z 3y+4t

et MA = < Z:{i_—?’)? 2;21?5: ) Pour que les deux matrices soient égales, il faut que leurs
coefficients soient égaux deux & deux, ce qui nous améne & résoudre le systéme

r + 2z = x + 3y

y + 2t = 2x + 4y

3x + 4z = z + 3t

3y + 4t = 2z + 4t

. . 3 .
Les deux équations extrémes sont équivalentes a z = 2 et les deux du milieu se raménent

alors a la méme équation x + z = t. Les solutions sont donc tous les quadruplets de la forme

3 3
{x,y, iy, z + Qy}, ou x et y sont deux réels quelconques. Autrement, la matrice M est de

laformeM:< ;E y3 )
2y T+ 3y
a b c a+3b—-2c —-b+c a+2b-c
e Posonsdonc M =| d e f |.Oncalcule MB=| d+3e—2f —e+f d+2e—f
g h i g+3h—2i —h+i g+2h—i



a+g b+h c+i
et BM = 3a—d+29 3b—e+2g9g 3c— f+2i |, ce qui donne le sublimissime sys-
—2a+d—g —2b+e—h —2c+f—1

téme :

(a + 3b — 2¢ = a + g

- b + ¢ = + h
a + 26 — ¢ = ¢ + 1
d + 3¢ — 2f = 3¢ — d + 2¢

- e 4+ f = 3 — e + 2h
d + 22 — f = 3¢ — f + 2i
g + 3h — 2 = -2 + d — g

- h 4+ i = =2b + e — h
g + 20 — i = -2 + f — i

Pour résoudre ce genre de systéme a priori immonde, il vaut mieux commencer par tout
exprimer en fonction des coefficients de la premiére ligne a, b et c. Les trois premiéres équations
donnent ainsi g = 3b — 2¢, h = ¢ — 2b et i = a + 2b — 2¢. Ensuite, la huitiéme équation donne
e =2b+41i = a+ 4b — 2¢, la derniére équation donne f = g+ 2h + 2¢ = —b+ 2¢, et la sixiéme
d = 2a+ 29+ 3h — 2i = —4b + 3c. 1l reste trois équations & traiter, en remplagant chaque
variable par ’expression obtenue : la quatriéme devient —4b+3c+3a+12b—6¢+2b—4c = 3a+
4b—3c+6b—4c, soit 3a+10b—Tc = 3a+10b—T7¢, qui est toujours vérifiée, la cinquiéme donne
—a—4b+2c—b+2¢c = 3b—a—4b+2c+2c—4b, soit —a—5b+4c = —a—>5b+4c qui est également
toujours vrai, et enfin la septiéme donne 3b—2c+3c—6b—2a—4b+4c = —2a—4b+3c—3b+2c,

soit —2a — 7b + bc = —2a — Tb + 5¢, qui est encore une fois toujours vrai. Les réels a, b et ¢
a b c
peuvent donc étre choisis quelconques, et M = | —4b+3c a+4b—2¢c —b+ 2c

3b—2c c—2b a—+2b—2c
o C’est évidemment le gag de la liste : toutes les matrices (carrées d’ordre n) commutent avec

I,.
e En notant M une matrice carrée quelconque d’ordre 3 (mémes notations que pour la matrice
0 b 0 00 0
B),ontrouve MC=| 0 e 0 |etCM=| d e f |.On obeitnt donc les conditions
0 h O 00 0

a 0
b=h=d=f=0,s0t M =] 0 e
g 0

. O 0O

Si une matrice M commute avec toutes les matrices diagonales, elle commute en particulier avec la
matrice ayant un unique coefficient non nul a;; = 1. Or, la multiplication & gauche par cette matrice
ne conserve que la colonne numéro ¢ de la matrice M, et la multiplication ne conserve que la ligne
numéro 4. Si on veut que les deux soient égales, tous les coefficients de la ligne et de colonne numéro
1 doivent étre nuls, & 'exception du coefficient diagonal m;; qui est commun aux deux matrices. En
faisant ce calcul avec toutes les valeurs possibles de i, on se rend donc compte que la matrice M est
nécessairement diagonale. Réciproquement, une matrice diagonale commute avec toutes les autres
matrices diagonales de M,,(R).

Pour le cas des matrices symétriques, ce n’est en fait pas vraiment plus dur. Toutes les matrices
diagonales étant symétriques, la matrice M doit d’aprés ce qui précéde étre diagonale. Mais cette
fois-ci, ¢a ne suffit pas. Prenons donc comme matrice diagonale particuliére la matrice vérifiant
a;j = aj; = 1 (pour des valeurs distinctes de ¢ et de j), et ayant tous ses autres coefficients nuls. Quand
on multiplie cette matrice & gauche par une matrice diagonale ayant pour coefficients diagonaux A1,

.s An, il ne reste comme coefficients non nuls que A; en position (i,7) et A; en position (j,7). Au
contraire, quand on fait le produit & droite, A; se trouve en position (j,%) et A\; en position (7, j). Si



on veut que les deux matrices soient égales, on doit avoir A; = A;. Comme cela doit étre vraipour
toutes les valeurs de i et de j, tous les coefficients diagonaux de M sont en fait égaux, ce qui signifie
qu’il existe un réel A tel que M = AI. Réciproquement, une telle matrice commute certainement avec
toutes les matrices symétriques puisqu’elle commute avec toutes les matrices de M, (R).

Exercice 3 (*)
C’est en fait trés simple, le produit est symétrique si AB = (AB)T, soit AB = BTAT. Comme

les deux matrices sont supposées symétriques, cela revient a dire que AB = BA, autrement dit que
les matrices commutent.

Exercice 4 (*)

On peut écrire toutes les matrices appartenant a A sous la forme alg + bJ + cK, en notant

0 10 0 01
J = 0 01 |,et K= 1 0 0 |.L’ensemble A contient bien entendu les deux éléments
100 010

neutres (on prend a = b = ¢ = 0 pour obtenir la matrice nulle, a = 1 et b = ¢ = 0 pour la matrice I3).
Il est stable par somme de fagon évidente : als+bJ+cK+d I3+ J+ K = (a+a')Is+ (b+V)J+(c+
VK € A, et par passage a 'opposé de fagon tout aussi évidente : —(als3+bJ+cK) = —als—bJ —cK.
En fait, la seule chose qui n’a rien d’évident est la stabilité par produit matriciel. Remarquons que
I3J = JI3 = J, 3K = KI3 = K (ga c’est évident), mais surtout J?> = K, K2 = J (calculs faciles),
et JK = KJ = I3 (1 aussi calcul trés facile). On en déduit en développant tout trés brutalement que
(al3+bJ+cK) x (dIs+bV J+K) = ad Is+ab' J+ad K +ba' J+bb' K +bc Is+ca’ K+ cb' Is+ed J =
(ad’ + b + b )I5 + (abl + ba’ + cc')J + (ac + bb' + ca’) K. Ce produit appartient bien a I’ensemble
A, ce qui prouve que ce dernier est un sous-anneau de M3(R), et en plus on obtiendrait le méme
résultat en échangeant les deux matrices multipliées, ce qui prouve que le produit matriciel restreint
a l’ensemble A devient commutatif.

Exercice 5 (**)

Prouvons la formule donnée par récurrence : pour k = 0, ¢’est évident : Al,,—1I,,A = 0. Supposons-
1a vérifiée au rang k, alors ABF*!1 — B*¥1A = AB*B - B**'A = (AB* — B¥A)B+ B*AB - B*BA =
kB*B 4 B¥(AB — BA) = kB**! + b*B = (k + 1) B*¥*!, ce qui prouve la formule au rang k + 1. Par
principe de récurrence, la formule est donc vrai pour tout entier k. Par linéarité de la trace, on a
alors Tr(kB*) = Tr(AB*) — Tr(B*A) = 0 puisque le calcul de la trace d’un produit ne dépend pas
de l'ordre dans lequel on effectue ce produit. On en déduit que Tr(B¥) = 0.

Exercice 6 (**)

Commencons par prendre la trace des deux cotés de I'équation : Tr(X) + Tr(X) Tr(A) = Tr(B),
une condition nécessaire est donc Tr(X)(1 + Tr(A)) = Tr(B). Si Tr(A) # —1, on en déduit que

Tr(B
Tr(X) = & Par ailleurs, on doit avoir X = B — AA, avec en l'occurence A = Tr(X).
1+ Tr(A)
Considérons donc une matrice de la forme X = B — A\A, elle vérifie Tr(X) = Tr(B) — A Tr(4).
On doit donc avoir, pour qu’'une telle matrice soit solution, Tr(B) — ATr(A) = m, soit
1 Tr(A) Tr(B) )
ATr(A)=Tr(B) |1 — ———+— )| =Tr(B) x ———~,d A= —n—— fsi Tr(A) =0).
r(4) “)< 1+ﬁMQ H(B) X Ty 4O A = Ty (sauf st Tr(A) = 0)
Tr(B)

La seule solution possible est donc X = B — A. On vérifie sans probléme qu’une telle

1+ Tr(A)



matrice est effectivement solution (unique, donc) du probléme. Si Tr(A) = 0, on doit simplement
avoir Tr(X) = 0, ce qui sera toujours le cas lorsque X = B — AA. L’équation de départ s’écrit alors
B — MA = B, donc on doit tout de méme avoir A = 0 et la solution unique est X = B. Enfin, si
Tr(A) = —1, la condition donnée initialement ne peut étre vérifice que si Tr(B) = 0. Dans le cas
contraire, il ne peut pas y avoir de solution a I’équation. Si Tr(A) = —1 et Tr(B) = 0, en posant
X = B — AA, on aura Tr(X) = A, donc I'équation s’écrit B — AA + AA = B. Cette condition est
manifestement vérifiée quelle que soit la valeur de A, c’est donc le seul cas otl on a une infinité de
solutions, en l'occurence toutes les matrices de la forme B — AA, pour A parcourant R.

Exercice 7 (***)

6 —
—10 11
ver ensuite le polynéme annulateur. On peut toujours le prendre unitaire et chercher deux
constantes telles que A2 = aA + BI. Le coefficient § est simplement le coefficient de pro-
portionnalité entre les coefficients non diagonaux de A et de A2, ici 5. Il ne reste alors plus
qu’a constater que A% — 5A = —41y, soit A2 — 5A + 41, = 0. Le polynéme recherché est donc
P=X?-5X+4.

2. En reprenant ’égalité obtenue a la question précédente, A(A — 513) = —41 ou encore

1 5 5 1
A (—4A+ 4[2) = I5. La matrice A est donc inversible, d’inverse A~ = =1, — ZA =

(1) |

3. Le polynoéme se factorise immédiatement sous la forme (X — 1)(X — 4) puisque 1 est racine
évidente (mais si vous préférez perdre votre temps a calculer un discriminant, naturellement,
personne ne vous en empéchera). La division euclidienne sera de la forme X™ = PQ + R, ou
d°(R) < 2, soit R = a,X + b,. Evaluons cette égalité pour les racines du polynéme, qui ont
I'avantage de vérifier P(x) = 0 et donc d’annuler le terme en PQ : 1 = R(1) = ap, + by, et

n

1. On calcule facilement A% = . Rappelons la méthode la plus simple pour trou-

[N [ON]
DN | = [ =

4™ = 4a,, + b,. La différence des deux équations donne 3a,, = 4™ — 1, soit a,, = —3 dont

4 — 4"
on déduit que b, =1 —a, = T
4. D’apreés la question précédent, A" = P(A)Q(A) + R(A). Comme P(A) = 0, il ne reste que
4m —1 n
A" = q, A+ b, 15 = 3 A+ 3 I5 (on vérifie aisément que la formule donne une valeur

correcte de A2, inutile de préciser les coefficients de A", ca n’a pas grand intérét).

Exercice 8 (**)

On calcule aisément J2 = n.J (la matrice ne contient que des n), puis J* = n2J, et on conjecture
que J* = nF71J, ce qui se prouve sans probléme par récurrence : c¢’est vrai au rang 1, et si on le
suppose vrai au rang k, alors JFt1 = J x J¥ = J x nF~1J = n*~1J%2 = n*J. On constate que la
matrice A dont on cherche les puissances peut s’écrire sous la forme A = 2I3 — J (ou J désigne
évidemment ici une matrice carrée d’ordre 3, on aura donc J* = 3¥71J). Les matrices I3 et J
commutant certainement, on peut appliquer la formule du bindéme de Newton : A" = (2[5 — J)" =

k=n n—1
n n
Z <k‘> k(=g = (Z <k‘> 2k(—1)k3”_k_1> J+2"I3 (on est obligés d’isoler le terme numéro
k=0 k=0

n de la somme car la formule pour les puissances de .J ne fonctionne pas pour JV). Dans la parenthése,
on reconnait presque une formule du binéme (sur les réels cette fois-ci) a deux détails prés : il faudrait

. 1 . . :
sortir un facteur 3 pour avoir un (—2)’“3”*’“, et surtout il manque le fameux terme numéro n, qui



1 n
serait ici égal & (—2)". On peut donc écrire A" = 3 <Z <Z> ok (—g)n =k — (—2)”) J+ 2" =
k=0
COn -, .
PASEES f‘]' On vérifie que, pour n = 1, on retrouve A = 213 —J. Pour n = 2, on devrait

avoir A% = 413 — J, ce qui est effectivement le cas.

Exercice 9 (**)

Premiére méthode, qui fonctionnera toujours pour une matrice d’ordre 2 : chercher un polynéme
9 -8
8 —7
par le polynome P = X2 — 2X + 1 = (X — 1)2, cherchons & écrire la division euclidienne de X"
par P, on sait qu’elle sera de la forme X" = PQ + a,X + b,. On ne dispose ici que d’'une seule
racine, qui nous donne la condition 1 = a, + b,. pour en obtenir une deuxiéme, il faut penser a
dériver : nX" ! = P'Q + PQ' + a,, avec P(1) = P'(1) = 0, donc n = a,. On trouve donc a,, = n et
b, =1—n, soit A" =nA+ (1 —n)ls.

annulateur de degré 2. On calcule donc A% = ( ) = 2A — I,. La matrice est donc annulée

4 —4
4 —4
chance!), les matrices I et B commutent évidemment donc, par la formule du binéme de Newton,

Autre possibilité : écrire A = I + B, on B = ( > On constate que B? = 0 (quelle

n

A" = (B+1)" = Z (Z) B*I%% = I,4nB (tous les termes suivants sont nuls). Comme B = A—1Iy,
k=0

on retrouver A" = Iy + n(A —I) =nA+ (1 —n)ls.

8 12 —11
an, +1 —an

ap, —an + 1
formule par récurrence : c’est vrai au rang 1 en posant a; = 4, et en le supposant vérifié au rang
n, alors A1 = < ana_:l —ana—T-l > X ( Z _g ) = < ZZiZ _Z:+§ >, ce qui est bien de la
forme souhaitée avec an+1 = a, + 4. La suite (a,) est par ailleurs arithmétique de raison 4, donc
dn 41 —4n

4dn —4dn+1
directement conjecturer la forme exacte de la matrice A™ a patrtir de ses premiéres puissances).

Allez, une troisiéme méthode pour la route, on calcule A% = < ) :? ) puis 43 = < 13 -12 >

et on conjecture pour A" une matrice de la forme A™ = < ) Prouvons cette

an = a1 +4(n —1) = 4n. On en déduit directement que A" = ( ) (on peut aussi

Exercice 10 (***)

6 -3 -3 —-18 9 9
1. On commence par un peudecalcul : A2 = -8 6 2 et A% = 44 —-18 —-26
2 -3 1 -26 9 17

Il est désormais facile de vérifier I’égalité demandée.

2. On va bien str procéder par récurrence. Notons P, la propriété « Il existe deux réels ay, et by,
tels que AF = a; A2 + by A ». Pour une fois on initialise la récurrence pour k = 2 : P, est bien
vérifiée en posant az = 1 et by = 0 (on a bien A2 =1 x A% 4+ 0 x A). Supposons P* vérifiée,
on a alors AFTl = A x AF = A x (apA% + bpA) = ap A3 + b A? = a(6A — A?) + b A% =
(bp — ap)A% + 6ax A, qui est bien de la forme demandée, ce qui achéve la récurrence.

3. D’aprés la question précédente, on a les relations suivantes : ax11 = by — ay et bgy1 = 6ag. On

a donc by, = 6ax—1 ce qui donne en remplacant dans la premiére relation ag11 = —ag +6ag_1,

récurrence linéaire d’ordre 2 d’équation caractéristique 22 +  — 6 = 0, dont le discriminant
. -1+5 -1-5

vaut A = 1+ 24 = 25, et admet donc deux racines r = 5 = 2ets= —y = —3. On



a donc a = a2F + B(—3)F, avec as = 4o+ 98 = 1 et a3 = 8a — 278 = —1. En multipliant la
premiére équation par 2 et en lui retranchant la deuxiéme, on obtient 458 = 3, soit 5 =

3 k—1 k—1 k—2 k
1 496:145:110.Onadoncakz2 E(> 3) 2 (=3)
6ap — 2b, —3ap + b —3ap + bi
4. On se contentera d’écrire AF = —8ay, + 6br,  6ap — 2b,  2ap — 4by, sans préciser les
2a — 4by,  —3ap + b ap + 3bg
valeurs. Pour k = 1, on obtient avec les formules de la question précédente a1 = 0 et by = 1,

ce qui donne A = 0 x A2+ 1 x A, ce qui est indiscutablement vrai. Et pour k& = 0, on obtient

1 1
ap = = et bg = =, et 14 ¢a ne marche plus...

6 6

1
15’
~2

,et by = 6X

puis a =

Exercice 11 (*)

Un peu de motivation, six pivots de Gauss, ¢a va prendre quelques pages de calcul, mais ¢a ne
peut pas faire de mal.

11 -1 100
A= 20 1 Ig— 010 LQ%L2—2L1
2 1 -1 0 0 1 L3 — L3 — 2L1
11 -1 1 00
-2 3 -2 10
0 -1 1 -2 0 1 L3+ 2L3— Lo
11 -1 1 0 0 Li<+ Ly — L3
0o -2 3 -2 1 0 Lo < Lo+ 3L3
0 0 -1 -2 -1 2
1 1 0 3 1 =2 Ly + 2L+ Lo
-2 0 -8 -2 6
0 0 -1 -2 -1 2
2 0 0 -2 0 2 L1 — L1/2
0 -2 0 4 -2 6 Lo < —1Ly/2
0 0 -1 -2 -1 2 Lg — —L3
100 -1 0 1
010 4 1 -3
0 01 2 1 =2
-1 0 1
La matrice A est donc inversible, et A~ = 4 1 -3
2 1 =2



I3 =

S = O

|
—_
—_

18 18 0 8
0 -9 0 -2 1
0 0 9 -1 2
18 0 0 4
0 -9 0 -2 1
0 0 9 -1 2
2 2
100 g 5
010 : -3
12
0 0 1 -3 3
2 2
. . . 9 9
La matrice B est donc inversible, et B~ = 5 —35
12
9 9
2 21 100
C = -1 1 2 I3 = 0 1
0 4 5 0 0
2 21 0
0 4 5 1 2
0 4 5 0 0
2 21 10
0 4 5 2 1
0 00 1 2

La matrice C' n’est pas inversible.

= o O

@)

NelIN VeI

Rellg)

LQ%LQ—Ll
Ly <+ 203+ L,

L3 — L5 + 2L2
L1 — 9L1 +L3
L2 <~ 3L2 — Lg

L1 — L1 +2L2

L1 — L1/18
L2 s L2/9
L3%L3/9

Lo+ 2L+ L4

L3<—L2—L3



La matrice D est donc inversible, et D1 =

2 21 1 00

D= -1 1 2 I3 = 010 Lo <+ 2Ly + Ly
0 4 4 0 0 1
2 21 00
0 4 5 1 2
0 4 4 00 1 Ly Ly —Ls
2 21 1 0 0 L1<—L1—L3
0 4 5 1 2 0 L2<—L2—5L3
0 01 1 2 -1
2 20 0 —2 1 L1F2L1*L2
0 4 0 -4 -8 5
0 01 1 2 -1
400 4 4 -3 L+ Ly /4
0 4 0 -4 -8 5 LQ(—L2/4
0 01 1 2 -1 L3+ Lj
100 1 1 =3
010 -1 -2 2
0 0 1 1 2 -1



0 1 1 1 1 0 00
-1 0 1 1 0100 Ly + Ly
E= I3 =
-1 -1 0 1 0010 Ls < Ly — Ly
-1 -1 -1 0 0O 0 0 1 L4 — L3 — L4
-1 0 11 01 0 O
0 1 11 10 0 O
0 1 1 0 01 —1 0 L3 — Lo — L3
0 011 00 1 -1
-1 011 0 1 0 O Ly Ls— 1y
0 1 11 1 0 0 O
0 0 01 1 -1 1 0 L3+ Ly
0 011 0 0 1 -1
1 0 00 0 -1 1 -1
0111 1 0 0 O Ly < Ly — L3
0 011 0 0 1 -1 L3 < L3 — Ly
0 0 01 1 -1 1 0
1 0 00 0o -1 1 -1
0100 1 0 -1 1
0010 -1 1 0 -1
0 0 01 1 -1 1 0

La matrice E est donc inversible, et E~! =

On peut tricher un peu pour la matrice F' en supprimant la derniére ligne et la derniére colonne,
qui ne bougeront de toute fagon pas pendant les calculs (sauf pour la toute derniére étape o on

divisera la derniére ligne par 3, ce qui fera apparaitre un 3 dans le coin inférieur droit de la matrice

inverse).



I =

[a—
N N
— =

1
I = 0
0

S = O

0
0 L2(*L2+L1
1 L3<—L3—L1

—

L3<—L3—L2

O O =

W W =
—
—
()

[en}

Ly <+ 2L1+ Ls

11 1 1 0
0 3 2 1 1 Ly Lo+ L3
0 0 -2 -2 -1 1

o

2 2 0 0 -1 1 L1+ 3Ly —2Lo
0 3 0 -1 0 1
0 0 -2 -2 -1 1
6 0 0 2 =31 Ly« L1/6
0 3 0 -1 0 1 Lo < L2/3
0 0 -2 -2 -1 1 L3 — —L3/2
100 i -3 %
010 -3 0 3
001 1 3 -3
1 11
5 2% 8
La matrice F est donc inversible, et F~! = _lg 1 3 0
2 2
o 0 0 %
Exercice 12 (**)
Appliquons donc le pivot de Gauss a la matrice P :
1 1 1 100
P = 1 -1 1 I3: 01 0 LQFLl—LQ
-1 1 1 0 01 L3 < L3+ Lo
1 1 1 1 0 0 L1<—2L1—L2—L3
0 0 -1 0
0 0 2 0 1 1
2 00 1 0 -1 L1 — L1/2
0 2 0 1 -1 0 LQ — L2/2
0 0 2 0 1 1 L3« L3/2
100 ; 0 —3
010 5 -3 0
1 1
0 1 0 3 5

10



1 1

19 _1

2 2

La matrice P est bien inversible, d’inverse P! = % —% 0

1 1

0 2 3
2 0 =2 4 0 0

On calcule sans enthousiasme P~1A = 3 -3 0 , puis P71AP = 0 6 0 |, matrice

0 4 4 0 0 8

diagonale que nous noterons D. On prouve ensuite par récurrence que A" = PD"P~1 : cest vrai
pour n = 1, puisque A = P(P~'AP)P~! = PDP~! et supposant la formule vérifiée pour A",
on aura A"t = A" x A = PD"P~'PDP~! = PD""1P~1 ce qui achéve la récurrence. Donc

477/ 0 O 4TL+67L 87L_6TL 87L_47L
2 2

A"=P| 0 6" 0 |P! soit An = | L56" g8t 8104
- ’ - 2 2 2

n 6" —4"  8"—6" 478"
0 0 8 > - :

Exercice 13 (**)

Si A est nilpotente, il existe un entier k tel que A**! = 0. Or, on constate que (I, — A)(I, + A+
A2+ + AR =1, - A+ A- A2+ A2 - A3 4. 4 AP AR =, — AR = [ donc I,, — A est

01 1
inversible, d’inverse I, + A+ A?> 4+ ...+ A*. Ona A=I3—M,avec M =| 0 0 1 |.Un rapide
0 00
0 01
calcul donne M2 =| 0 0 0 | et M3 = 0. D’aprés ce qui précéde, on a donc A~ = I3 + M +
0 0O
0 -2 -3 -4 -5
1 1 2 0O 0 -2 -3 —4
M?=| 0 1 1 |.DemémeonaB=Is—NavecN=| 0 0 0 -2 —3 |.On calcule
0 1 0 0 0 0 =2
0 0 0 0 O
0 0 4 12 25 0 00 —8 —36 0 00 0 16
0 00 4 12 0 00 0 -8 0000 O
N2=|000 0 4 [,pusN>=[000 0 0 [, NM=][0000 0 [et
000 0 O 000 O 0 000O0 O
000 0 O 000 O 0 0000 O
1 -2 1 0 0
o 1 -2 1 0
enfin N> =0,donc B! =Is; + N+ N?+N34+N4=|[0 0 1 -2 1 . Cette derniére
0O 0 0 1 =2

0O 0 0 o0 1
formule laisse supposer qu’on a peut-étre pas utilisé la meilleure méthode pour inverser B, je vous
laisse chercher d’autres fagons d’y parvenir plus rapidement si vous le souhaitez.

Exercice 14 (**)

Ce n’est en fait pas vraiment plus compliqué que pour une matrice d’ordre 3 ou 4, on applique
les différentes étapes du pivot mais on peut difficilement les écrire explicitement. En l'occurence,
on va faire successivement les opérations élémentaires L,,_1 < L1 — Ly, Lo < Lo — L,_1,
Ly, 3+ Lp_3—L, o,..., L1 « Li — Ls. On obtient ainsi la matrice identité. Quand on effectue
les mémes opérations en paralléle & partir de la matrice I,,, on transforme successivement les lignes
de la matrice : L,_1 devient 0...1 — 1, L, o devient 0...1 — 1 1, etc jusqu'a L; qui devient
1 —11 —1...(=1)""!. Finalement, la matrice est inversible (ce n’est pas une surprise puisqu’elle
est triangulaire supérieure sans zéro sur la diagonale), d’inverse

11



Exercice 15 (**)

Soyons fous et faisons le calcul avec le pivot !
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Lg <+ Lg + 3L3

L6 — LG + 614
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—126 0 0 0 0 0 20 -22 -1 -1 -1 -1
0 —126 0 0 0 0 -1 20 -22 -1 -1 -1
0 0 —126 0 0 0 -1 -1 20 -22 -1 -1
0 0 0 —126 0 0 -1 -1 -1 20 =22 -1
0 0 0 0 —126 0 -1 -1 -1 -1 20 -22
0 0 0 0 0 —126 -22 -1 -1 -1 -1 20

—-20 22 1 1 1 1
1 =20 22 1 1 1
o b 1 1 =20 22 1 1
126 1 1 1 —-20 22 1
1 1 1 1 =20 22
22 1 1 1 1 —-20
Exercice 16 (***)
0 0 O 02
1. On calcule simplement U2 = | 0 1 1 , puis on constate que M, = Iz + aU + ?UQ.
0 -1 -1

2. L’application est surjective par définition méme de ’ensemble G. Et elle est trivialement
injective : si a # b, M, # Mp puisque par exemple le dernier coefficient de la premiére ligne
n’est pas le méme dans les deux matrices.

3. Calculons : M, M, =

1+ ab— ab b+a+ 2 a2 b+ g
ba? ba? a? b2 a?b? a?b? b2 a’b? a? a?b?
AR P S T S S PN R g
- 2 Ty T 2T —ab— 7y T2 T 27T 1
1 a+b a+b
(atb)? (a+b)? :
a+b 1+ 5 . Autrement dit, on a exactement M, M, = M. La ma-
—a—bp _laxb? g (b

2
trice M, est en particulier toujours inversible, d’inverse M_,, puisque M, X M_, = My = I3.

4. C’est un sous-ensemble de GL3(R) (tous ses éléments sont inversibles) qui contient 1’élément
neutre I3, est stable par produit matriciel (c’est le calcul de la question précédente) et par
passage a l'inverse (la aussi démontré a la question 3). Il s’agit bien d’un sous-groupe.

5. Une récurrence triviale permet de prouver que M = M, : c’est vrai pour n = 0, et si on le
suppose vrai au rang n, alors Mg“rl =MD X Mg = Mpg X Mg = Mpgtq = M(n+1)a~ Sinon,
on peut utiliser une méthode plus sophistiquée en expliquant que la question 3 prouvé que
l'application f est un isomorphisme de groupes de (R, +) vers (G, x).

Exercice 17 (**)

rx — Yy + z = a
1. Utilisons la méthode du systéme en résolvant : 2r — y = b . On peut addi-
-r + y + 22 = ¢
1 1
tionner les deux équations extrémes pour obtenir immédiatement 3z = a+c¢, soit z = ga—i— §C'

Ensuite, on effectue par exemple 'opération Ly — Lq qui donne ’équation x — z = b — a, soit

14



1
r=z—a+b=—-a4+ b+ —c, et on reporte dans la deuxiéme équation du systéme initial :

3 3
y=2x—0b= —ga +b+ gc. Le systéme ayant toujours une solution unique, la matrice est
-2 3 1
inversible, et son inverse vaut P~1 ==~ | —4 3 2
1 01
-1 -2 2
. Le plus simple est de commencer par calculer AP = -2 -2 0 |, puis P71AP =
1 2 4
-1 0 0
0 2 0 |.La matrice D est bien diagonale.
0 0 2

. On va procéder par récurrence. Pour n = 0, on a bien PD°P~! = PPt = PP~ =
I3 = A°. Supposons maintenant la formule vérifiée au rang n, et constatons que la définition
D = P71 AP implique A = PDP—1 (en multipliant & gauche par P et & droite par P~!). On
peut alors écrire A"t! = A" x A = PD"P~! x PDP~! = pp"DP~! = pprtip-1

1 -1 1 (=)™ 0 O
Il ne reste plus qu’a calculer le produit : PD" = 2 -1 0 |x 0 2" 0 =
-1 1 2 0 0 27
(—=1)»  —on  on
2(-1)" =2 0 , puis A" = PD"P~! =
(_1)n+1 on 2n+1
2x (=) 45x%x2" 3 x (=1)" -3 x 2" (=) —2n

| 4ax (=) 42nt2 6 x (=1)" -3 x2"  2x (-1)" -2t

3 2 % (_1)n _ 2n+1 3 x (_1)n+1 1+ 3x2m (_1)n+1 + 2n+2

. En effectuant les opérations L1 — Lo et L1 + L3, on obtient les deux équations = + z = 7 et
3z + 3z = 21, qui sont manifestement équivalentes. Le systéme n’est donc pas un systéme
de Cramer, on peut simplement exprimer deux des variables en fonction de la troisiéme, par
exemple z = 7 —x, puis en remplacant dans la premiére équation initiale, bx —3y —7+x = 5,
donc 3y = 6z — 12 et y = 2z — 4. On peut alors écrire S = {(z,2x — 4,7 —z) | x € R}.
Comme le systéme n’est pas de Cramer, sa matrice, qui est justement la matrice A+ I3, n’est
pas inversible.

6 -3 -1 14 -9 -3
. Pour changer, calculons donc : A% = 4 =2 —2 |,puis 43 = 12 —10 —6 |.Les
-2 3 5 -6 9 11

coefficients en-dehors de la diagonale étant identiques entre A et A2, et ceux sur la diagonale
étant augmentés de 2 quand on passe de A & A%, on en déduit facilement que A2 = A + 213.
On peut aussi remarquer si on a du temps & perdre que A3 = 34 + 215,

1
. On part de I'égalité A> = A + 2I3 et on isole la matrice identité : I3 = §(A2 —A) =
1
§A(A — I3). On en déduit directement que la matrice A est inversible et que son inverse est
3 3 _1
1 2 2 2
-1 ¥ 1

. C’est évidemment une récurrence classique : au rang 0, la propriété est vraie en posant sim-
plement ag = 0 et by = 1 (et également au rang 1 en posant a; = 1 et by = 0, méme si ¢a
ne sert pas pour la récurrence). Supposons désormais la propriété vraie au rang n, alors en
exploitant la relation de la question 5 on peut écrire A"T! = A" x A = (a, A + b,I3)A =
anA% + b, A = ap(A+ 2I3) + by, A = (an, + by) A + 2a,13. La propriété est donc héréditaire,
avec de plus les relations de récurrence a,41 = ay + by, €t by11 = 2a,.
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8. En décalant la relation de récurrence précédente, an42 = apy1 + bpr1 = any1 + 2a,. La suite
(an) est donc récurrente linéaire d’ordre 2, d’équation carastéristique 22 — z — 2 = 0. Cette
équation admet pour racines évidentes 1 = —1 et x9 = 2, on peut donc écrire a,, sous la
forme A x (—1)" + u x 2", avec (\, u) € R2. En appliquant cette expression pour n = 0 et

1
n = 1, on trouve les conditions A+ =0et —A+2u=1,donc A = —p et 3u =1, soit p = -

3
o — (—1)"

1
et A = ——. Autrement dit, pour tout entier naturel n, a,, = , puis b, = 2a,,—1 =

3
M 42 x (—1)" M (=" 242 x (—1)"
1

3 . Enfin, on conclut : A" = A+ I3. On peut écrire la
—2x (=1)"+5x2" 3Ix(-1)"—-3x2" (=1 —27
matrice explicitement : A = = [ —4x (=1)" +2""2  6x (=1)" =3 x 2" 2 x (=1)" — 2"+
2x (=) —2nth 3 (=) 3 x 2" (—1)ntl 4 ont2
C’est exactement la méme matrice que celle obtenue a la question 3 (encore heureux!).

9. Inutile de s’embéter avec les coefficients, la formule générale en fonction de A et de I3 sulffit :

. . 1/1 1 1/1 1
pour n = —1,on devrait avoira_1=—- | =-+1]|=—-etb_1 === —2) = ——. Autrement
3\2 2 3\ 2 2
1
dit, on devrait avoir A~! = §A — 5[3, ce qui est bien le cas (cf question 6). La formule est
donc valable pour n = —1.

1/1 1 1/1
10. On procéde comme a la question précédente : a_g = = < — 1) =——etb o= < + 2) =

3\4 4 3\4
3 1 3
7 On devrait donc avoir A=2 = sz + Z.Tg. Or on sait que A2 = A + 2I3, et (A +
1 3 1 1 3 3 1 1 1 3
2) | —~A+ I3 = —~A2 - A+ A4 I3 = ——A— I3+ -A+ -I3 = I i
3)<4+43> 1 gt T ATyl T ATt gA gl = s cequl
prouve que la formule souhaitée correspond bien a l'inverse de A2. La formule est donc tou-
jours valable pour n = —2 (en fait elle le reste pour tout entier relatif).
a b ¢
11. (a) En bourrinant salement et en posant N = | d e f |, la condition DN = ND se tra-
g h i
—a —b —c —a 2b 2c
duit par 2d 2 2f | =| —d 2e 2f |.Cing des neuf équations ainsi obtenues
2 2h 2i —g 2h 2i

(celles concernant a, e, f, h et i) sont manifestement vraies, alors que les quatre autres
impliquent tout aussi trivialement la nullité du coefficient correspondant. On conclut donc

a 0 0
que toutes les matrices de la forme N =| 0 e f | commutent avec la matrice D.
0 h i

(b) C’est un calcul sans intéréet : ND = DN < P 'MPD = DP™'MP & MPD =
PDP 'MP < MPDP~'=PDP'M < AM = MA puisque A = PDP~ .
(c) Comme M = PNP~! les question précédentes impliquent que les matrices commutant

avec A sont de la forme M = PNP~!, ou N est de la forme obtenue plus haut, qu’on
0 0 00
0

0 0
0 0

— o O

100 00 0 0
peut écrire N=a | 0 0 0 | +e 1 0 |+f 1 |+R| O 0|+
0 0 0 0 0 0 0 0

0
100 100
i{ 0 0 O |.Ennotant M7 = P X ( 0 0 0 | x P! et ainsi de suite, on aura bien
0 01 0 00
e 1

la forme souhaitée par I’énoncé. Le calcul explicite des matrices My, My, Mg, My et Ms

-7 9 4
a un intérét a peu prés nul. Donnons simplement M; = — 0 00
0 0 0

16



Exercice 18

1.

(***)

Cela découle des propriétés calculatoires de la transposition : (AT A)T = AT(AT)T = AT A,
donc AT A est bien une matrice symétrique.

. Par définition, AA~" = I,,. En prenant la transposée de cette égalité, comme I, est une

matrice symétrique, on obtient (A~1)T AT = I,. Or, par hypothése, AT = A, ce qui prouve
que (A71)T est inverse de la matrice A, et donc égale & A~ (unicité de l'inverse d’une
matrice). La matrice A~! est donc symétrique.

n n

. En notant B = AT A, on calcule Bj; = Z(AT)z‘kaki = Zaii. Il ne reste plus qu’a sommer

k=1 k=1

n n n
ces sommes : Tr(B) = Z bii = Z Z a2;. Autrement dit, on calcule simplement la somme
i=1 i=1 k=1
des carrés de tous les coefficients de la matrice A.
Si A est symétrique, Tr(A2) correspond au calcul précédent, qui donne un résultats positif
comme somme de carrés de nombres réels. De plus, si Tr(A42) = 0, tous les nombres a%i sont
nuls, ce qui n’est en effet le cas que pour la matrice nulle.

Calculons donc A(B —C)A = ABA— ACA=1,A— Al, = A— A= 0. Si on multiplie cette
égalité a gauche par C puis a droite par B, on en déduit (B — C)A =0 puis B—C =0, ce
qui prouve que B = C'. La matrice A est donc inversible, d’inverse B.

Si M est solution de 'équation (E), elle vérifie les hypothéses de la question précédente en
posant B = MTM et C = MM?", donc elle est inversible. De plus, son inverse est égal
a MTM qui est une matrice symétrique d’aprés la question 1. M est donc I'inverse d’une
matrice symétrique, donc symétrique d’aprés la question 2. On peut alors remplacer M | par
M dans I'équation (E) pour obtenir I'équation équivalente M3 = I,,.

. Par linéarité de la trace, Tr((M — I,,)?) = Tr(M? —2M +1I,,) = Tr(M?) -2 Tr(M) + Tx(I,,) =

b — 2a + n. De méme, en exploitant le fait que M3 = I, et donc M* = M, on calcule
Tr(M?—1,)%) = Te(M —2M? + 1,,) = a—2b+n, et Tr((M — M?)?) = Tr(M? - 21, + M) =
a—+b—2n.

Si on additionne les trois traces calculées a la question précédente, on trouve b—2a+n+a—2b+
n+a+b—2n = 0. Or, chacune de ces traces est positive (question 3, les matrices manipulées
sont toutes symétriques car M et I, le sont). La seule possibilité est donc que chacune des
trois traces soit nulle, ce qui implique, toujours d’aprés la question 3, que M —1I,, = M? -1, =
M — M? = 0. Autrement dit, la seule solution de I'équation (F) est M = I,,.

Exercice 19 (**)

1 -3 3 -3 -7 3
. Calculons donc : A2 = 0O 7 —6 et A3 = 2 15 —12
0o 3 -2 2 7T -4

. Si on impose I’égalité souhaitée pour les coefficients de la deuxiéme ligne (celle ot on a le plus

souvent des 0 qui apparaissent, ¢a simplifiera la résolution), on obtient le systéme d’équations

2b = 2
Ta 4+ 3b 4+ ¢ = 15 . Le systéme se résout de lui-méme : b = 1, a = 2, donc
—6a = —12

c=15—14 — 3 = —2. La seule relation possible est donc A3 = 242 + A — 213, on vérifie bien
stir qu’elle reste valable pour tous les autres coefficients, ce qui est bien le cas.

1 1
. On peut écrire —A3 +2A4% + A = 213, donc A x <—2A2 + A+ 2[3) = I3, ce qui prouve que
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-3 L _9
1 1 2 2
A est inversible et que A7! = —§A2 + A+ 5[3 = 2 0 3 . Si on est courageux,
9 _1 T
2 2

on vérifie que A~! x A = I3, ce qui est bien le cas.

4. On cherche donc les racines de Q = X3 —2X? — X 4+ 2. On a déja une premiére racine évidente
qui est X1 =1 (puisque Q(1) =1—2—1+2 = 0), et méme une deuxiéme avec Xo = —1 (en
effet, Q(—1) = —1 — 2+ 1+ 2 = 0). Le produit des trois racines du polynome étant égal a
—2, la derniére racine est donc X3 = 2.

2t — y — z = a
5. Comme d’habitude, je vais utiliser une résolution de systéme: < —x + y + 2z = b .
-z + Yy + z = c

On s’empresse d’additionner les lignes extrémes pour obtenir z = a + ¢, et de soustraire les
deux derniéres lignes pour avoir z = b — c. Il ne reste alors plus qu’a reprendre par exemple la
derniére équation pour en déduire y = c+x — 2z = a — b+ 3c. La matrice P est donc inversible

1 0 1
et P7l=|1 -1 3
0 1 -1
-1 0 -1 -1 0 0
6. On calcule donc P~1A = 1 -1 3 , puis D = P71AP = 01 0 , qui
0o 2 =2 0 0 2

est comme prévu une matrice diagonale. On remarque que ses coefficients diagonaux sont
exactement les racines du polyndéme @), ce n’est stirement pas un hasard.

(=)™ 0 0
7. On a bien sir D" = 01 0 . La propriété demandée se démontre apr une ré-
0 0 27

currence hyper classique : PDYP~! = PI3P~! = PP~! = I3 = A% ce qui prouve la pro-

priété pour n = 0. Si on la suppose vérifiée au rang n, alors A"*! = A"A = PD"P~'A, or

P~'A = DP~! d’aprés la définition de D, donc A*t! = PD"DP~! + PD"t1P~1 ce qui

prouve I'hérédité.

8. (a) Il suffit d’écrire le calcul : X,,11 = A x X,.

(b) On va démontrer par récurrence que X,, = A" Xg. C’est trivial au rang 0 : A°Xg = I3Xy =
Xp, et I’hérédité est triviale aussi : si X,, = A"Xg alors X,,11 = AX,, = A x A"X, =
An+1X0.

(c) Bon, finalement, il va falloir calculer A™ pour s’en sortir (ou au moins ses deux premiéres
lignes puisque le produit par Xy ne fera intervenir que les coefficients des deux premiéres

2(-)™ -1 -=2n
lignes). PD" = | (=1)»*t 1 27l | puis
(_1)n+1 1 on
2-1)"—1 1-2" 2" —342(—1)"
A" = pD"P7 = [ 14 (=1)nFt ot 1 3 —2ntl 4 (—1)»F1 | On mutliplie
L+ (-1t 21 3 —2n 4 (—1)nF!

1
simplement cette matrice par Xo = | 1 |, pour obtenir X, et donc u, = 2(—1)" — 2™,
0
vp = 2T 4 (=1)"H et w, =27 + (—1)" L
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Probléme

I. Etude d’un exemple dans M,(R).

1.

1.

2.

1,1 2,41 4
Calculons donc A? = < %—'—? ?+i‘ > = < 2 . En étudiant attentivement les
671 3T1 2

o | wg|~xolen

) ) ) ) .5 2 5 )
coefficients non diagonaux, on se convainc que a = (mais oui, 6 X 3 = §) Ensuite,
5 1 5 1
A2 — EA = 6]—2. On trouve donc A% = éA + 6[2.

. C’est évidemment une récurrence classique : ¢’est vrai au rang 2 d’aprés la question précédente

mais aussi au rang 1 en posant a; = 1 et by = 0; et méme au rang 0 puisque A = I, =
0 x A+1x I5. Supposons donc A" = a, A+ by,Io, alors A" = A" x A = (a, A+b,I5) x A =

5 1 5 1
anA? + b, A = ay, (6A + 6[g> + b, A = <6an + bn> A+ éanlg. La relation est vérifiée au

rang n + 1, elle est donc vrai pour tout entier n.

. ) )
. Les relations de récurrence découlent de la question précédente : a,11 = Ea” + by, et b1 =

1 9 5! 1
éa”' On en déduit que, Vn € N, ay49 = gan+1 + by, = gan_i'_l + Ea"' La suite (a,) est donc

o . . 5 1 . .
récurrente linéaire d’ordre 2. L’équation caractéristique z2? — 61“ ~ 35 a pour racine évidente 1,

1
et pour deuxiéme racine 5 puisque le produit des racines vaut —=. On en déduit que a,, peut

n
se mettre sous la forme a,, = a4+ <_6> . A aide des valeurs initiales, on va déterminer o et

6
B:pourn=0,a0=a+5=0;eta; = a—g = 1. Autrement dit a—l—% =1,donc o = - puis

\" 1 1 1\
8 = —g. On obtient donc a, = g <1 — <_6> ), puis b, = gan_l == (1 — <_6> >

(la formule fonctionne également quand n = 0 puisqu’elle donne bien by = 1).
On sait que A™ = a, A + b, 12, ce qui permet d’écrire, si on y tient vraiment,

oo ((FHACHT -4y
= (I 1)

7
4
7\ 6 7"‘ 6

1 n
. Puisque lim (—6> , tous les coefficients de la matrice précédente ont une limite finie, la

n—-+00
3 4
suite de matrices (A™) converge donc vers [ § 7 |, qui est bien une matrice stochastique
77
, 3 n 4 ]
uisque — + = = 1.
puisq 7Ty
I1. Etude d’un exemple dans M;(R).
0 01
On calcule bétement J2= [ 0 0 1 |, puis J? = J?, et on en déduit que, Vn > 2, J* = J2.
0 01
1
On remarque aisément que B = —(I3 + J). Les matrices I3 et J commutant bien entendu,
2
on peut écrire, lorsque n > 2, que B" = i(J + I3)" = 1 i ") SRR faut isoler les
’ - 2n 3 2 k)O3

k=0
termes correspondant & k = 0 et k = 1 pour pouvoir écrire J¥ = J? dans tout le reste de la

IR " /n 9 . " /n
somme, on trouve alors B"™ = 5 (Ig +nd + kZQ <k;> J ) . Comme on sait que kzo (k:) = 2",
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) ) 1 1 n n+1 )
on peut simplifier : B" = 27([3 +nJ+ (2" —n—1)J%) = 3 I3+ 27J—|— (1 - > J2. Si

2TL
1 n 1— n+
n gn 2n
on tient & écrire la matrice explicitement, B"™ = 0 % 1-— %
0 O 1

. La encore, aucune difficulté pour trouver la limite de chacun des coefficients, on trouve

lir+n B™ = J?, qui est bien une matrice stochastique.
n—-+0oo

ITI. Etude générale des matrices stochastiques de M,(R).

1.

. Calculons donc : A — I, = (

Sia =b =1, la matrice A n’est autre que 'identité, toutes ses puissances sont donc égales
. 1 . :
aly. Sia=0b=0, par contre, A = < (1) 0 >, on calcule A2 = I, puis A% = A, et la suite
des puissances de A est 2-périodique : si n est pair, A™ = I, si n est impair, A" = A. C’est
le seul cas ot la suite ne converge pas.
a—1 1—a 1-b 1—a

A — — 1)l = . L
1—bb—1>’et (a+b=DI <1—bl—a> ¢
produit de ces deux matrices donne P(A) = 0 (on a pour chaque coefficient une somme de
deux termes opposés).

. La polynéme P étant de degré 2, on peut écrire la division sous la forme X" = PQ+a, X +0b,.

On regarde ce que donne cette égalité pour les deux racines du polynome P, & savoir 1 et
a+b—1:1=ap,+byet (a+b—1)" = ay(a+b— 1)+ b,. En soustrayant les deux

b—1)"—1
équations, on trouve ap(a +b—2) = (a+b—1)" — 1, soit a, = (a+ = )2 . On
a _
b—1— b—1)"
en déduit b, = 1 —a, = ot n b(a—; ) . En conclusion, le reste recherché vaut
a J—
(a+b—1)”—1X+a—i—b—l—i—(a—kb—l)"-
a+b—2 a+b—-2
- o L (a+b—1)"—1
Puisque P(A) = 0, on peut déduire des calculs précédents que A" = - A+
a —
a+b—1+(a+b—-1)" 7
a+b—2 2

. On peut écrire les quatre coefficients de la matrice A™, ou plus simplement passer directement

a la limite dans 1’égalité précédente. Puisque a < 1, b < 1, et qu’on a éliminé le casa =b =1,

on aura toujours a +b—1 < 1 (et a +b — 1 > —1 puisque les deux nombres sont positifs

et ne sont pas tous les deux nuls), donc lim (a + b — 1)". La suite (4") a donc pour
n

—+o00
at+b—1 1 b—1 a—-1

T a+b—2<b—1 a1

). Cette matrice est
a+b—2 _
a+b—2

étant négatif.

bien stochastique puisque la somme des coefficients de chaque ligne vaut 1 (et

que tous les coefficients de la matrice sont bien positifs, le coefficient P -
a [R—

IV. Une étude plus générale.

1.

11 suffit de constater que si la matrice A est stochastique, toutes ses puissances seront stochas-
tiques. En effet, le produit de deux matrices stochastiques est stochastique : Z?zl(AB)ij =

n n n n n n
Zzaikbkj = Zzaikbkj = Za““ Zbkj . Par hypothése, si B est stochastique,
j=1k=1 k=1 j=1 k=1 j=1

n

n
quelle que soit la valeur de k, Zbki = 1, donc il ne reste que Zaik = 1 puisque A est
j=1 k=1
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stochastique. Le fait que A™ est toujours stochastique est alors une récurrence immédiate :
c’est vrai pour A par hypothése, et si c’est pour A", le produit A™ x A est un produit de
deux matrices stochastiques est stochastique. Autrement dit, la somme des coeffients de la
ligne numéro ¢ sur A™ est toujours égale a 1. Si on suppose que chacun de ces coefficients

a une limite finie b;; lorsque n tend vers 400, par somme de limite, on aura certainement
n

Z bi; = 1, et la matrice B sera donc stochastique.
j=1

Pour prouver que B? = B, on peut constater la chose suivante : si (A") a pour limite
B, alors (A%") = ((A™)?) aura pour limite B2?. C’est une simple conséquence du fait que les
coefficients du carré d’une matrice sont obtenus & partir de ceux de la matrice & 'aide de
sommes et de produits et que ces opérations sont conservées par passage a la limite (faites
une démonstration formelle si vous le souhaitez). Or, la suite (4%") est une sous-suite de la
suite (A™) qui converge vers B, donc elle converge aussi vers B (si vous n'étes pas convaincu
par le fait qu’on puisse affirmer celd sur une suite de matrices, songez qu’on est simplement
en train de faire cette affirmation sur chacune des n? suites de réels constitués de chacun
des coefficients de la matrice A™). Conclusion B? = B puisque les deux matrices sont limites
d’une méme suite.

Pour montrer que AB = BA, plein de possiblités, une notamment utilise le méme genre
d’astuce que pour B2 = B. La sous-suite (A"!) converge certainement vers B. Or, A"*! =
Ax A™ converge aussi vers AB, donc B = AB. De méme, A"t = A" x A, donc BA= AB =B
(c’est méme plus fort que ce qui était demandé).

. Ce n’est pas si compliqué que ¢a en a 'air. Quand on effectue le produit A x AP, (APH)Z-J- =

n n
Z a;(AP); > Z aikag-p ) puisque tous les coefficients (AP)j; sont plus grands que ozg-p ) par
k=1 k=1

n
définition de ag-p). Or, Z a;r = 1 puisque la matrice A est stochastique, donc (Ap+1)ij > ozg-p).
k=1
Autrement dit, tous les coefficients de la colle j dans AP*! sont plus grands que agp ). A fortiori

le plus petit d’entre eux, d’ou oagp +1) > ozg-p ). On démontre de la méme fagon que ﬂj(p +1) < Bj(.p )

en majorant cette fois-ci tous les coefficients de la colonne par ﬂj(p ),
La derniére inégalité demande un peu plus de soin : en reprenant la calcul précédent, on

peut isoler dans la somme le terme correspondant & B](.p )

écrire (Ap“)ij > Z aikag-p) + ailﬁj(-p) > (1- ail)agp) + mﬂj(-p) (puisque m est le plus petit de

, notons son indice de ligne I, pour

kL
tous les éléments de la matrice A. Tout cela est supérieur a ag-p ) —moz;p ) —i—mﬁj(-p ) — agp ) —i—méj(-p ),
donc agp +) > aép ) + m(SJ(-p ). Un calcul exactement symétrique donne Bj(p +1) < Bj(.p ) _ méj(.p ) 1

ne reste plus qu’a soustraire les deux inégalités pour obtenir celle demandée.

. Par une récurrence immeédiate, on aura alors Vn € N, 53(”) < (1—=2m)" J(O) = (1—2m)"™ (dans
la matrice identité, la différence entre le plus grand et le plus petit coefficient d’une colonne
vaut toujours 1. Comme m > 0 (la matrice ne contient que des termes strictement positifs

par hypothése), et comme 53(-") est toujours positif par définition, le théoréme des gendarmes

permet d’affirmer que lim 5 = 0. On en déduit aisément que les suites (a(n) et B(.n) sont
n——+oo J J J

adjacentes : en effet, on a prouvé plus haut que I'une était croissante et I’autre décroissante,
et on vient d’expliquer que leur limite tendait vers 0. Les deux suites sont donc convergentes
vers une méme limite /; (qui dépend quand méme de j). Mais si le plus grand et le plus petit
coefficient de la colonne convergent vers une méme limite, par théoréme des gendarmes, tous
les termes de la colonne, qui sont compris entre les deux, convergent également vers ;. Ainsi,
tous les coefficients de la suite de matrices (A™) ont une limite, et la suite converge. Par
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ailleurs, on a prouvé que les limites étaient identiques pour tous les coefficients d’une méme
colonne, donc toutes les lignes de la matrice B sont identiques.

. On sait que la suite (A™) converge vers une matrice B dont toutes les lignes sont identiques.
Mais il est évident dans ce cas que la suite (A™)T converge vers B' (on se contente de
mettre les coefficients & un endroit différent dans la matrice, ¢a ne va siirement pas changer
les limites!). Comme les deux suites sont en fait identiques puisque A = AT, on en déduit
que B = B'. La matrice B est donc une matrice symétrique dont toutes les lignes sont
identiques, tous ses coefficients sont nécessairement égaux (puisque ses colonnes sont alors
elles aussi identiques). Comme la somme des coefficients sur une lignes doit donner 1, chaque

n

1
coefficient doit donc étre égal & —, donc lim
3 n——4o00
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