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Exercice 1 (*)

1. Soit donc une matrice B =

 a b c
d e f
g h i

. On a alors AB =

 a+ 2d b+ 2e c+ 2f
2a+ d 2b+ e 2c+ f

d e f

.

Pour que la matrice AB soit nulle, il faut donc avoir d = e = f = 0, puis a = b = c =
0. Autrement dit, les deux premières lignes de B doivent être nulles, et la troisième est
quelconque.

2. D’après la question précédente, C doit être de la forme

 0 0 0
0 0 0
g h i

. Si on effectue le produit

CA pour une telle matrice, on obtient

 0 0 0
0 0 0

g + 2h 2g + h+ i 0

. Pour que ce produit soit

nul, il faut donc avoir g = −2h et i = −2g − h = 3h, soit C =

 0 0 0
0 0 0
−2h h 3h

, le réel h

étant quelconque.

Exercice 2 (* à **)

• Soit M =

(
x y
z t

)
une matrice dans M2(R), on calcule AM =

(
x+ 2z y + 2t
3x+ 4z 3y + 4t

)
et MA =

(
x+ 3y 2x+ 4y
z + 3t 2z + 4t

)
. Pour que les deux matrices soient égales, il faut que leurs

coefficients soient égaux deux à deux, ce qui nous amène à résoudre le système
x + 2z = x + 3y
y + 2t = 2x + 4y
3x + 4z = z + 3t
3y + 4t = 2z + 4t

Les deux équations extrêmes sont équivalentes à z =
3

2
y, et les deux du milieu se ramènent

alors à la même équation x+ z = t. Les solutions sont donc tous les quadruplets de la forme{
x, y,

3

2
y, x+

3

2
y

}
, où x et y sont deux réels quelconques. Autrement, la matrice M est de

la forme M =

(
x y
3
2y x+ 3

2y

)
.

• Posons donc M =

 a b c
d e f
g h i

. On calcule MB =

 a+ 3b− 2c −b+ c a+ 2b− c
d+ 3e− 2f −e+ f d+ 2e− f
g + 3h− 2i −h+ i g + 2h− i


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et BM =

 a+ g b+ h c+ i
3a− d+ 2g 3b− e+ 2g 3c− f + 2i
−2a+ d− g −2b+ e− h −2c+ f − i

, ce qui donne le sublimissime sys-

tème : 

a + 3b − 2c = a + g
− b + c = b + h

a + 2b − c = c + i
d + 3e − 2f = 3a − d + 2g
− e + f = 3b − e + 2h

d + 2e − f = 3c − f + 2i
g + 3h − 2i = −2a + d − g
− h + i = −2b + e − h

g + 2h − i = −2c + f − i

Pour résoudre ce genre de système a priori immonde, il vaut mieux commencer par tout
exprimer en fonction des coefficients de la première ligne a, b et c. Les trois premières équations
donnent ainsi g = 3b− 2c, h = c− 2b et i = a+ 2b− 2c. Ensuite, la huitième équation donne
e = 2b+ i = a+ 4b− 2c, la dernière équation donne f = g+ 2h+ 2c = −b+ 2c, et la sixième
d = 2a + 2g + 3h − 2i = −4b + 3c. Il reste trois équations à traiter, en remplaçant chaque
variable par l’expression obtenue : la quatrième devient −4b+3c+3a+12b−6c+2b−4c = 3a+
4b−3c+6b−4c, soit 3a+10b−7c = 3a+10b−7c, qui est toujours vérifiée, la cinquième donne
−a−4b+2c−b+2c = 3b−a−4b+2c+2c−4b, soit −a−5b+4c = −a−5b+4c qui est également
toujours vrai, et enfin la septième donne 3b−2c+3c−6b−2a−4b+4c = −2a−4b+3c−3b+2c,
soit −2a − 7b + 5c = −2a − 7b + 5c, qui est encore une fois toujours vrai. Les réels a, b et c

peuvent donc être choisis quelconques, et M =

 a b c
−4b+ 3c a+ 4b− 2c −b+ 2c
3b− 2c c− 2b a+ 2b− 2c

.

• C’est évidemment le gag de la liste : toutes les matrices (carrées d’ordre n) commutent avec
In.

• En notant M une matrice carrée quelconque d’ordre 3 (mêmes notations que pour la matrice

B), on trouve MC =

 0 b 0
0 e 0
0 h 0

 et CM =

 0 0 0
d e f
0 0 0

. On obeitnt donc les conditions

b = h = d = f = 0, soit M =

 a 0 c
0 e 0
g 0 i

.

Si une matrice M commute avec toutes les matrices diagonales, elle commute en particulier avec la
matrice ayant un unique coefficient non nul aii = 1. Or, la multiplication à gauche par cette matrice
ne conserve que la colonne numéro i de la matrice M , et la multiplication ne conserve que la ligne
numéro i. Si on veut que les deux soient égales, tous les coefficients de la ligne et de colonne numéro
i doivent être nuls, à l’exception du coefficient diagonal mii qui est commun aux deux matrices. En
faisant ce calcul avec toutes les valeurs possibles de i, on se rend donc compte que la matrice M est
nécessairement diagonale. Réciproquement, une matrice diagonale commute avec toutes les autres
matrices diagonales deMn(R).

Pour le cas des matrices symétriques, ce n’est en fait pas vraiment plus dur. Toutes les matrices
diagonales étant symétriques, la matrice M doit d’après ce qui précède être diagonale. Mais cette
fois-ci, ça ne suffit pas. Prenons donc comme matrice diagonale particulière la matrice vérifiant
aij = aji = 1 (pour des valeurs distinctes de i et de j), et ayant tous ses autres coefficients nuls. Quand
on multiplie cette matrice à gauche par une matrice diagonale ayant pour coefficients diagonaux λ1,
. . ., λn, il ne reste comme coefficients non nuls que λi en position (i, j) et λj en position (j, i). Au
contraire, quand on fait le produit à droite, λi se trouve en position (j, i) et λj en position (i, j). Si
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on veut que les deux matrices soient égales, on doit avoir λi = λj . Comme cela doit être vraipour
toutes les valeurs de i et de j, tous les coefficients diagonaux de M sont en fait égaux, ce qui signifie
qu’il existe un réel λ tel que M = λI. Réciproquement, une telle matrice commute certainement avec
toutes les matrices symétriques puisqu’elle commute avec toutes les matrices deMn(R).

Exercice 3 (*)

C’est en fait très simple, le produit est symétrique si AB = (AB)⊤, soit AB = B⊤A⊤. Comme
les deux matrices sont supposées symétriques, cela revient à dire que AB = BA, autrement dit que
les matrices commutent.

Exercice 4 (*)

On peut écrire toutes les matrices appartenant à A sous la forme aI3 + bJ + cK, en notant

J =

 0 1 0
0 0 1
1 0 0

, et K =

 0 0 1
1 0 0
0 1 0

. L’ensemble A contient bien entendu les deux éléments

neutres (on prend a = b = c = 0 pour obtenir la matrice nulle, a = 1 et b = c = 0 pour la matrice I3).
Il est stable par somme de façon évidente : aI3+bJ+cK+a′I3+b′J+c′K = (a+a′)I3+(b+b′)J+(c+
c′)K ∈ A, et par passage à l’opposé de façon tout aussi évidente : −(aI3+bJ+cK) = −aI3−bJ−cK.
En fait, la seule chose qui n’a rien d’évident est la stabilité par produit matriciel. Remarquons que
I3J = JI3 = J , I3K = KI3 = K (ça c’est évident), mais surtout J2 = K, K2 = J (calculs faciles),
et JK = KJ = I3 (là aussi calcul très facile). On en déduit en développant tout très brutalement que
(aI3+bJ+cK)×(a′I3+b′J+c′K) = aa′I3+ab′J+ac′K+ba′J+bb′K+bc′I3+ca′K+cb′I3+cc′J =
(aa′ + bc′ + cb′)I3 + (ab′ + ba′ + cc′)J + (ac′ + bb′ + ca′)K. Ce produit appartient bien à l’ensemble
A, ce qui prouve que ce dernier est un sous-anneau de M3(R), et en plus on obtiendrait le même
résultat en échangeant les deux matrices multipliées, ce qui prouve que le produit matriciel restreint
à l’ensemble A devient commutatif.

Exercice 5 (**)

Prouvons la formule donnée par récurrence : pour k = 0, c’est évident : AIn−InA = 0. Supposons-
là vérifiée au rang k, alors ABk+1−Bk+1A = ABkB−Bk+1A = (ABk−BkA)B+BkAB−BkBA =
kBkB +Bk(AB −BA) = kBk+1 + bkB = (k + 1)Bk+1, ce qui prouve la formule au rang k + 1. Par
principe de récurrence, la formule est donc vrai pour tout entier k. Par linéarité de la trace, on a
alors Tr(kBk) = Tr(ABk) − Tr(BkA) = 0 puisque le calcul de la trace d’un produit ne dépend pas
de l’ordre dans lequel on effectue ce produit. On en déduit que Tr(Bk) = 0.

Exercice 6 (**)

Commençons par prendre la trace des deux côtés de l’équation : Tr(X) + Tr(X)Tr(A) = Tr(B),
une condition nécessaire est donc Tr(X)(1 + Tr(A)) = Tr(B). Si Tr(A) ̸= −1, on en déduit que

Tr(X) =
Tr(B)

1 + Tr(A)
. Par ailleurs, on doit avoir X = B − λA, avec en l’occurence λ = Tr(X).

Considérons donc une matrice de la forme X = B − λA, elle vérifie Tr(X) = Tr(B) − λTr(A).

On doit donc avoir, pour qu’une telle matrice soit solution, Tr(B) − λTr(A) =
Tr(B)

1 + Tr(A)
, soit

λTr(A) = Tr(B)

(
1− 1

1 + Tr(A)

)
= Tr(B)× Tr(A)

1 + Tr(A)
, donc λ =

Tr(B)

1 + Tr(A)
(sauf si Tr(A) = 0).

La seule solution possible est donc X = B − Tr(B)

1 + Tr(A)
A. On vérifie sans problème qu’une telle
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matrice est effectivement solution (unique, donc) du problème. Si Tr(A) = 0, on doit simplement
avoir Tr(X) = 0, ce qui sera toujours le cas lorsque X = B − λA. L’équation de départ s’écrit alors
B − λA = B, donc on doit tout de même avoir λ = 0 et la solution unique est X = B. Enfin, si
Tr(A) = −1, la condition donnée initialement ne peut être vérifiée que si Tr(B) = 0. Dans le cas
contraire, il ne peut pas y avoir de solution à l’équation. Si Tr(A) = −1 et Tr(B) = 0, en posant
X = B − λA, on aura Tr(X) = λ, donc l’équation s’écrit B − λA + λA = B. Cette condition est
manifestement vérifiée quelle que soit la valeur de λ, c’est donc le seul cas où on a une infinité de
solutions, en l’occurence toutes les matrices de la forme B − λA, pour λ parcourant R.

Exercice 7 (***)

1. On calcule facilement A2 =

(
6 −5
−10 11

)
. Rappelons la méthode la plus simple pour trou-

ver ensuite le polynôme annulateur. On peut toujours le prendre unitaire et chercher deux
constantes telles que A2 = αA + βI. Le coefficient β est simplement le coefficient de pro-
portionnalité entre les coefficients non diagonaux de A et de A2, ici 5. Il ne reste alors plus
qu’à constater que A2 − 5A = −4I2, soit A2 − 5A+ 4I2 = 0. Le polynôme recherché est donc
P = X2 − 5X + 4.

2. En reprenant l’égalité obtenue à la question précédente, A(A− 5I2) = −4I2 ou encore

A

(
−1

4
A+

5

4
I2

)
= I2. La matrice A est donc inversible, d’inverse A−1 =

5

4
I2 −

1

4
A =(

3
4

1
4

1
2

1
2

)
.

3. Le polynôme se factorise immédiatement sous la forme (X − 1)(X − 4) puisque 1 est racine
évidente (mais si vous préférez perdre votre temps à calculer un discriminant, naturellement,
personne ne vous en empêchera). La division euclidienne sera de la forme Xn = PQ+R, où
d◦(R) < 2, soit R = anX + bn. Évaluons cette égalité pour les racines du polynôme, qui ont
l’avantage de vérifier P (x) = 0 et donc d’annuler le terme en PQ : 1 = R(1) = an + bn, et

4n = 4an + bn. La différence des deux équations donne 3an = 4n − 1, soit an =
4n − 1

3
, dont

on déduit que bn = 1− an =
4− 4n

3
.

4. D’après la question précédent, An = P (A)Q(A) + R(A). Comme P (A) = 0, il ne reste que

An = anA+ bnI2 =
4n − 1

3
A+

4− 4n

3
I2 (on vérifie aisément que la formule donne une valeur

correcte de A2, inutile de préciser les coefficients de An, ça n’a pas grand intérêt).

Exercice 8 (**)

On calcule aisément J2 = nJ (la matrice ne contient que des n), puis J3 = n2J , et on conjecture
que Jk = nk−1J , ce qui se prouve sans problème par récurrence : c’est vrai au rang 1, et si on le
suppose vrai au rang k, alors Jk+1 = J × Jk = J × nk−1J = nk−1J2 = nkJ . On constate que la
matrice A dont on cherche les puissances peut s’écrire sous la forme A = 2I3 − J (où J désigne
évidemment ici une matrice carrée d’ordre 3, on aura donc Jk = 3k−1J). Les matrices I3 et J
commutant certainement, on peut appliquer la formule du binôme de Newton : An = (2I3 − J)n =
k=n∑
k=0

(
n

k

)
2kIk(−J)n−k =

(
n−1∑
k=0

(
n

k

)
2k(−1)k3n−k−1

)
J+2nI3 (on est obligés d’isoler le terme numéro

n de la somme car la formule pour les puissances de J ne fonctionne pas pour J0). Dans la parenthèse,
on reconnait presque une formule du binôme (sur les réels cette fois-ci) à deux détails près : il faudrait

sortir un facteur
1

3
pour avoir un (−2)k3n−k, et surtout il manque le fameux terme numéro n, qui
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serait ici égal à (−2)n. On peut donc écrire An =
1

3

(
n∑

k=0

(
n

k

)
2k(−3)n−k − (−2)n

)
J + 2nI3 =

2nI3+
(−1)n − (−2)n

3
J . On vérifie que, pour n = 1, on retrouve A = 2I3−J . Pour n = 2, on devrait

avoir A2 = 4I3 − J , ce qui est effectivement le cas.

Exercice 9 (**)

Première méthode, qui fonctionnera toujours pour une matrice d’ordre 2 : chercher un polynôme

annulateur de degré 2. On calcule donc A2 =

(
9 −8
8 −7

)
= 2A − I2. La matrice est donc annulée

par le polynôme P = X2 − 2X + 1 = (X − 1)2, cherchons à écrire la division euclidienne de Xn

par P , on sait qu’elle sera de la forme Xn = PQ + anX + bn. On ne dispose ici que d’une seule
racine, qui nous donne la condition 1 = an + bn. pour en obtenir une deuxième, il faut penser à
dériver : nXn−1 = P ′Q+PQ′ + an, avec P (1) = P ′(1) = 0, donc n = an. On trouve donc an = n et
bn = 1− n, soit An = nA+ (1− n)I2.

Autre possibilité : écrire A = I2 + B, où B =

(
4 −4
4 −4

)
. On constate que B2 = 0 (quelle

chance !), les matrices I2 et B commutent évidemment donc, par la formule du binôme de Newton,

An = (B+I2)
n =

n∑
k=0

(
n

k

)
BkIn−k

2 = I2+nB (tous les termes suivants sont nuls). Comme B = A−I2,

on retrouver An = I2 + n(A− I2) = nA+ (1− n)I2.

Allez, une troisième méthode pour la route, on calcule A2 =

(
9 −8
8 −7

)
puis A3 =

(
13 −12
12 −11

)
et on conjecture pour An une matrice de la forme An =

(
an + 1 −an
an −an + 1

)
. Prouvons cette

formule par récurrence : c’est vrai au rang 1 en posant a1 = 4, et en le supposant vérifié au rang

n, alors An+1 =

(
an + 1 −an
an −an + 1

)
×
(

5 −4
4 −3

)
=

(
an + 5 −an − 4
an + 4 −an + 3

)
, ce qui est bien de la

forme souhaitée avec an+1 = an + 4. La suite (an) est par ailleurs arithmétique de raison 4, donc

an = a1 + 4(n− 1) = 4n. On en déduit directement que An =

(
4n+ 1 −4n
4n −4n+ 1

)
(on peut aussi

directement conjecturer la forme exacte de la matrice An à patrtir de ses premières puissances).

Exercice 10 (***)

1. On commence par un peu de calcul : A2 =

 6 −3 −3
−8 6 2
2 −3 1

 et A3 =

 −18 9 9
44 −18 −26
−26 9 17

.

Il est désormais facile de vérifier l’égalité demandée.

2. On va bien sûr procéder par récurrence. Notons Pk la propriété « Il existe deux réels ak et bk
tels que Ak = akA

2 + bkA ». Pour une fois on initialise la récurrence pour k = 2 : P2 est bien
vérifiée en posant a2 = 1 et b2 = 0 (on a bien A2 = 1× A2 + 0× A). Supposons P k vérifiée,
on a alors Ak+1 = A × Ak = A × (akA

2 + bkA) = akA
3 + bkA

2 = ak(6A − A2) + bkA
2 =

(bk − ak)A
2 + 6akA, qui est bien de la forme demandée, ce qui achève la récurrence.

3. D’après la question précédente, on a les relations suivantes : ak+1 = bk−ak et bk+1 = 6ak. On
a donc bk = 6ak−1 ce qui donne en remplaçant dans la première relation ak+1 = −ak+6ak−1,
récurrence linéaire d’ordre 2 d’équation caractéristique x2 + x − 6 = 0, dont le discriminant

vaut ∆ = 1+ 24 = 25, et admet donc deux racines r =
−1 + 5

2
= 2 et s =

−1− 5

2
= −3. On
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a donc ak = α2k + β(−3)k, avec a2 = 4α+ 9β = 1 et a3 = 8α− 27β = −1. En multipliant la

première équation par 2 et en lui retranchant la deuxième, on obtient 45β = 3, soit β =
1

15
,

puis α =
1− 9β

4
=

1− 3
5

4
=

1

10
. On a donc ak =

2k−1 − (−3)k−1

5
, et bk = 6× 2k−2 − (−3)k−2

5
.

4. On se contentera d’écrire Ak =

 6ak − 2bk −3ak + bk −3ak + bk
−8ak + 6bk 6ak − 2bk 2ak − 4bk
2ak − 4bk −3ak + bk ak + 3bk

 sans préciser les

valeurs. Pour k = 1, on obtient avec les formules de la question précédente a1 = 0 et b1 = 1,
ce qui donne A = 0×A2 +1×A, ce qui est indiscutablement vrai. Et pour k = 0, on obtient

a0 =
1

6
et b0 =

1

6
, et là ça ne marche plus...

Exercice 11 (*)

Un peu de motivation, six pivots de Gauss, ça va prendre quelques pages de calcul, mais ça ne
peut pas faire de mal.

A =

 1 1 −1
2 0 1
2 1 −1

 I3 =

 1 0 0
0 1 0
0 0 1

 L2 ← L2 − 2L1

L3 ← L3 − 2L1 1 1 −1
0 −2 3
0 −1 1

  1 0 0
−2 1 0
−2 0 1


L3 ← 2L3 − L2 1 1 −1

0 −2 3
0 0 −1

  1 0 0
−2 1 0
−2 −1 2

 L1 ← L1 − L3

L2 ↔ L2 + 3L3

 1 1 0
0 −2 0
0 0 −1

  3 1 −2
−8 −2 6
−2 −1 2

 L1 ← 2L1 + L2

 2 0 0
0 −2 0
0 0 −1

  −2 0 2
4 −2 6
−2 −1 2

 L1 ← L1/2
L2 ← −L2/2
L3 ← −L3 1 0 0

0 1 0
0 0 1

  −1 0 1
4 1 −3
2 1 −2



La matrice A est donc inversible, et A−1 =

 −1 0 1
4 1 −3
2 1 −2

.
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B =

 2 2 −1
2 −1 2
−1 2 2

 I3 =

 1 0 0
0 1 0
0 0 1

 L2 ← L2 − L1

L3 ← 2L3 + L1 2 2 −1
0 −3 3
0 6 3

  1 0 0
−1 1 0
1 0 2


L3 ← L3 + 2L2 2 2 −1

0 −3 3
0 0 9

  1 0 0
−1 1 0
−1 2 2

 L1 ← 9L1 + L3

L2 ↔ 3L2 − L3

 18 18 0
0 −9 0
0 0 9

  8 2 2
−2 1 −2
−1 2 2

 L1 ← L1 + 2L2

 18 0 0
0 −9 0
0 0 9

  4 4 −2
−2 1 −2
−1 2 2

 L1 ← L1/18
L2 ↔ L2/9
L3 ← L3/9 1 0 0

0 1 0
0 0 1

  2
9

2
9 −1

9
2
9 −1

9
2
9

−1
9

2
9

2
9



La matrice B est donc inversible, et B−1 =

 2
9

2
9 −1

9
2
9 −1

9
2
9

−1
9

2
9

2
9

.

C =

 2 2 1
−1 1 2
0 4 5

 I3 =

 1 0 0
0 1 0
0 0 1

 L2 ← 2L2 + L1

 2 2 1
0 4 5
0 4 5

  1 0 0
1 2 0
0 0 1


L3 ← L2 − L3 2 2 1

0 4 5
0 0 0

  1 0 0
2 1 0
1 2 −1


La matrice C n’est pas inversible.
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D =

 2 2 1
−1 1 2
0 4 4

 I3 =

 1 0 0
0 1 0
0 0 1

 L2 ← 2L2 + L1

 2 2 1
0 4 5
0 4 4

  1 0 0
1 2 0
0 0 1


L3 ← L2 − L3 2 2 1

0 4 5
0 0 1

  1 0 0
1 2 0
1 2 −1

 L1 ← L1 − L3

L2 ← L2 − 5L3

 2 2 0
0 4 0
0 0 1

  0 −2 1
−4 −8 5
1 2 −1

 L1 ← 2L1 − L2

 4 0 0
0 4 0
0 0 1

  4 4 −3
−4 −8 5
1 2 −1

 L1 ← L1/4
L2 ← L2/4
L3 ← L3 1 0 0

0 1 0
0 0 1

  1 1 −3
4

−1 −2 5
4

1 2 −1



La matrice D est donc inversible, et D−1 =

 1 1 −3
4

−1 −2 5
4

1 2 −1

.
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E =


0 1 1 1
−1 0 1 1
−1 −1 0 1
−1 −1 −1 0

 I3 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 L2 ↔ L1

L3 ← L2 − L3

L4 ← L3 − L4
−1 0 1 1
0 1 1 1
0 1 1 0
0 0 1 1




0 1 0 0
1 0 0 0
0 1 −1 0
0 0 1 −1

 L3 ← L2 − L3


−1 0 1 1
0 1 1 1
0 0 0 1
0 0 1 1




0 1 0 0
1 0 0 0
1 −1 1 0
0 0 1 −1


L1 ← L4 − L1

L3 ↔ L4


1 0 0 0
0 1 1 1
0 0 1 1
0 0 0 1




0 −1 1 −1
1 0 0 0
0 0 1 −1
1 −1 1 0

 L2 ← L2 − L3

L3 ← L3 − L4


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




0 −1 1 −1
1 0 −1 1
−1 1 0 −1
1 −1 1 0



La matrice E est donc inversible, et E−1 =


0 −1 1 −1
1 0 −1 1
−1 1 0 −1
1 −1 1 0

.

On peut tricher un peu pour la matrice F en supprimant la dernière ligne et la dernière colonne,
qui ne bougeront de toute façon pas pendant les calculs (sauf pour la toute dernière étape où on

divisera la dernière ligne par 3, ce qui fera apparaitre un
1

3
dans le coin inférieur droit de la matrice

inverse).
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F ′ =

 1 1 1
−1 2 1
1 4 1

 I3 =

 1 0 0
0 1 0
0 0 1

 L2 ← L2 + L1

L3 ← L3 − L1

 1 1 1
0 3 2
0 3 0

  1 0 0
1 1 0
−1 0 1


L3 ← L3 − L2

 1 1 1
0 3 2
0 0 −2

  1 0 0
1 1 0
−2 −1 1

 L1 ← 2L1 + L3

L2 ↔ L2 + L3

 2 2 0
0 3 0
0 0 −2

  0 −1 1
−1 0 1
−2 −1 1

 L1 ← 3L1 − 2L2

 6 0 0
0 3 0
0 0 −2

  2 −3 1
−1 0 1
−2 −1 1

 L1 ← L1/6
L2 ↔ L2/3
L3 ← −L3/2 1 0 0

0 1 0
0 0 1

  1
3 −1

2
1
6

−1
3 0 1

3
1 1

2 −1
2



La matrice F est donc inversible, et F−1 =


1
3 −1

2
1
6 0

−1
3 0 1

3 0
1 1

2 −1
2 0

0 0 0 1
3

.

Exercice 12 (**)

Appliquons donc le pivot de Gauss à la matrice P :

P =

 1 1 1
1 −1 1
−1 1 1

 I3 =

 1 0 0
0 1 0
0 0 1

 L2 ← L1 − L2

L3 ← L3 + L2 1 1 1
0 2 0
0 0 2

  1 0 0
1 −1 0
0 1 1

 L1 ← 2L1 − L2 − L3

 2 0 0
0 2 0
0 0 2

  1 0 −1
1 −1 0
0 1 1

 L1 ← L1/2
L2 ← L2/2
L3 ← L3/2 1 0 0

0 1 0
0 0 1

  1
2 0 −1

2
1
2 −1

2 0
0 1

2
1
2


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La matrice P est bien inversible, d’inverse P−1 =

 1
2 0 −1

2
1
2 −1

2 0
0 1

2
1
2

.

On calcule sans enthousiasme P−1A =

 2 0 −2
3 −3 0
0 4 4

, puis P−1AP =

 4 0 0
0 6 0
0 0 8

, matrice

diagonale que nous noterons D. On prouve ensuite par récurrence que An = PDnP−1 : c’est vrai
pour n = 1, puisque A = P (P−1AP )P−1 = PDP−1, et supposant la formule vérifiée pour An,
on aura An+1 = An × A = PDnP−1PDP−1 = PDn+1P−1, ce qui achève la récurrence. Donc

An = P

 4n 0 0
0 6n 0
0 0 8n

P−1, soit An =

 4n+6n

2
8n−6n 8n−4n

2
4n−6n

2
6n+8n

2
8n−4n

2
6n−4n

2
8n−6n

2
4n+8n

2

.

Exercice 13 (**)

Si A est nilpotente, il existe un entier k tel que Ak+1 = 0. Or, on constate que (In−A)(In+A+
A2 + · · ·+Ak) = In −A+A−A2 +A2 −A3 + · · ·+Ak −Ak+1 = In −Ak+1 = In, donc In −A est

inversible, d’inverse In +A+A2 + · · ·+Ak. On a A = I3 −M , avec M =

 0 1 1
0 0 1
0 0 0

. Un rapide

calcul donne M2 =

 0 0 1
0 0 0
0 0 0

 et M3 = 0. D’après ce qui précède, on a donc A−1 = I3 +M +

M2 =

 1 1 2
0 1 1
0 0 1

. De même on a B = I5 −N avec N =


0 −2 −3 −4 −5
0 0 −2 −3 −4
0 0 0 −2 −3
0 0 0 0 −2
0 0 0 0 0

. On calcule

N2 =


0 0 4 12 25
0 0 0 4 12
0 0 0 0 4
0 0 0 0 0
0 0 0 0 0

, puis N3 =


0 0 0 −8 −36
0 0 0 0 −8
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

, N4 =


0 0 0 0 16
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 et

enfin N5 = 0, donc B−1 = I5 + N + N2 + N3 + N4 =


1 −2 1 0 0
0 1 −2 1 0
0 0 1 −2 1
0 0 0 1 −2
0 0 0 0 1

. Cette dernière

formule laisse supposer qu’on a peut-être pas utilisé la meilleure méthode pour inverser B, je vous
laisse chercher d’autres façons d’y parvenir plus rapidement si vous le souhaitez.

Exercice 14 (**)

Ce n’est en fait pas vraiment plus compliqué que pour une matrice d’ordre 3 ou 4, on applique
les différentes étapes du pivot mais on peut difficilement les écrire explicitement. En l’occurence,
on va faire successivement les opérations élémentaires Ln−1 ← Ln−1 − Ln, Ln−2 ← Ln−2 − Ln−1,
Ln−3 ← Ln−3 − Ln−2, . . ., L1 ← L1 − L2. On obtient ainsi la matrice identité. Quand on effectue
les mêmes opérations en parallèle à partir de la matrice In, on transforme successivement les lignes
de la matrice : Ln−1 devient 0 . . . 1 − 1, Ln−2 devient 0 . . . 1 − 1 1, etc jusqu’à L1 qui devient
1 − 1 1 − 1 . . . (−1)n−1. Finalement, la matrice est inversible (ce n’est pas une surprise puisqu’elle
est triangulaire supérieure sans zéro sur la diagonale), d’inverse
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

1 −1 1 . . . (−1)n−1

0 1 −1 1 . . . (−1)n−2

...
. . . . . . . . .

...
...

. . . . . . . . .
...

...
. . . . . . . . .

...
0 . . . 0 1 −1 1
0 . . . 0 1 −1
0 . . . 0 1


Exercice 15 (**)

Soyons fous et faisons le calcul avec le pivot !

A =



1 2 3 4 5 6
6 1 2 3 4 5
5 6 1 2 3 4
4 5 6 1 2 3
3 4 5 6 1 2
2 3 4 5 6 1

 I6 =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


L2 ← L2 − L3

L3 ← L3 − L4

L4 ← L4 − L5

L5 ← L5 − L6

L6 ← L6 − L1

1 2 3 4 5 6
1 −5 1 1 1 1
1 1 −5 1 1 1
1 1 1 −5 1 1
1 1 1 1 −5 1
1 1 1 1 1 −5





1 0 0 0 0 0
0 1 −1 0 0 0
0 0 1 −1 0 0
0 0 0 1 −1 0
0 0 0 0 1 −1
−1 0 0 0 0 1


L2 ← L2 − L3

L3 ← L3 − L4

L4 ← L4 − L5

L5 ← L5 − L6

L6 ← L6 − L1

1 2 3 4 5 6
0 −6 6 0 0 0
0 0 −6 6 0 0
0 0 0 −6 6 0
0 0 0 0 −6 6
0 −1 −2 −3 −4 −11





1 0 0 0 0 0
0 1 −2 1 0 0
0 0 1 −2 1 0
0 0 0 1 −2 1
1 0 0 0 1 −2
−2 0 0 0 0 1


L6 ← L2 − 6L6
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

1 2 3 4 5 6
0 −6 6 0 0 0
0 0 −6 6 0 0
0 0 0 −6 6 0
0 0 0 0 −6 6
0 0 18 18 24 66





1 0 0 0 0 0
0 1 −2 1 0 0
0 0 1 −2 1 0
0 0 0 1 −2 1
1 0 0 0 1 −2
12 1 −2 1 0 −6


L6 ← L6 + 3L3

1 2 3 4 5 6
0 −6 6 0 0 0
0 0 −6 6 0 0
0 0 0 −6 6 0
0 0 0 0 −6 6
0 0 0 36 24 66





1 0 0 0 0 0
0 1 −2 1 0 0
0 0 1 −2 1 0
0 0 0 1 −2 1
1 0 0 0 1 −2
12 1 1 −5 3 −6


L6 ← L6 + 6L4

1 2 3 4 5 6
0 −6 6 0 0 0
0 0 −6 6 0 0
0 0 0 −6 6 0
0 0 0 0 −6 6
0 0 0 0 60 66





1 0 0 0 0 0
0 1 −2 1 0 0
0 0 1 −2 1 0
0 0 0 1 −2 1
1 0 0 0 1 −2
12 1 1 1 −9 0


L6 ← L6 + 10L5

1 2 3 4 5 6
0 −6 6 0 0 0
0 0 −6 6 0 0
0 0 0 −6 6 0
0 0 0 0 −6 6
0 0 0 0 0 126





1 0 0 0 0 0
0 1 −2 1 0 0
0 0 1 −2 1 0
0 0 0 1 −2 1
1 0 0 0 1 −2
22 1 1 1 1 −20

 L5 ← 21L5 − L6

1 2 3 4 5 6
0 −6 6 0 0 0
0 0 −6 6 0 0
0 0 0 −6 6 0
0 0 0 0 −126 0
0 0 0 0 0 126





1 0 0 0 0 0
0 1 −2 1 0 0
0 0 1 −2 1 0
0 0 0 1 −2 1
−1 −1 −1 −1 20 −22
22 1 1 1 1 −20

 L4 ← 21L4 + L5



1 2 3 4 5 6
0 −6 6 0 0 0
0 0 −6 6 0 0
0 0 0 −126 0 0
0 0 0 0 −126 0
0 0 0 0 0 126





1 0 0 0 0 0
0 1 −2 1 0 0
0 0 1 −2 1 0
−1 −1 −1 20 −22 −1
−1 −1 −1 −1 20 −22
22 1 1 1 1 −20


L3 ← 21L3 + L4



1 2 3 4 5 6
0 −6 6 0 0 0
0 0 −126 0 0 0
0 0 0 −126 0 0
0 0 0 0 −126 0
0 0 0 0 0 126





1 0 0 0 0 0
0 1 −2 1 0 0
−1 −1 20 −22 −1 −1
−1 −1 −1 20 −22 −1
−1 −1 −1 −1 20 −22
22 1 1 1 1 −20


L2 ← 21L2 + L3

L6 ← −L6

1 2 3 4 5 6
0 −126 0 0 0 0
0 0 −126 0 0 0
0 0 0 −126 0 0
0 0 0 0 −126 0
0 0 0 0 0 −126





1 0 0 0 0 0
−1 20 −22 −1 −1 −1
−1 −1 20 −22 −1 −1
−1 −1 −1 20 −22 −1
−1 −1 −1 −1 20 −22
22 −1 −1 −1 −1 20


L2 ← 21L2 + L3

Pour la dernière opération, on va faire L1 ← −126L1 − 2L2 − 3L3 − 4L4 − 5L5 − 6L6 :
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

−126 0 0 0 0 0
0 −126 0 0 0 0
0 0 −126 0 0 0
0 0 0 −126 0 0
0 0 0 0 −126 0
0 0 0 0 0 −126





20 −22 −1 −1 −1 −1
−1 20 −22 −1 −1 −1
−1 −1 20 −22 −1 −1
−1 −1 −1 20 −22 −1
−1 −1 −1 −1 20 −22
−22 −1 −1 −1 −1 20


Il ne reste plus qu’à tout diviser par −126 pour obtenir le passionnant résultat :

A−1 =
1

126



−20 22 1 1 1 1
1 −20 22 1 1 1
1 1 −20 22 1 1
1 1 1 −20 22 1
1 1 1 1 −20 22
22 1 1 1 1 −20


Exercice 16 (***)

1. On calcule simplement U2 =

 0 0 0
0 1 1
0 −1 −1

, puis on constate que Ma = I3 + aU +
a2

2
U2.

2. L’application est surjective par définition même de l’ensemble G. Et elle est trivialement
injective : si a ̸= b, Ma ̸= Mb puisque par exemple le dernier coefficient de la première ligne
n’est pas le même dans les deux matrices.

3. Calculons : MaMb = 1 + ab− ab b+ a+ ab2

2 −
ab2

2 b+ ab2

2 + a− ab2

2

a+ b+ ba2

2 −
ba2

2 ab+ 1 + a2

2 + b2

2 + a2b2

4 −
a2b2

4 ab+ b2

2 + a2b2

4 + a2

2 −
a2b2

4

−a− ba2

2 − b+ ba2

2 −ab− a2

2 −
a2b2

4 −
b2

2 + a2b2

4 −ab− a2b2

4 + 1− a2

2 −
b2

2 + a2b2

4

 =

 1 a+ b a+ b

a+ b 1 + (a+b)2

2
(a+b)2

2

−a− b − (a+b)2

2 1− (a+b)2

2

. Autrement dit, on a exactement MaMb = Ma+b. La ma-

trice Ma est en particulier toujours inversible, d’inverse M−a, puisque Ma×M−a = M0 = I3.

4. C’est un sous-ensemble de GL3(R) (tous ses éléments sont inversibles) qui contient l’élément
neutre I3, est stable par produit matriciel (c’est le calcul de la question précédente) et par
passage à l’inverse (là aussi démontré à la question 3). Il s’agit bien d’un sous-groupe.

5. Une récurrence triviale permet de prouver que Mn
a = Mna : c’est vrai pour n = 0, et si on le

suppose vrai au rang n, alors Mn+1
a = Mn

a ×Ma = Mna ×Ma = Mna+a = M(n+1)a. Sinon,
on peut utiliser une méthode plus sophistiquée en expliquant que la question 3 prouvé que
l’application f est un isomorphisme de groupes de (R,+) vers (G,×).

Exercice 17 (**)

1. Utilisons la méthode du système en résolvant :


x − y + z = a
2x − y = b
−x + y + 2z = c

. On peut addi-

tionner les deux équations extrêmes pour obtenir immédiatement 3z = a+c, soit z =
1

3
a+

1

3
c.

Ensuite, on effectue par exemple l’opération L2 −L1 qui donne l’équation x− z = b− a, soit
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x = z − a+ b = −2

3
a+ b+

1

3
c, et on reporte dans la deuxième équation du système initial :

y = 2x − b = −4

3
a + b +

2

3
c. Le système ayant toujours une solution unique, la matrice est

inversible, et son inverse vaut P−1 =
1

3

 −2 3 1
−4 3 2
1 0 1

.

2. Le plus simple est de commencer par calculer AP =

 −1 −2 2
−2 −2 0
1 2 4

, puis P−1AP = −1 0 0
0 2 0
0 0 2

. La matrice D est bien diagonale.

3. On va procéder par récurrence. Pour n = 0, on a bien PD0P−1 = PI3P
−1 = PP−1 =

I3 = A0. Supposons maintenant la formule vérifiée au rang n, et constatons que la définition
D = P−1AP implique A = PDP−1 (en multipliant à gauche par P et à droite par P−1). On
peut alors écrire An+1 = An ×A = PDnP−1 × PDP−1 = PDnDP−1 = PDn+1P−1.

Il ne reste plus qu’à calculer le produit : PDn =

 1 −1 1
2 −1 0
−1 1 2

×
 (−1)n 0 0

0 2n 0
0 0 2n

 = (−1)n −2n 2n

2(−1)n −2n 0
(−1)n+1 2n 2n+1

, puis An = PDnP−1 =

1

3

 2× (−1)n+1 + 5× 2n 3× (−1)n − 3× 2n (−1)n − 2n

4× (−1)n+1 + 2n+2 6× (−1)n − 3× 2n 2× (−1)n − 2n+1

2× (−1)n − 2n+1 3× (−1)n+1 + 3× 2n (−1)n+1 + 2n+2

.

4. En effectuant les opérations L1 − L2 et L1 + L3, on obtient les deux équations x + z = 7 et
3x + 3z = 21, qui sont manifestement équivalentes. Le système n’est donc pas un système
de Cramer, on peut simplement exprimer deux des variables en fonction de la troisième, par
exemple z = 7−x, puis en remplaçant dans la première équation initiale, 5x−3y−7+x = 5,
donc 3y = 6x − 12 et y = 2x − 4. On peut alors écrire S = {(x, 2x − 4, 7 − x) | x ∈ R}.
Comme le système n’est pas de Cramer, sa matrice, qui est justement la matrice A+ I3, n’est
pas inversible.

5. Pour changer, calculons donc : A2 =

 6 −3 −1
4 −2 −2
−2 3 5

, puis A3 =

 14 −9 −3
12 −10 −6
−6 9 11

. Les

coefficients en-dehors de la diagonale étant identiques entre A et A2, et ceux sur la diagonale
étant augmentés de 2 quand on passe de A à A2, on en déduit facilement que A2 = A+ 2I3.
On peut aussi remarquer si on a du temps à perdre que A3 = 3A+ 2I3.

6. On part de l’égalité A2 = A + 2I3 et on isole la matrice identité : I3 =
1

2
(A2 − A) =

1

2
A(A− I3). On en déduit directement que la matrice A est inversible et que son inverse est

A−1 =
1

2
(A− I3) =

 3
2 −3

2 −1
2

2 −5
2 −1

−1 3
2 1

.

7. C’est évidemment une récurrence classique : au rang 0, la propriété est vraie en posant sim-
plement a0 = 0 et b0 = 1 (et également au rang 1 en posant a1 = 1 et b1 = 0, même si ça
ne sert pas pour la récurrence). Supposons désormais la propriété vraie au rang n, alors en
exploitant la relation de la question 5 on peut écrire An+1 = An × A = (anA + bnI3)A =
anA

2 + bnA = an(A + 2I3) + bnA = (an + bn)A + 2anI3. La propriété est donc héréditaire,
avec de plus les relations de récurrence an+1 = an + bn et bn+1 = 2an.
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8. En décalant la relation de récurrence précédente, an+2 = an+1 + bn+1 = an+1 + 2an. La suite
(an) est donc récurrente linéaire d’ordre 2, d’équation carastéristique x2 − x − 2 = 0. Cette
équation admet pour racines évidentes x1 = −1 et x2 = 2, on peut donc écrire an sous la
forme λ × (−1)n + µ × 2n, avec (λ, µ) ∈ R2. En appliquant cette expression pour n = 0 et

n = 1, on trouve les conditions λ+µ = 0 et −λ+2µ = 1, donc λ = −µ et 3µ = 1, soit µ =
1

3

et λ = −1

3
. Autrement dit, pour tout entier naturel n, an =

2n − (−1)n

3
, puis bn = 2an−1 =

2n + 2× (−1)n

3
. Enfin, on conclut : An =

2n − (−1)n

3
A+

2n + 2× (−1)n

3
I3. On peut écrire la

matrice explicitement : An =
1

3

 −2× (−1)n + 5× 2n 3× (−1)n − 3× 2n (−1)n − 2n

−4× (−1)n + 2n+2 6× (−1)n − 3× 2n 2× (−1)n − 2n+1

2× (−1)n − 2n+1 −3× (−1)n + 3× 2n (−1)n+1 + 2n+2

.

C’est exactement la même matrice que celle obtenue à la question 3 (encore heureux !).

9. Inutile de s’embêter avec les coefficients, la formule générale en fonction de A et de I3 suffit :

pour n = −1, on devrait avoir a−1 =
1

3

(
1

2
+ 1

)
=

1

2
et b−1 =

1

3

(
1

2
− 2

)
= −1

2
. Autrement

dit, on devrait avoir A−1 =
1

2
A − 1

2
I3, ce qui est bien le cas (cf question 6). La formule est

donc valable pour n = −1.

10. On procède comme à la question précédente : a−2 =
1

3

(
1

4
− 1

)
= −1

4
et b−2 =

1

3

(
1

4
+ 2

)
=

3

4
. On devrait donc avoir A−2 = −1

4
A +

3

4
I3. Or on sait que A2 = A + 2I3, et (A +

2I3)

(
−1

4
A+

3

4
I3

)
= −1

4
A2 − 1

2
A +

3

4
A +

3

2
I3 = −1

4
A − 1

2
I3 +

1

4
A +

3

2
I3 = I3, ce qui

prouve que la formule souhaitée correspond bien à l’inverse de A2. La formule est donc tou-
jours valable pour n = −2 (en fait elle le reste pour tout entier relatif).

11. (a) En bourrinant salement et en posant N =

 a b c
d e f
g h i

, la condition DN = ND se tra-

duit par

 −a −b −c
2d 2e 2f
2g 2h 2i

 =

 −a 2b 2c
−d 2e 2f
−g 2h 2i

. Cinq des neuf équations ainsi obtenues

(celles concernant a, e, f , h et i) sont manifestement vraies, alors que les quatre autres
impliquent tout aussi trivialement la nullité du coefficient correspondant. On conclut donc

que toutes les matrices de la forme N =

 a 0 0
0 e f
0 h i

 commutent avec la matrice D.

(b) C’est un calcul sans intérêt : ND = DN ⇔ P−1MPD = DP−1MP ⇔ MPD =
PDP−1MP ⇔MPDP−1 = PDP−1M ⇔ AM = MA puisque A = PDP−1.

(c) Comme M = PNP−1, les question précédentes impliquent que les matrices commutant
avec A sont de la forme M = PNP−1, où N est de la forme obtenue plus haut, qu’on

peut écrire N = a

 1 0 0
0 0 0
0 0 0

+ e

 0 0 0
0 1 0
0 0 0

+ f

 0 0 0
0 0 1
0 0 0

+ h

 0 0 0
0 0 0
0 1 0

+

i

 1 0 0
0 0 0
0 0 1

. En notant M1 = P ×

 1 0 0
0 0 0
0 0 0

× P−1 et ainsi de suite, on aura bien

la forme souhaitée par l’énoncé. Le calcul explicite des matrices M1, M2, M3, M4 et M5

a un intérêt à peu près nul. Donnons simplement M1 =
1

3

 −7 9 4
0 0 0
0 0 0

.
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Exercice 18 (***)

1. Cela découle des propriétés calculatoires de la transposition : (A⊤A)⊤ = A⊤(A⊤)⊤ = A⊤A,
donc A⊤A est bien une matrice symétrique.

2. Par définition, AA−1 = In. En prenant la transposée de cette égalité, comme In est une
matrice symétrique, on obtient (A−1)⊤A⊤ = In. Or, par hypothèse, A⊤ = A, ce qui prouve
que (A−1)⊤ est inverse de la matrice A, et donc égale à A−1 (unicité de l’inverse d’une
matrice). La matrice A−1 est donc symétrique.

3. En notant B = A⊤A, on calcule Bii =
n∑

k=1

(A⊤)ikaki =
n∑

k=1

a2ki. Il ne reste plus qu’à sommer

ces sommes : Tr(B) =
n∑

i=1

bii =
n∑

i=1

n∑
k=1

a2ki. Autrement dit, on calcule simplement la somme

des carrés de tous les coefficients de la matrice A.

Si A est symétrique, Tr(A2) correspond au calcul précédent, qui donne un résultats positif
comme somme de carrés de nombres réels. De plus, si Tr(A2) = 0, tous les nombres a2ki sont
nuls, ce qui n’est en effet le cas que pour la matrice nulle.

4. Calculons donc A(B −C)A = ABA−ACA = InA−AIn = A−A = 0. Si on multiplie cette
égalité à gauche par C puis à droite par B, on en déduit (B − C)A = 0 puis B − C = 0, ce
qui prouve que B = C. La matrice A est donc inversible, d’inverse B.

5. Si M est solution de l’équation (E), elle vérifie les hypothèses de la question précédente en
posant B = M⊤M et C = MM⊤, donc elle est inversible. De plus, son inverse est égal
à M⊤M qui est une matrice symétrique d’après la question 1. M est donc l’inverse d’une
matrice symétrique, donc symétrique d’après la question 2. On peut alors remplacer M⊤ par
M dans l’équation (E) pour obtenir l’équation équivalente M3 = In.

6. Par linéarité de la trace, Tr((M − In)
2) = Tr(M2−2M + In) = Tr(M2)−2Tr(M)+Tr(In) =

b − 2a + n. De même, en exploitant le fait que M3 = In et donc M4 = M , on calcule
Tr((M2− In)

2) = Tr(M −2M2+ In) = a−2b+n, et Tr((M −M2)2) = Tr(M2−2In+M) =
a+ b− 2n.

7. Si on additionne les trois traces calculées à la question précédente, on trouve b−2a+n+a−2b+
n+a+ b− 2n = 0. Or, chacune de ces traces est positive (question 3, les matrices manipulées
sont toutes symétriques car M et In le sont). La seule possibilité est donc que chacune des
trois traces soit nulle, ce qui implique, toujours d’après la question 3, que M−In = M2−In =
M −M2 = 0. Autrement dit, la seule solution de l’équation (E) est M = In.

Exercice 19 (**)

1. Calculons donc : A2 =

 1 −3 3
0 7 −6
0 3 −2

 et A3 =

 −3 −7 3
2 15 −12
2 7 −4

.

2. Si on impose l’égalité souhaitée pour les coefficients de la deuxième ligne (celle où on a le plus
souvent des 0 qui apparaissent, ça simplifiera la résolution), on obtient le système d’équations

2b = 2
7a + 3b + c = 15
−6a = −12

. Le système se résout de lui-même : b = 1, a = 2, donc

c = 15− 14− 3 = −2. La seule relation possible est donc A3 = 2A2 +A− 2I3, on vérifie bien
sûr qu’elle reste valable pour tous les autres coefficients, ce qui est bien le cas.

3. On peut écrire −A3 +2A2 +A = 2I3, donc A×
(
−1

2
A2 +A+

1

2
I3

)
= I3, ce qui prouve que
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A est inversible et que A−1 = −1

2
A2 + A +

1

2
I3 =

 −3 1
2 −9

2
2 0 3
2 −1

2
7
2

. Si on est courageux,

on vérifie que A−1 ×A = I3, ce qui est bien le cas.

4. On cherche donc les racines de Q = X3−2X2−X+2. On a déjà une première racine évidente
qui est X1 = 1 (puisque Q(1) = 1− 2− 1+ 2 = 0), et même une deuxième avec X2 = −1 (en
effet, Q(−1) = −1 − 2 + 1 + 2 = 0). Le produit des trois racines du polynôme étant égal à
−2, la dernière racine est donc X3 = 2.

5. Comme d’habitude, je vais utiliser une résolution de système :


2x − y − z = a
−x + y + 2z = b
−x + y + z = c

.

On s’empresse d’additionner les lignes extrêmes pour obtenir x = a + c, et de soustraire les
deux dernières lignes pour avoir z = b− c. Il ne reste alors plus qu’à reprendre par exemple la
dernière équation pour en déduire y = c+x− z = a− b+3c. La matrice P est donc inversible

et P−1 =

 1 0 1
1 −1 3
0 1 −1

.

6. On calcule donc P−1A =

 −1 0 −1
1 −1 3
0 2 −2

, puis D = P−1AP =

 −1 0 0
01 0
0 0 2

, qui

est comme prévu une matrice diagonale. On remarque que ses coefficients diagonaux sont
exactement les racines du polynôme Q, ce n’est sûrement pas un hasard.

7. On a bien sûr Dn =

 (−1)n 0 0
01 0
0 0 2n

. La propriété demandée se démontre apr une ré-

currence hyper classique : PD0P−1 = PI3P
−1 = PP−1 = I3 = A0, ce qui prouve la pro-

priété pour n = 0. Si on la suppose vérifiée au rang n, alors An+1 = AnA = PDnP−1A, or
P−1A = DP−1 d’après la définition de D, donc An+1 = PDnDP−1 + PDn+1P−1, ce qui
prouve l’hérédité.

8. (a) Il suffit d’écrire le calcul : Xn+1 = A×Xn.
(b) On va démontrer par récurrence que Xn = AnX0. C’est trivial au rang 0 : A0X0 = I3X0 =

X0, et l’hérédité est triviale aussi : si Xn = AnX0 alors Xn+1 = AXn = A × AnX0 =
An+1X0.

(c) Bon, finalement, il va falloir calculer An pour s’en sortir (ou au moins ses deux premières
lignes puisque le produit par X0 ne fera intervenir que les coefficients des deux premières

lignes). PDn =

 2(−1)n −1 −2n
(−1)n+1 1 2n+1

(−1)n+1 1 2n

, puis

An = PDnP−1 =

 2(−1)n − 1 1− 2n 2n − 3 + 2(−1)n
1 + (−1)n+1 2n+1 − 1 3− 2n+1 + (−1)n+1

1 + (−1)n+1 2n − 1 3− 2n + (−1)n+1

. On mutliplie

simplement cette matrice par X0 =

 1
1
0

, pour obtenir Xn, et donc un = 2(−1)n − 2n,

vn = 2n+1 + (−1)n+1 et wn = 2n + (−1)n+1.
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Problème

I. Étude d’un exemple dans M2(R).

1. Calculons donc A2 =

(
1
9 + 1

3
2
9 + 1

3
1
6 + 1

4
1
3 + 1

4

)
=

(
4
9

5
9

5
12

7
12

)
. En étudiant attentivement les

coefficients non diagonaux, on se convainc que a =
5

6
(mais oui,

5

6
× 2

3
=

5

9
). Ensuite,

A2 − 5

6
A =

1

6
I2. On trouve donc A2 =

5

6
A+

1

6
I2.

2. C’est évidemment une récurrence classique : c’est vrai au rang 2 d’après la question précédente
mais aussi au rang 1 en posant a1 = 1 et b1 = 0 ; et même au rang 0 puisque A0 = I2 =
0×A+1× I2. Supposons donc An = anA+ bnI2, alors An+1 = An×A = (anA+ bnI2)×A =

anA
2 + bnA = an

(
5

6
A+

1

6
I2

)
+ bnA =

(
5

6
an + bn

)
A +

1

6
anI2. La relation est vérifiée au

rang n+ 1, elle est donc vrai pour tout entier n.

3. Les relations de récurrence découlent de la question précédente : an+1 =
5

6
an + bn, et bn+1 =

1

6
an. On en déduit que, ∀n ∈ N, an+2 =

5

6
an+1 + bn =

5

6
an+1 +

1

6
an. La suite (an) est donc

récurrente linéaire d’ordre 2. L’équation caractéristique x2− 5

6
x− 1

6
a pour racine évidente 1,

et pour deuxième racine −1

6
puisque le produit des racines vaut −1

6
. On en déduit que an peut

se mettre sous la forme an = α+β

(
−1

6

)n

. À l’aide des valeurs initiales, on va déterminer α et

β : pour n = 0, a0 = α+β = 0 ; et a1 = α− β

6
= 1. Autrement dit α+

α

6
= 1, donc α =

6

7
, puis

β = −6

7
. On obtient donc an =

6

7

(
1−

(
−1

6

)n)
, puis bn =

1

6
an−1 =

1

7

(
1−

(
−1

6

)n−1
)

(la formule fonctionne également quand n = 0 puisqu’elle donne bien b0 = 1).

4. On sait que An = anA+ bnI2, ce qui permet d’écrire, si on y tient vraiment,

An =

(
3
7 + 4

7(−
1
6)

n 4
7 −

4
7(−

1
6)

n

3
7 −

3
7(−

1
6)

n 4
7 + 3

7(−
1
6)

n

)
.

5. Puisque lim
n→+∞

(
−1

6

)n

, tous les coefficients de la matrice précédente ont une limite finie, la

suite de matrices (An) converge donc vers
(

3
7

4
7

3
7

4
7

)
, qui est bien une matrice stochastique

puisque
3

7
+

4

7
= 1.

II. Étude d’un exemple dans M3(R).

1. On calcule bêtement J2 =

 0 0 1
0 0 1
0 0 1

, puis J3 = J2, et on en déduit que, ∀n ⩾ 2, Jn = J2.

2. On remarque aisément que B =
1

2
(I3 + J). Les matrices I3 et J commutant bien entendu,

on peut écrire, lorsque n ⩾ 2, que Bn =
1

2n
(J + I3)

n =
1

2

n n∑
k=0

(
n

k

)
JkIn−k

3 . Il faut isoler les

termes correspondant à k = 0 et k = 1 pour pouvoir écrire Jk = J2 dans tout le reste de la

somme, on trouve alors Bn =
1

2

n
(
I3 + nJ +

n∑
k=2

(
n

k

)
J2

)
. Comme on sait que

n∑
k=0

(
n

k

)
= 2n,
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on peut simplifier : Bn =
1

2n
(I3 + nJ + (2n − n− 1)J2) =

1

2

n

I3 +
n

2n
J +

(
1− n+ 1

2n

)
J2. Si

on tient à écrire la matrice explicitement, Bn =

 1
2n

n
2n 1− n+1

2n

0 1
2n 1− 1

2n

0 0 1

.

3. Là encore, aucune difficulté pour trouver la limite de chacun des coefficients, on trouve
lim

n→+∞
Bn = J2, qui est bien une matrice stochastique.

III. Étude générale des matrices stochastiques de M2(R).

1. Si a = b = 1, la matrice A n’est autre que l’identité, toutes ses puissances sont donc égales

à I2. Si a = b = 0, par contre, A =

(
0 1
1 0

)
, on calcule A2 = I2, puis A3 = A, et la suite

des puissances de A est 2-périodique : si n est pair, An = I2, si n est impair, An = A. C’est
le seul cas où la suite ne converge pas.

2. Calculons donc : A − I2 =

(
a− 1 1− a
1− b b− 1

)
, et A − (a + b − 1)I2 =

(
1− b 1− a
1− b 1− a

)
. Le

produit de ces deux matrices donne P (A) = 0 (on a pour chaque coefficient une somme de
deux termes opposés).

3. La polynôme P étant de degré 2, on peut écrire la division sous la forme Xn = PQ+anX+bn.
On regarde ce que donne cette égalité pour les deux racines du polynôme P , à savoir 1 et
a + b − 1 : 1 = an + bn et (a + b − 1)n = an(a + b − 1) + bn. En soustrayant les deux

équations, on trouve an(a + b − 2) = (a + b − 1)n − 1, soit an =
(a+ b− 1)n − 1

a+ b− 2
. On

en déduit bn = 1 − an =
a+ b− 1− (a+ b− 1)n

a+ b− 2
. En conclusion, le reste recherché vaut

(a+ b− 1)n − 1

a+ b− 2
X +

a+ b− 1 + (a+ b− 1)n

a+ b− 2
.

4. Puisque P (A) = 0, on peut déduire des calculs précédents que An =
(a+ b− 1)n − 1

a+ b− 2
A +

a+ b− 1 + (a+ b− 1)n

a+ b− 2 2
I.

5. On peut écrire les quatre coefficients de la matrice An, ou plus simplement passer directement
à la limite dans l’égalité précédente. Puisque a ⩽ 1, b ⩽ 1, et qu’on a éliminé le cas a = b = 1,
on aura toujours a + b − 1 < 1 (et a + b − 1 > −1 puisque les deux nombres sont positifs
et ne sont pas tous les deux nuls), donc lim

n→+∞
(a + b − 1)n. La suite (An) a donc pour

limite
a+ b− 1

a+ b− 2
I2 −

1

a+ b− 2
A, ou encore

1

a+ b− 2

(
b− 1 a− 1
b− 1 a− 1

)
. Cette matrice est

bien stochastique puisque la somme des coefficients de chaque ligne vaut
a+ b− 2

a+ b− 2
= 1 (et

que tous les coefficients de la matrice sont bien positifs, le coefficient
1

a+ b− 2
étant négatif.

IV. Une étude plus générale.

1. Il suffit de constater que si la matrice A est stochastique, toutes ses puissances seront stochas-
tiques. En effet, le produit de deux matrices stochastiques est stochastique :

∑n
j=1(AB)ij =

n∑
j=1

n∑
k=1

aikbkj =
n∑

k=1

n∑
j=1

aikbkj =
n∑

k=1

aik

 n∑
j=1

bkj

. Par hypothèse, si B est stochastique,

quelle que soit la valeur de k,
n∑

j=1

bkj = 1, donc il ne reste que
n∑

k=1

aik = 1 puisque A est
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stochastique. Le fait que An est toujours stochastique est alors une récurrence immédiate :
c’est vrai pour A par hypothèse, et si c’est pour An, le produit An × A est un produit de
deux matrices stochastiques est stochastique. Autrement dit, la somme des coeffients de la
ligne numéro i sur An est toujours égale à 1. Si on suppose que chacun de ces coefficients
a une limite finie bij lorsque n tend vers +∞, par somme de limite, on aura certainement
n∑

j=1

bij = 1, et la matrice B sera donc stochastique.

Pour prouver que B2 = B, on peut constater la chose suivante : si (An) a pour limite
B, alors (A2n) = ((An)2) aura pour limite B2. C’est une simple conséquence du fait que les
coefficients du carré d’une matrice sont obtenus à partir de ceux de la matrice à l’aide de
sommes et de produits et que ces opérations sont conservées par passage à la limite (faites
une démonstration formelle si vous le souhaitez). Or, la suite (A2n) est une sous-suite de la
suite (An) qui converge vers B, donc elle converge aussi vers B (si vous n’êtes pas convaincu
par le fait qu’on puisse affirmer celà sur une suite de matrices, songez qu’on est simplement
en train de faire cette affirmation sur chacune des n2 suites de réels constitués de chacun
des coefficients de la matrice An). Conclusion B2 = B puisque les deux matrices sont limites
d’une même suite.

Pour montrer que AB = BA, plein de possiblités, une notamment utilise le même genre
d’astuce que pour B2 = B. La sous-suite (An+1) converge certainement vers B. Or, An+1 =
A×An converge aussi vers AB, donc B = AB. De même, An+1 = An×A, donc BA = AB = B
(c’est même plus fort que ce qui était demandé).

2. Ce n’est pas si compliqué que ça en a l’air. Quand on effectue le produit A×Ap, (Ap+1)ij =
n∑

k=1

aik(A
p)kj ⩾

n∑
k=1

aikα
(p)
j puisque tous les coefficients (Ap)kj sont plus grands que α

(p)
j par

définition de α(p)
j . Or,

n∑
k=1

aik = 1 puisque la matrice A est stochastique, donc (Ap+1)ij ⩾ α
(p)
j .

Autrement dit, tous les coefficients de la colle j dans Ap+1 sont plus grands que α(p)
j . A fortiori

le plus petit d’entre eux, d’où α
(p+1)
j ⩾ α

(p)
j . On démontre de la même façon que β

(p+1)
j ⩽ β

(p)
j

en majorant cette fois-ci tous les coefficients de la colonne par β
(p)
j .

La dernière inégalité demande un peu plus de soin : en reprenant la calcul précédent, on
peut isoler dans la somme le terme correspondant à β

(p)
j , notons son indice de ligne l, pour

écrire (Ap+1)ij ⩾
∑
k ̸=l

aikα
(p)
j + ailβ

(p)
j ⩾ (1− ail)α

(p)
j +mβ

(p)
j (puisque m est le plus petit de

tous les éléments de la matrice A. Tout cela est supérieur à α
(p)
j −mα

(p)
j +mβ

(p)
j = α

(p)
j +mδ

(p)
j ,

donc α
(p+1)
j ⩾ α

(p)
j +mδ

(p)
j . Un calcul exactement symétrique donne β

(p+1)
j ⩽ β

(p)
j −mδ

(p)
j . Il

ne reste plus qu’à soustraire les deux inégalités pour obtenir celle demandée.

3. Par une récurrence immédiate, on aura alors ∀n ∈ N, δ(n)j ⩽ (1− 2m)nδ
(0)
j = (1− 2m)n (dans

la matrice identité, la différence entre le plus grand et le plus petit coefficient d’une colonne
vaut toujours 1. Comme m > 0 (la matrice ne contient que des termes strictement positifs
par hypothèse), et comme δ

(n)
j est toujours positif par définition, le théorème des gendarmes

permet d’affirmer que lim
n→+∞

δ
(n)
j = 0. On en déduit aisément que les suites (α

(n)
j et β

(n)
j sont

adjacentes : en effet, on a prouvé plus haut que l’une était croissante et l’autre décroissante,
et on vient d’expliquer que leur limite tendait vers 0. Les deux suites sont donc convergentes
vers une même limite lj (qui dépend quand même de j). Mais si le plus grand et le plus petit
coefficient de la colonne convergent vers une même limite, par théorème des gendarmes, tous
les termes de la colonne, qui sont compris entre les deux, convergent également vers lj . Ainsi,
tous les coefficients de la suite de matrices (An) ont une limite, et la suite converge. Par
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ailleurs, on a prouvé que les limites étaient identiques pour tous les coefficients d’une même
colonne, donc toutes les lignes de la matrice B sont identiques.

4. On sait que la suite (An) converge vers une matrice B dont toutes les lignes sont identiques.
Mais il est évident dans ce cas que la suite (An)⊤ converge vers B⊤ (on se contente de
mettre les coefficients à un endroit différent dans la matrice, ça ne va sûrement pas changer
les limites !). Comme les deux suites sont en fait identiques puisque A = A⊤, on en déduit
que B = B⊤. La matrice B est donc une matrice symétrique dont toutes les lignes sont
identiques, tous ses coefficients sont nécessairement égaux (puisque ses colonnes sont alors
elles aussi identiques). Comme la somme des coefficients sur une lignes doit donner 1, chaque

coefficient doit donc être égal à
1

3
, donc lim

n→+∞

 1
5

2
5

2
5

2
5

1
5

2
5

2
5

2
5

1
5

n

=

 1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

.
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